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Abstract. Cloud services provide a powerful resource to which weak
clients may outsource their computation. While tremendously useful,
they come with their own security challenges. One of the fundamental
issues in cloud computation is: how does a client efficiently verify the cor-
rectness of computation performed on an untrusted server? Furthermore,
how can the client be assured that the server learns nothing about its pri-
vate inputs? In recent years, a number of proposals have been made for
constructing verifiable computation protocols. Unfortunately, solutions
that guarantee privacy of inputs (in addition to the correctness of com-
putation) rely on the use of fully homomorphic encryption (FHE). An
unfortunate consequence of this dependence on FHE, is that all hope of
making verifiable computation implementable in practice hinges on the
challenge of making FHE deployable in practice. This brings us to the
following question: do we need fully homomorphic encryption to obtain
privacy in verifiable computation protocol which achieves input privacy?
Another drawback of existing protocols is that they require the client
to run a pre-processing stage, in which the work done by the client is
proportional to the function being outsourced and hence the outsourcing
benefit is obtained only in an amortized sense. This brings us to our
next question: can we build verifiable computation protocols that allow
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the client to efficiently outsource even a computation that it wishes to
execute just once?

In this paper, we consider a model in which the client outsources his
computation to multiple (say n ≥ 2) servers. In this model, we construct
verifiable computation protocols that do not make use of FHE and that
do not have a pre-processing stage. In the two-server setting, we present
an extremely practical protocol based only on one-way functions. We also
present a solution, based on the DDH assumption, for the multi-server
model for any arbitrary n. All these protocols are secure as long as at
least one server is honest. Finally, even in the n-server model, we present
a solution based solely on one-way functions. This protocol tolerates up
to a constant fraction of corrupted servers.

Keywords: Verifiable computation, delegatable computation, in-
put/output privacy, garbled circuits.

1 Introduction

Recently, there have been a number of proposals for non-interactive ver-
ifiable computation protocols (also called delegation of computation) (c.f.,
[AIK10,GGP10,CKV10]). In this scenario, we have a computationally weak client
talking to a powerful (but un-trusted) server. The client wishes to get the out-
come of a desired computation (say a function F evaluated on an input x) with
the help of the server. If the server is malicious, one could ask that the correct-
ness of the output and the privacy of the input (and possibly output) of the
client still be preserved. Of course, it is also imperative that the work done by
the client in verifying the correctness of the output be much lesser than the work
done in computing F(x) on his own.

Unfortunately, to the best of our knowledge, all proposed solutions that meet
this security requirement, have the following two drawbacks: they rely on the
assumption of fully homomorphic encryption (FHE) and they work in a pre-
processing model which requires the weak client to perform work proportional
to F during an initial pre-processing phase and only guarantees that the work
done in the online phase is low. First, we see the reliance on fully homomorphic
encryption as a drawback for two reasons: a) the verifiable computation protocols
so obtained, are inefficient in practice since they require the client to perform
FHE encryption (which, typically, is less efficient than regular encryption and
have enormous public keys) as well as require the server to perform expensive
computation on encrypted data; b) from a theoretical perspective, it would be
interesting to base protocols for verifiable computation on weaker or (relatively
more) well-studied cryptographic hardness assumptions4 . Hence, an interesting

4 The recent result of [BV13] constructs a leveled FHE scheme under the LWE as-
sumption that matches the best-known assumption for lattice-based PKE. However,
all standard FHE (i.e., non-leveled) schemes additionally require a much stronger
circular security assumption.



question to ask is: do we need fully homomorphic encryption to obtain privacy
in non-interactive verifiable computation protocols?

The second drawback of existing solutions is that they require the client
to perform work proportional to F during an initial pre-processing phase. In
addition to being a strong assumption, it is also meaningful only in settings
where the client wishes to compute the same function many times. This brings us
to the next question: can we build verifiable computation protocols that allow the
client to efficiently outsource computations (even ones that it wishes to execute
just once)?

In this work, we are interested in addressing the above questions. Before we
do so, we first present some intuition on the challenge of avoiding FHE. First,
note that in a non-interactive verifiable computation protocol, the client sends
a single message to the server (that can be viewed as an “encryption” of x), and
the server responds back with a single message from which the client can recover
F(x) (hence this message must look like an encryption of F(x)). If we require
the client’s computational complexity to be independent of F , then inherently,
every verifiable computation protocol seems to have an FHE scheme embedded
in it5. In fact, even if we allow interaction between the client and the server, to
the best of our knowledge we do not know verifiable computation protocols that
achieve privacy without FHE.

1.1 Multi-server Model for Verifiable Computation

In light of the challenge in removing FHE in the single-server model, we turn to
a model of verifiable computation in which a single client outsources its compu-
tation to multiple (say n) servers. Note that if, all n servers are un-trusted (and
colluding), then this is equivalent to outsourcing computation to a single server,
and again it seems that we require FHE to obtain secure protocols. Hence, we
consider a model in which a single client, holding an input x, wishes to out-
source the computation of some function F , to a set of servers S1, · · · ,Sn, such
that client performs very little computation (independent of F) throughout the
protocol and yet has a guarantee that none of the servers learn x, nor can they
force the client to accept any other output, other than the right value of F(x),
even if up to n− 1 of the servers are malicious and colluding. (Note that in the
multi-server model, this is the strongest security one can achieve.)

Communication Model. Since client efficiency is our primary concern, we work
in a model where the client sends and receives a single message, similar to the
single-server non-interactive communication model. In particular, consider any
(arbitrary) ordering of the servers. In our communication model, the client pre-
pares a message and sends it (only) to the first server. Each intermediate server
(except the first and the last server) receives a message from the previous server,

5 This is not entirely true if the client is allowed to work in time proportional to F in
the pre-processing stage, but it does seem like the only way we know how to obtain
privacy in such protocols.



performs some computation, and, sends the outgoing message to the next server.
The last server, upon doing its computation, sends the resulting message back
to the client. After receiving this message, the client either accepts or rejects.

1.2 Our Results and Techniques.

We provide general positive results in the above model for any PPT computable
function without relying on FHE and without requiring a pre-processing stage.
Our constructions guarantee both: privacy for the input (and output) of the
client, as well as the correctness of the output (in case client outputs accept).
We now state the various results that we obtain in this work:

– We first consider the 2-server case. In this setting, we present a protocol that
can be obtained from any non-private verifiable computation protocol6 and
any collision-resistant hash function. This protocol is secure (i.e, guarantees
privacy and soundness) as long as at least one of the two servers is not
corrupted.

– Furthermore, in the 2-server case, if we allow each server to send a message
to the other (i.e., we add one new message from the second server to the
first), we are able to achieve a highly practical protocol solely based on
one-way functions. In fact, in this protocol, the client only needs to send
2κ(λx +λy) random bits, where λx and λy are the input and output lengths
respectively and κ is the security parameter, (and then additionally perform
a lookup), while the two servers only need to generate and evaluate a garbled
circuit each (the work done by the two servers can be run in parallel further
minimizing the time of the protocol execution).

– Next, we consider the n-server case. That is a client outsources the computa-
tion to n servers. Here, we construct a protocol based solely on the Decisional
Diffie-Hellman (DDH) assumption that is secure as long as at least one of
the n servers is not corrupted. The computational complexity of the client
throughout the protocol is independent of F , the function being outsourced;
in particular it is O(κ · λx). Since there is no preprocessing, there are no
restrictions on which functions the servers might evaluate for the client. The
function to be evaluated may even be different in different protocols execu-
tions (as long as there is a mechanism for the servers to get the function
description without affecting the computational complexity of the client).
The primary tool this construction relies on is the notion of rerandomizable
Yao’s garbled circuits due to Gentry, Halevi, and, Vaikuntanathan [GHV10]
which we carefully put together along with a specific proxy re-encryption
scheme [BBS98].

– Finally, we also show how to obtain a secure protocol in the n-server case
that is based solely on one-way functions. This protocol is secure as long as
a constant fraction of the n servers are not corrupted.

6 That is, a verifiable computation protocol that does not necessarily guarantee any
privacy



An added feature of all our protocols is that by using universal circuits, we
can hide not just the input (x), but also the function (F) being outsourced. This
would be particularly useful in the case when the function description is short
but the computational complexity of evaluating F is high. Finally, we note that
our solutions do not suffer from the “rejection-bit” problem (that most earlier
solutions suffer from) as we do not employ a pre-processing stage.

Remarks. We stress that we do not assume that the multiple malicious servers
do not collude. Similar to standard secure multi-party computation protocols, all
of our protocols are secure even when n−1 out of the n servers are malicious and
colluding with each other. We remark that one could potentially reduce the com-
munication between servers by making use of a fully homomorphic encryption
(FHE) scheme; however, our goal is to not rely on FHE due to its inefficiency.
Furthermore, it would seem unlikely for us to obtain an n-server protocol where
server communication is independent of the function without relying on FHE
as this would lead to a secure multi-party computation protocol with constant
communication complexity (without relying on FHE). We stress that the lack
of any positive results in getting privacy for outsourcing computation without
FHE, makes it important to consider models such as ours.

We stress that, similar to standard MPC, in our protocol also, n−1 malicious
servers could jointly collude and send their entire state to the honest server; this
would mean that the honest server could learn the client’s input. However, we
do not view this as a serious limitation as this issue exists even in any MPC
protocol that tolerates t corruptions. However, we stress that this problem does
not arise in our setting as long as at most n − 2 servers are corrupted. Even if
n−2 servers send their state to one other server, it learns nothing as the protocol
tolerates n− 1 corruptions.

We finally remark that while one can obtain a private protocol for outsourcing
computation in the multi-server model by simply secret sharing the clients input
to the n servers and running a standard MPC protocol, our work shows that
one can obtain significant efficiency gains when dealing with the specific prob-
lem of outsourcing computation (namely by leveraging the fact that the client is
honest). In the 2-server setting, our protocol is even faster than standard semi-
honest secure 2PC as we do not need to make use of oblivious transfer protocols
(or zero-knowledge proofs/cut-and-choose techniques to obtain malicious secu-
rity). We believe that our work can be a stepping stone towards obtaining faster
protocols even in the multi-server setting.

Related work and open questions. As mentioned earlier, the works of Gen-
naro et al. [GGP10], Chung et al. [CKV10], Applebaum et al. [AIK10] were
the firsts to consider non-interactive verifiable computation (with privacy)
in the single server model. All the above protocols rely on fully homo-
morphic encryption to obtain privacy of the client’s input. The works of
[GKR08,KR09,GLR11,BCCT12,DFH12], and [GGPR13], all consider the prob-
lem of delegating computation, but without privacy (and obtain protocols for
various classes of functions and under different assumptions). The works of



[BGV11,FG12] consider outsourcing the computation of polynomials (but not
the inputs), while the work of [PRV12] considers (non-private) outsourcing of
specific class of functions without FHE. Of course, one could additionally make
these protocols private, by “enveloping them” under an FHE scheme; however,
this is what we wish to avoid. Note that one could obtain a private verifiable
computation protocol from an attribute-based encryption scheme that has the
property of attribute-hiding (using the construction of [PRV12]); however, we
remark that while recent work has constructed attribute-based encryption for
all polynomial time functions [GVW13,GGH+13], these works do not obtain at-
tribute hiding. Furthermore, even then, using this transform, we will only get a
verifiable computation protocol in the pre-processing model. Finally, the work
of Goldwasser et al. [GKP+13] shows how to construct reusable garbled circuits
and from this show how to obtain a private scheme for delegating computation;
however their construction makes use of a FHE scheme.

The works of Canetti et al. [CRR11,CRR12] were the first to consider verifi-
able computation in the multi-server setting. While they do not consider privacy
of the client’s inputs, they provide an unconditional guarantee of the client re-
ceiving the correct output (as long as at least one server is honest). The servers
do not communicate in their model, however their protocol works only for a
restricted class of functions (logspace uniform NC circuits). They also have a
result based on computational assumptions that work for arbitrary polynomial
sized circuits.

Kamara and Raykova [KR11] consider the problem of outsourcing compu-
tation in the “multi-tenant” setting, in which there any mutually untrusting
tenants (clients) running computations on the same trusted server (physical ma-
chine). Our solutions can be extended to this setting and achieve an improve-
ment in efficiency (e.g., the protocol in Section 4.1) compared to the solutions
of [KR11].

In our work, we obtain protocols in which the client sends a single message
to the first server and receives a single message from the last server, but each of
the servers send and receive one message each. A very interesting open problem
would be to obtain a private protocol, in which the client sends a single message
to each of the servers and receives a single message from each of the servers, and
can obtain the correct result from this (i.e., a model in which the servers do not
communicate with each other at all).

Organization of the paper. We begin, in Section 2, by defining our security and
communication model for multi-server verifiable computation. In Section 3, we
give an overview of the main tools, that we use in constructing our protocols. We
present our main n-server protocol based on the DDH assumption in Section 4.2.
We describe an improvement of this protocol in which the client works in time
independent of n in the full version [ACG+14]. We refer the reader to the full
version for details of our two 2-server protocols and the n-server protocol based
on one-way functions (that tolerates a constant fraction of corrupt servers). We
also refer the reader to the full version for more details of the constructions and
for all the proofs.



2 Verifiable Computation in the Multi-server Setting

Let VCmultiserv = (C,S1, . . . ,Sn) be a multi-server delegation scheme where C de-
notes the client and S1, . . . ,Sn denote the servers. The scheme basically consists
of two stages - the first is the (one-time) setup stage and the second is the online
stage. In the setup stage, denoted by SetupVCmultiserv

, some computation is per-
formed by the clients and the servers. The output of the setup stage consists of
information public to everyone, as well as some secret information for the client
as well as the servers. We stress that this stage is different from the standard
pre-processing stage in literature as the work done in this stage is independent
of the function F or the input x7.

The second stage is the online stage when the client delegates the job of
evaluating F on an input x to the set of servers. In this stage, the client runs in
time independent of the complexity of the function F .

A note on the setup stage. In all our constructions, the setup stage is indepen-
dent of the function F . As a result, the computational complexity of this stage is
independent of the complexity of function F . This is a much stronger condition
than the proposed single-server delegation protocol [GGP10,CKV10] where the
setup stage was allowed to run in time proportional to the complexity of F . An-
other important advantage of the setup stage being independent of the function
being delegated is that the client can execute this setup stage once (irrespective
of the function being delegated) and store the secret state, which can then be
reused for delegating any function, making our protocol efficient if the client
wishes to delegate a number of different functions.

A multi-server delegation scheme should satisfy the properties of correctness,
soundness and privacy. We refer the reader to the full version for the definitions.

3 Building blocks

3.1 A Variant of Garbled Circuits

Yao in his seminal paper [Yao82] introduced the notion of garbled circuits to
construct a secure two-party computation protocol. For this work, as we will
explain later, we will consider a variant of the garbled circuit construction, de-
noted by YaoGarbledCkt, – namely, one in which the output wires are fixed. In
this variant, the output wire keys are given externally to YaoGarbledCkt which in
turn generates a garbled circuit with these fixed output wire keys. Though this
violates the one-time soundness property of the garbled circuits, we will show,
that this still ensures the privacy of the inputs which suffices for our construction.
We formally show the proof of this claim in the full version.

7 This requirement of having the setup stage to be independent of the function of
the client makes our model significantly stronger than the ones considered in prior
works.



In more detail, YaoGarbledCkt is a probabilistic polynomial time algo-
rithm that takes as input a circuit F8, randomness R1, R2, and fixed out-
put wire keys. Let the keys for the output wire be denoted by wout ={

((w0
out,1, w

1
out,1), . . . , (w0

out,µ, w
1
out,µ))

}
. It generates a garbled circuit according

to Yao [Yao82]. R1 is the randomness used to generate the input wire keys. R2

is the randomness used to generate the wire keys for the rest of the circuit along
with the four ciphertexts associated with every gate of the circuit. We will denote
the collection of garbled gates by GC. Given the input wires corresponding to
an input x, one can “evaluate” the garbled circuit and finally decode the output
wires in order to obtain F(x).

To aid the construction we give later, we define another functionality, namely
YaoGarbledCktin, that does the following. YaoGarbledCktin takes as input random-
ness R1, and outputs just the input wires corresponding to GC which is the out-
put of YaoGarbledCkt(F ; (R1, R2)). As we will see later, the client will use this
algorithm to compute just the input wire keys for his input x, corresponding
to the garbled circuit GC, without generating the entire garbled circuit (GC)
itself. The procedure YaoGarbledCktin can be derived from YaoGarbledCkt such
that the computational complexity of YaoGarbledCktin depends only on the size
of the input to the function and not on the size of the garbled circuit itself. For
more details, refer to the full version.

Re-randomizable Garbled circuits. In [GHV10], Gentry et al. gave an alternate
construction of garbled circuits whose security was shown, based on the Deci-
sional Diffie Hellman (DDH) assumption. The advantage of their construction
was that the garbled circuits that were obtained from their approach could be
rerandomized. We say that a garbled circuit produced by YaoGarbledCkt is reran-
domizable when there exists an algorithm reRand which on input a garbled circuit
produces a different garbled circuit such that no computationally bounded ad-
versary can distinguish whether a given garbled circuit is obtained as a result
of rerandomization or was computed from YaoGarbledCkt, even when given the
original garbled circuit. To explain this in more detail, we first define reRand.
reRand takes as input a garbled circuit GC1 (constructed from F and with fixed
output wires wout) and outputs another garbled circuit GC2 (whose output wires
are also fixed to wout) such that the distribution of GC1 is computationally in-
distinguishable from that of GC2 even if the distinguisher is given access to F
and the randomness used to compute GC1. In addition to GC1, reRand takes as
input randomness (R1, R2) (and is denoted reRand(GC1, (R1, R2))). R1 is used
to re-randomize the input wires while R2 is used to re-randomize the rest of
circuit. Note that the procedure reRand re-randomizes only the garbled circuit
and not the output wires. So it does not need to take as input wout. Gentry
et al. construct re-randomizable garbled circuits whose output wires are also
randomized; as mentioned earlier, we require a variant of garbled circuits whose
output wires remain the same, even after re-randomizing. We will show that the

8 We use the same symbol to denote the function as well as the circuit computing the
function.



construction of Gentry et al. can be used even for our purposes and the security
of the construction holds. For more details, we refer the reader to the full version.

We now define another functionality, namely reRandin, on the lines of
YaoGarbledCktin as follows. reRandin takes as input randomness R1 and wGC1,in,
which are the input wire keys of a garbled circuit GC1, and outputs wGC2,in

which are the input wire keys corresponding to GC2 where GC2 is the output
of reRand(GC1; (R1, R2)). Like in the case of YaoGarbledCktin, the reRandin algo-
rithm can be easily derived from reRand such that the computational complexity
of reRandin depends only on the size of the input to the function and not the size
of the garbled circuit itself.

3.2 Re-encryption Scheme

Informally, a re-encryption scheme allows a third party, who possesses a re-
encryption key, to transform ciphertexts encrypted under one public key pk1
into ciphertexts of the same message under a different public key pk2, without
learning anything about the contents of the message m. Various constructions
of re-encryption schemes are known; we require a re-encryption scheme that is
also additively homomorphic. We show such a scheme and provide more details
about it in the full version.

4 Constructions of Verifiable Computation Protocols

In this section, we shall present our protocols for verifiable computation in the
multi-server model. We shall first begin by describing a protocol in the 2-server
case that can be built from any non-private verifiable computation protocol
coupled with any collision-resistant hash function family. We will then build
our n-server protocol that is based on the Decisional Diffie-Hellman assumption.
Our n-server protocol based on one-way functions (but handling only a constant
fraction of corrupt servers) is given in the full version.

4.1 The Two-Server Case

We wish to construct a verifiable computation protocol that allows a client C
to outsource the computation of F on input x to two servers S1 and S2 with a
guarantee on both privacy and soundness when at least one server is honest. We
present two protocols for this purpose.

Solution 1: The high level idea for the first protocol is as follows. C will pick
a seed to pseudo-random function (PRF) family and send the seed to S1. The
client will also generate the output wires of a garbled circuit for function F (as
described in Section 3.1 using YaoGarbledCktin) and send them to S1. Finally, the
client also picks a key to a collision-resistant hash function (call the description
of this function H) and sends H to S1 and S2. Upon receiving input x, C picks
the corresponding input wires in the garbled circuit for x and sends them to S2.



S1 generates a garbled circuit for F using randomness produced by the PRF
seed and the output wires given by C. S1 then computes a hash of this garbled
circuit using H and sends the result of this hash to C along with a proof that
the computation was performed honestly (we use the non-private verifiable com-
putation protocol in order to do this). S1 will send the garbled circuit produced
to S2. S2 will compute a hash of the garbled circuit received from S1 and send
that to C. S2 will also evaluate the garbled circuit using the input wires received
from C and send the resulting output wire to C.

The client finally checks three things: a) The non-private verifiable compu-
tation with S1 succeeded, b) the hash output values received from both servers
were the same and c) the output wire received from S2 was indeed a valid out-
put wire. If all three checks succeed, then the client decodes the output from the
received output wire and learns F(x). For more details, we refer the reader to
the full version.

Solution 2: We next present a highly practical two-server protocol based solely
on one-way functions. For this protocol alone, we will have each server send a
message to the other server.

The protocol works as follows. The client sends each server Si (for i ∈ {1, 2}),
a seed to a pseudo-random function Ki. Each Si uses Ki and generates the
garbled circuit (GCi) for the function F9. Additionally, the client also sends
input wires of GC1 (resp. GC2), corresponding to his input, to S2 (resp. S1).
Each server evaluates the garbled circuit it receives from the other server using
the input wires it receives from the client and sends the output wires to the
client. C checks the output wires it receives from both servers to make sure they
are valid. If they are both valid, it decodes them to obtain the output values
contained in them. If both these values are the same, it accepts the output value
and rejects otherwise10. For more details of this protocol, we refer the reader to
the full version.

While the communication between servers cannot be reduced in this protocol,
we feel the practical efficiency of this protocol outweighs any overhead caused
due to that extra message from S2 to S1. Indeed, the only work done by the
client is to generate short randomness and finally do a look-up to obtain the
output. The only work done by the servers is to generate (and evaluate) a single
garbled circuit each (that can also be done in parallel by both the servers). We
stress that while 2-PC protocols can be used to obtain a similar result, we need
the underlying 2-PC protocol used to be secure against malicious adversaries.
Such a 2-PC protocol would need to use either the cut-and-choose approach or
zero-knowledge proofs, both of which are inefficient.

9 Actually C needs to only give the servers the randomness for generating the input
and output wires. The servers can pick their own randomness to generate the garbled
circuit (consistent with these input and output wires). Security of our protocol holds
even in this case – since we have that at least one server is honest, at least one garbled
circuit is generated honestly. This is sufficient to guarantee security.

10 Note that the above protocol can be modified trivially so that the client sends just
one message to S1 and receives just one message from S2.



This protocol for verifiable computation is similar in spirit to a protocol by
Mohassel and Franklin [MF06] to achieve efficient, malicious, 2-PC in a model
where the malicious party may get some information-leakage. Our protocol, used
in the context of verifiable computation, is fully secure. It, of course, avoids the
use of oblivious transfer protocols and, can additionally allow the servers to run
in parallel, thereby achieving better efficiency. One drawback of this solution is
that its security is guaranteed only when the servers do not learn whether or
not the client accepted the response. We stress that none of our other solutions
suffer from this drawback.

4.2 The n-Server Case

In this section, we present our n-server verifiable computation protocol based on
the DDH assumption. The high level idea behind constructing such a protocol for
functionality F(x) works as follows: the client generates the input and output
wires corresponding to GC1 (where GC1 is the garbled circuit for evaluating
F). S1 generates GC1 (and all the wires corresponding to it). Each server Si
(for 1 ≤ i ≤ n − 1), then re-randomizes GCi and sends it Si+1. The client
re-randomizes his input wires (n − 1 times) to obtain the wires corresponding
to input x (according to the re-randomized garbled circuit GCn−1). Sn obtains
the re-randomized input wires corresponding to input x. (NIZK proofs need
to be used to ensure that the re-randomizations are done correctly; likewise
signature and encryption schemes need to be used to ensure that messages are
sent via secure authenticated channels – we omit those details for now.11) Sn
then evaluates the final garbled circuit and returns the output to the client.
The client re-randomizes his output wires n − 1 times to obtain the output
wires corresponding to GCn−1. Using the work of Gennaro et al. [GGP10], one
can then show that if Sn returned a “correct” output wire, then he must have
obtained it by evaluating the “honestly” re-randomized garbled circuit on the
right input wires – therefore the protocol guarantees soundness. One can then
show the privacy of this protocol from the fact that even if one of the servers
does the re-randomization honestly, the re-randomized input and output wires
will reveal no information to the dishonest servers (i.e., the adversary) about x
and F(x).

Remark. Recently, the work of [BHR12] built adaptively secure garbled circuits
which remain secure even if the input is chosen after seeing the garbled circuit.
Such security is needed in verifiable computation protocols where the garbled
circuit is generated in the pre-processing stage. In our protocol, the garbled
circuits are always generated in the online stage. So standard garbled circuits as
proven secure in the work of [LP09], suffice for our purposes.

11 Alternatively, one can use techniques of cut-and-choose in order to make sure that
the servers honestly create (or re-randomize) the garbled circuits; we leave the details
of this construction to the full version of the paper.



While this, along with a few other ideas, forms the underlying intuition for
our result, the main limitation of the above approach is that the client works
proportional to n.

To this end, observe that the client works proportional to n because he needs
to re-randomize both the input wires as well as the output wires. For the sake of
simplicity, for now, we only discuss how to avoid the client’s re-randomization
of the output wires. One idea to accomplish this is to fix all the output wires (of
all garbled circuits) to some specific value. However, this results in two issues.
The first issue is that it is not immediately clear that this protocol guarantees
privacy. However, we show that Yao’s garbled circuit and it’s re-randomization
remains private even when using fixed output wires. We will use this to show
that our protocol guarantees privacy. We refer the reader to the full version for
the details.

The next, and more important, issue with this change, is that it no longer
guarantees soundness. (Since the servers know the fixed output wires, Sn could
just send a correct output wire without evaluating the garbled circuit GCn−1.)
We fix this by using an idea from the work of Applebaum et al. [AIK10]. We
use a message authentication scheme MAC = (MACtag,MACverify) and modify
the functionality F to G: instead of computing just F(x), G, takes as additional
inputs K1,K2. G(x,K1,K2) executes F on input x to obtain y. It then computes
y⊕K1 and then produces yMAC = MACtag(K2, y⊕K1). Now, one can show that
the soundness of the protocol comes from security of the message authentication
code. This is an overview of our main construction which we describe below.
In this construction, the client still works proportional to n but he no longer
re-randomizes the output wires.

In our full version, we describe how to avoid the client’s re-randomization of
the input wires, thereby making the client’s running time independent of n.

Our n−Server Construction

Setup stage. During the Key Generation stage, each server Si generates the secret
key-public key (ski, pki) pairs for an encryption scheme (KeyGenEnc,Enc,Dec)
that is CCA2 secure. Further, the client generates (SK,VK) for the signature
scheme (KeyGenSign,Sign,Ver) that is existentially unforgeable under chosen mes-
sage attack. The servers S1, . . . ,Sn−1 generate (SK1,VK1), . . . , (SKn−1,VKn−1)
respectively for the signature scheme (KeyGenSign,Sign,Ver). Let MAC =
(MACtag,MACverify) be a message authentication scheme which is existentially
unforgeable against chosen message attack. MACtag on input a MAC key K and
a message m produces a message authentication code mMAC for m. MACverify
on input key K, message m and a tag m′MAC, outputs 1 if m′MAC is a valid mes-
sage authentication code for m under the key K else it outputs 0. Let Comm(m)
denote the commitment to a message m (that is at least computationally hiding
and binding). We let Open(c) denote the opening of a commitment c. Further,
the servers use a non-interactive zero knowledge proof (NIZK) system (in the
CRS model) (ProverRel,VerifierRel) defined for a relation Rel in NP that satisfies



the standard notions of correctness, soundness, and zero-knowledge. The zero
knowledge simulator for this proof system is denoted by SimRel. We also use the
following pseudo-random function families:

1. PRFgc(·, ·) is used by S1 to output the randomness for generating all the
wires of GC1 with the exception of the input and output wires alone. With-
out loss of generality, assume that the output length of the PRF is suf-
ficiently long enough to garble the circuit G 12 which is defined with re-
spect to the delegated function F as follows. G on input (x,K1,K2) outputs
MACtag(K2,F(x)

⊕
K1).

2. For 2 ≤ i ≤ n− 1, PRFre(·, ·) is used by Si to re-randomize the entire circuit
GCi−1 except the input wire keys. As before, assume that the output of PRF
is sufficiently long enough to rerandomize the garbled circuit of G (which is
defined above).

3. PRFin(·, ·) is used by S1 to generate the keys for the input wires correspond-
ing to GC1. Additionally it will be used by the client to generate the keys
for the input wires (without having to generate all of GC1). Further Si (for
2 ≤ i ≤ n− 1) uses PRFin(·, ·) to rerandomize the input wire keys of GCi.

We now describe our protocol P.

1. Client on input x does the following:
(a) C picks a key α1 for PRFgc(·, ·) and n − 2 keys {α2, . . . , αn−1} for the

pseudorandom function PRFre(·, ·) uniformly at random. In addition he
also picks keys β1, . . . , βn−1 to be used by Si to evaluate PRFin(·, ·) uni-
formly at random.

(b) C computes commitments to each of these PRF keys. Let cα =

{cα1 , . . . , cαn−1}
def
= {Comm(α1), . . . , Comm(αn−1)} and cβ =

{cβ1 , . . . , c
β
n−1}

def
= {Comm(β1), . . . ,Comm(βn−1)}.

(c) C sets dαi = Open(cαi ) and dβi = Open(cβi ) for all 1 ≤ i ≤ n − 1. Let

dα = {dα1 , . . . , dαn−1} and dβ = {dβ1 , . . . , d
β
n−1}.

(d) Let the client’s input be x = x1 · · ·xλx , where each xi is a bit. The client
picks K1 uniformly at random (where K1 is of the same length as F(x))
and also picks a MAC key K2. Let K2 be of length λK2

. λ is such that
λ = λx + λK1

+ λK2
.

(e) C picks an execution id, id13, and obtains the keys for the in-
put wires of the garbled circuit GC1 (to be defined later) by eval-

12 This assumption requires the knowledge of the size of the circuit being delegated by
the client before the PRF keys are generated. This in turn makes the key generation
stage dependent on the function being delegated. This dependency can be eliminated
as follows. Instead of using just one output of PRF to garble the circuit, use multiple
PRF outputs to garble the circuit. Using sufficiently many PRF outputs the entire
circuit can be garbled. For convenience sake, in our protocol description the garbling
of the entire circuit is done using just one output of the PRF.

13 This id needs to be unique for each execution. This can be achieved by the client,
either by maintaining state and ensuring that ids do not repeat, or by the client
picking the id at random from a sufficiently large domain (and one can then argue
that except with negligible probability, the id will be unique).



uating YaoGarbledCktin(F ,PRFin(β1, id)). Let the keys (correspond-
ing to 0 and 1) for the input wires be denoted by wGC1,in =
{(w0

GC1,in,1
, w1

GC1,in,1
), . . . , (w0

GC1,in,λ
, w1

GC1,in,λ
)} where w0

GC1,in,i
denotes

the key for the ith input wire representing bit 0 while w1
GC1,in,i

denotes

the ith wire representing the bit 1 in the garbled circuit GC1.
(f) The client C then does the following. It computes

reRandin

(
reRandin

(
· · ·
(
reRandin(wGC1,in; PRFin(β2, id))

)
;

· · ·
)
; PRFin(βn−1, id)

)
to obtain wGCn−1,in =

((w0
GCn−1,in,1

, w1
GCn−1,in,1

), · · · , (w0
GCn−1,in,λ

, w1
GCn−1,in,λ

)). Let

wX
GCn−1,in

= (wX0

GCn−1,in,1
, . . . , wXλGCn−1,in,λ

) denote the input wire

keys corresponding to the input X = (x,K1,K2) for the garbled circuit
GCn−1.

(g) Client C picks the output wire keys wout =
{(w0

out,1, w
1
out,1), . . . , (w0

out,µ, w
1
out,µ)}. For simplicity we assume that

these are chosen uniformly at random, even though we won’t rely on
that property in any of our proofs.

(h) Client C picks random strings CRS1, . . . ,CRSn−1 to be used as common
reference string for the NIZK proofs.

(i) For 1 ≤ i ≤ n−1, C sets msgi = (id, dαi , d
β
i , c

α, cβ ,CRS1, . . . ,CRSi,wout).
Further, C sets msgn = (id, cα, cβ ,wX

GCn−1,in
,CRS1, . . . ,CRSn−1,wout).

(j) Let σ
msgi
i be the signature of Encpki(msgi) using signing key SK for all

1 ≤ i ≤ n.
(k) C sends Encpk1(msg1), . . . ,Encpkn(msgn) along with σ

msg1
1 , . . . , σ

msgn
n to

S1.

2. Server S1 on input F and upon receiving
(Encpk1(msg1), . . . ,Encpkn(msgn), σ

msg1
1 , . . . , σ

msgn
n ) from the client does

the following:
(a) Compute the modified functionality G which does the following. G on

input (x,K1,K2) executes F on input x to obtain y. It then computes y⊕
K1 and then produces yMAC = MACtag(K2, y⊕K1). It outputs (y, yMAC).

(b) S1 verifies signature σ
msg1
1 on the input message Encpk1(msg1) by exe-

cuting Ver(VK,Encpk1(msg1), σ
msg1
1 ). If Ver outputs reject then it aborts.

(c) S1 decrypts Encpk1(msg1) using sk1 to obtain msg1 which is parsed as

(id, dα1 , d
β
1 , c

α, cβ ,CRS1,wout).
(d) S1 evaluates PRFgc(α1, id) and PRFin(β1, id) and uses the randomness

output by the two PRFs to compute YaoGarbledCkt on input G, to ob-
tain GC1. In other words,
YaoGarbledCkt(F ,wout; (PRFin(β1, id),PRFgc(α1, id))) outputs GC1 as
well as the input wires corresponding to GC1.

(e) S1 then computes a proof π1 using CRS1 as the CRS for the statement:

“There exists witness dα1 , d
β
1 such that

i. dα1 = Open(cα1 ) and dβ1 = Open(cβ1 );
ii. GC1 is the garbled circuit output by

YaoGarbledCkt(G; (PRFin(β1, id),PRFgc(α1, id))).”



More formally, the proof is generated as follows. Consider the following
relation:

Rel1 =
{(

(cα1 , c
β
1 ,GC1), (dα1 , d

β
1 )
)

:

dα1 = Open(cα1 ), dβ1 = Open(cβ1 ), dα1 = (α1, R
α
1 ), dβ1 = (β1, R

β
1 ),

GC1 = YaoGarbledCkt((G,wout); (PRFin(β1, id),PRFgc(α1, id)))
}

Execute ProverRel1
(
(cα1 , c

β
1 ,GC1), (dα1 , d

β
1 )
)

to obtain the proof π1.
(f) Generate signature σS1 for the message (GC1, π1).
(g) S1 lets π = {π1}, and gives (GC1, π,Encpk2(msg2), . . . ,

Encpkn(msgn), σS1 , σ
msg2
2 , . . . , σ

msgn
n ) to S2.

3. Server Si (2 ≤ i ≤ n − 1) upon receiving F and
(GC1, . . . ,GCi−1, π,Encpki(msgi), . . . , Encpkn(msgn), σS1 , . . . , σSi−1

,
σ
msgi
i , . . . , σ

msgn
n ) from Si−1 does the following:

(a) Si verifies signature σ
msgi
i on the input message Encpki(msgi) by execut-

ing Ver(VK,Encpki(msgi), σ
msgi
i ). If Ver outputs reject then it aborts.

(b) Si parses π as π1, . . . , πi−1. It then verifies signatures σS1 , . . . , σSi−1

on the messages (GC1, π1), . . . , (GCi−1, πi−1) using the verification keys
VK1, . . . ,VKi−1 respectively.

(c) Si then decrypts Encpki(msgi) using secret key ski to obtain msgi which

is parsed as (id, dαi , d
β
i ,cα, cβ , CRS1, . . . ,CRSi,wout).

(d) Si verifies all the NIZK proofs in π as follows. It first parses π

as π1, . . . , πi−1. It then executes Verifier1((cα1 , c
β
1 ,GC1),CRS1, π1) and

Verifierj((c
α
j , c

β
j ,GCj ,GCj−1),CRSj , πj) for all 2 ≤ j ≤ i− 1. Si aborts if

any of the verifiers Verifierj , for 1 ≤ j ≤ i− 1, aborts.
(e) Si evaluates PRFre(αi, id) and PRFin(βi, id) and uses the randomness

output by the 2 PRFs to rerandomize the garbled circuit GCi−1. More
formally, it computes reRand(GCi−1; (PRFin(βi, id), PRFre(αi, id))) to ob-
tain GCi.

(f) Si computes a proof πi with respect to CRSi for the statement:

“There exists witness dαi and dβi such that

i. dαi = Open(cαi ) and dβi = Open(cβi );
ii. GCi is the garbled circuit output by

reRand(GCi−1; (PRFin(βi, id),PRFre(αi, id))).”
More formally, consider the following relation:

Rel1 =
{(

(cαi , c
β
i ,GCi,GCi−1), (dαi , d

β
i )
)

:

dαi = Open(cαi ), dβi = Open(cβi ), dαi = (αi, R
α
i ), dβi = (βi, R

β
i ),

GCi = reRand(GCi−1; (PRFin(βi, id),PRFre(αi, id)))
}

Execute ProverReli
(
(cαi , c

β
i ,GCi), (d

α
i , d

β
i )
)

to obtain the proof πi.



(g) Generate signature σSi for the message (GCi, πi).
(h) Si lets π = π ∪ {πi}, and sends (GC1, . . . ,GCi,Encpki+1

(msgi+1), . . . ,

Encpkn(msgn), σS1 , . . . , σSi , σ
msgi+1

i+1 , . . . , σ
msgn
n ) to Si+1.

4. Server Sn does the following upon receiving F and
(GC1, . . . ,GCn−1, π,Encpkn(msgn), σS1 , . . . , σSn−1

, σ
msgn
n ):

(a) Sn verifies signature σ
msgn
n on the input message Encpkn(msgn) by exe-

cuting Ver(VK,Encpkn(msgn), σ
msgn
n ). If Ver outputs reject then it aborts.

(b) Si parses π as π1, . . . , πn−1. It then verifies signatures σS1 , . . . , σSn−1

on the messages (GC1, π1), . . . , (GCn−1, πn−1) using the verification keys
VK1, . . . ,VKn−1 respectively.

(c) Sn then decrypts Encpkn(msgn) using secret key ski to obtain msgi
which is parsed as (id, cα, cβ , wX

GCn−1,in
,CRS1, . . . ,CRSn−1,wout). Fur-

ther, wX
GCn−1,in

is parsed as (wX1

GCn−1,in,1
, . . . , wXλGCn−1,in,λ

).

(d) Sn verifies all the NIZK proofs in π as follows. It first parses π

as π1, . . . , πn−1. It then executes Verifier1((cα1 , c
β
1 ,GC1),CRS, π1) and

Verifierj((c
α
j , c

β
j ,GCj ,GCj−1),CRS, πj) for all 2 ≤ j ≤ n− 1. Sn aborts if

any of the verifiers Verifierj , for 1 ≤ j ≤ n− 1, aborts.
(e) If Sn accepts all the NIZK proofs and signatures, it uses wX

GCn−1
to

evaluate the garbled circuit GCn−1 to obtain the wire keys wz
out. It

then determines z = z1 · · · z|Gout| 14 such that the set of wire keys
{wout,1, . . . , wout,|Gout|} represents wz

out. Sn sends z to the client C.
5. Client on receiving z from Sn does the following:

(a) C parses z as (y, yMAC).
(b) C executes MACverifyK2

(y, yMAC). If the output of MACverify is 0 then
it outputs Reject. Else, it computes y′ where y′ = y ⊕ K1 and then it
outputs Accept.

It is easy to see that correctness follows from the correctness of Yao and other
underlying primitives. We defer the proof of privacy and soundness to the full
version.
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