
Locally Decodable Codes for Edit Distance

Rafail Ostrovsky1 and Anat Paskin-Cherniavsky2

1 Department of Computer Science and Mathematics, UCLA, rafail@cs.ucla.edu?

2 Department of Computer Science, UCLA, anpc@cs.ucla.edu??

Abstract. Locally decodable codes (LDC) [1,5] are error correcting
codes that allow decoding (any) individual symbol of the message, by
reading only few symbols of the codeword. Consider an application such
as storage solutions for large data, where errors may occur in the disks
(or some disks may just crush). In such an application, it is often de-
sirable to recover only small portions of the data (have random access).
Thus, in such applications, using LDC provides enormous efficiency gains
over standard error correcting codes (ECCs), that need to read the en-
tire encoded message to learn even a single bit of information. Typically,
LDC’s, as well as standard ECC’s decode the encoded messaged if upto
some bounded fraction of the symbols had been modified. This corre-
sponds to decoding strings of bounded Hamming distance from a valid
codeword. An often more realistic metric is the edit distance, measur-
ing the shortest sequence of insertions and deletions (indel.) of symbols
leading from one word to another. For example, (few) indel. modifica-
tions is a more realistic model for mutations occurring in a genome. Even
more commonly, communication over the web may sustain deletions (lost
packets) and insertions (noise).3 Standard ECC’s for edit distance have
been previously considered [7]. Furthermore, [7] devised codes with rate
and distance (error tolerance) optimal upto constants. LDC’s, originally
considered in the setting of PCP’s [1], have found many additional ap-
plications, and generated a lot of fascinating work (see [9] and references
within). However, combining these two useful settings of LDC, and ro-
bustness against indel. errors has never been considered.
In this work, we study the question of constructing LDC’s for edit dis-
tance. We demonstrate a strong positive result - LDC’s for edit distance
can be achieved, with similar parameters to LDC’s for Hamming dis-

? Research supported in part by NSF grants CNS-1118126; CNS-1136174; and Defense
Advanced Research Projects Agency through the U.S. Office of Naval Research under
Contract N00014-11-1-0392. The views expressed are those of the authors and do
not reflect the official policy or position of the Department of Defense or the U.S.
Government.

?? The work is supported in part by the Defense Advanced Research Projects Agency
through the U.S. Office of Naval Research under Contract N00014-11-1-0392. The
views expressed are those of the authors and do not reflect the official policy or
position of the Department of Defense or the U.S. Government.

3 Edit distance is indeed "more expressive" then Hamming distance in the sense that
distE(x, y) ≤ 2distH(x, y) always holds, while edit distance 2 may translate to Ham-
ming distance n. For instance, consider x = 1010 . . . 10, y = 0101 . . . 1.

tance. More precisely, we devise a generic transformation from LDC for
Hamming distance to LDC for edit distance with related parameters.

1 Introduction

In this work, we define and study the feasibility of locally decodable codes (LDC)
for edit distance. Standard LDC codes are defined over the Hamming distance,
allowing to decode individual symbols of the message by reading few symbols
of the codeword. This provides enormous efficiency gains over standard error
correcting codes (ECCs), that need to read the entire encoded message to learn
even a single bit of information. Additionally, LDC’s have a curious connection
to cryptography, yielding protocols for PIR (private information retrieval) with
related parameters, and vise versa [8].

We put forward a strong positive result, by demonstrating a compiler from
standard LDC’s into LDC’s for edit distance, with only small losses to the pa-
rameters. In particular, the tolerated fraction of errors (typically a constant), and
the code’s rate are only degraded by a constant. The query complexity grows
by polylogarithmic factors in the size of the codeword. The compiler is black
box, in the sense that the LDC decoder for the resulting code uses the decoder
of the original LDC code in a black box way (only reading and answering its
queries to the purported codeword). Our main technique is reducing the task
to the problem of searching an element in a large sorted list L with a constant
fraction δ of corrupted values. The search should succeed with overwhelming
in |L| probability for all but, say, 50δ fraction of the queries into uncorrupted
locations. The number of queries to the list should be polylogarithmic. We de-
vise a comparison-based algorithm with O(log2+o(1) |L|) queries for this task.
This algorithm may be of independent interest, as for the more stringent setting
where all uncorrupted entries should be recovered correctly, there exist polyno-
mial lower bounds on the number of queries by comparison-based algorithms.

Theorem 1. (Main thm., informal). Consider an (δ(n), q(n), ε(n))-LDC LH : Fnp → Fmp
for Hamming distance. Here δ(n) is some constant bound on the fraction of tol-
erated indel. errors, q is the query complexity, and ε(n) is a bound on the worst
case error in reading a message symbol if δ is respected. There exists a black
box transformation from such LH into a (cδ, q · polylog(m, p), ε+ neg(m))-LDC
LE : Fnp → Fmp for edit distance, where c is a (quite large) global constant. The
code rate degrades by a constant. Encoding efficiency only degrades by a poly(n)
factor.

The transformation from Theorem 1 is black box in the following sense. Let
DwH

H , DwE

E denote the decoders of the original LDC (for Hamming distance) and
the decoder for the LDC for edit distance that we construct, respectively. DwE

E

receives an input i and needs to decode xi. Fur that purpose, it runs D·H(i) as is,
reading only the sequence of locations DH asks to query wH at, and answering
them. To asnwer a query j of wH , it simulates the answer wH [j] using queries to

2

its own oracle wE , which "induces" a codeword wH . Finally, the output of DH

is returned.
On a high level, LE is a composition of LH with a standard code I for edit

distance. That is, to encode a message m, it computes w1 = LH [m], divides w1
into blocks w1, . . . , wT , and outputs I(w′1)◦ . . .◦I(w′T), where w′i is “almost” wi.
To answer a query on index i, the goal is to find the relevant block in w2, and
decode it to extract the relevant symbol. Even in standard codes, one central
difficulty is in finding the block in w2. For this purpose, the w′j ’s explicitly include
their relative index: w′i = (i, wi) . This transformation is in fact exactly the one
used in SZ codes, where LH is replaced by a regular code C. The novelty of our
construction, is in demonstrating that this transformation in fact preserves the
parameters of LDC codes ([7] show that for a careful choice of block length,
it preserves distance and rate of standard ECC upto a constant), by devising
a suitable decoder procedure. As we explain below, just adding the indices is
not sufficient for LDC codes. If the entire codeword can be read, we can just
“read off” the indices of all blocks, and use the (decoded) (i, s) for i in the
right range as the values at location i. If there are relatively few errors, this
will produce a C codeword with few erasures (duplicate and missing entries) +
changes (erroneous entries we do not know of), which can then be decoded. For
LDC codes, the problem is in finding a block w′i by reading only polylog(m)
entries from the codeword (in particular, |I(w′i)| = polylog(m). Although the
location of the relevant block can move upto a δ |WE | fraction of symbols, we
should find it with high probability for “most” blocks.

Our main technical tool is a new algorithm for searching an element in a
sorted list L where up to a constant δ fraction of the original entries may be
arbitrarily modified (and possibly out of order), looking at only polylog|L| lo-
cations of the list. The algorithm performs a "clever" version of binary search,
coping with errors to the degree we need. It guarantees locating at least a 1− cδ
fraction of the lists’ entries. This technique may be of independent interest. The
problem of searching sorted lists with corruptions or errors in query’s answers
has been considered before ([6,2] to mention a few). The main difference of our
setting is that we get much lower query complexity at the cost of allowing incor-
rect answers for some cδ of the uncorrupted entries. Without this compromise,
comparison-based algorithms (ours included) the query complexity is provably
Ω(poly(n)) for constant error fractions [2].

We also observe that our technique for transforming codes for Hamming
distance into codes for edit distance applies to the setting of computational
LDC’s [4], and of Locally testable codes (see [3] and references within).

1.1 Our Technique in more detail.
Our starting point is the construction by Shulman et al [7], that converts (stan-
dard) error correcting codes for Hamming distance into ones for edit distance.
Their construction is a composition of two codes as follows.
1. Start with a standard “outer” ECC C1 : Fnp → Fmp , and apply it to the

plaintext message x, obtaining y.

3

2. Encode y under a greedily constructed code I for edit distance as follows -
denote this new code by C2). Divide y into blocks of logm symbols each,
resulting in T = m/logm blocks. Encode each block yi at the i’th block using
an “inner” (greedily constructed, exponential-time) code I, applied to (i◦yi),
obtaining wi = I(i ◦ yi). Output w = w1 ◦w2 . . . ◦wT as the codeword. The
code I : Flogm

p → Fhp has constant rate and tolerates a constant fraction of
errors. (the number of blocks is selected as such to ensure constant rate of
E2)4

The resulting code C2◦C1 is a code for edit distance. Their goal is to obtain codes
with efficient (in n) encoding and decoding procedures, and constant distance
and rate. Thus, they plug in C1 with constant distance and rate parameters,
and C2 ◦ C1 inherits these properties (due to also constant rate and distance
for I). The reason that SZ do not just use I as the code for edit distance is its
inefficiency of encoding and decoding, so it can only be practically applied to
short blocks.

Besides constant (edit) distance, another property of the code I that they
need, is that for every pair of different codewords, the distance between a prefix
w1 of w, and a suffix u1 of u (or vise versa) of large enough (fractional) length,
say 0.1, have large distance. This ensures that in a corrtuped codeword w, sub-
sequences “close enough” to different codewords do not intersect “by much”.
Thus, a corrupted w can be viewed as a sequence of codewords (of I) and pos-
sibly garbage between them, written one after the other (possibly upto small
fractional overlaps). This way, every original wi that was corrupted by “not too
much” will be recovered when scanning a small vicinity of wi (as is useful for
LDC’s), or when scanning the entire w from left to right (as is useful for standard
decoding, like in SZ). In fact, we will use a slightly stronger "no overlapping"
property that is implicit in [7]’s construction.

This construction suggests the following simple transformation from standard
LDC’s into LDC’s for edit distance. Plug the (standard) LDC C1 as the outer
code (instead of a standard ECC) into the construction. The code LE = C2 ◦C1
is our LDC for edit distance! A decoder for LE acts as follows.

Simulate C1’s decoderD1. For any queryD1 makes, decode the corresponding
block (by going to its vicinity), and retrieve the relevant query by decoding I.
At the end, output whatever D1 outputs. If I has edit distance δI , then a δE
fraction of errors will corrupt (beyond repair) a ≤ δE/δI fraction of the blocks,
but the rest will be correctly recovered (if found!). If the original LDC tolerates a
δH fraction of errors, we may set δE = δHδI . As D1 sees at most a δE fraction of
corrupted symbols, the new decoder’s decoding probability is the same as D1’s.

The main problem is that it is unclear how to find the required blocks. Due
to deletion and insertion errors occurring before it, every block can be as far as
δm symbols from its expected index (in the original sequence w1, . . . , wT). To

4 In [7], the authors devise and use I with binary input and output alphabet. SZ is
easy to modify to work over larger alphabets, possibly allowing for better (constant)
parameters.

4

cope with this, we develop a clever binary search technique allowing to find it,
even in the presence of corruptions. More precisely, we reduce our problem to
the following problem of searching a sorted list L of length T (only known to us
upto a factor of 2) where upto some (constant) δ fraction of the entries may have
been corrupted. Entries of the list are of the form (i, si), where the sorting is
by the unique keys i (upto duplications introduced by corruptions). One wants
to learn s associated with i in the list (or that i does not appear in it). Design
an algorithm V (i) that makes polylog(T) queries into the list that returns the
correct value c with probability 1 − neg(T) for at least a 1 − cδ fraction of the
original (i, s) entries, where c is a constant independent of δ.

The constant "loss of correctness" factor c above will just translate into a
further decrease in tolerated δE , namely δE ≤ deltaHδI/c, so we can afford it.
Roughly speaking, in uncorrupted entries in L will correspond to the list of blocks
(1, w1), . . . , (T,wT) that we not “deleted”, but either modified or newly inserted.
The former blocks will retain their original order, where a block’s corresponding
key is a blocks index i, and s = wi.

In Section 2.1 we present our algorithm for searching sorted lists with cor-
ruptions. In Section 2.2 we discuss how to adapt this abstraction to searching
a symbol wi in a codeword w of C2 ◦ C1 as above. There are several technical
issues that need to be carefully treated here. In particular, the type of queries we
chose for the the sorted list searching abstraction are easy to (approximately)
implement given w.

Another point where our construction diverges from the original construction
of SZ is in the efficiency of I. As mentioned above, the inner code I is constructed
in a greedy manner, with exponential complexity in the message space. In our
case,this size is upto logm symbols, so encoding and decoding of that code may
have complexitymlog p (bit operations), which is prohibitively high in the setting
of LDC and ok for standard decoding of the entire message (although overall
efficiency of decoding is a secondary goal in LDC, it is important in practice).
Thus, we use a recursive version of the inner code (also mentioned in the paper),
where every block (i ◦ yi) is encoded by a SZ code (based on, say, Reed Solomon
as the outer code), so the greedy part is now applied to messages of length
≤ log(logm · log p) bits. This comes only at a constant decrease in tolerated
errors and rate.
Remark 2. For some settings of parameters, one would just rather fall back to
standard SZ codes for edit distance, that read the entire codeword to decode.
As explained above, some kind of “binary” search seems inevitable. Thus, we
expect to lose a factor of logm in the query complexity (even if we were willing
to give up such a factor on rate). For some codes, such as the Hadamard code,
logm = n, so there is no gain in query complexity. Nevertheless, the construction
is non-trivial for most useful parameter settings of LDC.

1.2 Preliminaries.
In this paper Fp denotes a finite alphabet of size p (typically, but not necessarily
a finite field). We denote the Hamming distance of two strings x, y ∈ Flp by

5

distH(x, y). The edit distance between x, y ∈ F∗p, distE(x, y) is the minimal
number of insertion or deletion operations to be performed on x to obtain y (or
visa versa, as distE is a metric). We often just write "dist(x, y)" when the type
of distance is clear from the context.

For a metric dist ∈ {distH , distE}, we say C : Fnp → Fmp is an error correcting
code (ECC) with distance parameter d if for any pair of codewords, C(x) ≤ C(y),
we have dist(C(x), C(y)) ≥ d. Alternatively, we will often measure the number
of errors the code can tolerate (upto (d−1)/2). The codes’ rate is the ratio m/n.

By default, we consider families of ECC’s C : Fnp → Fm(n)
p (sometimes p

depends on n as well), and discuss their asymptotic parameters.

Definition 3. An ECC, L : Fnp → Fmp is a (δ(n), q(n), ε(n))-LDC (locally de-
codable code) for Hamming distance if there exists a decoding algorithm Dw′(i)
such that for all i ∈ [n], x ∈ Fnp , and all w′ ∈ Fmp satisfying distH(w′, L(x)) ≤
δm, we have

Pr[Dw′
(i) = xi] ≥ 1− ε.

Here D reads at most q(n) locations in w′.

Definition 4. LDC for edit distance is defined as LDC for Hamming distance
(replacing distH with distE everywhere), with the minor difference that Dw′ is
also given |w′| as an additional input.

We use the following family of codes for edit distance implicit in [7].

Lemma 5. For every finite alphabet Fp, there exists an integer t0 and real δ > 0,
such that for all t ≤ t0, δ

′ ≤ δ, there exists an ECC It,δ′ : Ft → Fmp for edit
distance tolerating upto δ′m insertions and deletions. It,δ′ has constant (possi-
bly depending on δ′) rate m/t. Also, there exist a (global) constant c such that
for all It,δ′ as above satisfy the following “no overlapping” property. For every
pair of codewords (ws1, s2v), if |s1| = |s2| ≥ 2δm, then either ws1 = s2v, or
dist(s1, s2) ≥ 1.5δm. Furthermore, if |s1|, |s2| ≤ (1 − δ)m, then it must be the
case that dist(s1, s2) ≥ 1.5δm. The codes’ encoding and decoding complexity is
poly(m).

Proof sketch. Roughly, we consider the buffered code variant, and view the
S1 codeword from SZ along with the 1/2-buffer before and after it as a single
codeword of I. That is, I encodes as in S1, and appends 1/2-buffers of 0’s as
in SZ from both sides (there this is done only when composing C1 with I). Let
δ be the error fraction tolerated by S1 (for sufficiently large t), and m′ be its
output length. Instead of taking large buffers (say, some constant fraction of an
S1 codeword) as in SZ, we set it it to just δm. Consider first S1 constructed
greedily, with 1’s interleaved into the S1 codeword every other symbol (in the
binary case), then the “no overlapping” property is satisfied. Note that I has
distance (δI) at least δ. The (1/2)-buffers have a 0 fraction of 1’s, while any
non-buffer part of a codeword it overlaps with has a 1/2 fraction of 1’s (both are
of length δm). Thus, making s1, s2 of length at least 2δm, and at most (1− δ)m,

6

would put (s1, s2) at edit distance at least 2δm. If |s1| , |s2| ≥ 1 − δm for small
enough δ, it must be the case that ws1 = s2v. There are two cases to consider.
If s1, s2 are of length ≥ (1 − δ/3)m, the codewords ws1, s2v have distance at
most 2/3δm, and thus can not be a pair of distinct valid codewords (which have
distance at least 2δ(1 − 2δ)m). Otherwise, if s2v is a valid codeword, ws1 has
4/3δ consecutive 0’s in its prefix and thus is invalid. If ws1 is a valid codeword,
then a 1/3 of s2v’s δm suffix has density ≥ 1/2 or 1’s, where it should have an
all-0 buffer, and thus not a valid codeword.

Finally, we do not simply let S1 be the greedily constructed code from SZ.
The reason is that encoding and decoding of such a code has exp(m), which is too
inefficient for our purposes. Thus, we replace S1 with a code for edit distance
obtained ad in SZ for their buffered version. Namely, by composing some C1
with constant rate and fractional distance and efficient encoding and decoding
for Hamming distance (such as RS code with suitable parameters), with I with
a suitable t (around logm). Break y = C1(x) into T = Θ(|y|/ log |y|) blocks
w1, . . . , wT , of length m1 = m/T each. It outputs S1(1, w1), 0, . . . , 0, S1(T,wT),
where the 0 are buffers of length, say m1/8. It has some distance δ1 and some
constant rate (somewhat worse then that of the greedy code). This variant of
S1 has poly(m) encoding and decoding procedures. Finally, plugging it instead
of S1 in the above construction leads to a density of slightly below 1/2 in a
δ1m-long stretch in the S1-part of the word, approaching 0.4 as m1 grows, and
still a 0 density for the buffer. Thus, we get c = 1.5 for large enough m1 (and
small enough δ1). �

We will need the following version of the Chernoff’s bound.

Lemma 6. Let X1, . . . , X1 denote independent random variables, and let X =∑
iXi. Assume also that the support of each is [0, B], for some B > 0. Then for

ε > 0, we have
Pr[|X − E(X)| ≥ εE(X)] ≤ e−Θ(ε2)E(X)

2 Searching sorted lists with corruptions

As explained in the introduction, proving Theorem 1 boils down to the devel-
oping a search algorithm on a sorted list with (small) constant fraction ≤ δ of
corrupted entries, making a polylog number of queries to the list. The list is
comprised from pairs of (i, si) where i is a unique key (before corruptions). The
input to the algorithm is a key i, and it should return a corresponding si. We
require that for all lists L with a δ fraction of corrupted entries, the algorithm
returns si on query i with probability 1−neg(|L|) on all but some 1−cδ fraction
of the (original) entries, for a constant c independent of δ. Clearly, c can not be
less then 1. In particular, if only the si’s are modified (keys are intact), there is
no way to recover the original keys.

There exist algorithms in the literature in a similar setting with stronger guar-
antees and worse parameters. For instance, [2] consider algorithms that guarantee
to recover si for all values for which (i, si) was not corrupted, and if there is no

7

key i in the sequence, corrupted or correct, the algorithm should output “not
found”. They prove that for such a stringent requirement, any comparison-based
algorithm, that accesses some Ω(log |L| + δ · |L|) locations errs on some input
with probability at least 1/2.5

2.1 Our approach

The natural approach to the question is to use binary search.

A Warmup - random error locations. To gain intuition, assume that the
error locations were picked at random - each entry is corrupted with probability
δ ≤ δ0 = 0.2. Jumping ahead, for our application to LDC for edit distance, this
would happen if the insertions and deletions occurring are at random locations.

Assume that the success requirements of the algorithm need to only hold
for “most” error patters (allowing high failure rates for all queries for a small
fraction of error patterns). Then the following simple algorithm and analysis
would work. Given a list of length m = |L|, proceed in levels, so that on every
level we divide the interval at hand into three equal intervals (start with the
entire list). For the middle interval, randomly and independently sample log2 m
entries, and record the fraction of keys smaller or larger then i, (s, b) accordingly
(for simplicity of analysis, sample with repititions). If some (i, s) element is
found, we stop and return s corresponding to the first appearance of i found
immediately. Otherwise (b = 1 − s), return the corresponding s for the first
such appearance and terminate). If s, b ≥ 0.4, proceed with the middle interval
recursively. Otherwise, if s > b proceed with intervals (2, 3) as the new interval,
if b > s proceed with (1, 2). We stop at intervals of size log2 m, and scan the
entire interval; return s corresponding to the first (i, s) in the interval, or ⊥
otherwise.

Quite straightforward analysis, implies that the above algorithm succeeds to
achieve its goal for all but a small fraction of error patterns. One type of error
is that of finding the wrong (i, s) and terminating the search (even if the correct
(i, s) is located in a different interval). All these errors may only occur for at
most 2δm of the keys i originally present in L. Those which were "duplicated"
elsewhere, and those that were modified into the new duplicates, possibly erasing
their own information.

For all other entries (keys) on which the algorithm may err, entries of the
form (i, s) only appear in the interval that originally contains an entry (i, s) for
5 This is a certain restatement of their theorem 5, in terms of the number of elements
involved in the comparison queries, rather then in terms of the number of compar-
isons made. The proof follows straightforwardly from their proof of that theorem.
They demonstrate some matching upper bounds, leaving just a small gap. Still, even
for an algorithm matching the lower bound perfectly, for the range of parameters
where δ0 is a constant, the query complexity is Ω(|L|), which is unacceptable in our
case. The key for obtaining a (comparison based) algorithm with query complexity
polylog(|L|), is the fact that we can rely on relaxed correctness guarantees as above.

8

that key, and thus this type of error may not occur. In that case, only errors due
to excluding an interval originally containing i at some point along the recursion
may occur - we refer to these as type 2 errors. This type of errors is slightly
trickier to bound - jumping ahead, it will occur with probability > neg(m) for
none of these other keys for this algorithm, and account for most of the errors
of the algorithm for general errors.

A crucial point is that the probability (over picking error patters uniformly at
random) that the search reaches an interval with density larger then 0.25 = 1.2δ0
fraction of errors for any searched key i is bounded by poly(m) ·m−Θ(logm)) =
neg(m) (Chernoff + union bound). Here poly(m) is a bound on the number of
reachable nodes (for any key i) derived from 3log1.5(m) = mlog1.5(3) ≤ m2.71.

It is easy to see that if the latter happens, at every step of the recursion, the
algorithm can make a type 2 error when moving to the next step of the recursion
with probability at most mΘ(− logm).

This holds since if i is in the first interval, (same holds for the 3rd interval),
and assuming the error density in interval 2 is indeed ≤ 0.25, then ≥ 0.75 fraction
of elements in 2 are bigger then i. Thus, having s ≥ 0.4 (necessary for b, s ≥ 0.4)
is highly unlikely - recalling (i, s) can not appear in interval 2 (we account
for such keys i in type 1 errors), s has expectancy of at most most 1/3. By
Chernoff bound, s ≥ 0.4 thus has negligible in m probability exp(−Θ(log2(m))).
Otherwise, getting s > b would require getting s ≥ 0.5 for same expected value
of 0.3 - again a exp(−Θ(log2(m))) probability.

Taking union bound over the path for any given key i, the overall error
probability is O(logm ·mΘ(− logm)) = neg(m).

The main difficulty is that for arbitrary error patterns, low density of errors
in all intervals in not guaranteed. Thus, a more sophisticated analysis (for a
somewhat more sophisticated algorithm, but quite along the lines of the one
above) is required. In particular, the number of intervals we use will depend
on δ0. The parameters tolerated by the above algorithm in this random errors
setting are c = 2, and δ ≤ 0.2. The parameters we achieve for general errors
will be worse c = 50, and δ bounded correspondingly (δ ≤ 1/c to obtain any
non-trivial correctness guarantee).

The final protocol. Let us first fully formalize our setting.

– The protocol is specified by an algorithm SL(i). It has oracle access to a
sorted list L, where some constant δ fraction of elements have been corrupted
(possibly not respecting the original order). Let m′ denote an approximation
on |L| upto a factor of 2 (m′ is available to S, while the exact m = |S| is
not). The input is a key i to search.

– Oracle queries: There are two types of possible queries to the list. 1. (v0, v1),
where (v0, v1) are fractional locations in the list. The entry (i, s) at a ran-
domly selected location inside the interval is returned. Query weight is 1. 2.
Ask for the sequence of all points in an interval (v0, v1, y). If the interval is of
size y or smaller, the sequence of all points in the interval will be returned.

9

Otherwise, an error is returned. Query weight is y (regardless of the query’s
outcome).

– Output: Given a key i, such that (i, si) was present in the original list (before
corruptions occurred), the correct output for it is si.

– Goal: Maximize the worst case fraction of keys i originally present in the
list (before corruptions) for which the reply is correct with probability 1 −
neg(m). Total weight of queries should be polylog(m) - we are not trying to
optimize the concrete complexity.

Construction 7 Initialize the searched interval to I = (0, 1), ∆ = 3 (or any,
other constant > 3), T = ∆, r = log2 m′. Repeat:

1. Make a type 2 query with (I, r). If it returns a sequence of points, and one
of them is of the form (i, s), return s corresponding to the first such i. Oth-
erwise, return ⊥. (we reached a short interval we can read completely)

2. Otherwise, divide I into T intervals I1, . . . , IT of equal size (up to ±1 due
to rounding). Sample r random locations in each of the intervals, resulting
in oi,1, . . . , oi,r for the i’th interval.
(a) If some sample is of the form (i, s), return s corresponding to the first

such i.
(b) Otherwise, for each interval, calculate the fractions s, b = 1−s of smaller

and larger then i sampled elements respectively. We say that interval j
votes against interval k, k > j for i , equivalently votes against (Ik, i) if
b ≥ 0.31 (for k < j, if s ≥ 0.31).Note that if Ij votes against (Ik, i), then
it votes against all (Ih, i) for h on the same side of Ij as lk. We then
say that Ij votes against its left (right) side on i. For every interval j,
we count the number of votes against (Ij , i) over all other intervals.
i. If there is exactly one interval with a minimum number of votes, fix
I to be that interval.

ii. If there are two such adjacent intervals Ij , Ij+1 let I be their union.
Fix T = 2∆.

iii. Otherwise, output ⊥ and terminate.

Theorem 8. Construction 7 is an algorithm for searching on sorted lists (in a
framework as defined above), tolerating a (small enough) constant6 δ fraction of
corruptions. For at least a 1 − 52δm fraction of the original lists’ elements, it
recovers them correctly with probability ≥ 1−neg(m) (δ is the actual fraction of
corruptions that occurred). It makes O(log3 m) queries to the list.

Proof. Throughout the analysis, we fix an arbitrary L and set of corruptions S of
size δ |S| ≤ δ0 |S| (but not the searched key i). We start level count at 1. On level
l of the algorithm, we refer to intervals I that can be reached on that level as
level-l nodes (for instance, there is a single level-1 node). We refer to the∆i equal
intervals partitioning the entire list as basic intervals (note that such intervals
6 Construction 7 can also handle subs-constant in |L| δ with the same degradation
factors, but constant δ is the most interesting parameter setting.

10

coincide with intervals considered in all level-l nodes: such nodes contain either
∆ or 2∆ basic intervals). The size of an interval drops by a factor of at least ∆/2
every time. Thus there are at most log∆/2(m) iterations. In every iteration we
make at most 2∆ log2 m′ = O(log2 m) queries of type 1, and queries weighting
O(log2 m) of type 2 at every step. Overall, the algorithm makes queries of weight
O(log3 m). We now turn to the correctness analysis. On a very high level, the
intuition is that if there were no errors, the segment in which i belongs (in
the original list, before errors were introduced) is the one which will be chosen
as the segment with which we proceed to the next recursion level (including
one additional segment, unless i is "close to the middle" , throwing out both
adjacent segments). However, segments with errors, or incorrect estimations of
(s, b) may affect keys so that the “correct” segment is missed altogether, or too
many segments are selected, and we decide to abort.

Several types of errors may occur.

1. In the worst case, all corrupted entries are not correctly recovered.
2. In the worst case, all corrupted entries duplicate some uncorrupted entries,

and the incorrect payload is recovered.

As in the random case, errors that may occur as a result of terminating
with a wrong (i, s) may only occur for at most a 2δm fraction of the original
entries (key) i (see above). For all other values of the key i, this failure mode is
impossible, and we have s = 1 − b for all sampled elements in all intervals, but
the one originally containing i. To obtain a bound on the fraction of other keys
on which the algorithm may err with non-negligible probability, we may from
now on assume that this is the case.

Let us refer to Ij ’s with more then 0.3 fraction of corrupted entries as bad,
and good otherwise. Fix some level l,and a key i from basic interval Ik in the
original list. Consider basic intervals Ij with k 6= j. There several possibilities as
to votes of Ij , Ik on input i:

Observation 9 1. Assume no entries of the form (i, s) have been found in Ij.
Ij has at most (say) 0.3 corrupted entries. In this case, with overwhelming
probability, the interval votes against the “wrong” side for i, but not against
the right side - denote (w = 1, r = 0).

2. Assume the basic interval Ik has a ≤ 0.3 fraction of corrupted values. Then
with overwhelming probability it votes against at least one of its sides.

Proof. As in the warmup case, the proof is by calculating expected values of
(s, b) conditioned on (i, s) keys not occurring in the interval in question. For
item 1,2, assume wlog. that j < k. In item 1, at least a 0.7 fraction of elements
in the interval Ij are smaller then i (for j < k), the expected fraction b is ≤ 0.3.
Likewise, at least a 0.7 fraction of elements to be sampled (under the condition)
are smaller then i. Thus, getting r = 1 or w = 0 would require b ≥ 0.31 or
s ≤ 0.3 respectively. Applying Chernoff and union bound on the two events,
(r, w) 6= (0, 1) has probability ≤ exp(−Θ(log2(m)) of occuring. Item 2 is trivial
(a taut, note that (w = 0, r = 0) can occur with probability > neg(l) only if Ij

11

has at least a (say) 0.3 fraction of its entries of the form (i, s). For item 2, under
our condition, trivially at least 0.5 of the sampled points vote against one of the
sides (not all points are of the form (i, s)).

Let us assume wlog. that only the outcomes not explicitly listed in Obser-
vation 9 as (possibly) occurring with probability neg(m) can in fact occur. In
particular, if Ij has a fraction ≥ 0.3 of corrupted entries, we assume all outcomes
are possible. We refer to such executions as likely executions. This is wlog., as
taking union bound over the individual outcomes occurring with negligible prob-
ability (poly(m) overall) results in an event with negligible probability. This is
by taking union bound over the ≤ m2.71 nodes accessible on any input key i.

We are now ready to bound the set of keys that are incorrectly recovered in
likely executions.

Items 1,2 together yield at most a 2δ fraction of elements with wrong replies
(with non-negligible probability). It remains to analyze how many uncorrupted
entries y with contents (i, s) are not found because of aborting in step 2.1, or
excluding the correct interval on a level l of the recursion from the node I selected
for the next level, in some likely execution on input i. In this case, we say that
uncorrupted entry y is injured on level l (note that the contents (i, s) may not
longer be unique in Ik after corruptions, by injuring (i, s) we mean its original
index y in the list is not properly detected). For brevity, in the sequel we refer
to uncorrupted entries y by their key i, in particular we refer to injuring y with
contents (i, s) as injuring i in Ik.

A word of intuition. Before delving into technical details, to bound the number
of injured entries, let us consider a very high-level overview. Fix some list L and
set of corruptions. One key component of the analysis, is bounding the number
of entries injured on a given level l by some c · bl, where c is some constant, and
bl is the fraction of bad basic intervals on that level, which in turn is bounded
by δ/0.3 (of course, it makes sense to consider injured entries i for inputs i). To
make the bound well defined, we make sure it is independent of the algorithm’s
random choices. As the number of levels is Θ(log |L|)), naively summing over all
levels results in Θ(logn · n) > n, which is not a meaningful bound. The second
key observation is that we should count the number of injured entries that are
injured on each level for the first time. To bound these, we refine the first bound,
and prove that newly injured entries on level l are bounded by some cb′l, where
b′l is a subset of bad intervals on its level. Here we crucially use the fact that
some intervals do not affect an interval Ik because they are not in Ik’s node on
that level, so Ik does not “see” them.
Observation 10 (possbily) Overestimating the set of injured entries i (over all
likely executions with various input keys i) on every given level only increases
the bound on the number of injured entries overall (over all likely executions).

We often use this observation in subsequent analysis. For starters, we (pes-
simistically) assume that all entries that fall in bad basic intervals will not be
recovered correctly. The following claim provides a simple necessary condition
for i in a good level-l basic interval Ik to be injured on level l.

12

Claim. Consider a good basic interval Ik on some level l, and some likely execu-
tion on key i. An uncorrupted entry i ∈ Ik in a basic level-l interval Ik is injured
on level l only if there exists an interval Ij , k 6= j at distance at least 2 from Ik,
such that the number of votes against (Ik, i) is at least as large as the number
of votes against (Ij , i), or if Ik is adjacent to a bad interval Ij .7

Proof. Assume the precondition (following "only if") of the claim does not hold.
We show that i is then not injured on level l. Clearly, i can not be injured by Ij
at distance 2 or more from Ik has less votes against (Ij , i) then against (Ik, i). It
remains to check that both intervals Ik−1, Ik do not receive the same number of
votes (or less) for i as Ik. As Ik−1, Ik+1 are both good, by Observation 9, none
votes against Ik with overwhelming probability. The difference in votes between
Ik and Ik−1 (Ik+1) (as all intervals besides Ik−1, Ik vote in the same way for both)
is V ote(Ik, Ik−1, i)− V ote(Ik−1, Ik, i) (naturally, we let V ote(Ik, Ij , i) be 1 if Ik
votes against Ij on i, and 0 otherwise). The algorithm could still terminate in
step if the difference above is 0 for both Ik−1 and Ik. However, by Observation 9
Ik votes against at least one of its adjacent intervals in i (in likely executions),
so this also can not occur.

Let i be an uncorrupted entry. For Ik, Ij , i as in Claim 2.1 (Ij is as in part 1
or 2 of the precondition), we say that Ij potentially injures (i, Ik) on level l (and
i is potentially injured on level l). For all uncorrupted entries i in bad Ik’s, we
also define (i, Ik) to be potentially injured (by “whom” is not specified in this
case).

As i being potentially injured on level l is a necessary condition for being
injured, by Observation 10, it is sufficient to bound the set of uncorrupted en-
tries i potentially injured on some level. The following “monotonicity” condition
allows us to eliminate the dependence of our bound on the set of keys that can
be injured on a given level on the random choices of the algorithm (in likely
executions).

Monotonicity. Denote by Bl the set of bad basic intervals, and by Gl the set of
good basic intervals Ik on level l. Also, let G′l the set of uncorrupted entries in
Gl.

Claim. Consider the set of likely executions on keys i originally present in L.
The set of keys i ∈ G′l that are injured on level l (for input i) would be a
superset if we modified the algorithm’s decisions so that: 1. For all keys in G′l,
their interval Ik votes against none of the directions. 2. All intervals Ij in Bl
vote (w = 0, r = 1) for all uncorrupted keys i ∈ Gl.Note that assumption 1
is and assumption 2 may be impossible in likely executions on i. However, we
make these assumptions only for the sake of analyzing the set of keys injured on
7 Note that an error will not necessarily occur since Ij and Ik may not belong to the
node that includes i on that level (which includes ∆ or 2∆ of the basic intervals on
that level), and thus may not be seen by the algorithm. However, this is consistent
with our “overestimation principle”.

13

level l, and do not assume algorithm’s execution actually changes. Under this
assumption (i, Ik), a good key i can be injured on level l if.

– Ik is a bad interval, or
– (i, Ik) is potentially injured by some interval Ij . This happens iff. [Ij , Ik) has

at least as many bad intervals as good intervals.

Proof. Consider a likely execution e1 on input i, and let e2 denote an execution
resulting from making modifications 1,2 as in the claim. Consider an uncorrupted
entry i in a good level l interval Ik. As Ik is good, by Claim 2.1 (i, Ik) can be
injured on level l, only if it is potentially injured by some Ij . Thus, assume there
exists an interval Ij (for notational simplicity, assume j < k, this is wlog.) that
potentially injures (Ik, i) in e1. If the only such Ij adjacent to Ik, let us pick
this Ij for further analysis. Such Ij must be bad by definition of Ij potentially
injuring (Ik, i). Otherwise, let us pick some bad Ij with k − j ≥ 2. To see there
exists such a bad Ij , pick some Ij′ with k − j ≥ 2 injuring Ik. If it’s bad, set
Ij = Ij′ . If Ij′ is good, and all intervals in (Ij′ , Ik) are good, Ik would get at
least 2 votes less then Ij - a contradiction. Thus, picking the closest to Ij′ bad
interval in (Ij , Ik), has the same number of votes as Ij , and thus also injures
(Ik, i).

Let g, b denote the number of good and bad intervals in (Ij , Ik).
For Ij to potentially injure (Ik, i), we must have d = V otes(Ik, i)−V otes(Ij , i) ≥

0. In e2 d = b+ 1− g−V ote(Ik, Ij , i) = b+ 1− g, as bad intervals in [Ij , Ik) con-
tribute 1 to the difference, good intervals contribute −1 and V ote(Ik, Ij , i) = 0,
intervals outside of [Ij , Ik] always contribute 0.

Now, in e1 not all bad intervals in (Ij , Ik) may contribute either 1, 0,−1, good
intervals still contribute −1 and V ote(Ik, Ij , i) contributes 0 or −1. Overall, the
difference in e1 could only decrease relatively to d, so Ij must injure (Ik, i) in e2
as well.

Let Ml denote the set of Ik’s containing uncorrupted entries i potentially
injured on level l. We bound the G′l by bounding the fraction of entries in Ml,
and assuming all entries in Ml are in G′l, and have been injured. A set B′l ⊆ Bl
potentially injures an interval Ik inMl, if some Ij ∈ B′l potentially injures (Ik, i)
(for an uncorrupted i), or if Ik is itself bad. As a natural extension, we say a set
B′l ⊆ Bl potentially injures a set M ′l ⊆ Ml if it potentially injures all intervals
in M ′l . Our main technical observation, bounding the set Ml, is as follows.

Lemma 11. The set Bl of bad intervals potentially injures a set Ml of size at
most 5 |Bl| on that level. In particular, the set N ′l+1 of level-l + 1 nodes inter-
secting Ml contains at most 15 |Bl| basic (level-l) intervals. We refer to these as
“potentially injured” level-l+ 1 nodes (note that the injury event occurs on level
l).

See Section B for a proof.
The definition of potential injury, does not take nodes into account (that is,

it acts as if we allowed all basic intervals to “see” all other basic intervals on that

14

level in step 2.2 of the algorithm). If we take nodes into account, the bound on
|M ′l | induced by the union of a set N ′l of level-l nodes depends only on bad basic
intervals in N ′l . More precisely, we have the following extension of the above
lemma.
Observation 12 Consider a set N ′l of level-l nodes. Let us line up the basic
level-l intervals contained in N in their order (closing gaps when needed), ob-
taining a sequence S. Then the set Ml ∩ N (basic intervals potentially injured
by Bl) is of size at most 5 |B′l|, and at most 15 |B′l| basic intervals in injured
level-l + 1 nodes for B′l = Bl ∩N .
Proof. As in Lemma 11, we bound the number of potentially injured intervals in
Nl as induced by the sufficient condition in Claim 2.1. Thus, every bad interval
in N ′l remains bad in S, and every good interval is injured if it "sees" a bad Ij
such that [Ij , Ik) has at least as many bad intervals as good ones. The bound
now follows as in the proof of Lemma 11 (note that we still do not account for
some of the boundaries induced by nodes, but rather view S as a single node).

For every level l, let us bound the number of basic intervals in Ml containing
entries that are injured on level l for the first time. Then, to obtain the overall
bound on the number of injured keys, we just sum over all the bounds for first
injured keys (counting “first injured” keys, prevents us from counting again keys
that were already counted as injured at an earlier point along the path). Let B′l
denote the set of basic intervals not contained (as sets of entries) in intervals in
Bj for j < l. Denote by N ′l the set of level-l nodes not contained in any node
potentially injured on a previous level (recall nodes injured on level l − 1 are
level-l nodes, and level l is not injured by definition). The set N ′l does not miss
newly injured entries, as all entries in nodes outside of Nl have been already
counted as (potentially) injured on a previous level.

It follows from Observation 12, that the set of basic intervals in N ′l injured
on level l is of size at most 5|B′l|. In more detail, in Observation 2 we have
B′l ⊆ Bl ∩N ′l . This is true since nodes in N ′l simply do not intersect bad basic
intervals from previous levels (recall all bad basic intervals on a level are defined
as potentially injured). Now, applying Lemma 11, we obtain that N ′l contains at
most 15|B′l| basic intervals in potentially injured level-l+ 1 nodes. Let us denote
the fraction of B′l out of all level-l basic intervals by tl. Thus, by Lemma 11,
at most

∑
j 15tj ·m uncorrupted entries were potentially injured on level l. On

the other hand, as the B′l’s are all disjoint sets of elements, and since every
bad basic interval has at least a 0.3 fraction of incorrect elements, we have∑
j 0.3tjm ≤ δm. Combining the two inequalities, we conclude that at most

50δl uncorrupted entries are potentially injured overall. Combining with possible
losses from 1,2, we obtain that at most 52δ · l elements result in an incorrect
output of our algorithm.

2.2 Transforming standard LDC into LDC for edit distance.
Let C1 : Fnp → Fmp denote a (δ1, n, ε)-LDC code for Hamming distance, and
C2 : Fmp → Fhp a corresponding SZ code. Let Q1 denote a suitable decoding

15

algorithm for C1. To transform C1 into an LDC for edit distance, we compose it
with C2 (as done in [7] for a standard ECC C1, and p = 2)

Recall that C2 : Fmp → Fhp on input w1, divides it into T = dm/ logme blocks
w1,1, . . . , w1,T . Then there are t = d(m/T + logm)/logpe ≤ d2 logme symbols
in a block. We let I = It,δ, where It,δ is as guaranteed by Lemma 5 (we are
not concerned that t needs to be “large enough”, wlog. we may consider only
codes starting with large enough n (m)). It outputs w2 = w2,1 ◦ . . .◦w2,T , where
w2,i = I(i ◦ w1,i). Denote the output length of I by mt(= O(logm)).

We claim that the code C2(C1) is a (δ′1, q · polylog(m), ε+ neg(m))-LDC for
edit distance, where δ′1 = c · δ1, for a some global constant c that depends only
on parameters of It. The decoder Q2 for C2 runs a straightforward simulation
of Q1, where the crux of technical difficulty is providing answers to Q1’s oracle
queries, using its own oracle. In slightly more detail.

Construction 13 Q
w′

2
2 (i) :

1. Run Q·1(i). When a query k into w′1 is made:
– Calculate the index i ∈ [T] of the block in which the k’th position in w2

is located (bk/T c+ 1).
– Execute FindBlockw′

2(i) using some polylog(m) queries into w′2. Let v =
(i′ ◦w′1,i) denote its reply. Read w1[k] from w′1,i and forward it to Q1 as
the reply to its query.

– Output the value that Q1 outputs.

That is, FindBlockw′
2(i) locates the i’th block of w2, decodes it via I as

some(i◦s), where s is (hopefully) the i’th block of w1. As mentioned before, the
main difficulty is in searching for the block in w′2. We do not know where it is
located in w′2 (but only upto a distance of δ|w2| symbols, or so).

The high level idea is to somehow interpret w′2 as a list of sorted elements
with corruptions (the sorting is by the index i written in each block), and run the
algorithm for sorted lists with corruptions on it. For this purpose, we should be
able to make “backwards” translations of the list searching algorithm’s queries
into reading portions of w′2. In particular, we show that for small enough δ1,
blocks from w2 (= w′2 before modifications) form 1−O(δ1) of the induced list’s
elements, and appear in their correct order. It turns out that a slightly general-
ized abstraction of a weighted sorted list with certain restrictions on list weights
emerges. Fortunately we will be able to adapt our searching algorithm for un-
weighted lists to this more general setting. See Section A for precise details. We
obtain our main theorem.

Theorem 14. Consider an (δ(n), q(n), ε(n))-LDC LH : Fnp → Fmp for Hamming
distance, where δ(m) is some constant8. Consider a code C2(C1) as defined at
the beginning of this section (given C1). This code is a (cδ, q · polylog(m, p), ε+
8 As opposed to our construction for searching on sorted lists with corruptions, here
we require that δ is not subconstant. Otherwise, the degradation in δ could be
superconstsant in the actual error fraction δ.

16

neg(m))-LDC LE : Fnp → Fmp for edit distance, where c is a (quite small) global
constant. The code rate degrades by a constant. Encoding efficiency only degrades
by a poly(n) factor.

The proof of this theorem follows by the construction outlined in this section.
Namely, the decoder for C2(C1) is outlined in Construction 13. FindBlockw′

2(i)
runsWSL

′
2(i, T), and implements its queries using oracle access to its own oracle

w′2, as described in Section A. The various efficiency properties of the resulting
code follow from Lemma 5. The constant c is a product of two constants resulting
from the FindBlockw′

2 algorithm. The core of this algorithm is a an algorithm for
searching on weighted sorted lists with corruption. This constant is comparable
to the (1/) 52 loss we get in the algorithm for searching unweighted lists 8. The
other factor stems from the need to correct errors in I, and to make sure that
the word w′2 indeed induces a list with a small (O(δ)) fraction of corruptions.
This part is comparable to the fraction of errors tolerated by I.

A Details for Section 2.2

What list is induced by a codeword w′
2, and how do we query it? First,

let us better define what are the entries of the list L′2 induced by w′2. In w2 the
picture is clear, w2,i corresponds to the block I(i ◦ w1,i). After corruptions (at
the level of individual symbols), some care should be taken when determining
what the list entries are, and where each entry starts and ends. Recall I has
distance δmt, and let δ2 = εδ, for a (global) constant ε to be determined later.

1. We identify all subsequences of w′2 that are δ-close to a codeword of I -
denote as valid sequences. In particular, every w2,i that underwent δ2 or less
insertion/deletion operations (when viewed separately from all other changes
in the list) induces at least one such sequence. Fix a valid subsequence v′j =
[lj , rj] of w′2. Then by the no overlapping property of I (Lemma 5), and
the fact that ε � 1.5 only the range [lj − (2 + ε)δmt, lj + (2 + ε)δmt)]
may contain other valid subsequences, and they must decode to the same
codeword as v′j . Otherwise, the closest valid subsequence starts at least (1−
(2 − ε)δ)mt symbols to the right or to the left of lj .Also, by definition of
edit distance, valid subsequences are of length (1± δ2)mt. We refer to such
extended valid subsequences as “valid extensions”. Thus, we can think of
the list as a sequence of “valid extensions” of length (1 + O(δ))mt for a
small hidden constant (≤ 3). For now on, we do not explicitly specify this
constant, or constants derived from it, but rather use the notation O(δ). It
will the case that the derived constant terms O(δ) occurring throughout the
following discussion will not be “too large”. Valid extensions may overlap by
some O(δ)mt symbols that decode to the same (i◦s) entry each. Every such
extension is defined by picking some valid subsequence v′j = [lj , rj], finding all
valid subsequences in the range [lj −O(δ)mt, lj +O(δ)mt)], and defining the
bounds of the corresponding extension as the shortest interval that includes

17

all these. Note that valid extensions are well defined (and independent of the
choices of concrete v′j).

2. The rest of the list consists of data stretches which are δ-far from codewords
(possibly long stretches, of length not necessarily close to multiples of mt).
Reading an entry in such an “empty stretch” will be interpreted as (0, 0).

Intuitively, the list induced by w′2 is a weighted list, the length of which is the
sum of weights of its individual elements. The weights are specified in multiples
ofmt, and equal the length of an entry’s “representation” in the list. The weights
of entries corresponding to valid extensions are close to 1. The “empty stretches”
correspond to sequences of entries of length 1 and one of some fractional weight
at the end of a sequence. The valid extensions consist of “mildly corrupted”
w2,i’s, appearing in their original order (as in w2), and new “fake” entries that
are valid extensions created by indel operations corresponding to arbitrary values
(possibly breaking the order), of weight close to 1 each.

To make the intuition of the induced list precise, we should specify how we
implement reading a random entry from the induced list, which is the main
type of query used by the sampling algorithm. We prove that indeed the output
behaves (almost) exactly as if we read a random weighted entry from a list as
described above.

The main type of query in the list searching algorithm is picking a list entry
at random from a certain “long” interval - currently think of the interval as being
the entire list).

Sampling a random entry in the list induced by w′2. We are given an oracle to
a (corrupted) codeword w′2, of length h. To sample a random element of the
induced weighted list L′2, pick a random l ∈ [h], and read an interval D of
2mt symbols starting at l. Search for a subsequence in D that is δ2-close to a
codeword of I. This can be accomplished by decoding and checking distance
between the (re-encoded) result and the tested subseqeunce (note that decoding
can be successful for much worse distances, and I in fact tolerates edit distance
of upto δ).

If such subsequences exist, decode one, v′j , with the lowest left end point and
return the corresponding (i ◦ s). If none was found, output (0, 0). Calling this
procedure costs reading O(mt) positions of w′2.

Now we can precisely analyze what the induced list looks like, and what the
distribution query’s output is. For a valid extension sj “encoding” some (i, s),
there exists a (contiguous) interval dj of length (1±O(δ))mt, roughly preceding
sj (dj may intersect sj by some O(δmt)), such that sampling l in dj results in
v′j in sj , thus decoding to (i◦ s) corresponding to sj . Also, dj ’s corresponding to
different valid extensions are disjoint (roughly, because the sampling procedure
picks the first valid v′j , and O(δ) above is much smaller then 1). A full proof of the
above facts is easy, and is left to the full version. By definition of the sampling
procedure, and the observation on the disjointness of the dj ’s, for l’s outside
these dj ’s, the output is (0, 0). More precisely, elements in valid extensions and

18

empty stretches are represented by their preimages in the sampling procedure
(which are also contiguous stretches) as follows.

1. Entries sampled by the various dj ’s corresponding to valid extensions sj
appear in the order of their appearance in w′2.

2. Empty stretches in w′2 are sampled iff. we hit a j outside of any dj . Empty
stretches’ weight thus changes by some ±O(δmt), and they are represented
by stretches ej between the different dj ’s. Some sufficiently short stretches’
weight may go down to 0, in which case we do not count them as elements
of L′2 at all. We interpret every such stretch as a sequence of weight-1 (0, 0)
entries, where the last one has some fractional weight (completing the weight
to |ej |).

To summarize, the induced weighted sorted list L′2 is as follows. We have or-
acle access to a sorted list with entries (i, s) labeled dj or ej,t of various lengths,
specified in multiples of mt (most are close to 1, and some can be smaller frac-
tions), according to the length of the corresponding interval dj or ej,t in w′2.
Sampling an entry at random samples every entry with probability proportional
to its weight.

We make the following simple observations about the list’s size and weights.

– Simple calculations show that the number of list elements dj or ej,t is at
most (1 + O(δ))T . This roughly follows from the fact that dj ’s have length
close to 1 (in w′2), and that fractional ei,j elements appear at most once per
empty stretch, the number of which is at most the number of dj ’s + 1, thus
at most (1 +O(δ)T).

– For every interval or length r ≥ 2 in L′2, the total weight of elements in
that interval is in the range [r/2, 2r]. More precisely, it is (1 ± O(δ))r. The
worst weight density is obtained when short ei,t’s of weight close to 0 are
interleaved between other intervals (’regular’ ei,j ’s are dj ’s, whose length is
close to 1).

In all the above arguments, we relied on ε, δ being small. To make everything
go through, ε can be set to about 0.1.

Let us now connect the bound δ1 on dist(w2, w
′
2) and properties of the re-

sulting list. Assume w2 sustained δ1|w2| indel operations. Then we have:

– At least (1 − δ1/δ2)T of the blocks in w2 sustained at most δ2mt indel
operations. These belong to valid extensions in w′2 (inducing some dj), enter
the list L′2 in their proper order, and return the correct w2,i when sampled.
Their total weight is at least (1−O(δ))(1− δ1/δ2)T .

– There are at most δ1|w2| symbols outside of valid extensions corresponding
to w′2,i’s as above. Thus, the total weight of corrupted entries (either in valid
extensions or in empty stretches) in L′2 is thus ≤ (1 + O(δ))δ1T ≤ 2δ1T .
Thus, for small enough δ1 the weight of original entries is at least Wg =
1− δ1/δ2 −O(δ), and the total weight of L′2 is at most Wg + 2δ1.

19

From the above calculations, we conclude that taking δ to be sufficiently
small, and δ1 ≤ εδ2, the relative weight of uncorrupted entries in L′2 will be
large enough so that the weight of uncorrupted entries is 1−O(δ1/εδ).

The list searching algorithm actually needs to make random samples in spec-
ified intervals. To specify a fractional interval [α, β] in the list, we will simply
use the interval [α|w′2|, β|w′2|] in w′2. The above procedure trivially modifies to
randomly sampling an interval corresponding to some w′2[s, e] by just picking a
random l in that interval, and doing everything else as before. There are certain
artifacts of possibly losing/reducing weight of some O(1) entries at the beginning
of an interval or the entire list. Jumping ahead, this can be neglected, since over
all intervals reachable by the list searching algorithm, only O(T/ log2 T) elements
fall into these areas, while we consider the range of constant error fractions.

A second type of query we need to handle is checking whether an interval
[s, e] in w′2 has at most y elements in it. Returning all elements if it does, To
implement this query, check if the interval is of length (2 + O(δ))(y + 1)mt or
smaller (for a suitable constant). If so, recover the dj , ej,l’s in D, and check
whether their number is y + 1 or higher. If so, return the recovered elements,
otherwise return ⊥. The query requires at most 3(y + 1)mt queries to the LDC
oracle w′2.

Adapting searching in corrupted sorted lists to the weighted setting.
We are ready to fully specify the abstraction of searching on weighted sorted
lists with corruptions needed by the FindBlockw′

2 procedure in our LDC query
algorithm. We adapt the protocol for unweighted lists from Section 2.1 to the
case at hand of weighted lists. The algorithm will put some preconditions on the
weights in the list, that are satisfied by observations made about the induced
list L′2 in the previous section. Let us define the setting more precisely.

– The protocol is specified by an algorithm WSLδ (i). L is a weighted sorted
list (weights are strictly positive), where some of the elements have been
corrupted (modified arbitrarily), where the total weight fraction of corrupted
elements is some constant δ fraction of the total weight of elements in the list,
W = weight(L). The weights have the property that all sequences of r ≥ 3
elements in the list have total weight in the range [r/2, 2r] (in particular,
m ∈ [W/2, 2W]).

– Parameters: Let m′ denote an approximation on the number of elements in
L (disregarding weights) upto a factor of 2. m′ is available to WS, while the
exact m = |L| is not). An estimation δ0 of δ, accurate up to a factor of 2.

– Input: A key i to search.
– Oracle queries: There are two types of possible queries to the list.

1. (v0, v1), where (v0, v1) are fractional values. (v0, v1) specify fractional
weighted endpoints of the interval (may be closed or open on either
side). That is, v0 (v1) points to the j’th list entry where j is the smallest
index, such that

∑j
k=1 weight(Lk)/weight(L) ≤ v0. A random element is

returned, by a probability distribution assigning each entry a probability
measure proportional to its weight. Query weight is 1.

20

2. (v0, v1, t) : Ask for the sequence of all entries in an interval (v0, v1). If
the interval is of size t or smaller, the sequence of all entries will be
returned. Otherwise, an error is returned. Query weight is m (regardless
of the query’s outcome).

– Output: Given a key i, such that (i, si) was present in the original list (before
corruptions occurred), the correct output for it is si.

– Goal: Maximize the worst case weighted fraction of keys i originally present
in the list for which the reply is correct with probability 1 − neg(m). In
particular, this should hold for a 1−O(δ) fraction of uncorrupted elements.

– Query Complexity: Total weight of queries is polylog(m) - we are not trying
to optimize on the concrete complexity.

Construction 15 Initialize the searched interval to I = (0, 1), ∆ = 3, T = ∆,
r = log2 m′.

Repeat:

1. Make a type 2 query with (I, y = r). If it returns a sequence of points, and
one of them is of the form (i, s), return s corresponding to the first such i.
Otherwise, return ⊥.

2. Otherwise, divide I into T intervals I1, . . . , IT of equal size. Sample r ran-
dom locations in each of the intervals, resulting in oi,1, . . . , oi,r for the i’th
interval.
(a) If some sample is of the form (i, s), return s corresponding to the first

such i.
(b) Otherwise, for each interval, count the fractional weights s, b = 1 − s

of smaller and larger then i sampled elements respectively (relatively to
the total weigh of elements read). We say that interval j votes against
interval k, k > j for i, (or against (Ik, i)) if b > 0.31 (for k < j, if
s > 0.1).Note that if Ij votes against (Ik, i), then it votes against all
(Ih, i) for h on the same side of Ij as lk. We then say that Ij votes against
its left (right) side on i. For every interval j, we count the number of
votes against (Ij , i) over all other intervals.
i. If there is exactly one interval with a minimum number of votes, set
I to be that interval.

ii. If there are two such adjacent intervals Ij , Ij+1 set I as their union.
Fix T = 2∆.

iii. Otherwise, output ⊥ and terminate.

Analysis sketch. The analysis is a quite straightforward adaptation of the
analysis of the algorithm for the unweighted case in Section 2.1, with the follow-
ing minor changes.

– In the complexity analysis, we need to make sure that the number of elements
in the list still drops by some constant factor per recursive step (and thus,
there are O(logm) levels, where the leafs have intervals of length log2 m′ =
O(log2 m)), as before. This follows since the total weight of elements in an

21

interval decreases by a factor of at least 2/∆ in every recursive step, and the
number of elements in an interval is at most 2 times its weight. As this holds
for the entire list as well, we start with W ≤ 2m, and the claim follows.

– Everywhere we consider fractions, we instead consider weighted fractions.
Essentially, we adapt the definitions of (b, s) to be weighted, and the def-
initions of bad and good intervals are the same relatively to the values of
(b, s), and the analysis easily goes through. The analysis of votes etc. remain
the same (just count votes). However, we are counting bad and “potentially
injured” intervals, without accounting for weights. Thus, the final analysis,
bounding “newly” injured entries, where basic intervals have equal weights
also remains the same. One notable place where this requires some care is
when applying Chernoff bounds to estimating (b, s) in at an interval’s Ij ’s
votes against its left or right side. For this purpose, we need to use the
weighted variant of the Chernoff bound.

– Finally, as mentioned before, we are neglecting “edge effects” when reading
entries of (long) intervals, where the first O(1) elements in every interval
are not accessible, or have reduced weights. These can be neglected as all
of our intervals are of length at least log2 m, so these effects have overall
sub-constant effect on the algorithm. The effects start being non-negligible
for δ1 = o(log2 m), but not for the range of constant δ that we are interested
in. This is as opposed to the unweighted case, where the

Theorem 16. Construction 7 is an algorithm for searching on weighted sorted
lists (in a framework as defined above), tolerating a (small enough) constant δ0
fraction of corruptions. For at least a (1−O(δ))m fraction of the original lists’
elements, it recovers them correctly with probability ≥ 1 − neg(m). It makes
O(log3 m) queries to the list.

B Proof of Lemma 1, Section 2.1

Recall from Claim 2, that a sufficient condition on interval Ik being in Ml is as
follows.

1. Ik is a bad interval, or
2. There exists a bad interval Ij (assume wlog. j < k) , so that [Ij , Ik) has at

least as many bad intervals b as good intervals g.

Thus, it suffices bound the set of basic level-l intervals satisfying the above
condition. We prove the lemma by induction on the number t of bad intervals on
that level (for any number of basic intervals nl on that level). Base case, t = 1.
Here only the bad interval itself and two adjacent intervals on both sides are
potentially injured.

Step. Assume the lemma holds for all nl and t′ ≤ t. To prove for t + 1,
consider the list L′ with t bad intervals I1, . . . , It (ordered from left to right)
from which our list L is obtained by transforming one interval, I0 in L′ from
good into bad. Assume for simplicity that it is located to the left of I1 (this

22

is wlog.). Our goal is to identify the set of intervals that were injured due to
adding the new bad interval (and were not injured in L′). As making I0 bad is
the only change, the only (“meta”-)interval that can explain the injury of some
good (basic, level-l) interval Ik is [I0, I) (or (I, I0], if I is located to the left of
I0). As to newly injured intervals to the right of Ij , there can be two options.

1. Assume I0 is at distance at least 2 from I1. Then it can not newly injure
any intervals I ′ located to the right of I1 in L′. This is the case since by I ′ not
being injured in L′, it means that for all Ij ’s located to the left of I ′ [Ij , I ′)
satisfy b < g (similarly all (I ′, Ij) for Ij to the right of I ′, but these remained
unchanged). The only new potential “injurer” for I ′ is [I0, I

′). However, there
the balance of b, g is the same or worse as in [I1, I

′) (b grows by 1, and g grows
by at most 1), so no new “injury” is inflicted on I ′. As to intervals I ′ in (I0, I1),
at most two intervals to the right of I0 can become newly injured, by similar
considerations of balance between b, g in (I0, I

′).
2. Assume I0 is right to the left of I1. Then it improves over the balance of

b, g in [I1, I
′) for all I ′ to the right of I1 exactly by 1 (and it is the only change

for all these I ′’s). Let I ′ be the leftmost newly injured such good interval (if
any). Then it must be the case that b− g in [I1, I

′) is −1 (and thus 0 in [I0, I
′)).

We show that no additional I’s to the right of I ′ can be newly injured.

– In the interval [Ih, Ih+1] that I ′ is in, b − g in [I0, I) for subsequent I’s
decreases by 1 for every step to the right.

– For subsequent intervals, the situation is even wrose. Assume wlog. that I is
newly injured by [I0, I). This means that [Ih+1, I) had a balance b− g ≤ −1
(otherwise, it was already injured by [Ih+1, I). Additionally, as I’ was newly
injured, [I ′, Ih+1) is of length at least 3 (good) intervals - otherwise I was
already injured by (I ′, Ih+1] in L′. Overall, this implies that b − g in [I0, I)
is at most −1− 3 = −4, which implies that I is not injured by [I0, I) in L,
and thus can not be newly injured as well - a contradiction.

Clearly, for I’s to the left of I0, at most the two adjacent ones can be newly
injured. Thus, turning I0 into a bad interval, added at most 5 injured intervals
(including I0). Overall, we conclude that at most 5t intervals in L are potentially
injured if t of the intervals are bad. �

References

1. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in poly-
logarithmic time. In: Koutsougeras, C., Vitter, J.S. (eds.) STOC. pp. 21–31. ACM
(1991)

2. Finocchi, I., Italiano, G.F.: Sorting and searching in the presence of memory faults
(without redundancy). In: Babai, L. (ed.) STOC. pp. 101–110. ACM (2004)

3. Goldreich, O.: Short locally testable codes and proofs (survey). Electronic Col-
loquium on Computational Complexity (ECCC) (014) (2005), http://dblp.
uni-trier.de/db/journals/eccc/eccc12.html#TR05-014

23

http://dblp.uni-trier.de/db/journals/eccc/eccc12.html#TR05-014
http://dblp.uni-trier.de/db/journals/eccc/eccc12.html#TR05-014

4. Hemenway, B., Ostrovsky, R., Strauss, M.J., Wootters, M.: Public key locally de-
codable codes with short keys. In: Goldberg, L.A., Jansen, K., Ravi, R., Rolim,
J.D.P. (eds.) APPROX-RANDOM. Lecture Notes in Computer Science, vol. 6845,
pp. 605–615. Springer (2011)

5. Katz, J., Trevisan, L.: On the efficiency of local decoding procedures for error-
correcting codes. In: Yao, F.F., Luks, E.M. (eds.) STOC. pp. 80–86. ACM (2000)

6. Rivest, R.L., Meyer, A.R., Kleitman, D.J., Winklmann, K., Spencer, J.: Coping with
errors in binary search procedures (preliminary report). pp. 227–232. ACM (1978),
http://dblp.uni-trier.de/db/conf/stoc/stoc78.html#RivestMKWS78

7. Schulman, L.J., Zuckerman, D.: Asymptotically good codes correcting insertions,
deletions, and transpositions. In: Proceedings of the Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms. pp. 669–674. SODA ’97, Society for Indus-
trial and Applied Mathematics, Philadelphia, PA, USA (1997), http://dl.acm.
org/citation.cfm?id=314161.314412

8. Yekhanin, S.: Locally Decodable Codes and Private Information Retrieval Schemes.
Ph.D. thesis, Cambridge, MA, USA (2007), aAI0819886

9. Yekhanin, S.: Locally decodable codes. In: Kulikov, A.S., Vereshchagin, N.K. (eds.)
CSR. Lecture Notes in Computer Science, vol. 6651, pp. 289–290. Springer (2011)

24

http://dblp.uni-trier.de/db/conf/stoc/stoc78.html#RivestMKWS78
http://dl.acm.org/citation.cfm?id=314161.314412
http://dl.acm.org/citation.cfm?id=314161.314412

	Locally Decodable Codes for Edit Distance

