
Fast Distributed Almost Stable Matchings

Rafail Ostrovsky
University of California, Los Angeles

Departments of Computer Science and
Mathematics

4732 Boelter Hall
Los Angeles, CA 90095
rafail@cs.ucla.edu

Will Rosenbaum
University of California, Los Angeles

Department of Mathematics
520 Portola Plaza

Los Angeles, CA 90095-1555
wrosenbaum@math.ucla.edu

ABSTRACT
In their seminal work on the Stable Marriage Problem, Gale
and Shapley [4] describe an algorithm which finds a stable
matching in O(n2) communication rounds. Their algorithm
has a natural interpretation as a distributed algorithm where
each player is represented by a single processor. In this dis-
tributed model, Floréen, Kaski, Polishchuk, and Suomela [3]
recently showed that for bounded preference lists, terminat-
ing the Gale-Shapley algorithm after a constant number of
rounds results in an almost stable matching. In this paper,
we describe a new deterministic distributed algorithm which
finds an almost stable matching in O(log5 n) communication
rounds for arbitrary preferences. We also present a faster
randomized variant which requires O(log2 n) rounds. This
run-time can be improved to O(1) rounds for “almost regu-
lar” (and in particular complete) preferences. To our knowl-
edge, these are the first sub-polynomial round distributed
algorithms for any variant of the stable marriage problem
with unbounded preferences.

Categories and Subject Descriptors
C.2.4 [Computer-CommunicationNetworks]:Distribut-
ed Systems—Distributed applications; F.2.2 [Analysis of
Algorithms and Problem Complexity]: Nonnumercal
Algorithms and Problems—Computations on discrete struc-
tures; G.2.1 [Discrete Mathematics]: Combinatorics—
Combinatorial algorithms; J.4 [Social andBehavioral Sci-
ences]: Economics

Keywords
stable marriage problem; stable matchings; distributed al-
gorithms; approximation algorithms

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PODC’15, July 21–23, 2015, Donostia-San Sebastián, Spain.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3617-8 /15/07 ...$15.00.
http://dx.doi.org/10.1145/2767386.2767424.

1. INTRODUCTION

1.1 Historical Background
In their seminal work, Gale and Shapley [4] consider the

following problem. Members of disjoint sets of nmen and n
women each rank all members of the opposite sex. The men
and women (which we collectively call players) wish to form
a matching—a one-to-one correspondence between the men
and women—which is stable in the sense that it contains
no blocking pairs: pairs of players who mutually prefer
each other to their assigned partners in the matching. Gale
and Shapley showed that a stable matching always exists by
giving an explicit algorithm for finding one. The centralized
Gale-Shapley algorithm runs in time Õ(n2), and this run-
time is asymptotically optimal for centralized algorithms [5].
The Gale-Shapley algorithm easily generalizes to the case of
incomplete preferences where each player ranks only a
subset of the members of the opposite sex [5].

The Gale-Shapley algorithm has a natural interpretation
as a distributed algorithm, where each player is represented
by a separate processor which privately holds that player’s
preferences. The communication links between players are
formed by pairs of players who appear on each other’s pref-
erence lists. This model is natural in, for example, social
networks where players may be constrained to be matched
with acquaintances and do not communicate with strangers.
In this model, the input to each processor has size Õ(n), yet
there is still no known distributed algorithm which improves
upon the Gale-Shapley algorithm’s Õ(n2) run-time for arbi-
trary preferences.1

Recently, there has been interest in approximate versions
of the stable marriage problem [1, 2, 3, 7, 9], where the goal
is to find a matching which is “almost stable.” There is no
consensus in the literature on precisely how to measure al-
most stability, but typically almost stability requires that
a matching induces relatively few blocking pairs. Eriksson
and Häggström [2] argue that, “the proportion of blocking
pairs among all possible pairs is usually the best measure of
instability.” Using a finer notion of almost stability, Floréen,
Kaski, Polishchuk, and Suomela show [3] that for bounded
preference lists, truncating the Gale-Shapley algorithm after

1In the distributed computational model with complete pref-
erences, each player can broadcast their preferences to all
other players in O(n) rounds, after which each player runs
a centralized version of the Gale-Shapley algorithm. While
this process requires only O(n) communication rounds, the

synchronous distributed run-time is still Θ̃(n2) in the worst
case.

101

boundedly many communication rounds yields a matching
that induces at most ε |M | blocking pairs. Here |M | is the
size of the matching produced. More recently, Hassidim,
Mansour and Vardi [7] show a similar result in a more re-
strictive “local” computational model, so long as the men’s
preferences are chosen uniformly at random.

Kipnis and Patt-Shamir [9] give an algorithm which finds
an almost stable matching usingO(n) communication rounds
in the worst case, using a finer notion of approximate stabil-
ity than we consider. Specifically, in their notion of almost-
stability, a matching is almost stable if no pair of players can
both improve their match by more than an ε-fraction of their
preference list by deviating from their assigned partners.
They also prove an Ω(

√
n/ logn) communication round lower

bound for finding an almost stable matching for this notion
of approximation.

1.2 Overview of Results
We consider an approximate version of the stable mar-

riage problem where an almost stable matching is allowed
to have ε |E| blocking pairs. Here E is the set of pairs of
men and women who rank one another (that is, the set of
edges in the communication graph). Our notion of approx-
imation, which generalizes almost stability as described in
[2], is strictly coarser than those used in [3] and [9]. How-
ever, for bounded preferences (the context of [3]), our notion
of instability agrees with that of [3] up to a constant factor.

Using the notion of almost stability given above, we de-
scribe a deterministic distributed algorithm, ASM, which
produces an almost stable matching in O(log5(n)) rounds.
We note that in order to obtain this sub-polynomial run-
time, we cannot use a finer notion of approximation than
[9], who prove an Ω(

√
n/ logn) round lower bound for their

model. We remark that after removing an arbitrarily small
fraction of“bad”players, the output of ASM is almost stable
in the sense of [9] as well. We further describe a faster ran-
domized variant of ASM which runs in O(log2(n)) rounds.
For preferences which are “almost regular,” (and in particu-
lar for complete or bounded preferences) this run-time can
be improved to O(1).

Theorem 1. There exists a deterministic distributed al-
gorithm ASM which produces a (1 − ε)-stable matching in
O(log5(n)) communication rounds. A randomized variant
of the algorithm, RandASM runs in O(log2(n)) rounds for
general preferences, and can be improved to O(1) rounds for
almost regular (and in particular complete or bounded) pref-
erences.

ASM can be viewed as a generalization of the classi-
cal Gale-Shapley algorithm [4] which allows for multiple si-
multaneous proposals by the men and acceptances by the
women. In ASM, the players quantize their preferences
into O(ε−1) quantiles of equal size. In each step of the algo-
rithm, the men propose to all women in their best nonempty
quantile. Each woman accepts proposals only from her best
quantile receiving proposals. A maximal matching is then
found among the accepted proposals, and matched women
reject men they do not prefer to their matches. This pro-
cedure is iterated until a large fraction of men are either
matched or have been rejected by all women.

The analysis of our algorithm follows in two steps. We first
show that by quantizing preferences, the matching found
by ASM cannot contain a large fraction of blocking pairs

among the matched (or rejected) players. We bound the
number of blocking pairs from the remaining “bad” players
by showing there are few such players, and that only a small
fraction can participate in many blocking pairs.

The remainder of the paper is organized as follows. In
Section 2 we formalize our notion of almost stable match-
ings and our computational model. We also overview meth-
ods of computing maximal matchings which our algorithm
will require as subroutines. Section 3 describes ASM and
its subroutines in detail and states basic guarantees for the
subroutines. Section 4 proves the performance guarantees
for ASM. Finally, in Section 5 we describe the randomized
variants of ASM.

2. PRELIMINARIES

2.1 Stable and almost stable matchings
We consider the stable marriage problem as originally de-

scribed by Gale and Shapley [4] with incomplete preferences
or, equivalently, unacceptable partners (cf. [5, 10]). Let X
and Y be sets of women and men, respectively. For sim-
plicity, we assume |X| = |Y | = n. Each player v ∈ X ∪ Y
holds a preference list or ranking P v—a linear order on
a subset of the members of the opposite sex. We denote the
set of all player’s preferences by P = {P v|v ∈ X ∪ Y }. We
refer to the players u that appear on v’s preference list P v

as v’s acceptable partners. We call P complete if each
player ranks all players of the opposite sex. If a man m pre-
cedes m′ on woman w’s preference list, we write m �w m′,
and we say that w prefers m to m′. For simplicity, we as-
sume that preferences are symmetric in the sense that if m
appears in Pw, then w appears in Pm. Given players v and
u of opposite genders, we let P v(u) denote v’s rank of u.
For example, P v(u) = 1 means that u is v’s most favored
partner, et cetera.

We define the communication graph G = (V,E) for a
set of preferences P to be

V = Y ×X, E = {(m,w)|m ∈ Pw, w ∈ Pm} .

For a communication graph G = (V,E), we denote the de-
gree of v ∈ V by deg v, which is the number of players that
appear on v’s preference list.

A matching M ⊆ E is a set of edges in E such that no two
edges share a vertex. Given a matching M and (m,w) ∈M ,
we call m and w partners and write p(w) = m and p(m) =
w. Given preferences and a matching M , we say that an
edge (m,w) ∈ E is a blocking pair if (m,w) /∈ M , but m
and w mutually prefer each other to their partners in M ;
that is,

m �w p(w) and w �m p(m).

By convention, we assume each unmatched player (p(v) =
∅) prefers all acceptable partners to being without a part-
ner. A stable matching is a matching which contains no
blocking pairs.

We are primarily concerned with finding matchings which
are “almost stable” in the sense that they induce relatively
few blocking pairs. We use a definition of almost stability
given by Eriksson and Häggström [2], modified to allow for
incomplete preference lists.

Definition 1. Given ε ≥ 0 and preferences P, we say that
a matching M is (1 − ε)-stable with respect to P if M
induces at most ε |E| blocking pairs with respect to P.

102

We refer to the problem of finding a matching which is
(1− ε)-stable for fixed ε > 0 as the almost stable match-
ing problem . Note that a 1-stable matching corresponds
precisely to the classical stable matching definition.

Remark 1. We reiterate that there is no consensus in the
literature on the precise definition of almost stability. For
example, the authors of [3] compare the number of blocking
pairs to |M |, the size of the matching rather than |E|, as we
do. Since in [3], they only consider bounded preference lists,
their notion of almost stability agrees with Definition 1 up
to a constant factor.

The following definition is due to Kipnis and Patt-Shamir [9].

Definition 2. Given ε ≥ 0, preferences P, and a matching
M we call an edge (m,w) ∈ E ε-blocking if m and w appear
an ε-fraction higher on each other’s preferences than their
assigned partners. Specifically, (m,w) is ε-blocking if

Pm(p(m))− Pm(w) ≥ ε degm

and

Pw(p(w))− Pw(m) ≥ ε degw.

We say that M is ε-blocking-stable if it contains no ε-
blocking pairs.

Remark 2. Kipnis and Patt-Shamir [9] prove an
Ω(
√
n/ logn) round lower bound for finding an ε-blocking-

stable matching. That we are able to achieve a polylogarith-
mic round algorithm for the almost stable matching problem
using Definition 1 bolsters the use of Definition 1 for almost
stability, at least for practical applications. Further, ASM
produces a matching which is nearly ε-blocking-stable in the
sense that after the removal of an arbitrarily small fraction of
“bad” men, the resulting matching is ε-blocking-stable with
respect to the remaining players.

2.2 Computational model
We describe ASM in terms of the CONGEST model for-

malized by Peleg [11]. In this distributed computational
model, each player v ∈ X ∪Y represents a processor. Given
preferences P, the communication links between the players
are given by the set of edges E in the communication graph
G. Communication is performed in synchronous rounds.
Each communication round occurs in three stages: first, each
processor receives messages (if any) sent from its neighbors
in G during the previous round. Next, each processor per-
forms local calculations based on its internal state and any
received messages. We make no restrictions on the complex-
ity of local computations. Finally, each processor sends short
(O(logn) bit) messages to its neighbors in G—the proces-
sor may send distinct messages to distinct neighbors. In the
CONGEST model, complexity is measured by the number
of communication rounds needed to solve a problem.

Remark 3. Although the CONGEST model allows for un-
bounded local computation during each round, the compu-
tations required by ASM can be implemented in linear or
near-linear time in each processor’s input.

2.3 Maximal matchings
As a subroutine, ASM requires a method for computing

maximal matchings in a graph.

Definition 3. A matching M is a maximal matching if
it is not properly contained in any larger matching. Equiv-
alently, M is maximal if and only if every v ∈ V satisfies
precisely one of the following conditions:

1. there exists a unique u ∈ V with (v, u) ∈M ;

2. for all u ∈ N(v) there exists v′ ∈ V with v′ 6= v such
that (v′, u) ∈M .

For the deterministic version of our algorithm, we invoke
the work of Hańćkowiak, Karoński, and Panconesi [6] who
give a deterministic distributed algorithm which finds a max-
imal matching in a polylogarithmic number of rounds.

Theorem 2 (Hańćkowiak, et al.[6]). There exists a
deterministic distributed algorithm, MaximalMatching, which
finds a maximal matching in a communication graph G =
(V,E) in O(log4(n)) rounds, where n = |V |.

We remark that while the authors of [6] do not explicitly
use the CONGEST model of computation, their algorithm
can easily be implemented in this model.

The randomized variants of ASM require faster (random-
ized) subroutines for computing maximal and “almost maxi-
mal” matchings in a communication graph. In Appendix A,
we describe how to modify an algorithm of Israeli and Itai
[8] to give the necessary results.

3. DETERMINISTIC ALGORITHM DESCRIP-
TION

In this section, we describe in detail the almost stable
matching algorithm, ASM. The main algorithm invokes the
subroutine QuantileMatch which in turn calls Proposal-
Round. In Section 3.1 we introduce notation, and describe
the internal state of each processor during the execution of
ASM. Section 3.2 contains a description of the Proposal-
Round subroutine, while Section 3.3 describes the Quan-
tileMatch subroutine. Finally, Section 3.4 describes ASM.

3.1 The state of a processor
In our algorithm, we assume that each player is repre-

sented by an independent processor. Each processor has
a unique id and a gender (male or female) both of which
are known to that processor. The only global information
known to each processor is (an upper bound on) n, the to-
tal number of processors. At each step of the algorithm, we
specify the state of each processor as well as any messages
the processor might send or receive. Throughout, k is a pa-
rameter (the number of quantiles) to be chosen later. The
state of a player v consists of:

• Quantized preferences Q1, Q2, . . . , Qk where we denote
Q =

⋃
Qi. For each u in v’s preference list, denote

q(u) = dP (u)/ke. Initially we set Qi = {u|q(u) = i},
so that Q1 is the set of v’s deg(v)/k favorite partners,
Q2 is her next favorite deg(v)/k, and so on. We call
Qi v’s ith quantile. If we wish to make explicit the
player to whom the preferences belong, we may adorn
these symbols with a superscript. For example, Qvi
is v’s ith quantile. Throughout the execution of the
algorithm, elements may be removed from Q and the
Qis, but elements will never be added to any of these
sets.

103

• A partner p (possibly empty). The partner p is v’s
current partner in the matching M our algorithm con-
structs. To emphasize that p is player v’s partner,
we will write p(v). The (partial) matching M pro-
duced by the algorithm at any step is given by M =
{(p(w), w)|w ∈ X, p(w) 6= ∅}.

Additionally, subroutines of our algorithm will require each
processor to store the following variables:

• A set G0 of “neighbors” of the opposite sex which cor-
respond to accepted proposals.

• A partner p0 in a matching found in the graph deter-
mined by G0.

Thus each player knows their preferences, partners (if any)
as well as any of their accepted proposals from the current
round (stored in G0). The men m ∈ Y hold the following
additional information:

• A set A of “active” potential mates, initially set to Q1.

3.2 The ProposalRound subroutine
At the heart of our algorithm is the ProposalRound sub-

routine (Algorithm 1). ProposalRound works in 5 steps
which are described in Algorithm 1.

Algorithm 1 ProposalRound(Q, k,A)

Step 1: Each man m proposes to all women in Am by send-
ing each w ∈ A the message PROPOSE.

Step 2: Each woman w receiving proposals responds with
the message ACCEPT to all proposals from her most
preferred quantile Qwi from which at least one man
proposed in Step 1.

Step 3: Let G0 denote the bipartite graph G0 of ac-
cepted proposals from Step 2. The players
compute a maximal matching M0 in G0, using
MaximalMatching(G0), storing their match in G0

as p0.

Step 4: Each woman w matched in M0 sends REJECT to
all men m ∈ Qw in a lesser or equal quantile to her
partner p0(w) in M0 other than p0(w). She then re-
moves all of these men from Qw and the correspond-
ing Qwi . The matched women then set p← p0, so the
partial matching M now contains the edge (p0(w), w).
Any man m matched in M0 sets p ← p0 and sets
A← ∅.

Step 5: The men remove all w from whom they received
the message REJECT from their preferences Q, the
various Qi, and A. If a man m receives a rejection
from his match p(m) from a previous round, he sets
p← ∅.

We observe that if each player v takes k = deg v, then
ProposalRound mimics the classical (extended) Gale-Shapley
algorithm [4, 5]. In this case, each man proposes to his
most favored woman that has not yet rejected him, and each
woman rejects all but her most favored suitor. Computing
a maximal matching is trivial, as the accepted proposals

already form a matching. The general case has one cru-
cial feature in common with the Gale-Shapley algorithm,
which follows immediately from the description of Propos-
alRound.

Lemma 1 (Monotonicity). Once a woman w has
p(w) 6= ∅ in some execution of ProposalRound, she is
guaranteed to always have p(w) 6= ∅ after each subsequent
execution of ProposalRound. Further, once matched, she
will only accept proposals from men in a strictly higher quan-
tile than p(w).

3.3 The QuantileMatch subroutine
Here we describe the QuantileMatch subroutine (Algo-

rithm 2), which simply iterates ProposalRound until each
man m has either been rejected by all women in Am or is
matched with some woman in Am. In either case, Am = ∅
when QuantileMatch terminates. We will argue that k
(the number of quantiles) iterations suffice.

Algorithm 2 QuantileMatch(Q, k)

i← min {i|Qi 6= ∅} ∪ {k} (male only)
if p = ∅ then
A← Qi (male only)

end if
for i← 1 to k do

ProposalRound(Q, k,A)
end for

Lemma 2 (QuantileMatch guarantee). At the ter-
mination of QuantileMatch(Q, k) every man m satisfies
Am = ∅. In particular, each man who had Am 6= ∅ before
the first iteration of the loop in QuantileMatch has either
been rejected by all women in Am or is matched with some
woman in Am.

Proof. Suppose a woman w receives proposals in the
first iteration of the loop in QuantileMatch. If she is
matched with one of these suitors when ProposalRound
terminates, she rejects all other men and receives no fur-
ther proposals during the current QuantileMatch. On the
other hand, if she is not matched with one of these suitors
after the first round, then by the maximality of the match-
ing found in Step 3 of ProposalRound, all of the suitors
in her best quantile receiving proposals are matched with
other women. Thus, in the next iteration, she only receives
proposals from men in strictly worse quantiles than she ac-
cepted in the first. Similarly, in each iteration of the loop,
her best quantile receiving proposals (if any) is strictly worse
than the previous iteration. Therefore, after k iterations, no
woman will receive proposals, hence each man m must have
Am = ∅.

3.4 The ASM algorithm
In this section, we describe the main algorithm ASM (Al-

gorithm 3). The idea of ASM is to iterate QuantileMatch
until a large fraction men with high degree are either matched
or have been rejected by all acceptable partners. We call
such men good . By iterating QuantileMatch a constant
number of times, we can ensure that the fraction of good
men is close to 1. In order to bound the number of block-
ing pairs from men which are bad (not good), we must en-
sure that bad men comprise only a small fraction of players

104

with relatively high degree. To this end, we only allow men
who are potentially involved in many blocking pairs (that
is, with |Q| relatively large) to participate in later calls to
QuantileMatch.

Algorithm 3 ASM(P, ε, n)

k ←
⌈
8ε−1

⌉
, δ ← ε/8

for all i ≤ k do
Qi ← {v|q(v) = i}

end for
Q←

⋃
iQi, p← ∅

for i← 0 to logn do
if |Q| ≥ 2i then

for j ← 1 to 2δ−1k do
QuantileMatch(Q, k)

end for
end if

end for

4. PERFORMANCE GUARANTEES
Here we analyze the performance of ASM and its sub-

routines. The run-time guarantee (Theorem 4) is a simple
consequence of the description of ASM and its subroutines.
To prove the approximation guarantee (Theorem 3), we con-
sider blocking edges from two sets of men separately. We
call a man m good if when ASM terminates, he is either
matched or has been rejected by all of his acceptable part-
ners. A man who is not good is bad . We denote the sets of
good and bad men by G and B, respectively.

Theorem 3 (Approximation guarantee). The match-
ing M output by ASM induces at most ε |E| blocking pairs
with respect to P. Thus M is (1− ε)-stable.

4.1 Bounding blocking pairs from good play-
ers

We bound the number of blocking pairs from good men in
two steps. First we show that the good men are not involved
in any (2/k)-blocking pairs (see Definition 2). Next, we show
that as a result, the good men can only be incident with a
small fraction of blocking pairs.

Lemma 3 ((2/k)-blocking-stability of good men).
Let m ∈ G be good. Then m is not incident with any (2/k)-
blocking pairs.

Proof. Supposem ∈ G and that (m,w) is (2/k)-blocking.
First consider the case wherem is matched, p(m) 6= ∅. Since
m’s preferences are divided into k quantiles, w must be in
a strictly better quantile than p(m). Thus, m must have
proposed to w in a strictly earlier call to QuantileMatch
than the call in which he was matched with p(m). Thus, by
Lemma 2, m must have been rejected by w, implying that w
was matched with a man m′ in the same or better quantile
than m in this round. By Lemma 1, w’s partner when ASM
terminates is at least as desirable as m′. This contradicts
that (m,w) is ε-blocking.

On the other hand, if p(m) = ∅, then since m is good,
he must have been rejected by all of his acceptable partners,
and in particular, by w. Thus, as in the previous paragraph,
w must be matched with a man in the same or better quan-
tile than m.

Lemma 4 (Few non-(2/k)-blocking pairs). There are
at most 4 |E| /k blocking pairs which are not (2/k)-blocking.

Proof. Suppose (m,w) is a blocking pair which is not
(2/k)-blocking. Thus, at least one of the following holds:

Pm(w)− Pm(p(m)) ≤ 2 deg(m)/k (1)

Pw(m)− Pw(p(w)) ≤ 2 deg(w)/k, (2)

where by convention we take Pm(∅) = deg(m) + 1. Let
EN denote the set of blocking pairs which are not (2/k)-
blocking. For each m, the number of edges satisfying (1) is
at most 2 deg(m)/k, and similarly for the women. Thus

|EN | ≤
∑
m∈Y

2 deg(m)/k +
∑
w∈X

2 deg(w)/k = 4 |E| /k,

as desired.

Lemma 3 shows that no good player is involved in any
(2/k)-blocking pairs. Combining Lemmas 3 and 4, we can
bound the number of blocking pairs incident with good men.
All that remains is to bound the number of (2/k)-blocking
pairs incident with bad men. In the next section, we show
that the proportion of bad men is small (at most δn), and
bound the number of (2/k)-blocking pairs they contribute.
We remark that by Lemma 4 and the lower bound of Kipnis
and Patt-Shamir [9], we cannot hope to have all men be
good in o(

√
n/ logn) rounds.

4.2 Bounding blocking pairs from bad play-
ers

In this section, we prove the following bound on the num-
ber of blocking pairs contributed by the bad men at the ter-
mination of ASM. Throughout the section, for simplicity of
notation, we assume that log n is an integer.

Lemma 5 (Bad men guarantee). At the termination
of ASM, for any δ ≤ 1

2
the bad men contribute at most

4δ |E| (2/k)-blocking pairs.

The proof of Lemma 5 is in two parts corresponding to
guarantees for each of the two nested loops in ASM. We
refer to men m with |Qm| ≥ 2i as active in the ith itera-
tion of the outer loop; the remaining men are inactive in
the ith iteration.

Lemma 6 (Few bad men). When the inner loop in ASM
terminates, at most a δ-fraction of active men are bad.

Proof. Let A denote the set of active men before execut-
ing the inner loop in ASM. Suppose that after ` iterations
of the inner loop, there are b bad men in A. We claim that
there must have been at least b bad players in every itera-
tion of the inner loop. To see this, first note that by Lemma
1, the number of matched players (and hence matched men)
can only increase with each call to ProposalRound. Sec-
ond, if a man is rejected by all women on his preference list,
he will never become bad. Therefore, the number of good
players can only increase with each iteration of the inner
loop. Thus there must have been at least b bad men after
each of the ` iterations of the inner loop.

Suppose m was bad before some call to QuantileMatch,
so that Am 6= ∅. By Lemma 2, after QuantileMatch m is
either matched, or has been rejected by all women w ∈ Am.
In the former case, p(m) rejected all men in her quantile

105

containing m. In either case, m witnessed the rejection of
a quantile of men—either by precipitating the rejection of
p(m)’s quantile, or by being rejected by all women in A.
Notice that the number of women who are matched with new
partners during an iteration of the outer loop cannot exceed
|A|, as if |A| women did receive new partners, all active men
would be matched. Therefore, the women can send at most
k |A| quantile rejections (after which all active men will be
rejected by all women). Similarly, the men can receive at
most k |A| quantile rejections. Thus, in total the active men
can witness at most 2k |A| quantile rejections. Therefore,
if there are b bad men after ` calls to QuantileMatch, we
must have b` ≤ 2k |A|. Choosing ` = 2δ−1k gives the desired
result.

We say that a man m is bad in the ith iteration of
the outer loop in ASM if m became bad during the ith
iteration and |Qm| < 2i. We denote the set bad men in the
i iteration by Bi, so that B = B1 ∪B2 ∪ · · · ∪Blogn. Thus,
m ∈ Bi is bad and will not participate in any further calls to
QuantileMatch, so he will be bad when ASM terminates.

Lemma 7 (Few (2/k)-blocking pairs). Each m ∈ Bi
participates in fewer than 2i (2/k)-blocking pairs at the ter-
mination of ASM.

Proof. We will show that each bad m ∈ B participates
in at most |Qm| (2/k)-blocking pairs, whence the lemma
follows. To this end, notice that if w /∈ Qm, then w must
have rejectedm in some call to QuantileMatch. Therefore,
w must have been matched with some m′ that is in the
same or better quantile as m. By Lemma 1, when ASM
terminates, w is still matched with someone in at least as
desirable quantile as m, implying that (m,w) is not (2/k)-
blocking. Thus, every (2/k)-blocking pair (m,w) must have
w ∈ Qm.

Proof Proof of Lemma 5. Let Gi ⊆ G be the set of
men which are good at the termination of ASM and active
after the ith iteration of the outer loop in ASM. Then we
have G = G1 ∪ G2 ∪ · · · ∪ Glogn. Since the number of bad
men cannot increase after a call to QuantileMatch. By
Lemma 6, if there were b men which became bad in some
iteration of the outer loop of ASM, there were 1−δ

δ
b good

men still active during the ith iteration. Since the number
of good men can only increase in subsequent iterations, we
have

|Bi ∪Bi+1 ∪ · · · ∪Blogn| ≤ b

≤ δ

1− δ |Gi ∪Gi+1 ∪ · · · ∪Glogn| .
(3)

Applying (3), we can greedily form disjoint sets

Hlogn ⊆ Glogn, Hlogn−1 ⊆ Glogn −1 ∪Glogn, . . . , H1 ⊆ G

such that for all i, Hi is active in the ith iteration and |Hi| =
1−δ
δ
|Bi|. Then we compute

∑
m∈B

|Qm| =
logn∑
i=1

∑
m∈Bi

|Qm|

≤
logn∑
i=1

|Bi| 2i

≤
logn∑
i=1

2δ

1− δ |Hi| 2
i

≤ 2δ

1− δ
∑
m∈G

|Qm|

≤ 2δ

1− δ |E| .

The first inequality holds by Lemma 7, while the second
holds by the choice of the Hi and the definition of the Gi.

4.3 Approximation guarantee
Proof Proof of Theorem 3. By Lemma 4, there are

at most 4 |E| /k blocking pairs which are not (2/k)-blocking.
By Lemma 3, all (2/k)-blocking pairs are incident with B.
Finally, by Lemma 5, the bad men contribute at most 4δ |E|
blocking pairs for δ ≤ 1/2. Therefore, the total number of
blocking pairs is at most 4(δ + 1/k) |E|. Choosing δ = ε/8
and k = d8/εe gives the desired result.

4.4 Run-time Guarantee

Theorem 4. ASM(P, ε, n) runs in O(ε−3 log5(n)) com-
munication rounds.

Proof. Notice that the only communication between pro-
cessors occurs in ProposalRound. ASM(P, ε, n) iterates
QuantileMatch(P, k) a total of O(ε−2 logn) times, while
quantile match invokes ProposalRound(Q, k,A) O(ε−1)
times. Finally, each step of ProposalRound can be per-
formed in O(1) communication rounds, except for Step 3,
which calls MaximalMatching. By [6], MaximalMatch-
ing runs in O(log4 n) communication rounds. Thus, ASM
requiresO(ε−3 log5(n)) communication rounds, as claimed.

Remark 4. While the CONGEST model allows for un-
bounded local computation in each round, the local com-
putations required by ASM are quite simple. In fact, each
communication round can easily be implemented in nearly-
linear time in n. Thus the synchronous run-time of ASM
is Õ(n). To our knowledge, this gives the first distributed
algorithm whose synchronous run-time is sub-quadratic in
n, even for unbounded preferences.

5. RANDOMIZED ALGORITHMS
The main source of complexity in ASM comes from find-

ing a maximal matching. While Hańćkowiak, Karoński, and
Panconesi’s algorithm [6] is the most efficient known deter-
ministic algorithm, faster randomized algorithms are known.
Specifically, we consider the algorithm of Israeli and Itai
[8]. They describe a simple randomized distributed algo-
rithm which finds a maximal matching in expected O(logn)
rounds. By simply replacing MaximalMatching with a
truncated version Israeli and Itai’s algorithm, we obtain a

106

faster randomized algorithm for finding almost stable match-
ings. We refer the reader to Appendix A for details on the
guarantees for Israeli and Itai’s algorithm.

5.1 General preferences

Theorem 5. There exists a randomized distributed algo-
rithm, RandASM(P, ε, n, δ), which for any δ, ε > 0 finds
a (1 − ε)-stable matching with probability at least 1 − δ in
O(ε−3 log2(n/δε3)) rounds.

Proof sketch. We take RandASM to be exactly the
same as ASM, except that we use Israeli and Itai’s algo-
rithm [8] for the MaximalMatching subroutine. Specifi-
cally, for MaximalMatching, we iterate MatchingRound
(see Appendix A) O(log(n/δε3)) times. By Corollary 1, each
call to MaximalMatching will succeed in finding a max-
imal matching with probability at least 1 − O(δε3/ logn).
Since RandASM calls MaximalMatching O(ε−3/ logn)
times, by the union bound, every call to MaximalMatch-
ing succeeds with probability at least 1− δ. The remaining
analysis of RandASM is identical to that of ASM.

5.2 Almost-regular preferences
For α ≥ 1, we call preferences P α-almost-regular if

maxm∈Y degm ≤ αminm∈Y degm. For example, complete
preferences (where all men rank all women) are 1-almost-
regular, while uniformly bounded preferences are α-almost-
regular for α = maxm∈Y degm. From an algorithmic stand-
point, α-almost-regular preferences are advantageous because
in order to bound the proportion of blocking edges from bad
men, it suffices only to bound the number of bad men. By
Lemma 6, to obtain such a guarantee, one need only iterate
QuantileMatch O(1) rounds (instead of O(logn) times as
required by ASM).

Further, for α-almost-regular preferences, we can relax our
requirement that MaximalMatching actually find a max-
imal matching. We say that a player v is unmatched in G0

if v does not satisfy property 1 or 2 in Definition 3. We call
a subroutine AMM(η, δ) which finds a matching in which
only an η-fraction of players are left unmatched with proba-
bility at least 1− δ (see Appendix A for details). These un-
matched players are immediately removed from play. With
these simplifications, we obtain the following result.

Theorem 6. There exists a randomized distributed algo-
rithm AlmostRegularASM(P, ε, δ, α) which for α-almost-
regular preferences P finds a (1 − ε)-stable matching with
probability at least 1− δ. The run-time of AlmostRegular-
ASM(P, ε, δ, α) is O(αε3 log(α/δε)) rounds.

Proof sketch. AlmostRegularASM(P, ε, δ, α) works
by iterating QuantileMatchO(αε−2) times, which by Lem-
ma 6 implies that only ε/4α fraction of men are bad.

We modify ProposalRound to call AMM(η, δ′) instead
of MaximalMatching. AMM runs inO(log((ηδ′)−1)) and
finds a (1− η)-maximal matching with probability (1− δ′).
Since AMM is called O(αε−3) times, choosing η = O(ε4/α)
and δ′ = O(δε3/α), AMM will leave at most an ε/4α frac-
tion of men unmatched in any call AMM with probability
at least 1 − δ, by the union bound. Such unmatched men
are immediately removed from play.

By the preceding two paragraphs, AlmostRegularASM
produces a matching in which at most an ε/2α fraction of
men are either bad or unmatched. By α-almost-regularity,

these men can contribute at most ε
2
|E| blocking pairs. The

remaining men are good, and therefore by Lemmas 3 and 42

contribute at most ε
2
|E| blocking pairs.

6. ACKNOWLEDGMENTS
The first author is supported in part by NSF grants 09165174,

1065276, 1118126 and 1136174, US-Israel BSF grant 2008411,
OKAWA Foundation Research Award, IBM Faculty Research
Award, Xerox Faculty Research Award, B. John Garrick
Foundation Award, Teradata Research Award, and Lockheed-
Martin Corporation Research Award. This material is based
upon work supported by the Defense Advanced Research
Projects Agency through the U.S. Office of Naval Research
under Contract N00014-11-1-0392. The views expressed are
those of the author and do not reflect the official policy or
position of the Department of Defense or the U.S. Govern-
ment.

The second author thanks the anonymous referees for their
helpful comments.

7. REFERENCES
[1] David J Abraham, Péter Biró, and David F Manlove.

Almost stable matchings in the roommates problem.
In Approximation and online algorithms, pages 1–14.
Springer, 2006.

[2] Kimmo Eriksson and Olle Häggström. Instability of
matchings in decentralized markets with various
preference structures. International Journal of Game
Theory, 36(3):409–420, March 2008.

[3] Patrik Floréen, Petteri Kaski, Valentin Polishchuk,
and Jukka Suomela. Almost Stable Matchings by
Truncating the Gale–Shapley Algorithm.
Algorithmica, 58(1):102–118, 2010.

[4] D Gale and L S Shapley. College Admissions and the
Stability of Marriage. The American Mathematical
Monthly, 69(1):pp. 9–15, 1962.

[5] Dan Gusfield and Robert W Irving. The stable
marriage problem: structure and algorithms,
volume 54. MIT press Cambridge, 1989.

[6] Michal Hańćkowiak, Michal Karoński, and Alessandro
Panconesi. On the distributed complexity of
computing maximal matchings. SIAM Journal on
Discrete Mathematics, 15(1):41–57, 2001.

[7] Avinatan Hassidim, Yishay Mansour, and Shai Vardi.
Local computation mechanism design. In Proceedings
of the fifteenth ACM conference on Economics and
computation, pages 601–616. ACM, 2014.

[8] Amos Israeli and Alon Itai. A fast and simple
randomized parallel algorithm for maximal matching.
Information Processing Letters, 22(2):77–80, 1986.

[9] Alex Kipnis and Boaz Patt-Shamir. A note on
distributed stable matching. In Proceedings of the 28th
ACM symposium on Principles of distributed
computing, pages 282–283, New York, NY, USA, 2009.
ACM.

[10] David Manlove. Algorithmics of matching under
preferences. World Scientific Publishing, 2013.

2Although these lemmas were proven assuming that Max-
imalMatching found a maximal matching (not an almost
maximal matching) the proofs remain valid as long as the
small fraction of unmatched players immediately remove
themselves from play.

107

[11] David Peleg. Distributed Computing: A
Locality-Sensitive Approach. Society for Industrial and
Applied Mathematics, 2000.

APPENDIX
A. RANDOMIZED MAXIMAL AND ALMOST

MAXIMAL MATCHINGS
Israeli and Itai’s [8] algorithm for finding a maximal match-

ing works by identifying a sparse subgraph of G, then finding
a large matching M1 in the sparse subgraph. The edges and
incident vertices of M1, as well as remaining isolated ver-
tices, are removed from G resulting in a subgraph G1. The
process is iterated, giving a sequence of subgraphsG1, G2, . . .
and matchings M1,M2, . . ., until Gk = ∅. At this point,
M =

⋃k
i=1Mi is a maximal matching. We give pseudocode

for Israeli and Itai’s main subroutine, which we call Match-
ingRound, in Algorithm 4. In [8], Israeli and Itai prove the
following performance guarantee for MatchingRound.

Algorithm 4 MatchingRound(G): Finds a large match-
ing in a graph

1: Each v ∈ V picks a neighbor w uniformly at random,
forms oriented edge (v, w).

2: Each v ∈ V with degin(v) > 0 picks one in-coming edge
(w, v) uniformly at random, deletes remaining in-edges.
Let G′ be the (undirected) graph formed by the chosen
edges with orientation ignored.

3: Each v ∈ V with degG′(v) > 0 chooses one incident edge
(v, w) uniformly at random.

4: The matching M1 consists of edges (v, w) ∈ G′ which
were chosen by both v and w in the previous round.
G1 = (V1, E1) is the induced subgraph of G formed by
removing all vertices contained in M1 and any remaining
isolated vertices from G.

5: Output (G1,M1).

Lemma 8. (Israeli and Itai [8]) There exists an absolute
constant c < 1 such that on input G = G0 = (V0, E0), the
resulting graph G1 = (V1, E1) found by MatchingRound
satisfies E(|V1|) ≤ c |V0|.

As a consequence of Lemma 8, we obtain the following
useful result.

Corollary 1. Let η > 0 be a parameter. Then s =
O(log(n/η)) iterations of MatchingRound suffice to pro-
duce a maximal matching in G with probability at least 1−η.

Proof. By Lemma 8, we have E(|Vs|) ≤ csn. Therefore,
applying Markov’s inequality gives

Pr(|Vs| ≥ 1) ≤ E(|Vs|)
1

≤ csn.

The result follows by taking s ≥ log(n/η)/ log(c−1).

The almost regular variant of ASM only requires a sub-
routine that we finds matchings which are almost maximal.

Definition 4. Let G = (V,E) be a communication graph
and M ⊂ E a matching in G. For 0 < η ≤ 1, we say that M
is (1 − η)-maximal if the set V ′ of vertices not satisfying
conditions 1 or 2 in Definition 3 satisfies |V ′| ≤ η |V |.

We can apply Lemma 8 to give a constant round algorithm
which finds almost maximal matchings.

Corollary 2. There exists a randomized distributed al-
gorithm AMM(G, η, δ) which finds a (1−η)-maximal match-
ing with probability at least (1 − δ). AMM(G, η, δ) runs in
O(log(η−1δ−1)) rounds.

Proof. Consider the algorithm which iterates Match-
ingRound s times. We apply Lemma 8 and Markov’s in-
equality to obtain

Pr(|Vs| ≥ ηn) ≤ csn

ηn
= η−1cs.

Choosing s = O(log(δ−1η−1)), we have η−1cs ≤ δ, which
gives the desired result.

108

