
Resettably Sound Zero-Knoweldge Arguments
from OWFs - the (semi) Black-Box way

Rafail Ostrovsky1? and Alessandra Scafuro2?? Muthuramakrishnan
Venkitasubramanian3

1 UCLA, USA
2 Boston University and Northeastern University

3 University of Rochester

Abstract. We construct a constant round resettably-sound zero knowl-
edge argument of knowledge based on black-box use of any one-way func-
tion. Resettable-soundness was introduced by Barak, Goldreich, Gold-
wasser and Lindell [FOCS 01] and is a strengthening of the soundness
requirement in interactive proofs demanding that soundness should hold
even if the malicious prover is allowed to “reset” and “restart” the verifier.
In their work they show that resettably-sound ZK arguments require non-
black-box simulation techniques, and also provide the first construction
based on the breakthrough simulation technique of Barak [FOCS 01].
All known implementations of Barak’s non-black-box technique required
non-black-box use of a collision-resistance hash-function (CRHF).
Very recently, Goyal, Ostrovsky, Scafuro and Visconti [STOC 14] showed
an implementation of Barak’s technique that needs only black-box access
to a collision-resistant hash-function while still having a non-black-box
simulator. (Such a construction is referred to as semi black-box.) Plugging
this implementation in the compiler due to Barak et al. yields the first
resettably-sound ZK arguments based on black-box use of CRHFs.
However, from the work of Chung, Pass and Seth [STOC 13] and Bi-
tansky and Paneth [STOC 13], we know that resettably-sound ZK argu-
ments can be constructed from non-black-box use of any one-way func-
tion (OWF), which is the minimal assumption for ZK arguments.
Hence, a natural question is whether it is possible to construct resettably-
sound zero-knowledge arguments from black-box use of any OWF only.
In this work we provide a positive answer to this question thus closing the
gap between black-box and non-black-box constructions for resettably-
sound ZK arguments.

? Work supported in part by NSF grants 09165174, 1065276, 1118126 and 1136174,
US-Israel BSF grant 2008411, OKAWA Foundation Research Award, IBM Faculty
Research Award, Xerox Faculty Research Award, B. John Garrick Foundation Award,
Teradata Research Award, and LockheedMartin Corporation Research Award; and
DARPA under Contract N00014 -11 -1-0392. The views expressed are those of the
author and do not reflect the official policy or position of the Department of Defense
or the U.S. Government.

?? Work done while working at UCLA.

2 R. Ostrovsky, A. Scafuro and M. Venkitasubramanian

1 Introduction

Zero-knowledge (ZK) proofs [13] allow a prover to convince a verifier of the
validity of a mathematical statement of the form “x ∈ L” without revealing any
additional knowledge to the verifier besides the fact that the theorem is true.
This requirement is formalized using a simulation paradigm: for every malicious
verifier there exists a simulator that having a “special” access to the verifier
(special in the sense that the access granted to the simulator is not granted
to the prover) but no witness, is able to reproduce the view that the verifier
would obtain interacting with an honest prover (who knows the witness). The
simulator has two special accesses to the verifier: black-box access, it has the
power of resetting the verifier during the simulation; non-black-box access, it
obtains the actual code of the verifier. While providing no additional knowledge,
the proof must also be sound, i.e. no malicious prover should be able to convince
a verifier of a false statement.

In this work we consider a stronger soundness requirement where the prover
should not be able to convince the verifier even when having the power of reset-
ting the verifier’s machine (namely, having black-box access to the verifier). This
notion of soundness, referred to as resettable soundness, was first introduced by
Barak, Goldwasser, Goldreich and Lindell (BGGL) in [3], and is particularly rel-
evant for cryptographic protocols being executed on embedded devices such as
smart cards. Barak et al. in [3] prove that, unless NP ⊆ BPP, interactive proofs
for NP cannot admit a black-box zero knowledge simulator and be resettably-
sound at same time. (Indeed, a resetting prover has the same special access to
the verifier as a black-box simulator and it can therefore break soundness just by
running the simulator’s strategy.) Then, they provide the first resettably-sound
zero-knowledge arguments for NP based on the non-black-box zero-knowledge
protocol of [1] and on the existence of collision-resistant hash-functions (CRHFs).
Recently, Chung, Pass and Seth (CPS) [9] showed that the minimal assumption
for non-black-box zero-knowledge is the existence of one-way functions (OWFs).
In their work they provide a new way of implementing Barak’s non-black-box
simulation strategy which requires only OWFs. Independently, Bitansky and
Paneth [5] also showed that OWFs are sufficient by using a completely new
approach based on the impossibility of approximate obfuscation.

Common to all the above constructions [3,9,5], beside the need of non-black-
box simulation, is the need of non-black-box use of the underlying cryptographic
primitives. Before proceeding, let us explain the meaning of black-box versus
non-black-box use of a cryptographic primitive. A protocol makes black-box use
of a cryptographic primitive if it only needs to access the input/output interface
of the primitive. On the other hand, a protocol that relies on the knowledge of the
implementation (e.g., the circuit) of the primitive is said to rely on the underly-
ing primitive in a non-black-box way. A long line of work [19,17,28,6,31,14,22,15]
starting from the seminal work of Impagliazzo and Rudich [18] aimed to under-
stand the power of the non-black-box access versus the black-box access to a
cryptographic primitive. Besides strong theoretical motivation, a practical rea-
son is related to efficiency. Typically, non-black-box constructions are inefficient

Resettably Sound ZK from OWFs - the (semi) Black-Box way 3

and as such, non-black-box constructions are used merely to demonstrate “fea-
sibility” results. A first step towards making these constructions efficient is to
obtain a construction that makes only black-box use of the underlying primitives.

In the resettable setting non-black-box simulation is necessary. In this work
we are interested in understanding if non-black-box use of the underlying prim-
itive is necessary as well. Very recently, [16] constructed a public-coin ZK argu-
ment of knowledge based on CRHFs in a black-box manner. They provided a
non black-box simulator but a black-box construction based on CRHFs. Such a
reduction is referred to as a semi black-box construction (see [29] for more on dif-
ferent notions of reductions). By applying the [3] transformation, their protocol
yields the first (semi) black-box construction of a resettably-sound ZK argument
that relies on CRHFs. In this paper, we address the following open question:

Can we construct resettably-sound ZK arguments under the minimal as-
sumption of the existence of a OWF where the OWF is used in a black-box
way?

1.1 Our Results

We resolve this question positively. Formally, we prove the following theorem.

Theorem 1 (Informal). There exists a (semi) black-box construction of an
O(1)-round resettably-sound zero-knowledge argument of knowledge for every
language in NP based on one-way functions.

It might seem that achieving such result is a matter of combining techniques
from [16], which provides a “black-box” implementation of Barak’s non-black-
box simulation and [9], which provides an implementation of Barak’s technique
based on OWFs. However, it turns out that the two works have conflicting de-
mands on the use of the underlying primitive which make the two techniques
“incompatible”.

More specifically, the construction presented in [16] crucially relies on the
fact that a collision-resistance hash-function is publicly available. Namely, in
[16] the prover (and the simulator) should be able to evaluate the hash function
on its own on any message of its choice at any point of the protocol execution.
In contrast, the protocol proposed in [9] replaces the hash function with digital
signatures (that can be constructed from one-way functions), and requires that
the signature key is hidden from the prover: the only way the prover can obtain a
signature is through a “signature slot”. Consequently in [9], in contrast with [16],
the prover cannot compute signatures on its own, cannot obtain signatures at
any point of the protocol (but only in the signature slot), and cannot obtain an
arbitrary number of signatures.

Next, we explain the prior works in detail.

1.2 Previous Techniques and their Limitations

We briefly review the works [16] and [9] in order to explain why they have
conflicting demands. As they are both based on Barak’s non black-box simulation
technique, we start by describing this technique.

4 R. Ostrovsky, A. Scafuro and M. Venkitasubramanian

Barak’s Non-Black-Box Zero Knowledge [1]. Barak’s ZK protocol for an
NP language L is based on the following idea: a verifier is convinced if one of the
two statements is true: (1) the prover knows the verifier’s next-message-function,
or (2) x ∈ L. By definition a non-black-box simulator knows the code of the next-
message-function of the verifier V ∗ which is a witness for statement 1, while the
honest prover has the witness for statement 2. Soundness follows from the fact
that no adversarial prover can predict the next-message-function of the verifier.
Zero-knowledge can be achieved by employing a witness-indistinguishable (WI)
proof for the above statements. The main bottleneck in translating this beautiful
idea into a concrete construction is the size of statement 1. Since zero-knowledge
demands simulation of arbitrary malicious non-uniform PPT verifiers, there is
no a priori bound on the size of the verifier’s next-message circuit and hence
no strict-polynomial bound on the size of the witness for statement 1. Barak
and Goldreich [2] in their seminal work show how to construct a WI argument
that can hide the size of the witness. More precisely, they rely on Universal
Arguments (UARG) that can be constructed based on collision-resistant hash-
functions (CRHFs) via Probabilistically Checkable Proofs (PCPs) and Merkle
hash trees (based on [21]). PCPs allow rewriting of proofs of NP statements in
such a way that the verifier needs to check only a few bits to be convinced of
the validity of the statement. Merkle hash-trees [23], on the other hand, allow
committing to strings of arbitrary length with the additional property that one
can selectively open some bits of the string by revealing only a small fixed amount
of decommitment information. More precisely, a Merkle hash-tree is constructed
by arranging the bits of the string on the leaves of a binary tree, and setting
each internal node as the hash of its two children: a Merkle tree is a hash chain.
The commitment to the string corresponds to the commitment to the root of the
tree. The decommitment information required to open a single bit of the string
is the path from the corresponding leaf in the tree to the root along with their
siblings. This path is called authentication path. To verify the decommitment, it
is sufficient to perform a consistency check on the path with the root previously
committed. Namely, for each node along the path check if the node corresponds
to the hash of the children, till the last node that must correspond to the root.
Merkle trees allow for committing strings of super-polynomial length with trees
of poly-logarithmic depth. Thus, one can construct a universal argument by
putting PCP and Merkle tree together as follows. First, the prover commits to
the PCP-proof via a Merkle hash-tree. The verifier responds with a sequence of
locations in the proof that it needs to check and the prover opens the bits in the
respective locations along with their authentication paths. While this approach
allows constructing arguments for statements of arbitrary polynomial size, it is
not witness indistinguishable because the authentication paths reveal the size of
the proof, and therefore the witness used (this is because the length of the path
reveals the depth of the tree). To obtain witness indistinguishability Barak’s
construction prevents the prover from revealing the actual values on any path.
Instead, the prover commits to the paths padded to a fixed length, and then
proves that the opening of the commitments corresponds to consistent paths

Resettably Sound ZK from OWFs - the (semi) Black-Box way 5

leading to accepting PCP answers. A standard ZK is sufficient for this purpose
as the size of the statement is strictly polynomial (is fixed as the depth of the
Merkle tree). Such ZK proofs, however, need the code of the CRHFs used to
build the Merkle-hash tree.

Black-box implementation of Barak’s non-black-box simulation strat-
egy [16]. Recently, Goyal, Ostrovsky, Scafuro and Visconti in [16] showed how to
implement Barak’s simulation technique using the hash function in a black-box
manner.

They observe that in order to use a hash function in a black-box manner, the
prover cannot prove the consistency of the paths by giving a proof, but instead
it should reveal the paths and let the verifier recompute the hash values on its
own and verify the consistency with the root of the tree. The problem is that
to pass the consistency check an honest prover can open paths that are at most
as long as the real tree, therefore revealing its size. Instead we need to let the
verifier check the path while still keeping the size of the real tree hidden.

To tackle this, they introduce the concept of an extendableMerkle tree, where
the honest prover will be able to extend any path of the tree on the fly, if some
conditions are met. Intuitively, this solves the problem of hiding the size of the
tree — and therefore the size of the proof— because a prover can show a path
for any possible proof length.

To implement this idea they construct the tree in a novel manner, as a se-
quence of “LEGO” nodes, namely nodes that can be connected to the tree on the
fly. More concretely, observe that checking the consistency of a path amounts
to checking that each node of the path corresponds to the hash of the children.
This is a local check that involves only 3 nodes: the node that we want to check,
say A, and its two children say leftA, rightA, and the check passes if A is the hash
of leftA, rightA. The LEGO idea of [16] consists of giving the node the following
structure: a node A now has two fields: A = [label, encode], where label is the
hash of the children leftA, rightA, while encode is some suitable encoding of the
label that allows for black-box proof. Furthermore, label is not the hash of the
label part of leftA, rightA, but it is the hash of the encode part. Thus there is not
direct connection between the hash values, and the hash chain is broken. The
second ingredient to guarantee binding, is to append to each node a proof of the
fact that “encode is an encoding of label”. Note that now the tree so constructed
is not an hash chain anymore, the chain is broken at each step. However, it is still
binding because there is a proof that connects the hash with its encoding. More
importantly note that, if one can cheat in the proof appended to a node, then
one can replace/add nodes. Thus, provided that we introduce a trapdoor for the
honest prover (and the simulator) to cheat in this proof, the tree is extendable.
Therefore, now we can let the verifier check the hash value by itself, and still be
able to hide the depth of the committed tree.

For the honest prover, which does not actually compute the PCP proof, the
trapdoor is the witness for the theorem “x ∈ L”. For the simulator, which is
honestly computing the PCP proof and hence the Merkle tree, the trapdoor is
the depth of the real tree, i.e., the depth, say d∗, at which the leaves of the real

6 R. Ostrovsky, A. Scafuro and M. Venkitasubramanian

Merkle tree lies. To guarantee binding, the depth d∗ is committed at the very
beginning. The simulator is allowed to cheat for all PCP queries associated to
trees that are not of the committed depth.

The final piece of their construction deals with committing the code of V ∗
which also can be of an arbitrary polynomial size. The problem is that to verify a
PCP proof, the standard PCP verifier needs to read the entire statement (in this
case the code of V ∗) or at least the size of the statement to process the queries.
But revealing the size will invalidate ZK again. [16] get around this problem by
relying on Probabilistically-Checkable Proof of Proximity (PCPP) [4] instead of
PCPs which allow the verifier to verify any proof and arbitrary statement by
querying only a few bits of the statement as well as the proof. For convenience
of the reader, we provide a very simplified version of [16]’s protocol in Fig. 1.

P V
h

q1, . . . , qn

“A = [labelA, V SSA] is consistent00
black-box ZK proof for

black-box ZK proof for
“leaf qi is accepting”

PCP queries

NODES:

{A, leftA, rightA}A2pathqi

r

Com(ExtT-Root M)

Com(ExtT-Root PCPP)

black-box
WIUARG

Fig. 1. Semi black-box resettably-
sound ZK AoK from CRHF [16]

P Vvk

c

� = Sign(c, sk)
Signature Slot

↵ = Com(Com(SignT-RootPCP))

� = q1, . . . , qn

� = {Com(pathqi)}i

ZK proof

“(vk,↵,�, �)
is an accepting UARG”

shadowed
UARG

r

Com(SignT-Root M)

Fig. 2. Non-black-box resettably-
sound ZK AoK from OWFs [9]

Summing up, some of the key ideas that allow [16] for a black-box use of the
hash function are: (1) the prover unfolds the paths of the Merkle tree so that
the verifier can directly check the hash consistency, (2) the prover/simulator can
arbitrarily extend a path on the fly by computing fake LEGO nodes and cheat in
the proof of consistency using their respective trapdoors. The work of [16] retains
all the properties of Barak’s ZK protocol, namely, is public-coin and constant-
round (therefore resettable sound due to [3]), and relies on the underlying CRHF
in a black-box manner.

Resettably Sound ZK from OWFs - the (semi) Black-Box way 7

Non black-box simulation using OWFs [9]. Chung, Pass and Seth [9]
showed how to implement the non-black-box simulation technique of Barak using
OWFs.

The main idea of CPS is to notice that digital signature schemes — which can
be constructed from one-way functions — share many of the desirable properties
of CRHFs, and to show how to appropriately instantiate (a variant of) Barak’s
protocol using signature schemes instead of using CRHFs. More precisely, CPS
show that by relying on strong fixed-length signature schemes, one can construct
a signature tree analogous to the Merkle hash-tree that allows compression of ar-
bitrary length messages into fixed length commitments and additionally satisfies
an analogue collision-resistance property. The soundness of such a construction
will have to rely on the unforgeability (i.e. collision-resistance) of the under-
lying signature scheme. Hence it must be the case that is the verifier the one
generating the secret key and the signatures for the prover. Towards this, CPS
adds a signature slot at the beginning of the protocol. More precisely, first the
verifier generates a signature key-pair vk, sk and sends only the verification key
vk to the prover. Next, in a “signature slot”, the prover sends a commitment c
to the verifier, and the verifier returns a valid signature σ of c (using sk). The
simulator constructs the signature tree by rewinding the (malicious) verifier, and
then succeeds in the WIUARG proof as in Barak’s protocol. While the simula-
tor can use the signature slot to construct the signature tree, we cannot require
the honest prover to construct any tree since it is not allowed to rewind the
verifier. To address this, CPS uses a variant of Barak’s protocol due to Pass
and Rosen [26], which relies on a special-purpose WIUARG, in which the honest
prover never needs to perform any hashing. The idea here is that since there exist
public-coin UARGs, the prover can first engage in a shadowed UARG where the
prover merely commits to its messages and then in a second phase proves using
a witness-indistinguishable proof that either x ∈ L or the messages it committed
to constitute a valid UARG. This will allow the honest prover to “do nothing” in
the shadowed UARG and use the witness corresponding to x in the second phase.
The simulator instead is able to compute a valid signature-tree by rewinding the
verifier, and it commits to valid messages in the shadowed UARG.

The resulting protocol is not public-coin, nevertheless [9] shows that it suf-
fices to apply the PRF transformation of BGGL to obtain a protocol that is
resettably-sound. We provide a very informal pictorial description of the CPS
protocol in Fig. 2. It seems inherent that the CPS protocol needs a shadowed
UARG, and hence proving anything regarding this shadowed argument needs to
use the underlying OWF in a non-black-box manner.

Competing requirements of [16] and [9]. In summary, in [16], in order
to use the CRHF in a black-box manner, the prover is required to open the
paths of the Merkle Tree corresponding to the PCPP queries and let the verifier
check their consistency. To preserve size-hiding, the prover needs the ability to
arbitrarily extend the paths of the tree by privately generating new nodes and
this is possible because the prover can compute the hash function on its own. In
contrast, in [9] the prover cannot compute nodes on its own, but it needs to get

8 R. Ostrovsky, A. Scafuro and M. Venkitasubramanian

signatures from the verifier. Therefore the protocol in [9] is designed so that the
prover never has to use the signatures.

In this work we show a technique for using the benefits of the signature while
relying on the underlying OWF in a black-box manner and we explain this in
the next section.

1.3 Our Techniques

Our goal is to implement the resettably-sound ZK protocol based on Barak’s
non-black-box simulation technique using OWFs in a black-box manner. We
have illustrated the ideas of [16] to implement Barak’s ZK protocol based on
extendable Merkle hash-tree that uses a CRHF only as a black-box, and the
ideas of [9] that show how to compute a Merkle signature-tree based on (non-
black-box use of) OWFs.

The natural first step to reach our goal is then to take the protocol of [16]
and implement the extendable Merkle tree with signatures instead of CRHF. As
mentioned earlier, this replacement cannot work because the crucial property
required to extend the tree is that the prover computes nodes on its own. If
we replace CRHF with signatures, then the prover needs to ask signatures from
the verifier for every node. This means that any path computed by the prover
is already known by the verifier (even the concept of “opening a path” does
not seem to make much sense here as the verifier needs to participate in the
computation of the path). But instead we need the ability to commit to a tree
and then extend it without the verifier knowing that we are creating new nodes.

We are able to move forward using the following facts underlying [16]’s proto-
col. First, although the prover is required to extend paths and prove consistency,
it does so by cheating in every proof of consistency of the nodes. Indeed, recall
that a node is a pair (label, encode), the consistency between label and encode is
proved via ZK, and the prover cheats in this proof using the witness for ”x ∈ L”
as a trapdoor.

Under closer inspection we notice that the prover does not need to compute
any tree; it just needs to compute the paths corresponding to the PCPP queries
on-the-fly when it is asked for it. Indeed, an equivalent version of [16]’s protocol
would be the following. The prover commits to the root by just committing to
a random string.4 Then, when it sees the PCPP queries q1, . . . , qn it computes
on-the-fly the paths for leaves in the corresponding positions, and is able to prove
consistency of the paths with the previously committed root by cheating in the
proofs. Finally, we point out that the hash function is required only to compute
the label part of the node, while the encode part can be computed by the prover
on its own.

Armed with the above observations, we present our idea. As in [9] we place a
signature slot at the very beginning of the protocol. This signature slot enables
4 In [16] the prover actually commits to the hash of two random nodes. In our paper
instead we use instance-dependent trapdoor commitments, computed on the instance
x. The prover, that knows the witness w, can just commit to a random string and
then equivocate later accordingly.

Resettably Sound ZK from OWFs - the (semi) Black-Box way 9

the simulator to get unbounded number of signatures by rewinding the verifier,
and ultimately to construct the extendable Merkle trees. After the signature slot,
the prover commits, using an instance-dependent trapdoor commitment scheme,
to the roots of the extendable Merkle trees, one tree for the hidden statement
of the PCPP (the code of the verifier) and one tree for the PCPP proof. Such
trapdoor commitment allows the possessor of the witness to equivocate any
commitment. Therefore, the roots committed by the prover – who knows the
witness – are not binding. Next, when the prover receives the set of PCPP
queries q1, . . . , qn (more specifically, one set of queries for each possible depth of
the tree), it computes the paths on-the-fly with the help of the verifier. Namely,
for each node along the paths for leaves q1, . . . , qn, the prover computes the
encoding part (which are equivocal commitments), and sends them to the verifier
who computes the label part by “hashing” the encodings, namely, by computing
their signature (in a proper order). Therefore, deviating from [9], we introduce a
second signature slot where the prover gets the signatures required to construct
the paths dictated by the PCPP queries. Once the labels/ signature for each
node have been computed by the verifier, the paths are finally complete. Now
the prover can proceed with proving that the paths just computed are consistent
with the roots previously committed and lead to accepting PCPP answers (such
black-box proof follows the ideas of [16]). Interestingly in this game the verifier
knows that the prover is cheating and the paths cannot be possibly consistent,
but is nevertheless convinced because the only way the prover can cheat in the
consistency proof is by using the witness for x ∈ L, which guarantees the validity
of x.

Remark 1. We remark that the prover does not compute any PCPP proof. In
the entire protocol it just commits to random values and only in the last step it
equivocates the commitments in such a manner that will convince the verifier in
the proofs of consistency.

Now, let’s look at the simulation strategy. The simulator honestly computes
extendable Merkle signature-trees to commit to the machine V ∗ and to the
PCPP, using the first signature slot. Then, when the verifier sends PCPP queries
the simulator answers in the following way. For the queries that do not concern
the real tree (recall that virtually there are polynomially many possible trees
and the PCPP proof can lie in any of those, thus the verifier will provide queries
q1, . . . , qn for each possible depth of the tree and expects correct answer only for
the queries associated to the depth committed at the beginning) the simulator
sends encode parts which are commitments of random strings. Later on it will
cheat in the proof of consistency for such queries by using its trapdoor (as in [16]
the trapdoor for the simulator is the size of the real tree). For the queries that
hit the real tree, the simulator sends the same commitments that it sent in the
first signature slot and that were used to compute the real tree. Indeed, for these
nodes the simulator must prove that they are truly consistent, and it can do so
by forcing in the view of the verifier the same paths that it already computed
for the real tree.

10 R. Ostrovsky, A. Scafuro and M. Venkitasubramanian

Thus, for the simulation to go through it should be the case that the sig-
natures that the simulator is collecting in the second signature slot, match the
ones that it obtained in the first signature slot and that were used to compute
the real tree.

Unfortunately, with the protocol outlined above we do not have such guaran-
tee. This is due to two issues. First, the verifier can answer with some probability
in the first slot and with another probability in the second slot, therefore skewing
the distribution of the output of the simulator. Second, the verifier might not
compute the signature deterministically: in this case the signatures obtained in
the first slot and used to compute the real tree will not match the signatures
obtained in the second slot, where the paths are “re-computed”, and thus the
simulator cannot prove that the nodes are consistent. We describe the two issue
in details and we show how we change the construction to fix each issue.

Issue 1. V ∗ aborts in the two signature slots with different probabil-
ities. We describe this issue with the following example. Consider a malicious
verifier that aborts on all messages that start with bit 0 in the first signature slot
and aborts on all sets of messages in the second slot if 3/4 of them start with bit
1. The honest prover will succeed with probability close to a 1/2 since the veri-
fier will abort in the first message with probability 1/2 and not abort with high
probability in the second slot.5 The simulator on the other hand can only obtain
signatures of commitments that start with bit 1 in the first slot and has to use
the same commitments in the second slot. This means that all the commitments
sent by the simulator in the second slot will begin with the bit 1 and the verifier
will always abort. Hence the simulator can never generate a view. The way out
is to come up with a simulation strategy ensuring that the distribution fed in
the second slot is indistinguishable to the honest prover’s messages.
Fixing for issue 1. We first amplify the probability that the verifier gives a
signature in the first signature slot by requesting the verifier to provide signatures
for T = O(nc+1) random commitments instead of just one. Using a Yao-type
hardness-amplification, we can argue that if the verifier provides valid signatures
with non-negligible probability then we can obtain signatures for at least 1− 1

nc

fraction of random tapes for the commitment. Lets call these random tapes good.
Now if k << nc commitments are sent in the second slot, with probability at
least 1− k

nc over random commitments made in the second slot, all of them will
be good. This is already promising since the verifier at best will try to detect
good messages in the second slot and with high probability all of them are good.
However there is still a non-negligible probability (i.e. k

nc) that the verifier could
abort in this simulation strategy. To fix the next issue, we will have the verifier
use several keys to sign and we will leverage that to handle this non-negligible
fraction of bad messages.

Issue 2. V ∗ does not compute signatures deterministically. Our protocol
requires the verifier to compute the signature deterministically, namely, the ran-

5 We assume here that random commitments are equally likely to have their first bits
0 or 1.

Resettably Sound ZK from OWFs - the (semi) Black-Box way 11

domness used to compute the signatures must be derived from a PRG whose seed
is sampled along with the parameters vk, sk and is part of the secret key. How-
ever, in the construction that we outlined before we cannot enforce a malicious
verifier from signing deterministically. As mentioned before, if the verifier gives
different (correct) signatures for the same node in the first and second slot, the
simulator cannot proceed with the proof of consistency. The only way to catch
the verifier is to demand from the verifier a proof that the signatures are com-
puted deterministically. Because we need to use the cryptographic primitives in
a black-box manner, we cannot solve the problem by attaching a standard proof
of consistency.
Fixing for issue 2. We force the verifier to be honest using a cut-and-choose
mechanism. At high level, we require the verifier to provide signatures for n
different keys instead of just one in the signature slots. Together with sending
the verification key vki, the verifier will also append the commitment to the
randomness used in the key generation algorithm (the randomness determines
the PRG seed that is used to deterministically sign the messages).

After the first signature slot, the prover asks the verifier to reveal n/2 keys
(by requiring the verifier to decommit to the randomness used to generate the
keys) and checks if, for the revealed keys, the signatures obtained so far were
computed honestly. This verification requires the use of OWF only in a black-
box manner. The prover proceeds with the protocol using the remaining half of
the keys, namely by committing to n/2 roots, and obtaining n/2 sets of PCPP
queries from the verifier. Later, after the second signature slot is completed, the
prover will ask to open half of the remaining keys, namely n/4 keys, and checks
again the consistency of the signatures obtained so far. If all checks pass, the
prover is left with paths for n/4 trees/PCPP queries for which he has to prove
consistency. Due to the cut-and-choose, we know that most of the remaining
signatures were honestly generated, but not all of them. Therefore, at this point
we will not ask the prover to prove consistency of all remaining n/4 executions.
Instead, we allow the prover to choose one coordinate among the n/4 left, and
to prove that the tree in this coordinate is consistent with the paths.

Allowing the prover to choose the tree for which to prove consistency, does not
give any advantage compared to the original solution where there was only one
tree. On the other hand, having a choice in the coordinate allows the simulator to
choose the tree for which it received only consistent signatures and for which it
will be able to provide a consistency proof. One can see this coordinate as another
trapdoor. Namely, in the previous construction, the simulator commits to the
depth of the real tree, so that in the consistency proof it can cheat in answering
all queries that do not hit the committed value. We follow exactly the same
concept by adding the commitment of the coordinate. The simulator commits to
the coordinate for which it wants to provide the proof, and it is allowed to cheat
in all the remaining proofs. Finally, because we are in the resettable setting, we
require the prover to commit in advance to the coordinates that he wants the
verifier to open. If this was not the case then the prover can rewind the verifier
and get all the secret keys.

12 R. Ostrovsky, A. Scafuro and M. Venkitasubramanian

It only remains to argue that there is a strategy so that the simulator can
always find one good key. Recall that the simulator rewinds the verifier several
times in the first signature slot to obtain the signature on any message. The
adversary has to sign deterministically in most coordinates because of the cut-
and-choose mechanism. However, it can cheat in a few of them and in different
rewindings it can choose to cheat in different keys. To ensure that the signa-
tures obtained are the ones that are deterministically signed, we will make the
simulator to obtain n signatures on a commitment and take that signature that
occurs more than half of the times. However, there could be messages for which
there will be no majority among the n signatures or worse the wrong signa-
ture in majority. This issue is quite subtle and combining the Yao-amplification
and the cut-and-choose mechanism we argue that for all but small fraction of
the messages, the simulator will obtain the deterministically-signed signature for
most of the unopened keys. As with the first issue, we are still left with a small
fraction of messages for which the simulator could receive a bad signature.

Handling bad messages and bad signatures. The fix for Issue 1 results in
the simulator using a small fraction (≈ 1

poly(n)) of commitments in the actual
Merkle Tree whose signatures are not good messages w.r.t the first Signature Slot.
If such a message is fed in the second Signature Slot, the Verifier can detect it.
The fix for Issue 2 results in the simulator using a small fraction of commitment
with bad signatures (i.e., not deterministically signed). If a message for which a
bad signature was obtained is fed in the second Signature Slot then the signature
obtained in the second slot will be different from the bad signature that the
simulator obtained. However, we need to guarantee that the simulator will be
successful in placing the commitments used in first signature slot to compute
the Merkle tree, into the second signature slot, for at least one index among the
n/4 trees remaining from the cut-and-choose. It will “test the waters” first: More
precisely, before feeding the actual commitments in the second Signature Slot,
for every unopened key, it will first generate random commitments to be sent
in the second Signature Slot for that key and check if the random commitments
are good messages w.r.t the first signature slot. More precisely, it will check
if the first slot yields a signature for these commitments. A key is considered
good if all these random commitments turn out to be good. For good keys,
the simulator will swap the commitments with the actual commitments used to
generate the Merkle Trees. It can be shown that the distribution induced by this
swap is not skewed because a set of random good messages are swapped with the
real commitments which are also random good commitments, since they yielded
signatures in the first Signature Slot. This will help us handle bad messages as
long as we can show there will be good keys. Arguing this turns out to be subtle
and our proof will show that there will be only few bad keys. An analogous
argument can be made to show there will be only few bad keys for which there
is some commitment among the ones to be sent in the second Signature Slot by
the simulator with a bad signature. If we start with sufficiently many (O(n))
keys then we will be able to show that there will be at least one good key that
survives from bad messages and bad signatures.

Resettably Sound ZK from OWFs - the (semi) Black-Box way 13

2 Definitions

In this section we provide the definitions of some of the tools that we use in
our construction. We refer the reader to the full version [25] for more details
and for the definition of more standard tools, like instance-dependent equivocal
commitment, that we omit in this section. We assume familiarity with interactive
arguments and argument of knowledge.

Definition 1 (Zero-knowledge [13]) An interactive protocol (P, V) for a lan-
guage L is zero-knowledge if for every PPT adversarial verifier V ∗ and auxiliary
input z ∈ {0, 1}∗, there exists a PPT simulator S such that the following ensem-
bles are computationally indistinguishable over x ∈ L:

{ViewV ∗〈P, V ∗(z)〉(x)}x∈L,z∈{0,1}∗ ≈ {S(x, z)}x∈L,z∈{0,1}∗

Definition 2 (Resettably-sound Arguments [3]) A resetting attack of a ch-
eating prover P ∗ on a resettable verifier V is defined by the following two-step
random process, indexed by a security parameter n.

1. Uniformly select and fix t = poly(n) random-tapes, denoted r1, . . . , rt, for
V , resulting in deterministic strategies V (j)(x) = Vx,rjdefined by Vx,rj (α) =
V (x, rj , α),6 where x ∈ {0, 1}n and j ∈ [t]. Each V (j)(x) is called an incar-
nation of V .

2. On input 1n, machine P ∗ is allowed to initiate poly(n)-many interactions
with the V (j)(x)’s. The activity of P ∗ proceeds in rounds. In each round
P ∗ chooses x ∈ {0, 1}n and j ∈ [t], thus defining V (j)(x), and conducts a
complete session with it.

Let (P, V) be an interactive argument for a language L. We say that (P, V)
is a resettably-sound argument for L if the following condition holds:

– Resettable-soundness: For every polynomial-size resetting attack, the proba-
bility that in some session the corresponding V (j)(x) has accepted and x /∈ L
is negligible.

Similarly to [9,8] we consider the following weaker notion of resettable sound-
ness, where the statement to be proven is fixed, and the verifier uses a single
random tape (that is, the prover cannot start many independent instances of the
verifier).

Definition 3 (Fixed-input Resettably-sound Arguments [27]) An inter-
active argument (P, V) for a NP language L with witness relation RL is fixed-
input resettably-sound if it satisfies the following property: For all non-uniform
polynomial-time adversarial prover P ∗, there exists a negligible function µ(·)
such that for every all x /∈ L,

Pr[ran← {0, 1}∞; (P ∗Vran(x,pp), Vran)(x) = 1] ≤ µ(|x|)
6 Here, V (x, r, α) denotes the message sent by the strategy V on common input x,
random-tape r, after seeing the message-sequence α.

14 R. Ostrovsky, A. Scafuro and M. Venkitasubramanian

This is sufficient because it was shown in [9] that any zero-knowledge argu-
ment of knowledge satisfying the weaker notion can be transformed into one that
satisfies the stronger one, while preserving zero-knowledge (or any other secrecy
property against malicious verifiers.

Claim. Let (P, V) be a fixed-input resettably sound zero-knowledge (resp. wit-
ness indistinguishable) argument of knowledge for a language L ∈ NP . Then
there exists a protocol (P ′, V ′) that is a (full-fledged) resettably-sound zero-
knowledge (resp. witness indistinguishable) argument of knowledge for L.

Strong Deterministic Signature. In this section we define strong, fixed-
length, deterministic secure signature schemes that we rely on in our construc-
tion. Recall that in a strong signature scheme, no polynomial-time attacker hav-
ing oracle access to a signing oracle can produce a valid message-signature pair,
unless it has received this pair from the signing oracle. The signature scheme
being fixed-length means that signatures of arbitrary (polynomial-length) mes-
sages are of some fixed polynomial length. Deterministic signatures do not use
fresh randomness in the signing process once the signing key has been chosen.
In particular, once a signing key has been chosen, a message m will always be
signed the same way.

Definition 4 (Strong Signatures) A strong, length-`, signature scheme SIG
is a triple (Gen,Sign,Ver) of PPT algorithms, such that

1. for all n ∈ N ,m ∈ {0, 1}∗,

Pr[(sk, vk)← Gen(1n), σ ← Signsk](m);Vervk(m,σ) = 1 ∧ |σ| = `(n)] = 1

2. for every non-uniform PPT adversary A, there exists a negligible function
µ(·) such that for all (sk, vk)← Gen(1n) it holds:

Pr[(m,σ)← ASignsk(·)(1n);Vervk(m,σ) = 1 ∧ (m,σ) /∈ L] ≤ µ(n),

where L denotes the list of query-answer pairs of A’s queries to its oracle.

Strong, length-`, deterministic signature schemes with `(n) = n are known
based on the existence of OWFs; see [24,30,12] for further details. In the rest
of this paper, whenever we refer to signature schemes, we always means strong,
length-n signature schemes.

Let us first note that signatures satisfy a “collision-resistance” property.

Claim. Let SIG = (Gen,Sign,Ver) be a strong (length-n) signature scheme. Then,
for all non-uniform PPT adversaries A, there exists a negligible function µ(·) such
that for every n ∈ N , for all (sk, vk)← Gen(1n) it holds:

Pr[(m1,m2, σ)← ASignsk(·)(1n, vk);Vervk(m1, σ) = Vervk(m2, σ) = 1] ≤ µ(n)

Resettably Sound ZK from OWFs - the (semi) Black-Box way 15

Verifiable Secret Sharing (VSS). A verifiable secret sharing scheme (VSS
for short) [7] is a two-stage protocol run among n+ 1 players. In the first stage,
called Share(s), a special player, referred to as dealer, distributes a string s
among the n players so that any t players (where t = n/c for some constant
c > 3) colluding cannot reconstruct the secret. The output of the Share phase
is a set of VSS views S1, . . . ,Sn that we call VSS shares. In the second stage,
called Recon(S1, . . . ,Sn), any (n − t) players can reconstruct the secret s by
exchanging their VSS shares. The scheme guarantees that if at most t players
are corrupted the Share stage is hiding, moreover a dishonest dealer is caught at
the end of the Share phase through an accusation mechanism that disqualifies
the dealer (this property is called t-privacy). A VSS scheme can tolerate errors on
malicious dealer and players distributing inconsistent or incorrect shares, indeed
the critical property is that even in case the dealer is dishonest but has not been
disqualified, still the second stage always reconstructs the same string among
the honest players.

MPC-in-the-head. MPC-in-the-head is a breakthrough technique introduced
by Ishai at al. in [20] to construct a black-box zero-knowledge protocol. Let
FZK be the zero-knowledge functionality for an NP language L, that takes as
public input x and one share from each player Pi, and outputs 1 iff the secret
reconstructed from the shares is a valid witness. Let MPCZK be a perfect (t, n)-
secure MPC protocol implementing FZK .

Very roughly, the “MPC-in-the-head” idea is the following. The prover runs
in his head an execution of a (t, n)-secure MPCZK protocol among n imaginary
players, each one participating in the protocol with a share of the witness. Then
it commits to the view of each player separately. The verifier obtains t randomly
chosen views, and checks that such views are consistent with an honest execution
of the protocol and accepts if the output of every player is 1. Clearly P ∗ decides
the randomness and the input of each player so it can cheat at any point and
make players output 1. However, the crucial observation is that in order to do
so, it must be the case that a constant fraction of the views committed are not
consistent (this property is called t-robustness). Thus by selecting the t views at
random, V will catch inconsistent views whp.

One can extend this technique further (as in [15]), to prove a general predicate
φ about arbitrary values. Namely, one can consider the functionality Fφ in which
every player i participates with an input that is a view of a VSS player Si. Fφ
collects all such views, and outputs 1 if and only if φ(Recon(S1, . . .Sn)) = 1.
This idea is crucially used in [16].

Probabilistically Checkable Proofs. Informally, a PCP [2] system for a lan-
guage L consists of a proof π written in a redundant form for a statement “x ∈ L”,
and a PPT verifier, which is able to decide the truthfulness of the statement by
reading only few bits of the proof.

A PCP verifier V can be decomposed into a pair of algorithms: the query algo-
rithm Qpcp and the decision algorithm Dpcp. Qpcp on input x and random tape r,
outputs positions q1 = Qpcp(x, r, 1), q2 = Qpcp(x, r, 2), . . . , qn = Qpcp(x, r, p(|x|)),
for some polynomial p, and the prover answers with bi = π[qi]. V accepts if

16 R. Ostrovsky, A. Scafuro and M. Venkitasubramanian

Dpcp(x, r, b1, . . . , bp(|x|)) outputs 1. For later, it is useful to see algorithm Dpcp as
a predicate defined over a string π which is tested on few positions.

Probabilistically Checkable Proofs of Proximity. The standard PCP ver-
ifier decides whether to accept the statement x ∈ L by probing few bits of the
proof π and reading the entire statement x. A “PCP of proximity” (PCPP) [4]
is a relaxation of PCP in which the verifier is able to make a decision without
even reading the entire statement, but only few bits of it. More specifically, in a
PCPP the theorem is divided in two parts (a, y). A public string a, which is read
entirely by the verifier, a private string y, for which the verifier has only oracle
access. Consequently, PCPP is defined for pair languages L ⊂ {0, 1}∗ × {0, 1}∗.
For every a ∈ {0, 1}∗, we denote La = {y ∈ {0, 1}∗ : (a, y) ∈ L}. The PCP Veri-
fier can be seen as a pair of algorithms (Qpcpx,Dpcpx), where Qpcpx(a, r, i) outputs
a pair of positions (qi, pi): qi denotes a position in the theorem y, pi denotes
a position in the proof π. Dpcpx decides whether to accept (a, y) by looking at
the public theorem a, and at positions y[qi], π[pi]. For later, it is useful to see
algorithm Dpcpx as a predicate defined over two strings y, π, testing few positions
of each string.

Definition 1 (PCPP verifier for a pair language). For functions s, δ :
N → [0, 1], a verifier V is a probabilistically checkable proof of proximity (PCPP)
system for a pair language L with proximity parameter δ and soundness error s,
if the following two conditions hold for every pair of strings (a, y):

– Completeness: If (a, z) ∈ L then there exists π such that V (a) accepts oracle
y ◦ π with probability 1. Formally:

∃π,Pr(Q,D)←V (a)[D((y ◦ π)|Q) = 1] = 1.

– Soundness: If y is δ(|a|)-far from L(a), then for every π, the verifier V (a)
accepts oracle y ◦ π with probability strictly less than s(|a|). Formally:

∀π,Pr(Q,D)←V (a)[D((y ◦ π)|Q)] = 1 < s(|a|).

Note that the query complexity of the verifier depends only on the public input
a [10].

3 Protocol

Overview. The protocol starts with a signature slot, where the prover sends T
commitments, and the verifier signs all of them. Then, as per Barak’s construc-
tion, the prover sends a message z, which is the commitment to a machine M ,
the verifier sends a random string r, and finally the prover sends a commitment
to a PCP of Proximity proof for the theorem: “the machine M committed in z
is such that M(z) = r in less then nlogn steps”. M is the hidden theorem for the
PCP of Proximity and the verifier has only oracle access to it. The above com-
mitments are commitment to the roots of (extendable) Merkle signature-trees

Resettably Sound ZK from OWFs - the (semi) Black-Box way 17

(that we will describe in details later). Next, the verifier sends the PCPP queries.
As the verifier does not know the length of the PCPP proof and thus the depth
of the Merkle tree, it will send a set of PCPP queries for each possible depth.
Each PCPP query is a pair of indices, one index for the hidden theorem M and
one for the PCPP proof. The verifier expects to see a path for each index.

At this point the prover needs to compute such paths. As we mentioned in
the introduction, in a signature tree a path cannot be computed by the prover
only: each nodes consists of two parts, the signature of the children, called label,
and the encoding of the label, that we called encode. Thus, the prover continues
as follows. For each path that must be provided for a query, he computes on-
the-fly the encode parts of the nodes belonging to such path. It then sends all
these “half” nodes to the verifier. The verifier computes the label parts for each
node by signing the encode part and send them back to the prover. This is the
second signature slot. Once all paths are completed, the prover starts the proof
stage. Using a ZK protocol he proves that: (1) the paths are consistent with
the root committed before, (2) the leaves of the paths open to accepting PCPP
answers, in a black-box manner. How does the prover pass the proof stage? The
prover computes all commitments using instance-dependent equivocal commit-
ments and later cheats in the opening. How does the simulator pass the proof
stage? The simulator computes consistent trees for the machine V ∗ and the
PCPP proof by rewinding the verifier in the first signature slot, and committing
to their depth at the beginning. On top of this outlined construction we use
cut-and-choose to force the verifier to compute the signatures deterministically,
so that the simulator can use the tree computed in the first signature slot. This
concludes the high-level description of the protocol.

Now we need to show concretely how to compute the proofs of consistency
using the signature and the commitment scheme only as black-box. This requires
to go into the details of the (extendable) Merkle signature-tree and the mech-
anism for size hiding introduced in [16]. We provide such details in the next
section.

3.1 Ingredients of the Construction

We present the ingredients of our construction in this section. Some of the ideas
are adapted from [16].

String Representation. To allow black-box proofs for a committed string,
the first ingredient is to represent the string with a convenient encoding that
enables to give black-box proofs on top. For this purpose, following [16,15] we
use a (t, n)-secure VSS scheme, defined in Sec. 2. To commit to any string s,
the prover first runs, in his head, an execution of a perfectly (t, n)-secure VSS
among n+1 imaginary players where the dealer is sharing s, obtaining n views:
S[1], . . ., S[n]. Then it commits to each share separately using a statistically
binding commitment.

Black-box proof of a predicate. With the VSS representation of strings, now
the prover can commit to the string and prove any predicate about the committed

18 R. Ostrovsky, A. Scafuro and M. Venkitasubramanian

string, using MPC-in-the-head as follow. Let [S[1], . . ., S[n]] be the VSS shares
that reconstruct to a string s and let φ be a predicate. The prover wants to prove
that φ(s) is true without revealing s. Define Fφ as the n-party functionality that
takes in input one VSS share S[p] from each player p, and outputs φ(Recon(
S[1], . . ., S[n])). To prove φ(s), the prover runs a (t, n)-perfectly secure MPC-in-
the-head among n players for the functionality Fφ . Each player participates to
the protocol with input a VSS share of the string s. Then the prover commits
to each view of the MPC-in-the-head so computed. The verifier checks the proof
by observing t randomly chosen views of both the VSS and the MPC protocol,
and checking that such views are consistent with an honest execution of the VSS
and MPC protocols. Zero-knowledge follows from the t-privacy and soundness
follows from the t-robustness of the MPC/VSS protocols, where t-robustness
roughly means that, provided that the predicate to be proved is false and that
the prover does not know in advance which views will be opened, corrupting
only t players is not sufficient to convince the verifier with consistent views. On
the other hand, by corrupting more than t players, the prover is caught whp.

(Extendable) Merkle Signature-Tree. As we discussed in the introduction,
a node in an extendable Merkle tree is a pair [label, encode]. In our signature
Merkle tree, the field label is a vector of signatures (computed by the verifier),
and the field encode is a vector of commitments of VSS shares of label. Specif-
ically, let γ be any node, let γ0 = [labelγ0, {Com(Sγ0[i])}i∈n] be its left child,
and γ1 = [labelγ1, {Com(Sγ1[i])}i∈n] be its right child. Node γ is computed as
follows. The label part is labelγ= {Signsk(Com(Sγb[i]))}b∈{0,1},i∈n. The encode
part is computed in two steps: First, compute shares Sγ1 , . . . ,S

γ
n ← Share(label);

next commit to each share separately. At leaf level, the labelγ = s[γ], namely
the γ-th bit that we want to commit.

Hiding the size of the tree. The size of the string committed, and hence
the depth of the corresponding tree, is not known to the verifier and it must
remain hidden. Specifically, the verifier should not know the size of the machine
M and of the PCPP proof. Hence, the verifier will send a set of PCPP queries
for each possible depth of the tree for the PCPP. Namely, for each possible depth
j ∈ [log2 d], V sends {qi,j , pi,j}i∈k7, where k is the soundness parameter.

Note that the prover (actually, the simulator) commits to one tree and is
therefore able to correctly answer only the queries lying on the depth of the
committed tree, and we want this to be transparent to the verifier. This is
done by adding the commitment to the depth of the real tree at the beginning,
and then proving for each query that either the query is correctly answered
or the query refers to a depth that is different from the one committed. The
commitment of the depth needs to be in the same format of the encode part of
the nodes (i.e., it will be a commitment of VSS shares) because it will be used
in the black-box proofs of consistency.
7 We assume that the length PCPP proof is a power of 2. Also, for the sake of
simplifying the notation we use the same index j for the queries to the machine qi,j
and the proof pi,j , even though the machine M and the corresponding PCPP proof
π might lie on different depths

Resettably Sound ZK from OWFs - the (semi) Black-Box way 19

Black-box proofs about the leaves of the tree. As it should be clear by
now, the proof consists in a sequence of paths, one for each PCPP query, and a
sequence of proofs (one for every node and one for every possible depth) claiming
that (1) the paths are consistent with the one committed root; (2) the paths open
to accepting PCPP answers. This is done as follows. Attached to each path, there
is a proof of consistency. This proof serves to convince the verifier that the path
is consistent with the previously committed root. Attached to each set of paths
(there is a set of paths for each depth j = 1, . . . , log2 n), there is a proof of
acceptance. This proof serves to convince the verifier that those paths open to
bits of PCPP proof/hidden theorem M that are accepting.

Both the prover and the simulator will cheat in this proof, but in different
ways. The prover cheats in all proofs by equivocating the commitments (using
the witness as trapdoor). The simulator cheats in all proofs concerning paths
that do not match the depth of the real tree, by using the commitments of
the depth as a trapdoor. Namely, the simulator will prove that either the path
is consistent/accepting, or the depth of such path does not match the depth
committed (note that there will exist one path that will match the committed
depth). For the paths of the real tree, the simulator will honestly compute the
proof. We now describe each step of the proof in more details.

Proof that a path is consistent. Let pi,j be a PCPP query for a tree of depth
j. Associated to this query there is a path. Proving consistency of a path
for pi,j amounts to prove consistency of each node along the path. For each
node γ along the path for pi,j , there the γ is

[
labelγ , {Com(Sγ [p])}p∈n

]
, the

prover proves that Recon(Sγ [1], . . . ,Sγ [n]) = labelγ .
This is done via an MPC-in-the-head protocol, for a functionality Finnode

that takes in input the share Sγ [p] of the label, the share Sdepth[p] of the
committed depth, and the string labelγ and outputs 1 to all players if either
Recon(Sγ [1], . . . ,Sγ [n]) = labelγ or Recon(Sdepth[1], . . . ,Sdepth[n]) 6= j. Where
{Sdepth[1], . . . ,Sdepth[n]} ← Share(depth) are the share of the depth of the real
tree and were committed at the beginning. The actual proof consists in the
commitment of the views of the MPC players. The verifier verifies the proof
by opening t views checking their consistency.

Proof that a set of paths is accepting. For each level j, the verifier sends queries
{pi,j , qi,j}i∈[k] and the prover opens a path for each query. To prove that these
queries are accepting, the prover computes a proof that involves the leaves of
the paths of depth j. The prover runs an MPC-in-the-head for a functionality,
that we call FVerPCPP, that will check that the values in those positions will be
accepted by a PCPP verifier. FVerPCPP takes in input shares: Spi,j [p], Sqi,j [p],
Sdepth[p] (with p = 1, . . . , n) and the public theorem; it then reconstructs
the bits of the PCPP proof πi,j = Recon(Spi,j [1], . . . ,Spi,j [n]) and of the
hidden theorem mi,j = Recon(Sqi,j [1], . . . ,Spi,j [n]). It finally outputs 1 to
all players iff: either the PCPP verifier accepts the reconstructed bits, i.e.,
Dpcpx(mi,j , πi,j , qi,j , pj,i) = 1, or if Recon(Sdepth[1], . . . ,Sdepth[n]) 6= j. The
actual proof consists of the commitment of the views of the MPC players for
FVerPCPP. The verifier verifies the proof by checking the consistency of t views.

20 R. Ostrovsky, A. Scafuro and M. Venkitasubramanian

Verification of the proof. The verifier receives the commitments of all such views
and ask the prover to open t of them. The prover will then decommits t views
for all MPC/VSS protocol committed before as follow: first, it computes
accepting MPC views by running the simulator granted by the t-security of
the MPC-in-the-head protocol, then it open to such views by equivocating
the corresponding commitments.

The cut-and-choose. The mechanism described above is repeated n times: the
verifier provides n signature keys, and the prover will compute n trees. During the
protocol 3/4n of the secret keys will be revealed, so for those indexes the prover
will not proceed to the proof phase. In fact, the prover will prove consistency of
only one tree among the 1/4n trees left (but of course, we want the verifier to
be oblivious about the tree that the prover is using). Thus, the last ingredient
of our construction is to ask the prover to commit to an index J among the
remaining 1/4n indexes. This commitment is again done via V SS of J and then
committing to the view8. As expected, such VSS will be used in the computation
of Finnode and FVerPCPP. The functionalities now will first check if the nodes are
part of the J-th tree. If not, it means that the tree is not the one that must be
checked, in such a case the functionality outputs 1 to all players regardless of
whether any condition is satisfied.

3.2 The Construction

We now put everything together and provide the description of the final protocol.
Some details are omitted for simplicity, a full specification of our protocol can
be found in the full version [25]. We remark that in any step of the protocol
the randomness used by the verifier to compute its messages is derived by the
output of a PRF computed on the entire transcript computed so far. Common
Input: An instance x of a language L ∈ NP with witness relation RL. Auxiliary
input to P : A witness w such that (x,w) ∈ RL.

Cut-and-choose 1.
• P0: Randomly pick two disjoint subsets of {1, . . . , n} that we denote by
J1, J2, with |J1| = n/2 and |J2| = n/4. Commit to J1, J2 using the
equivocal commitment scheme.

• V0: Run (skκ, vkκ)← Gen(1n, rκ) for κ = 1, . . . , n. Send vkκ,Com(rκ) for
κ = 1, . . . , n to P .

• Signature Slot 1. P1: Send T = O(nc) commitments using the equiv-
ocal commitment scheme to 0v (for some constant c and for v being as
the size of the encode part). V1: Signs each commitment.
Check Signature Slot 1. P opens set J1. V send skκ and decommit-
ment to rκ, for κ ∈ J1. P checks that all signatures verified under key
vkκ are consistent with skκ, rκ. If not, abort.

8 Attached to the VSS there will be also a proof that proves that J ∈ {1, . . . , n}/{J1∪
J2}.

Resettably Sound ZK from OWFs - the (semi) Black-Box way 21

Commitment to the Machine.
• P2: Send equivocal commitment to the encode part of the root of the

(extendable) Merkle signature-tree forM , and equivocal commitment to
the depth of the tree, this is done for each κ ∈ {1, . . . , n}/J1.

• V2: Send a random string r ∈ {0, 1}n. Let (r, t) be the public theorem
for the PCPP for the language: LP = {(a = (r, t), (Y)), ∃M ∈ {0, 1}∗
s.t. Y ← ECC(M), M(z)→ r within t steps} (where ECC(·) is a binary
error correcting code tolerating a constant fraction δ > 0 of errors, and
δ is the proximity factor of PCPP).

Commitment to the PCPP proof.
• P3: Send equivocal commitment to the encode part of the root of the

(extendable) Merkle signature-tree for the PCPP proof and the commit-
ment to the depth of such tree. This is done for each κ ∈ {1, . . . , n}/J1.

• V3: Send the random tapes for the PCPP queries. V and P obtain queries
(qi,j , pi,j) for i ∈ [k] and with j = 1, . . . , log2 n.

• P4: Send paths for pi,j , qi,j . Namely, send the encode part for each node
along the paths pi,j , qi,j . This is done for each tree κ ∈ {1, . . . , n}/J1,
previously committed.

Signature Slot 2 V4: Sign the encode parts received from P .
Cut-and-choose 2. P opens the set J2. V sends skκ and decommitment to rκ,

for κ ∈ J2. P checks that all signatures verifier under key vkκ are consistent
with skκ, rκ. If not, abort.

Proof.
• P5: Commit to a random index J ∈ {1, . . . , n}/{J1 ∪ J2}.

Then compute the proof of consistency of each path, and the proof of
acceptance for each set of queries (as explained earlier), for each of the
remaining trees. The proofs (i.e., the views of the MPC-in-the-head) are
committed using an extractable equivocal commitment scheme.

• V5: Select t players to check: Send indexes p1, . . . , pt.
• P6: Compute the t VSS shares and the t views of the MPC protocols

that will make the verifier accept the proof. This is done by running the
simulator guaranteed by the perfect t-security of the MPC protocols for
the proofs. P then equivocates the previously committed views so that
they open to this freshly computed views.

• V6: Accept if all the opened views are consistent and output 1.

4 Security Proof

In this section we sketch the proof of the following theorem (for the formal proof
the reader is referred to the full version of this work [25]).

Theorem 2. There exists a (semi) black-box construction of a resettably-sound
zero-knowledge argument of knowledge based on one-way functions.

22 R. Ostrovsky, A. Scafuro and M. Venkitasubramanian

Resettable Soundness. We prove fixed-input resettable-soundness of the pro-
tocol without loss of generality. Assume for contradiction, there exists a PPT
adversary P ∗, sequences {xn}n∈N ⊆ {0, 1}∗/L, {zn}n∈N ⊆ {0, 1}∗ and poly-
nomial p(·) such that for infinitely many n, it holds that P ∗ convinces V on
common input (1n, xn) and private input zn with probability at least 1

p(n) . Fix
an n, for which this happens.

First, we consider a hybrid experiment hyb, where we run the adversary
P ∗ on input (xn, zn) by supplying the messages of the honest verifier with a
small modification. For all the randomness used by the verifier in the protocol
via a PRF applied on the transcript, we instead supply truly random strings.
In particular, the signature keys generated in the first message, the challenge
string in message V2, the random strings in V3 and random t indices in V5 are
sampled truly randomly. By the pseudo-randomness of the PRF, we can conclude
that P ∗ convinces the emulated verifier in this hybrid with probability at least
1

p(n) − ν(n) > 1
2p(n) for some negligible function ν(·).

The high-level idea is that using P ∗, we construct an oracle adversary A that
violates the collision-resistance property of the underlying signature scheme. In
more details, A is an oracle-aided PPT machine that on input vk, n and oracle
access to a signing oracle SIGsk(·) proceeds as follows: It internally incorporates
the code of P ∗ and begins emulating the hybrid experiment hyb by providing
the verifier messages. Recall that P ∗ is a resetting prover and can open arbitrary
number of sessions by rewinding the verifier. A selects a random session i.

– For all the unselected sessions, A simply emulates the honest verifier.
– For the selected session, A proceeds as follows.
(1) In the first message of the protocol, ASIGsk(·) chooses a random index

f ∈ [n] and places the vk in that coordinate. More precisely, it sends
(vkf ,= vk, c) where c is a commitment to the 0 string using Com. Note
that since A does not have the secret key or the randomness used to
generate (skf , vkf), it commits to the 0 string as randomness. It then
emulates the protocol honestly. In either of the signature slots, whenever
A needs to provide a signature under skf for any message m, A queries
its oracle on m. For all the other keys, it possesses the signing key and
can generate signatures on its own. If the sets J1 or J2 revealed in P1.2

and P4.2 contains f , then A simply halts.
(2) If P ∗ fails to convince the verifier in the selected session, A halts. If

it succeeds, then A stalls the emulation. Let C0 contain the messages
exchanged in session i. A then rewinds the prover to the message V3. Let
τ be the partial transcript of the messages exchanged until message V3
in session i occurs.

(3) Next,A uses fresh randomness to generate V3, namely, the PCPP queries 9.
It then continues the execution from τ until P ∗ either convinces the ver-
ifier in that session or aborts. If it aborts then A halts. Let C1 be the
transcript obtained from the second continuation of τ .

9 Here we use the reverse sampling property of the underlying PCPP of proximity.

Resettably Sound ZK from OWFs - the (semi) Black-Box way 23

(4) Using the values revealed by P ∗ in the two continuations from the point
τ , A will try to extract a collision if one exists and halts otherwise.

We describe below how the adversary A obtains a collision from two convinc-
ing transcripts starting from τ and argue that it can do so with non-negligible
probability. Thus, we arrive at a contradiction to collision-resistance property of
the signature scheme and will conclude the proof of resettable-soundness.

First, we consider a hybrid experiment hyb′, where a hybrid adversary A
is provided with the actual commitment c to the randomness used to generate
the signing key whose signing oracle it has access to. Besides that A′ proceeds
identically to A. By construction the internal emulation by A in hyb′ is identical
to that of hyb. Below we analyze A’s success in hybrid experiment hyb′. Finally,
we claim that A will succeed with probability close to hybrid experiment hyb′

because the commitment scheme is hiding.
In a convincing session, for every PCPP query and every unopened signature

key f , there is an associated set of paths that the prover reveals. More precisely,
for every node γ in the paths, the prover provides encodeγ which is the vector of
commitments: {Com(Sγ [i])}i∈[n] of shares, which are supposed to reconstruct to
valid signatures. If a node γ is supposed to be the child of the node γ′, then it
must be the case that labelγ

′
contains the valid signatures of {Com(Sγ [i])}i∈[n].

Suppose that, in two convincing continuations from τ , for some pair of parent
and child node γ′ and γ, labelγ

′
associated with γ′ is the same in both the

continuations but the commitments in the encode part of γ are different. This
means that there is at least one signature in the labelγ

′
that verified correctly on

two different values of encodeγ . Therefore, if A finds one such pair of nodes for
the key skf , then it obtains a collision. We show below that with non-negligible
probability, A will obtain a collision in this manner.

Next, we analyze the set of bad events when A receives two convincing con-
tinuations from τ . These bad events prevent A from finding a collision. So we
bound the probabilities of these events happening. Fix a τ for which a random
continuation yields a convincing session i with non-negligible probability.

B1: P ∗ equivocates the commitments. If P ∗ equivocates the commitments
then it can always compute t accepting views on the fly (as the honest prover
does), and A’s strategy fails. However, given that xn /∈ L, the commitment
scheme used in the construction is statistically binding. Thus this event can
happen only with negligible probability.

B2: P ∗ commits to a machine M that predicts V ’s next message. Here
P ∗ computes consistent trees and convinces the verifier using the same algo-
rithm of the simulator. However, because the string r is chosen at random,
the probability that this case happens is close to 2−n, therefore is negligible.

B3: P ∗ cheats in the proofs of consistency. Given that xn /∈ L, in step P5

the prover convinces the verifier by proving that there exists an index J in
which it constructed a consistent tree. P convinces the verifier by running
MPC-in-the-head that proves the consistency of nodes and that the leaves are
accepted by a PCPP verifier. Since B1, B2 happen with negligible probability,
P ∗ cannot convince the verifier by neither equivocating the commitment nor

24 R. Ostrovsky, A. Scafuro and M. Venkitasubramanian

by using a legitimate witness. Thus, it must be the case that P ∗ convinces the
verifier computing an accepting MPC-in-the-head for a false predicate (i.e.,
the nodes are not consistent/not accepting). However, due to the t-robustness
of the MPC protocols, this event happens with negligible probability.

Let J, J ′ be the coordinates that are chosen by P ∗ in the first and in the
second continuation from τ generated by A. (Recall that J is the coordinate for
which P ∗ will be required to provide an accepting proof. For any other coordinate
P ∗ is not required to construct an accepting tree or provide any proof.) We now
estimate the probability that J = J ′ = f , where f is the coordinate chosen by A.
Let p be the probability that for a random continuation from τ , B1, B2 and B3 do
not occur. Since C0 and C1 are random continuations, it holds with probability
at least p2 that J = J ′. The index f is chosen uniformly at random by A and
is completely hidden. Hence with probability at least p2

n , J = J ′ = f . Whenever
this happens, we claim that A can find two nodes γ′ and γ that will yield two
strings with the same signature under key skf . This is because from B2 we know
that P ∗ cannot compute an accepting PCPP (as the simulator) and from B3

we know that it cannot cheat in the proof. Hence, following similar arguments
as in [2,16], we have that a prover P ∗ that convinces V must be able to open a
random leaf of the tree as the value 0 and 1 with non-negligible probability. Given
that the root and depth of the PCPP are fixed in τ , we have that in two random
continuations C0, C1 there is a non negligible probability that P ∗ opens the same
leaf as two different values. If this event happens that it must be the case that
P ∗ has found a collision (conditioned on B1, B2, B3 not occurring). Thus, A will
find a collision with a polynomially related probability therefore contradicting
the collision-resistance property of the underlying signature scheme.

Proof sketch of argument of knowledge: Proving argument of knowledge
will essentially follow from the same approach as the proof of soundness. Assume
P ∗ convinces a verifier on a statement x. In the soundness proof, we crucially
relied on the fact that the prover cannot equivocate any of the commitments and
they were statistically binding. While proving argument of knowledge, this does
not hold as x is in L. Instead, we observe that if the commitments were binding
then P ∗ can find collisions to the signature scheme and that will happen only
with negligible probability. Hence, it must be the case that P ∗ is equivocating
the commitments. Since the commitments are instance based-commitments, if
a commitment is opened to two different values, a witness can be extracted.
The only witness for all the instance-based commitments used in the protocol is
the witness to the input statement x. Since P ∗ equivocates with non-negligible
probability, we can extract a witness with non-negligible probability. The extrac-
tor essentially runs the same algorithm as A does from the proof of soundness
with the exception that it tries to find equivocated commitments as opposed to
collision in the signatures.

Zero-Knowledge. The simulator Sim internally emulates the code of V ∗
and proceeds as follows: Sim proceeds as the honest prover through the first
signature slot until V ∗ reveals the keys and randomness in J1. If the set of

Resettably Sound ZK from OWFs - the (semi) Black-Box way 25

signatures are not valid or consistent with what is revealed then the simulation
halts immediately and outputs the transcript up to that point. Otherwise, Sim
stalls the current execution and repetitively queries V ∗ at the Signature Slot
1 with fresh commitments to 0v (where v is the size of a VSS share), until it
obtains 2n sets of valid signatures (i.e. 2n rewindings where the verifier did not
abort in the signing slot or return any invalid signature). Let θ be the number
of queries Sim makes. If θ ≥ 2n/2, then Sim aborts outputting fail1. Next, it sets
up a sub-procedure GetSign which is described below: Let c be a commitment to
a message m ∈ {0, 1}v and κ ∈ [n].
Procedure GetSign(c,m, κ): Initialize SIGS = φ to be an empty list.
For i = 1 to 2n2θT 2

Choose i uniformly at random from [T]. Select T − 1 commitments to m,
c1, . . . , ci−1, ci+1, . . . cT where each of them are obtained by running Comx

on message m. Set ci = c. Rewind V ∗ to message P1 and feed (c1, . . . , cT)
(the first Signature Slot). If V ∗ replies a valid set of signatures (σ′1, . . . , σ′T)
under verification key vkκ, then σ′i is a valid signature of ci = c. Add σ′i to
the list SIGS.

If fewer than n signatures are in the list SIGS, then return ⊥. Let σ∗ be that
signature that occurs more than half the time in SIGS. Return σ∗. If no such
signature exists return ⊥.

Next, the simulator proceeds from where it stalled. It creates an (extendable)
Merkle signature-tree for ECC(V ∗) for every unopened signing key κ ∈ [n]/J1.
To obtain signature on a message m (to be used in the tree construction), it
calls GetSign(c,m, κ) procedure T times, each time with a fresh commitment c
to m. If any of the T trials succeed then it uses that commitment and signature
for m. For every key κ ∈ [n]/J1 it feeds the values stored in the encode part
of the root to V ∗. If for any message m and key κ ∈ [n]/J1, GetSign fails to
return a signature in T tries, then the simulator adds κ to the list BadKeys
and just commits to dummy values for the roots of those trees by generating
VSS shares of the all 0-string. It also commits to the depth of the tree, i.e.
log |V ∗| by generating its VSS and committing to each share. Sim receives the
challenge r from V ∗ and proceeds similarly to generate and commit to the root
and depth of the (extendable) Merkle-signature tree corresponding to the PCP
of Proximity proof and as before, it appends BadKeys with keys for which the
simualator fails to obtain the required signatures. After receiving the randomness
required to generate the PCPP queries from V ∗, Sim prepares the responses to
get signatures in the second slot. For the keys κ ∈ BadKeys, the simulator simply
presents commitments to 0v. For every κ ∈ [n]/(J1∪J2∪BadKeys), the simulator
proceeds as follows. Let N be the total number of commitments that it has to
send for every key. Denote the commitments by c1, . . . , cN . Define VS ⊂ [N] to be
the subset of indexes that contain the commitments that the verifier expects to
see for qi∗,j∗ where i∗, j∗ are the actual depths of the two trees. The commitments
for a key κ are generated as follows:
GENERATE(κ): Sim first generates c̃1, . . . , c̃N where each c̃i is a commitment
to 0v using Comx. For every β ∈ VS, run GetSign(c̃β , 0v, κ) and see if it returns

26 R. Ostrovsky, A. Scafuro and M. Venkitasubramanian

a valid signature. If it receives a signature for all commitments, then replace all
commitments c̃β by c′β for all β ∈ VS. Return c̃1, . . . , c̃N to be used for the key
κ in the second slot. If for some commitment a signature was not obtained we
say that GENERATE failed for κ and add κ to BadKeys.

After receiving the signatures, if for some key the signatures obtained for the
commitments in VS were different in the first and second slot, the key is added to
BadKeys. If BadKeys contains all keys not in J1 ∪J2, i.e. [n] = BadKeys∪ J1 ∪ J2,
the simulator halts outputting fail2. Otherwise, Sim proceeds to complete the
execution by using some key κ∗ ∈ [n]/(J1 ∪ J2 ∪ BadKeys) to complete the
simulation.

Running time of the simulator. First we analyze the running time of Sim, Let
p(m) be the probability that Ṽ ∗ on query a random commitment c = Com(m, τ)
ofm ∈ {0, 1}l at the Signature Slot 1, returns a valid signature of c. Let p = p(0l).

We first argue that the simulator runs in expected polynomial time. To start,
note that Sim aborts at the end of the Signature Slot 1 with probability 1 − p,
and in this case, Sim runs in polynomial time. With probability p, Sim emulates
V ∗ only a strictly polynomial number of times and size of V ∗ is bounded by TṼ ∗ .
Thus, Sim runs in some T ′ = poly(TṼ ∗) time and makes at most T queries to its
GetSign procedure, which in turn runs in time θ · poly(n) to answer each query.
Also note that Sim runs in time at most 2n, since Sim aborts when θ ≥ 2n/2.
Now, we claim that θ ≤ 10n/p with probability at least 1 − 2−n, and thus the
expected running time of Sim is at most

(1− p) · poly(n) + p · T ′ · (10n/p) · poly(n) + 2−n · 2n ≤ poly(TṼ ∗ , n).

To see that θ ≤ 10n/p with overwhelming probability, let X1, . . . , X10n/p

be i.i.d. indicator variables on the event that V ∗ returns valid signatures for a
random commitments to 0s. If θ ≤ 10n/p then via a standard Chernoff bound,
we can conclude that

∑
iXi ≤ 2n happens with probability at most 2−n. Using

a Markov argument, this also proves that the probability of fail1 occurring is
negligible.

Indistinguishability of simulation. To prove indistinguishability, we analyze
a hybrid simulator that has the witness and proceeds exactly as Sim with the
exception that for every commitment it uses the equivocal commitment EQComx

scheme instead of Comx. Indistinguishability of the simulation will follow using
a standard hybrid argument and the indistinsguishability of the commitment
scheme (analogous to [11]). Conditioned on the hybrid simulator not ending in
one of the fail events, we can argue that the output of the hybrid simulator is
identical to the real view. Notice that all messages until the second slot will be
prepared by the simulator identical to the real simulator. Recall that the mes-
sages in the second signature slot are replaced with good commitments according
to the GENERATE procedure. However, since we are replacing one random good
commitment with another, the distribution of the simulator will be identical to
the real provers message. Finally the rest of the messages only reveal t-views of
all the MPC protocols and by the perfect t-privacy of the MPC protocols these

Resettably Sound ZK from OWFs - the (semi) Black-Box way 27

messages will also be identically distributed. Therefore to prove correctness, it
suffices to argue that all the fail events occur with negligible probability.

Claim. Except with negligible probability, there are at least n/2 − n/10 keys
in [n]/J1 for which the hybrid simulator obtains the deterministically signed
signatures with probability at least 1− log2 /n.

Proof. Let s = log2 n
2 . For every key, we define a good set of random tapes Gn.

Now, we say that a key is good if GetSign fails to return a signature for at
most 2s/n fraction of the good tapes. First, we show that on a good tape the
GetSign procedure obtains n signatures with high-probability. Next, we show
that the probability of a random tape being good is at least 1 − n/T . Recall
that it returns a signature only if it obtains n signatures and there exists a
majority. We show that there exists at least n/2 − n/10 keys that are good.
Suppose these claims were true, then it holds that there are at least n/2− n/10
keys for which the probability that a random tape is good with probability least
1 − n/T − s/n = 1 − 2s/n. Since the simulator calls GetSign T times for any
message, it will yield a signature for every message in the good n/2− n/10 keys
with high-probability.

Defining Gn. Recall that, in the run-time analysis we showed that n/p ≤ θ ≤
2n/2 with probability at least 1 − 2−Ω(n). Now, for every m ∈ {0, 1}s, p(m) ≥
p − ν ≥ p/2 implies that θ ≥ n/2p(m). Fix a message m and a key. Define Gn
to be the set of random tapes τ such that the probability that V ∗ returns a
signature on (c, c−i) where i ← [n], c = Comx(m; τ) and c−i are random T − 1
commitments for m is at least 1

2θT 2 . This means that, for any τ ∈ Gn, in 2nθT 2

tries, the probability that GetSign fails to return a single signature is at most
e−n. Since GetSign makes n(2nθT 2) attempts, it obtains n signatures except
with negligible probability.

Probability of a good tape. We argue that a random τ is in Gn with prob-
ability at least 1 − n

T . Assume for contradiction the fraction of tapes in Gn
was smaller than 1 − n

T . We now estimate the probability that V ∗ returns a
signature on random commitments. There are two cases: (1) At least one com-
mitment among the T commitments is not in Gn. Conditioned on this event,
the probability that V ∗ honestly provides signatures is at most T 2

2θT 2 . (2) All
commitments are in Gn. The probability this occurs is at most (1− n

T)
T ≤ e−n.

Overall the probability that V ∗ answers is at most 1
2t+e

−n < 1
θ < p(m) which is

a contradiction. Therefore Gn must contain at least 1− n
T fraction of the tapes.

Number of good keys. We need to argue that for most messages there will be
a majority when n signatures are obtained. We will show that for most messages
the n signatures have a majority and the popular signature will be the one that
is computed deterministically. At the end of the first signature slot, the verifier
opens the randomness and signing key used in the half the coordinates, i.e. those
in J1. Since J1 is committed using an equivocal commitment in this hybrid,
it is statistically hiding. So, given the commitments sent by the prover, J1 is
completely hidden in HybridH2. Therefore, we can conclude that the probability

28 R. Ostrovsky, A. Scafuro and M. Venkitasubramanian

that the verifier gives signatures that were not deterministically signed by more
than s keys is at most 2−O(s). Using an averaging argument, it holds that the
probability that there exists more than n/10 keys such that the probability that
the verifier gives “incorrect” signatures in those coordinates with probability
bigger than s

10n over messages sent in P1 is negligible. This means that, for
the remaining n/2 − n/10 keys, at most s/10n fraction of possible messages
(in the first slot) yield incorrect signatures. We argue next that GetSign gives
the wrong signature for a random commitment to a message m in any of these
n/2 − n/10 keys with probability at most s/n. Assuming this holds, it holds
that for any message m, the probability that GetSign returns a deterministically
signed signature for any of the n/2−n/10 keys is at least 1− s

n . We now proceed
to prove this claim.

The intuition is that if fewer than 1 − s/n fraction of the commitments
yielded the correct signature with majority, then there will only be a small
fraction of T -tuple of messages containing such commitments. Recall that, at
least 1 − s/10n fraction of all T -tuple of messages are signed deterministically.
Hence with probability at least 1 − s/n more than half of the T commitments
must be deterministically signed and these commitments yield correct signatures
with majority. Now suppose that fewer than 1 − s/n fraction of commitments
yielded the deterministically generated signatures in majority. Then it must hold
that (1 − s/n)T/2 ≥ (1 − s/n)p(m). Since T = O(nc), we can set c sufficiently
large (c = 5 will suffice) to arrive at a contradiction since p(m) > n

2n/2 . This
concludes proof of the claim.

Claim. The probability that the simulator outputs fail3 is negligible.

Proof. We need to show that after the second signature slot BadKeys does not
contain all the keys in [n]/J1 ∪ J2. First we show that, GENERATE swaps the
commitments for at least n/20 keys in [n]/J1 ∪ J2. For the particular depths
i∗, j∗, at most loge(n) (= |VS|) commitments are sent (for some constant e).
From the previous claim, we know that for at least n/2 − n/10 keys in [n]/J1,
(and therefore n/4−n/10 keys in [n]/J1 ∪J2) , GetSign returns a signature on a
commitment with probability at least 1− log2 n/n. A key fails in GENERATE if
for some commitment among the commitments with index in V S does not yield
a signature through GetSign. This happens with probability at most loge+2(n)

n .
Since there are n/4−n/10 keys in [n]/J1∪J2, the probability that more than n/10
keys fail in GENERATE is (log

e+2(n)
n)O(n), i.e. negligible. This means that for

at least n/20 keys GENERATE successfully swaps. Next, we need to show that
there exists at least one key for which the signature obtained by the simulator in
the first and second are the same. Recall that GetSign in these keys returns the
deterministic signatures on 1− log2 n/n fraction of the commitments. Since we
are concerned only about loge(n) commitments, using the same argument, we
can conclude that, the probability that there are more than n/40 keys for which
the signature of some commitment among the loge(n) commitments obtained in
the first slot is not the one deterministically signed is negligible. In other words,
there must be at least n/20−n/40 = n/40 keys in [n]/J1∪J2∪BadKeys for which

Resettably Sound ZK from OWFs - the (semi) Black-Box way 29

the simulator obtained deterministic signatures for the loge(n) commitments in
the first slot and GENERATE inserted those commitments in the second slot.
Finally, from the second cut-and-choose, it will follow that there is at least one
key among those for which it receives a deterministically signed signature for
all the loge(n) commitments in the second slot, and hence the same signature
obtained from the first slot.

5 Acknowledgments

We thank the anonymous FOCS’s reviewers for pointing out an issue with using
digital signatures based on one-way functions in a previous version of our work.
We thank Kai-Min Chung, Vipul Goyal, Huijia (Rachel) Lin, Rafael Pass and
Ivan Visconti for valuable discussions.

References

1. Barak, B.: How to go beyond the black-box simulation barrier. In: FOCS. pp.
106–115. IEEE Computer Society (2001)

2. Barak, B., Goldreich, O.: Universal arguments and their applications. In: Compu-
tational Complexity. pp. 162–171 (2002)

3. Barak, B., Goldreich, O., Goldwasser, S., Lindell, Y.: Resettably-sound zero-
knowledge and its applications. In: FOCS’01. pp. 116–125 (2001)

4. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.P.: Robust pcps
of proximity, shorter pcps, and applications to coding. SIAM J. Comput. 36(4),
889–974 (2006)

5. Bitansky, N., Paneth, O.: On the impossibility of approximate obfuscation and
applications to resettable cryptography. In: STOC. pp. 241–250 (2013)

6. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Simple, black-box construc-
tions of adaptively secure protocols. In: Theory of Cryptography, 6th Theory of
Cryptography Conference, TCC 2009, San Francisco, CA, USA, March 15-17, 2009.
Proceedings. Lecture Notes in Computer Science, vol. 5444, pp. 387–402. Springer
(2009)

7. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable Secret Sharing and
Achieving Simultaneity in the Presence of Faults (Extended Abstract). In: Proceed-
ings of the 26th Annual IEEE Symposium on Foundations of Computer Science.
pp. 383–395. FOCS ’85 (1985)

8. Chung, K.M., Ostrovsky, R., Pass, R., Venkitasubramaniam, M., Visconti, I.: 4-
round resettably-sound zero knowledge. In: TCC. pp. 192–216 (2014)

9. Chung, K.M., Pass, R., Seth, K.: Non-black-box simulation from one-way functions
and applications to resettable security. In: STOC (2013)

10. Dachman-Soled, D., Kalai, Y.T.: Securing circuits against constant-rate tampering.
In: CRYPTO. LNCS, vol. 7417, pp. 533–551. Springer (2012)

11. Dachman-Soled, D., Malkin, T., Raykova, M., Venkitasubramaniam, M.: Adaptive
and concurrent secure computation from new adaptive, non-malleable commit-
ments. In: ASIACRYPT (1). pp. 316–336 (2013)

12. Goldreich, O.: Foundations of Cryptography — Basic Tools. Cambridge University
Press (2001)

30 R. Ostrovsky, A. Scafuro and M. Venkitasubramanian

13. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: STOC. pp. 291–304 (1985)

14. Goyal, V.: Constant round non-malleable protocols using one way functions. In:
Fortnow, L., Vadhan, S.P. (eds.) STOC. pp. 695–704. ACM (2011)

15. Goyal, V., Lee, C.K., Ostrovsky, R., Visconti, I.: Constructing non-malleable com-
mitments: A black-box approach. In: FOCS. pp. 51–60. IEEE Computer Society
(2012)

16. Goyal, V., Ostrovsky, R., Scafuro, A., Visconti, I.: Black-box non-black-box zero
knowledge. In: STOC (2014)

17. Haitner, I.: Semi-honest to malicious oblivious transfer - the black-box way. In:
Theory of Cryptography, Fifth Theory of Cryptography Conference, TCC 2008,
New York, USA, March 19-21, 2008. Lecture Notes in Computer Science, vol. 4948,
pp. 412–426. Springer (2008)

18. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: CRYPTO ’88. pp. 8–26 (1988)

19. Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions for se-
cure computation. In: Proceedings of the 38th Annual ACM Symposium on Theory
of Computing, Seattle, WA, USA, May 21-23, 2006. pp. 99–108. ACM (2006)

20. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Johnson, D.S., Feige, U. (eds.) STOC. pp. 21–30.
ACM (2007)

21. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: Kosaraju, S.R., Fellows, M., Wigderson, A., Ellis, J.A. (eds.) STOC.
pp. 723–732. ACM (1992)

22. Lin, H., Pass, R.: Black-box constructions of composable protocols without set-
up. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO. Lecture Notes in Computer
Science, vol. 7417, pp. 461–478. Springer (2012)

23. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO. Lecture
Notes in Computer Science, vol. 435, pp. 218–238. Springer (1989)

24. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: STOC ’89. pp. 33–43 (1989)

25. Ostrovsky, R., Scafuro, A., Venkitasubramaniam, M.: Resettably sound zero-
knoweldge arguments from owfs - the (semi) black-box way. Cryptology ePrint
Archive, Report 2014/284 (2014), http://eprint.iacr.org/

26. Pass, R., Rosen, A.: New and improved constructions of non-malleable crypto-
graphic protocols. In: STOC ’05. pp. 533–542 (2005)

27. Pass, R., Tseng, W.L.D., Wikström, D.: On the composition of public-coin zero-
knowledge protocols. In: CRYPTO ’09. pp. 160–176 (2009)

28. Pass, R., Wee, H.: Black-box constructions of two-party protocols from one-way
functions. In: Reingold, O. (ed.) TCC. Lecture Notes in Computer Science, vol.
5444, pp. 403–418. Springer (2009)

29. Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of reducibility between crypto-
graphic primitives. In: TCC. pp. 1–20 (2004)

30. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: Proceedings of the 22nd Annual ACM Symposium on Theory of Computing,
May 13-17, 1990, Baltimore, Maryland, USA. pp. 387–394. ACM (1990)

31. Wee, H.: Black-box, round-efficient secure computation via non-malleability am-
plification. In: FOCS. pp. 531–540. IEEE Computer Society (2010)

http://eprint.iacr.org/

	Resettably Sound Zero-Knoweldge Arguments from OWFs - the (semi) Black-Box way

