
ar
X

iv
:1

50
2.

07
02

7v
1

 [
cs

.D
S]

 2
5

Fe
b

20
15

Variability in data streams

David Felber ∗ Rafail Ostrovsky †

Abstract

We consider the problem of tracking with small relative error an integer function f(n) defined by
a distributed update stream f ′(n). Existing streaming algorithms with worst-case guarantees for this
problem assume f(n) to be monotone; there are very large lower bounds on the space requirements for
summarizing a distributed non-monotonic stream, often linear in the size n of the stream.

Input streams that give rise to large space requirements are highly variable, making relatively large
jumps from one timestep to the next. However, streams often vary slowly in practice. What has heretofore
been lacking is a framework for non-monotonic streams that admits algorithms whose worst-case perfor-
mance is as good as existing algorithms for monotone streams and degrades gracefully for non-monotonic
streams as those streams vary more quickly.

In this paper we propose such a framework. We introduce a new stream parameter, the “variability”
v, deriving its definition in a way that shows it to be a natural parameter to consider for non-monotonic
streams. It is also a useful parameter. From a theoretical perspective, we can adapt existing algorithms
for monotone streams to work for non-monotonic streams, with only minor modifications, in such a way
that they reduce to the monotone case when the stream happens to be monotone, and in such a way that
we can refine the worst-case communication bounds from Θ(n) to Õ(v). From a practical perspective,
we demonstrate that v can be small in practice by proving that v is O(log f(n)) for monotone streams
and o(n) for streams that are “nearly” monotone or that are generated by random walks. We expect v
to be o(n) for many other interesting input classes as well.

1 Introduction

In the distributed monitoring model, there is a single central monitor and several (k) observers. The observers
receive data and communicate with the monitor, and the goal is to maintain at the monitor a summary of
the data received at the observers while minimizing the communication between them.

This model was introduced by Cormode, Muthukrishnan, and Yi [4] [5] with the motivating application
of minimizing radio energy usage in sensor networks, but can be applied to other distributed applications
like determining network traffic patterns. Since the monitor can retain all messages received, algorithms in
the model can be used to answer historical queries too, making the model useful for auditing changes to and
verifying the integrity of time-varying datasets.

The distributed monitoring model has also yielded several theoretical results. These include algorithms
and lower bounds for tracking total count [4] [5] [10] [11], frequency moments [4] [5] [14] [15], item frequencies
[8] [14] [15] [16] [17], quantiles [8] [14] [15] [16] [17], and entropy [1] [14] [15] to small relative error.

However, nearly all of the upper bounds assumed that data is only inserted and never deleted. This is
unfortunate because in the standard turnstile streaming model, all of these problems have similar algorithms
that permit both insertions and deletions. In general, this unfortunate situation is unavoidable; existing
lower bounds for the distributed model [1] demonstrate that it is not possible to track even the total item
count in small space when data is permitted to be deleted.

That said, when restrictions are placed on the types of allowable input, the lower bounds evaporate, and
very nice upper bounds exist. Tao, Yi, Sheng, Pei, and Li [13] developed algorithms for the problem of

∗University of California at Los Angeles. dvfelber@cs.ucla.edu.
†University of California at Los Angeles. rafail@cs.ucla.edu.

1

http://arxiv.org/abs/1502.07027v1

summarizing the order statistics history of a dataset D over an insertion/deletion stream of size n, which
has an Ω(n)-bit lower bound in general; however, they performed an interesting analysis that yielded online
and offline upper bounds proportional to

∑n
t=1 1/|D(t)|, with a nearly matching lower bound. A year or two

later, Liu, Radunović, and Vojnović [10] [11] considered the problem of tracking |D| under random inputs;
for general inputs, there is an Ω(n)-bit lower bound, but Liu et. al. obtained (among other results) expected
communication costs proportional to

√
n logn when the insertion/deletion pattern is the result of fair coin

flips.
In fact, the pessimistic lower bounds for the general case can occur only when the input stream is such

that the quantity being tracked is forced to vary quickly. In the problems considered by Tao et. al. and Liu
et. al., this occurs when |D| is usually small. These two groups avoid this problem in two different ways:
Tao et. al. provide an analysis that yields a worst-case upper bound that is small when |D| is usually large,
and Liu et. al. consider input classes for which |D| is usually large in expectation.

Our contributions In this paper we propose a framework that extends the analysis of Tao et. al. to the
distributed monitoring model and that permits worst-case analysis that can be specialized for random input
classes considered by Liu et. al. In so doing, we explain the intuition behind the factor of

∑n
t=1 1/|D(t)| in

the bounds of Tao et. al. and how we can separate the different sources of randomness that appear in the
algorithms of Liu et. al. to obtain worst-case bounds for the random input classes we also consider.

In the next section we derive a stream parameter, the variability v. We prove that v is O(log f(n)) for
monotone streams and o(n) for streams that are “nearly” monotone or that are generated by random walks,
and find that the bounds of Tao et. al. and Liu et. al. are stated nicely in terms of v. In section 3 we
combine ideas from the upper bounds of Tao et. al. [13] with the existing distributed counting algorithms of
Cormode et. al. [4] [5] and Huang, Yi, and Zhang [8] to obtain upper bounds for distributed counting that
are proportional to v. In section 4 we show that our dependence on v is essentially necessary by developing
deterministic and randomized space+communication lower bounds that hold even when v is small. We round
out the piece in section 5 with a discussion of the suitability of variability as a general framework, in which
we extend the ideas of section 3 to the problems of distributed tracking of item frequencies and of tracking
general aggregates when k = 1.

But before we jump into the derivation of variability, we define our problem formally and abstract away
unessential details.

Problem definition The problem is that of tracking at the coordinator an integer function f(n) defined
by an update stream f ′(n) that arrives online at the sites. Time occurs in discrete steps; to be definite, the
first timestep is 1, and we define f(0) = 0 unless stated otherwise. At each new current time n the value
f ′(n) = f(n)− f(n−1) appears at a single site i(n).

There is an error parameter ε that is specified at the start. The requirement is that, after each timestep
n, the coordinator must have an estimate f̂(n) for f(n) that is usually good. In particular, for deterministic

algorithms we require that ∀n, |f(n)− f̂(n)| ≤ εf(n), and for randomized algorithms we require that

∀n, P (|f(n)−f̂(n)| ≤ εf(n)) ≥ 2/3.

2 Variability

In the original distributed monitoring paper [4], Cormode et. al. define a general thresholded problem
(k, f, τ, ε). A dataset D arrives as a distributed stream across k sites. At any given point in time, the
coordinator should be able to determine whether f(D) ≥ τ or f(D) ≤ (1−ε)τ .

In continuous tracking problems, there is no single threshold, and so f(n) is tracked to within an additive
ετ(n), where τ(n) also changes with the dataset D(n). Since τ is now a function, it needs to be defined;
the usual choice is f itself, except for tracking item frequencies and order statistics, for which (following the
standard streaming model) τ is chosen to be |D|. That is, the continuous monitoring problem (k, f, ε) is, at

all times n maintain at the coordinator an estimate f̂(n) of f(n) so that |f(n)−f̂(n)| ≤ εf(n).

2

The motivation for the way we define variability is seen more easily if we first look at the situation as
though item arrivals and communication occur continuously. That is, over n = [0.1, 0.2] we receive the
second tenth of the first item, for example. At any time t at which f changes by ±εf , we would need to
communicate at least one message to keep the coordinator in sync; so if f changes by f ′(t) dt then we should

communicate | f
′(t) dt

εf(t+dt) | messages.

With discrete arrivals, dt = 1, and we define f ′(t) = f(t)−f(t−1). Otherwise, the idea remains the same,

so we would expect the total number of messages to look like
∑n

t=1 |
f ′(t)
εf(t) |, where here f ′(t) = f(t)− f(t−1).

In sections 3 and 4 we find that, modulo the number k of sites and constant factors, this is indeed the case.
Being a parameter of the problem rather than of the stream, we can move the 1/ε factor out of our

definition of variability and bring it back in along with the appropriate functions of k when we state upper
and lower bounds for our problem. This permits us to treat the stream parameter v independently of the
problem. We also need to handle the case f = 0 specially, which we can do by communicating at each

timestep that case occurs. This means we can define | f
′(t)
f(t) | = 1 when f(t) = 0.

Taking all of these considerations into account, we define the f -variability of a stream to be v(n) =
∑n

t=1 min{1, | f
′(t)
f(t) |}. We also write v′(t) = min{1, | f

′(t)
f(t) |} to be the increase in variability at time t. We say

“variability” for f -variability in the remainder of this paper.
From a practical perspective, we believe low variability streams to be common. In many database

applications the database is interesting primarily because it tends to grow more than it shrinks, so it is
common for the size of the dataset to have low variability; as more items are inserted, the rate of change
of |D| shrinks relative to itself, and about as many deletions as insertions would be required to keep the
ratio constant. In the following subsection, we prove that monotone and nearly monotone functions have
low variability and that random walks have low variability in expectation, lending evidence to our belief.

From a theoretical perspective, variability is a way to analyze algorithms for ε relative error in the face
of non-monotonicity and generate provable worst-case bounds that degrade gracefully as our assumptions
about the input become increasingly pessimistic. For our counting problem, it allows us to adapt the
existing distributed counting algorithms of Cormode et. al. [4] [5] and Huang et. al. [8] with only minor
modifications, and the resulting analyses show that the dependence on k and ε remains unchanged.

2.1 Interesting cases with small variability

We start with functions that are nearly monotone in the sense that they are eventually mostly nondecreasing.
We make this precise in the theorem statement.

Theorem 2.1. Let f−(n) =
∑

t:f ′(t)<0 |f ′(t)| and f+(n) =
∑

t:f ′(t)>0 f
′(t). If there is a monotone nonde-

creasing function β(t) ≥ 1 and a constant t0 such that for all n ≥ t0 we have f−(n) ≤ β(n)f(n), then the
variability

∑n
t=1 |f ′(t)/f(t)| is O(β(n) log(β(n)f(n))).

The proof, which we defer to appendix A, partitions time into intervals over which f+(t) doubles and
shows the variability in each interval to be O(β(n)). When f(n) is strictly monotone, β(n) = 1 suffices, and
the theorem reduces to the result claimed in the abstract. As we will see in section 3, our upper bounds will
simplify in the monotone case to those of Cormode et. al. [4] [5] and Huang et. al. [8].

Next, we compute the variability for two random input classes considered by Liu et. al. [10] [11]. This
will permit us to decouple the randomness of their algorithms from the randomness of their inputs. This
means, for example, that even our deterministic algorithm of section 3 has o(n) cost in expectation for these
input classes. The first random input class we consider is the symmetric random walk.

Theorem 2.2. If f ′(t) is a sequence of i.i.d. ±1 coin flips then the expected variability E(v(n)) =
O(

√
n logn).

Proof. The update sequence defines a random walk for f(t), and the expected variability is

n
∑

t=1

P (f(t)=0) +

n
∑

t=1

t
∑

s=1

2P (f(t)=s)/s

3

We use the following fact, mentioned and justified in Liu et. al. [10]:

Fact 2.3. For any t ≥ 1 and s ∈ [−t, t] we have P (f(t)=s) ≤ c1/
√
t, where c1 is some constant.

Together, these show the expected cost to be at most

c1

n
∑

t=1

(1 + 2Ht)/
√
t ≤ c2 log(n)

n
∑

t=1

1/
√
t ≤ c3 log(n)

√
n

since (1 + 2Hn) ≤ c2
c1

log(n) and
∑n

t=1 1/
√
t ≤ c3

2c2

∫ n

1
1/

√
t dt.

The second random input class we consider is i.i.d. increments with a common drift rate of µ > 0. The
case µ < 0 is symmetric. We assume that µ is constant with respect to n. The proof is a simple application
of Chernoff bounds and is deferred to appendix B.

Theorem 2.4. If f ′(t) is a sequence of i.i.d. ±1 random variables with P (f ′(t) = 1) = (1 + µ)/2 then
E(v(n)) = O(log n

µ).

Remarks We can restate the results of Liu et. al. [10] [11] and Tao et. al. [13] in terms of vari-

ability. For unbiased coin flips, Liu et. al. obtain an algorithm that uses O(
√
k
ε

√
n logn) messages (of

size O(log n) bits each) in expectation, and for biased coin flips with constant µ, an algorithm that uses

O(
√
k
ε

1
|µ| (logn)

1+c) messages in expectation. If we rewrite these bounds in terms of expected variability,

they become O(
√
k
ε E(v(n))) and O(

√
k
ε (log n)cE(v(n))), respectively. In the next section, we obtain (when

k = O(1/ε2)) a randomized bound of O(
√
k
ε v(n)). In marked contrast to the bounds of Liu et. al., our bound

is a worst-case lower bound that is a function of v(n); if the input happens to be generated by fair coin flips,

then our expected cost happens to be O(
√
k
ε

√
n logn).

The results of Tao et. al. are for a different problem, but they can still be stated nicely in terms of the
|D|-variability v(n): for the problem of tracking the historical record of order statistics, they obtain a lower
bound of Ω(1εv(n)) and offline and online upper bounds of O((1ε log

2 1
ε)v(n)) and O(1

ε2 v(n)), respectively.
We adapt ideas from both their upper and lower bounds in sections 3 and 4.

3 Upper bounds

In this section we develop deterministic and randomized algorithms for maintaining at the coordinator an
estimate f̂(n) for f(n) that is usually good. In particular, for deterministic algorithms we require that

∀n, |f(n)− f̂(n)| ≤ εf(n), and for randomized algorithms that ∀n, P (|f(n)− f̂ (n)| ≤ εf(n)) ≥ 2/3. We

obtain deterministic and randomized upper bounds of O(kε v(n)) and O((k+
√
k
ε)v(n)) messages, respectively.

For comparison, the analogous algorithms of Cormode et. al. [4] [5] and Huang et. al. [8] use O(kε logn)

and O((k +
√
k
ε) logn) messages, respectively.

For our upper bounds we assume that f ′(n) = ±1 always. If |f ′(n)| > 1 we could simulate it with |f ′(n)|
arrivals of ±1 updates with O(logmax f ′(n)) overhead, as shown in appendix C.

3.1 Partitioning time

We use an idea from Tao et. al. [13] to first divide time into manageable blocks. At the end of each block
we know the values n and f(n) exactly. Within each block, we know these values only approximately. The
division into blocks is deterministic and the same for both our deterministic and randomized algorithms.
Our division ensures that the change in v(n) over each block is at least 1/5, which simplifies our analysis.

• The coordinator requests the sites’ values ci and fi at times n0 =0, n1, n2, . . . and then broadcasts a
value r. These values will be defined momentarily.

4

• Each site i maintains a variable ci that counts the number of stream updates f ′(n) it received since the
last time it sent ci to the coordinator. It also maintains fi that counts the change in f it received since
the last broadcast nj . Whenever ci = ⌈2r−1⌉, site i sends ci to the coordinator. This is in addition to
replying to requests from the coordinator.

• The coordinator maintains a variable t̂. After broadcasting r, t̂ is reset to zero. Whenever site i sends
ci, the coordinator updates t̂ = t̂+ ci.

• The coordinator also maintains variables f̂ , j, and tj . At the first time nj > nj−1 at which t̂ ≥ tj ,

the coordinator requests the ci and fi values, updates f̂ and r, sets tj+1 = ⌈2r−1⌉k, broadcasts r, and
increments j.

• When r is updated at the end of time nj , it is set to r if 2r2k ≤ |f(nj)| < 2r4k and zero if |f(nj)| < 4k.

Thus we divide time into blocks B0, B1, . . ., where Bj = [nj + 1, nj+1]. Algebra tells us some facts:

• ⌈2r−1⌉k ≤ nj+1 − nj ≤ 2rk.
• If r = 0 then |f(n)− f(nj)| ≤ k and |f(n)| ≤ 5k for all n in Bj .
• If r ≥ 1 then |f(n)− f(nj)| ≤ 2rk and 2rk ≤ |f(n)| ≤ 2r5k for all n in Bj .

The total number of messages sent in block Bj is at most 5k: we have at most 2k updates from sites, k
in requests from the coordinator, k replies from each site, and k broadcast at nj+1.

The change in variability vj = v(nj+1)− V (nj) over block Bj is

v(nj+1)− v(nj) =

nj+1
∑

t=nj+1

1

min{1, |f(t)|} ≥
{

k/5k if r = 0
2rk/2r5k if r ≥ 1

}

≥ 1/5

And therefore the total number of messages (all O(log n) bits in size) is bounded by 25kv + 3k.

3.2 Estimation inside blocks

What remains is to estimate f(n) within a given block. Since we have partitioned time into constant-
variability blocks, we can use the algorithms of Cormode et. al. [4] [5] and Huang et. al. [8] almost directly.
Both of our algorithms use the following template, changing only condition, message, and update:

• Site i maintains a variable di that tracks the drift at site i, defined as the sum of f ′(n) updates received
at site i during the block. That is, f(n)− f(nj) =

∑

i di.
• Site i also maintains a variable δi that tracks the change in di since the last time site i sent a message.
δi is initially zero.

• The coordinator maintains an estimate d̂i for each value di. These are initially zero. It also defines
two estimates based on these d̂i:

◦ For the global drift: d̂ =
∑

i d̂i.

◦ For f(n): f̂(n) = f(nj) + d̂(n).

• When site i receives stream update f ′(n), it updates di. It then checks its condition. If true, it sends
a message to the coordinator and resets δi = 0.

• When the coordinator receives a message from a site i it updates its estimates.

3.3 The deterministic algorithm

Our method guarantees that at all times n we have |f(n) − f̂(n)| ≤ ε|f(n)|. It uses O(kv/ε) messages in
total.

• Condition: true if |δi| = 1 and r = 0, or if |δi| ≥ ε2r. Otherwise, false.
• Message: the new value of di.
• Update: set d̂i = di.

5

Let δ =
∑

i δi be the error with which d̂ estimates d =
∑

i di. The error in f̂ is

|f(n)− f̂(n)| = |(f(nj) + d(n)) − (f̂(nj) + d(n) + δ(n))| = |δ(n)|

When r ≥ 1 we have |Bj | ≤ 2rk, and we always have that δ ≤ |Bj |. Since we constrain δi < ε2r at the end

of each timestep, we have |f(n)− f̂(n)| < ε2rk ≤ ε|f(n)|.
We also use at most 2k/ε messages for the block. If r = 0 then the number of messages is at most k. If

r ≥ 1, then since a site must receive ε2r new stream updates to send a new message, and since there are at
most 2rk stream updates in the block, there are at most k/ε messages.

In each block the change in v is at least 1/5, so the total number of messages is at most 5kv/ε.

3.4 The randomized algorithm

Our method uses O(
√
kv/ε) messages (plus the time partitioning) and guarantees that at all times n we

have P (|f(n)− f̂(n)| > ε|f(n)|) < 1/3.
The idea is to estimate the sums d+i and d−i separately. The estimators for those values are independent

and monotone, so we can use the method of Huang et. al. [8] to estimate the two and then combine them.
Specifically, the coordinator and each site run two independent copies A+ and A− of the algorithm.

Whenever f ′(n) = +1 arrives at site i, a +1 is fed into algorithm A+ at site i. Whenever f ′(n) = −1
arrives at site i, a +1 is fed into algorithm A− at site i. So the drifts d+i and d−i at every site will always

be nonnegative. At the coordinator, the estimates d̂±i and d̂± are tracked independently also. However, the

coordinator also defines d̂ = d̂+ − d̂− and f̂(n) = f(nj) + d̂(n). The definitions for algorithm A± are

• Condition: true with probability p = min{1, 3/ε2rk1/2}.
• Message: the new value of d±i .

• Update: set d̂±i = d±i − 1 + 1/p.

The following fact 3.1 is lemma 2.1 of Huang et. al. [8]. Our algorithm effectively divides the stream
f ′(Bj) into two streams |f ′(B±

j)|. Since these streams consist of +1 increments only we run the algorithm

of Huang et. al. separately on each of them. At any time n, stream |f ′(B±
j)| has seen d±i (n) increments at

site i, and lemma 2.1 of Huang et. al. guarantees that the estimates d̂±i (n) for the counts d±i (n) are good.

Fact 3.1. E(d̂±i) = d±i and Var(d̂±i) ≤ 1/p2.

This means that E(d̂±) =
∑

iE(d̂±i) =
∑

i d
±
i , and therefore that E(d̂) =

∑

iE(d+i − d−i) =
∑

i di.

Since the estimators d̂±i are independent, the variance of the global drift is at most 2k/p2. By Chebyshev’s
inequality,

P (|δ(n)| > ε2rk) ≤ 2k/p2

(ε2rk)2
< 1/3

Further, the expected cost of block Bj is at most p|Bj | ≤ (3/ε2rk1/2)(2r2k) ≤ 30k1/2vj/ε.

4 Lower bounds

In this section we show that the dependence on v is essentially necessary by developing deterministic and
randomized lower bounds on space+communication that hold even when v is small. Admittedly, this is not
as pleasing as a pure communication lower bound would be. On the other hand, a distributed monitoring
algorithm with high space complexity would be impractical for monitoring sensor data, network traffic
patterns, and other applications of the model. Note that in terms of space+communication, our deterministic
lower bound is tight up to factors of k, and our randomized lower bound is within a factor of log(n) of that.

6

For these lower bounds we use a slightly different problem. We call this problem the tracing problem.
The streaming model for the tracing problem is the standard turnstile streaming model with updates f ′(n)
arriving online. The problem is to maintain in small space a summary of the sequence f so that, at
any current time n, if we are given an earlier time t as a query, we can return an estimate f̂(t) so that

P (|f(t)−f̂(t)| ≤ εf(t)) is large (one in the deterministic case, 2/3 in the randomized case). We call this the
tracing problem because our summary traces f through time, so that we can look up earlier values.

In appendix D we show that a space lower bound for the tracing problem implies a space+communication
lower bound for the distributed tracking problem. Here, we develop deterministic and randomized space lower
bounds for the tracing problem.

4.1 The deterministic bound

The deterministic lower bound that follows is similar in spirit to the lower bound of Tao et. al. [13]. It uses
a simple information-theoretic argument.

Theorem 4.1. Let ε = 1/m for some integer m ≥ 2, let n ≥ 2m, let c < 1 constant, and let r ≤ nc and
even. If a deterministic summary S(f) guarantees, even only for sequences for which v(n) = 6m+9

2m+6εr, that

|f(t)− f̂(t)| ≤ εf(t) for all t ≤ n, then that summary must use Ω(log n
ε v(n)) bits of space.

The full proof appears in appendix E. At a high level, the sequences in the family take only values m or
m+ 3, and each sequence is defined by r of the n timesteps. If the new timestep t is one of the r chosen for
our sequence, then we flip from m to m + 3 or vice-versa. All of these sequences are unique and there are
2Ω(r logn) of them.

4.2 The randomized bound

We use a construction similar to the one in our deterministic lower bound to produce a randomized lower
bound. In order to make the analysis simple we forego a single variability value for all sequences in our
constructed family, but still maintain that they all have low variability. C is a universal constant to be
defined later.

Theorem 4.2. Choose ε ≤ 1/2, v ≥ 32400ε lnC, and n > 3v/ε. If a summary S(f) guarantees, even only

for sequences for which v(n) ≤ v, that P (|f(t)− f̂(t)| ≤ εf(t)) ≥ 99/100 for all t ≤ n, then that summary
must use Ω(v/ε) bits of space.

We prove this theorem in two lemmas. In the first lemma, we reduce the claim to a claim about the
existence of a hard family of sequences. In the second lemma we show the existence of such a family.

First a couple of definitions. For any two sequences f and g define the number of overlaps between f
and g to be the number of positions 1 ≤ t ≤ n for which |f(t)− g(t)| ≤ εmax{f(t), g(t)}. Say that f and g
match if they have at least 6

10n overlaps.

Lemma 4.3. Let F be a family of sequences of length n and variabilities ≤ v such that no two sequences
in F match. If a summary S(f) guarantees for all f in F that P (|f(t) − f̂(t)| ≤ εf(t)) ≥ 99/100 for all
t ≤ n, then that summary must use Ω(log |F|) bits of space.

The full proof appears in appendix F. At a high level, if S(f) is the summary for a sequence f , we can

use it to generate an approximation f̂ that at least 90% of the time overlaps with f in at least 9
10n positions.

Since no two sequences in F overlap in more than 6
10n positions, at least 90% of the time we can determine

f given f̂ . We then solve the one-way IndexN problem by deterministically generating F and sending a
summary S(f(x)), where x is Alice’s input string of size N = log2 |F|, and f(x) is the xth sequence in F .

7

Lemma 4.4. For all ε ≤ 1/2, v ≥ 32400ε lnC, and n > 3v/ε, there is a family F of size eΩ(v/ε) of sequences
of size n such that:

1. no two sequences match, and
2. every sequence has variability at most v.

The full proof appears in appendix G. At a high level, sequences again switch between m = 1/ε and
m+3, except that these switches are chosen independently. We model the overlap with a Markov chain; the
overlap between any two sequences is the sum over times t of a function y applied to the states of a chain
modeling their interaction. We then apply a result of Chung, Lam, Liu, and Mitzenmacher [2] to show that
the probability that any two sequences match is low. Lastly, we show that not too many sequences have
variability more than v, by proving that they usually don’t switch between m and m+3 many times.

5 Variability as a framework

In section 2 we proposed the f -variability
∑n

t=1 min{1, | f
′(t)
f(t) |} as a way to analyze algorithms for the contin-

uous monitoring problem (k, f, ε) over general update streams. However, our discussion so far has focused on
distributed counting. In this final section we revisit the suitability of our definition by mentioning extensions
to tracking other functions of a dataset defined by a distributed update stream. We include fuller discussions
of these extensions in the appendices.

5.1 Tracking item frequencies

We can extend our deterministic algorithm of section 3 to the problem of tracking item frequencies, in a
manner similar to that in which Yi and Zhang [16] [17] extend the ideas of Cormode et. al. [4] to this
problem. The definition of this problem, the required changes to our algorithm of section 3 needed to solve
this problem, and a discussion of the difficulties in finding a randomized algorithm, are discussed in appendix
H.

5.2 Aggregate functions with one site

In this subsection we consider general single-integer-valued functions f of a dataset. When there is a single
site, the site always knows the exact value of f(n), and the only issue is updating the coordinator to have

an approximation f̂(n) so that |f(n)− f̂(n)| ≤ εf(n) for all n. We can show that this problem of tracking f
to ε relative error when k = 1 has an O(1εv(n))-word upper bound, where here v(n) is the f -variability. The

algorithm is: whenever |f − f̂ | > εf , send f to the coordinator. The proof is a simple potential argument
and is deferred to appendix I.

Along with our lower bounds of section 4, this upper bound lends evidence to our claim that variability
captures the difficulty of communicating changes in f that are due to the non-monotonicity of the input
stream. A bolder claim is that variability is also useful in capturing the difficulty of the distributed compu-
tation of a general function that is due to the non-monotonicity of the input stream, but the extent to which
that claim is true has yet to be determined.

Acknowledgments

Research supported in part by NSF grants CCF-0916574; IIS-1065276; CCF-1016540; CNS-1118126; CNS-
1136174; US-Israel BSF grant 2008411, OKAWA Foundation Research Award, IBM Faculty Research Award,
Xerox Faculty Research Award, B. John Garrick Foundation Award, Teradata Research Award, and Lockheed-
Martin Corporation Research Award. This material is also based upon work supported by the Defense

8

Advanced Research Projects Agency through the U.S. Office of Naval Research under Contract N00014-11-
1-0392. The views expressed are those of the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.

References

[1] Chrisil Arackaparambil, Joshua Brody, and Amit Chakrabarti. Functional monitoring without mono-
tonicity. In Automata, Languages and Programming, pages 95–106. Springer, 2009.

[2] Kai-Min Chung, Henry Lam, Zhenming Liu, and Michael Mitzenmacher. Chernoff-hoeffding bounds for
markov chains: Generalized and simplified. arXiv preprint arXiv:1201.0559, 2012.

[3] Graham Cormode and S. Muthukrishnan. An improved data stream summary: the count-min sketch
and its applications. Journal of Algorithms, 55(1):58 – 75, 2005.

[4] Graham Cormode, S. Muthukrishnan, and Ke Yi. Algorithms for distributed functional monitoring.
In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’08,
pages 1076–1085, Philadelphia, PA, USA, 2008. Society for Industrial and Applied Mathematics.

[5] Graham Cormode, S Muthukrishnan, and Ke Yi. Algorithms for distributed functional monitoring.
ACM Transactions on Algorithms (TALG), 7(2):21, 2011.

[6] Sumit Ganguly and Anirban Majumder. Cr-precis: A deterministic summary structure for update data
streams. CoRR, abs/cs/0609032, 2006.

[7] Sumit Ganguly and Anirban Majumder. Cr-precis: A deterministic summary structure for update
data streams. In Bo Chen, Mike Paterson, and Guochuan Zhang, editors, Combinatorics, Algorithms,
Probabilistic and Experimental Methodologies, volume 4614 of Lecture Notes in Computer Science, pages
48–59. Springer Berlin Heidelberg, 2007.

[8] Zengfeng Huang, Ke Yi, and Qin Zhang. Randomized algorithms for tracking distributed count, fre-
quencies, and ranks. In Proceedings of the 31st symposium on Principles of Database Systems, pages
295–306. ACM, 2012.

[9] Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press, New York,
NY, USA, 1997.

[10] Zhenming Liu, Bozidar Radunović, and Milan Vojnović. Continuous distributed counting for non-
monotonic streams. In Technical Report MSR-TR-2011-128, 2011.

[11] Zhenming Liu, Bozidar Radunović, and Milan Vojnović. Continuous distributed counting for non-
monotonic streams. In Proceedings of the 31st symposium on Principles of Database Systems, pages
307–318. ACM, 2012.

[12] Shanmugavelayutham Muthukrishnan. Data streams: Algorithms and applications. Now Publishers Inc,
2005.

[13] Yufei Tao, Ke Yi, Cheng Sheng, Jian Pei, and Feifei Li. Logging every footstep: quantile summaries for
the entire history. In Proceedings of the 2010 ACM SIGMOD International Conference on Management
of data, SIGMOD ’10, pages 639–650, New York, NY, USA, 2010. ACM.

[14] David P. Woodruff and Qin Zhang. Tight bounds for distributed functional monitoring. CoRR,
abs/1112.5153, 2011.

[15] David P Woodruff and Qin Zhang. Tight bounds for distributed functional monitoring. In Proceedings
of the 44th symposium on Theory of Computing, pages 941–960. ACM, 2012.

9

[16] Ke Yi and Qin Zhang. Optimal tracking of distributed heavy hitters and quantiles. In Proceedings of
the Twenty-eighth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
PODS ’09, pages 167–174, New York, NY, USA, 2009. ACM.

[17] Ke Yi and Qin Zhang. Optimal tracking of distributed heavy hitters and quantiles. Algorithmica,
65(1):206–223, 2013.

A Variability of nearly monotone f(n), theorem 2.1

Theorem A.1. Let f−(n) =
∑

t:f ′(t)<0 |f ′(t)| and f+(n) =
∑

t:f ′(t)>0 f
′(t). If there is a monotone nonde-

creasing function β(t) ≥ 1 and a constant t0 such that for all n ≥ t0 we have f−(n) ≤ β(n)f(n), then the
variability

∑n
t=1 |f ′(t)/f(t)| is O(β(n) log(β(n)f(n))).

Proof. For i = 1, . . . , k, define ti to be the earliest time t such that f+(ti) > 2f+(ti−1), where k is the
smallest index such that tk > n. (If k is undefined, define k = n+ 1.)

The cost
∑t0−1

t=1 |f ′(t)/f(t)| is constant. We bound the cost
∑n

t=t0
|f ′(t)|/f(t) as follows. We partition

the interval [t0, tk) into subintervals [t0, t1), . . . , [tk−1, tk) and sum over the times t in each one. There are
at most 1 + log f+(n) of these subintervals.

n
∑

t=t0

|f ′(t)|
f(t)

≤
k
∑

i=1

ti−1
∑

t=ti−1

|f ′(t)|
f(t)

≤
k
∑

i=1

1 + β(n)

f+(ti−1)

ti−1
∑

t=ti−1

|f ′(t)|

≤
k
∑

i=1

(1 + β(n))
f+(ti−1) + f−(ti−1)

f(ti−1)

≤ 4(1 + β(n))(1 + log f+(ti−1))

≤ 4(1 + β(n))(1 + log(2(1 + β(n))f(n)))

because the condition f−(t) ≤ β(t)f(t) implies f(t) ≥ f+(t)/(1 + β(t)) and f−(t) ≤ f+(t).

B Variability of biased coin flips, theorem 2.4

Theorem B.1. If f ′(t) is a sequence of i.i.d. ±1 random variables with P (f ′(t) = 1) = (1 + µ)/2 then
E(v(n)) = O(log n

µ).

Proof. We show that, with high probability, f(t) ≥ µt/2 for times t ≥ t0 = t0(n) when n is large enough
with respect to µ.

We write f(t) = −t+ 2Yt, where Yt =
∑t

s=1 ys, and ys is a Bernoulli variable with mean 1+µ
2 . We have

that P (f(t) ≤ µt/2) = P (Yt ≤ 2+µ
4 t) and that E(Yt) = 1+µ

2 t. Using a Chernoff bound, P (Yt ≤ 2+µ
4 t) ≤

exp(−µt/16). Let A be the event ∃t≥ t0 (f(t) ≤ µt/2). Then P (A) ≤ ∑n
t=t0

e−µt/16 by the union bound.
We can upper bound this sum by

n
∑

t=t0

e−µt/16 ≤ e−µt0/16 +

∫ n

t0

e−µt/16 dt ≤ 17e−µt0/16/µ

Taking t0 = (16/µ) ln(17n/µ) gives us P (A) ≤ 1/n. Thus

E

(

n
∑

t=1

min{1, |f
′(t)

f(t)
|}
)

≤ t0 +

(

1

n

)

n+

(

1− 1

n

) n
∑

t=t0

2

µt
= O

(

logn

µ

)

yielding the theorem.

10

C Simulating large |f ′(n)|, section 3

We noted in section 3 that we can simulate |f ′(n)| > 1 with |f ′(n)| arrivals of±1 updates withO(logmax f ′(n))
overhead. To simplify notation we define 1/f(n) = 1 when f(n) = 0 and assume that f(n) ≥ 0 always.

Theorem C.1. For f ′(n) > 1 we have
∑f ′(n)

t=1
1

f(n−1)+t ≤ f ′(n)
f(n) (1 +H(f ′(n))) and for f ′(n) < −1 we have

∑1−f ′(n)
t=0

t
f(n)+t ≤

3f ′(n)
f(n) , where H(x) is the xth harmonic number.

Proof. For f ′(n) > 1, we have
∑f ′(n)

t=1
1

f(n−1)+t = f ′(n)
f(n) + 1

f(n)

∑f ′(n)
t=1

f ′(n)−t
f(n−1)+t ≤ f ′(n)

f(n) + f ′(n)
f(n)

∑f ′(n)
t=1

1
t .

If f ′(n) < −1 and f(n) ≥ 1, then
∑1−f ′(n)

t=0
1

f(n)+t ≤ 1
f(n)+ln

(

f(n−1)
f(n)

)

= 1
f(n)+ln

(

1 + |f ′(n)|
f(n)

)

≤ 2|f ′(n)|
f(n) ,

and if f(n) = 0, add another |f ′(n)|/f(n).

D Tracing and distributed tracking, section 4

Lemma D.1. Fix some ε. Suppose that the tracing problem has an Ω(Lε(n))-bit space deterministic lower
bound. Also suppose that there is a deterministic algorithm A for the distributed tracking problem that uses
Ω(Cε(n)) bits of communication and Ω(Sε(n)) bits of space at the site and coordinator combined. Then we
must have C + S = Ω(L).

Further, if we replace “deterministic” with “randomized” in the preceding paragraph, the claim still holds.

Proof. Suppose instead that for all constants c < 1 and all n0 there is an n > n0 such that C(n) + S(n) <
cL(n). Then we can write an algorithm B for the tracing problem that uses L′(n) < cL(n) bits of space:
simulate A, recording all communication, and on a query t, play back the communication that occurred
through time t.

At no point did we use the fact that A guarantees P (|f(t)−f̂(t)| ≤ εf(t)) = 1, so the claim still holds if
we change the correctness requirement to P ≥ 2/3.

E Deterministic lower bound, theorem 4.1

Theorem E.1. Let ε = 1/m for some integer m ≥ 2, let n ≥ 2m, let c < 1 constant, and let r ≤ nc and
even. If a deterministic summary S(f) guarantees, even only for sequences for which v(n) = 6m+9

2m+6εr, that

|f(t)− f̂(t)| ≤ εf(t) for all t ≤ n, then that summary must use Ω(log n
ε v(n)) bits of space.

Proof. We construct a family of input sequences of length n and variability 6m+9
2m+6εr. Choose sets of r different

indices 1 . . . n so that there are choose(n, r) such sets.
For each set S we define an input sequence fS. We define fS(0) = m and the rest of fS recursively:

fS(t) = fS(t−1) if t is not in S, and fS(t) = (2m + 3) − fS(t−1) if t is in S. (That is, switch between m
and m+ 3.)

If A and B are two different sets, then fA 6= fB: let i be the smallest index that is in one and not the
other; say i is in A. Then fA(1 . . . (i−1)) = fB(1 . . . (i−1)), but fA(i) 6= fA(i−1) = fB(i−1) = fB(i).

The variability of any fS is 6m+9
2m+6εr: There are r/2 changes from m to m+3 and another r/2 from m+3

to m. When we switch from m to m+ 3, we get |f ′(t)/f(t)| = 3/(m+ 3), and when we switch from m+ 3

to m, we get |f ′(t)/f(t)| = 3/m. Thus
∑

t |
f ′(t)
f(t) | = r

2
6m+9

m(m+3) =
6m+9
2m+6εr.

There are choose(n, r) ≥ (n/r)r input sequences in our family, so to distinguish between any two input
sequences we need at least r log(n/r) = Ω(r logn) bits. Any summary that can determine for each t the
value f(t) to within ±εf(t), must also distinguish between f(t) = m and f(t) = m + 3, since there is no
value within εm of m and also within ε(m + 3) of m + 3. Since this summary must distinguish between
f(t) = m and f(t) = m+ 3 for all t, it must distinguish between any two input sequences in the family, and
therefore needs Ω(r logn) bits.

11

F Randomized lower bound, lemma 4.3

Lemma F.1. Let F be a family of sequences of length n and variabilities ≤ v such that no two sequences
in F match. If a summary S(f) guarantees for all f in F that P (|f(t) − f̂(t)| ≤ εf(t)) ≥ 99/100 for all
t ≤ n, then that summary must use Ω(log |F|) bits of space.

Proof. Let S(f) be the summary for a sequence f , and sample f̂(1) . . . f̂(n) once each using S(f) to get f̂ .

Let A be the event that |{t : |f(t)−f̂(t)| ≤ εf(t)}| ≥ 90
100n. By Markov’s inequality and the guarantee in

the premise, we must have P (A) ≥ 9/10.

Let ω define the random bits used in constructing S(f) and in sampling f̂ . For any choice ω in A we

have that f̂ overlaps with f in at least 9
10n positions, which means that f̂ overlaps with any other g ∈ F

in at most 7
10n positions: at most the 6

10n in which f and g could overlap, plus the 1
10n in which f̂ and f

might not overlap.
Define F ⊆ F to be the sequences g that overlap with f̂ in at least 9

10n positions. This means that when
ω ∈ A we have |F | = 1, and therefore with probability at least 9/10 we can identify which sequence f had
been used to construct S(f).

We now prove our claim by reducing the IndexN problem to the problem of tracing the history of a
sequence f . The following statement of IndexN is roughly as in Kushilevitz and Nisan [9]. There are two
parties, Alice and Bob. Alice has an input string x of length N = log2 |F| and Bob has an input string i
of length log2 N that is interpreted as an index into x. Alice sends a message to Bob, and then Bob must
output xi correctly with probability at least 9/10.

Consider the following algorithm for solving IndexN . Alice deterministically generates a family F of
sequences of length n and variabilities ≤ v such that no two match, by iterating over all possible sequences
and choosing each next one that doesn’t match any already chosen. Her log2 |F| bits of input x index a
sequence f in F . Alice computes a summary S(f) and sends it to Bob. After receiving S(f), Bob computes

f̂(t) for every t = 1 . . . n, to get a sequence f̂ . He then generates F himself and creates a set F of all

sequences in F that overlap with f̂ in at least 9
10n positions. If F = {f}, which it is with probability at

least 9/10, then Bob can infer every bit of x.
Since the IndexN problem is known to have a one-way communication complexity of Ω(N), it must be

that |S(f)| = Ω(log |F|).

G Randomized lower bound, lemma 4.4

Lemma G.1. For all ε ≤ 1/2, v ≥ 32400ε lnC, and n > 3v/ε, there is a family F of size eΩ(v/ε) of sequences
of size n such that:

1. no two sequences match, and
2. every sequence has variability at most v.

Proof. We construct F so that each of the two items holds (separately) with probability at least 4/5. Let
m = 1/ε. To construct one sequence in F , first define f(0) = m with probability 1/2, else f(0) = m+3.
Then, for t = 1 . . . n: define f(t) = (2m+3)− f(t−1) with probability p = v/6εn, else f(t) = f(t−1). That
is, switch from m to m+3 (or vice-versa) with probability p = v/6εn.

We first prove that the probability is at most 1/5 that any two sequences f and g match. We have that
P (f(0)=g(0)) = 1/2. If at any point in time we have f(t) = g(t), then P (f(t+1)=g(t+1)) = α = 1−2p(1−p)
and P (f(t+1) 6=g(t+1)) = 1− α = 2p(1−p). Similarly, if f(t) 6= g(t), then P (f(t+1)=g(t+1)) = 1−α and
P (f(t+1) 6=g(t+1)) = α.

The overlap between f and g is the number of times t that f(t) = g(t). We model this situation with
a Markov chain M with two states, c for “same” (that is, f = g) and d for “different” (f 6= g). Let st be
the state after t steps, and let pt = (pt(c), pt(d)) be the probabilities that M is in state c and d after step
t. The stationary distribution π = (1/2, 1/2), which also happens to be our initial distribution. We can

12

model the overlap between f and g by defining a function y(st) = 1 if st = c and y(st) = 0 otherwise; then
Y =

∑n
t=1 y(st) is the overlap between f and g. The expected value E(y(π)) of y evaluated on π is 1/2.

The (1/8)-mixing time T is defined as the smallest time T such that 1
2 ||M tr0 − π||1 ≤ 1/8 over all initial

distributions r0. Let r0 be any initial distribution and rt = M tr0. If we define ∆t = rt(c) − π(c), then
∆t = (2α−1)t∆0. We can similarly bound |rt(d)− π(d)|, so we can bound

T ≤ ln(8)

ln(1/(2α−1))
≤ 3

(1− (2α−1))
≤ 3

2p(1−p)
≤ 3

2p
=

9εn

v

since 1 − p ≥ 1/2 and since 1/ ln(1/x) ≤ 1/(1−x) for x in (0, 1). With this information we can now apply
a sledgehammer of a result by Chung, Lam, Liu, and Mitzenmacher [2]. Our fact G.2 is their theorem 3.1,
specialized a bit to our situation:

Fact G.2. Let M be an ergodic Markov chain with state space S. Let T be its (1/8)-mixing time. Let
(s1, . . . , sn) denote an n-step random walk on M starting from its stationary distribution π. Let y be a
weight function such that E(y(π)) = µ. Define the total weight of the walk by Y =

∑n
t=1 y(st). Then there

exists some universal constant C such that P (Y ≥ (1 + δ)µn) ≤ C exp(−δ2µn/72T) when 0 < δ < 1.

Specifically, this means that P (Y ≥ 6
10n) ≤ C exp(−v/(25 · 72 · 9 · ε)). Since v is large enough, we can

also write P ≤ exp(−v/32400ε). If |F| = 1
5 exp(v/(2 · 32400ε)), then by the union bound, with probability

at least 4/5, no pair of sequences f, g matches.
We also must prove that there are enough sequences with variability at most v. The change in variability

due to a single switch from m to m+3 (or vice-versa) is at most 3/m = 3ε. For any sequence f , let Ut = 1
if f switched at time t, else Ut = 0. The expected number of switches is v/6ε; using a standard Chernoff
bound, P (

∑

t Ut ≥ 2v/6ε) ≤ exp(−v/18ε) ≤ 1/10. Suppose we sample N sequences and B of them have
more than 2v/6ε switches. In expectation there are at most E(B) ≤ 1

10N that have too many switches. By
Markov’s inequality, P (B ≥ N/2) ≤ 1/5, so we can toss out the ≤ N/2 bad sequences. This gives us a final
size of F of 1

10 exp(v/(2 · 32400ε)).

H Tracking item frequencies, section 5.1

Problem definition The problem of tracking item frequencies is only slightly different than the counting
problem we’ve considered so far. In this problem there is a universe U of items and we maintain a dataset
D(t) that changes over time. At each new timestep n, either some item ℓ from U is added to D, or some item
ℓ from D is removed. This update is told to a single site i; that is, site i(n) receives an update f ′

ℓ(n) = ±1.
The frequency fℓ(t) of item ℓ at time t is the number of copies of ℓ that appear in D(t). The first

frequency moment F1(t) at time t is the total number of items |D(t)|. The problem is to maintain estimates

f̂ℓ(n) at the coordinator so that for all times n and all items ℓ we have that P (|fℓ(n)− f̂ℓ(n)| ≤ εF1(n)) is
large.

Since in this problem we are tracking each item frequency to εF1(n), we use F1-variability instead,
defining v′(t) = min{1, 1/F1(t)}.

H.0.1 Item frequencies with low communication

We first partition time into blocks as in section 3.1, using f = F1. That is, at the end of each block we know
the values n and F1(n) deterministically, and also that either r = 0 holds or that F1(nj) is within a factor
of two of F1(nj−1).

For tracking during blocks we modify the deterministic algorithm so that each site i holds counters diℓ
and δiℓ for every item ℓ. It also holds counters fiℓ of the total number of copies of ℓ seen at site i across all
blocks.

At the end of each block, each site i reports all fiℓ ≥ ε2r/3 (using the new value of r). If site i reports
counter fiℓ then it starts the next block with diℓ = δiℓ = 0; otherwise, diℓ is updated to diℓ + δiℓ and then
δiℓ is reset to zero. Within a block r ≥ 1, the condition is true when δiℓ ≥ ε2r/3.

13

The coordinator maintains estimates f̂iℓ of fiℓ for each site i and item ℓ. Upon receiving an update δiℓ
during a block the coordinator updates its estimate f̂iℓ = f̂iℓ + δiℓ.

Estimation error The total error in the estimate f̂iℓ(n) at any time n is the error due to diℓ plus the
error due to δiℓ. In both cases these quantities are bounded by ε2r/3 ≤ εF1(n)/3.

Communication The total communication for a block is the total communicated within and at the end
of the block. Within a block, all δiℓ start at zero, and there are at most 2rk updates, so the total number of
messages sent is 3k/ε. At the end of a block, fiℓ ≥ ε2r/3 is true for at most 12k/ε counters fiℓ. Therefore
the total number of messages O(kε v(n)).

H.0.2 Item frequencies in small space+communication

The algorithm so far uses |U | counters per site, which is prohibitive in terms of space. In [3] Cormode and
Muthukrishnan show that in order to track over a non-distributed update stream each fℓ(n) so that for all ℓ

and all times n we have P (|fℓ(n)−f̂ℓ(n)| ≤ εF1(n)/3) ≥ 8/9, it suffices to randomly partition each item in
U into one of 27/ε classes using a pairwise-independent hash function h, and to estimate fℓ(n) as fh(ℓ)(n).
The 27/ε counters and the hash function h together form their Count-Min Sketch [3].

Similarly, in [6] [7] Ganguly and Majumder adapt a data structure of Gasieniec and Muthukrishnan [12],
which they call the CR-precis, to deterministically track each fℓ(n) to εF1(n)/3 error. This data structure

uses 3
ε rows of 6 log |U|

ε log 1/ε counters, and estimates fℓ(n) as the average over rows r of fh(r,ℓ)(n). (Ganguly and

Majumder actually take the minimum over the rows r, but the average works too and yields a linear sketch.)
In either case, we can first reduce our set of items ℓ to a small number of counters c, and instead of

tracking fiℓ we track fic for each counter c. The coordinator can then linearly combine its estimates f̂ic
to obtain estimates f̂iℓ for each item ℓ. This introduces another εF1(n)/3 error, yielding algorithms that
guarantee

• P (|fiℓ(n)−f̂iℓ(n)| ≤ εF1(n)) = 1 in O(k log |U|
ε2 log 1/εv(n) logn) bits of space + communication, and

• P (|fiℓ(n)−f̂iℓ(n)| ≤ εF1(n)) ≥ 8/9 in O(k log |U |+ k
ε v(n) logn) bits of space + communication.

H.0.3 Remarks

We obtain a randomized communication bound of O(kε v(n)) messages, but it might be possible to do better.

In [8] Huang et. al. both develop a randomized counting algorithm (O(
√
k
ε logn) messages) and also extend

it to the problem of tracking item frequencies to get the same communication bound. Unfortunately, their
algorithm appears to require the total variance in their estimate at any time t < n to be bounded by a
constant factor of the variance at time n. This is only guaranteed to be true when item deletions are not
permitted (and F1 grows monotonically). We avoid this problem in section 3.4 for tracking f = F1 by
deterministically updating F1 at the end of each block. For this problem, though, deterministically updating
all of the large f̂iℓ at the end of each block could incur O(1/ε) messages. Whether it is also possible to

probabilistically track item frequencies over general update streams in O(
√
k
ε v(n)) messages remains open.

I Aggregate functions with one site, section 5.2

The single-site algorithm of section 5.2 is: whenever |f − f̂ | > εf , send f to the coordinator.

Proof. If f(n) = 0 then v′(n) = 1. Also, if f(n) changes sign from f(n−1), then v′(n) = 1. So consider

intervals over which f(n) is nonzero and doesn’t change sign. Over such an interval, let Φ(n) = | f(n)−f̂(n)
f(n) |.

14

If at time n we update f̂ then Φ(n) = 0. Otherwise,

Φ(n) =
|f(n−1)− f̂(n−1) + f ′(n)|

|f(n)| ≤ |f(n−1)− f̂(n−1)|
|f(n)| +

|f ′(n)|
|f(n)|

=
|f(n−1)|
|f(n)| Φ(n−1) +

|f ′(n)|
|f(n)| ≤ |f(n)|+ |f ′(n)|

|f(n)| Φ(n−1) +
|f ′(n)|
|f(n)|

≤ Φ(n−1) +
(1+Φ(n−1))|f ′(n)|

|f(n)|

Since Φ(n) ≤ ε we have |Φ′(n)| ≤ (1+ε)| f
′(n)
f(n) |. We only send a message each time that Φ would be more than

ε, so the total number of messages sent is at most the total increase in Φ, which is
∑n

t=1 min{1, | f
′(t)
f(t) |}.

15

	1 Introduction
	2 Variability
	2.1 Interesting cases with small variability

	3 Upper bounds
	3.1 Partitioning time
	3.2 Estimation inside blocks
	3.3 The deterministic algorithm
	3.4 The randomized algorithm

	4 Lower bounds
	4.1 The deterministic bound
	4.2 The randomized bound

	5 Variability as a framework
	5.1 Tracking item frequencies
	5.2 Aggregate functions with one site

	A Variability of nearly monotone f(n), theorem 2.1
	B Variability of biased coin flips, theorem 2.4
	C Simulating large |f'(n)|, section 3
	D Tracing and distributed tracking, section 4
	E Deterministic lower bound, theorem 4.1
	F Randomized lower bound, lemma 4.3
	G Randomized lower bound, lemma 4.4
	H Tracking item frequencies, section 5.1
	H.0.1 Item frequencies with low communication
	H.0.2 Item frequencies in small space+communication
	H.0.3 Remarks

	I Aggregate functions with one site, section 5.2

