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Abstract

The notion of Zero Knowledge introduced by Goldwasser, Micali and Rackoff in STOC 1985
is fundamental in Cryptography. Motivated by conceptual and practical reasons, this notion has
been explored under stronger definitions. We will consider the following two main strengthened
notions.

Statistical Zero Knowledge: here the zero-knowledge property will last forever, even in case
in future the adversary will have unlimited power.

Concurrent Non-Malleable Zero Knowledge: here the zero-knowledge property is com-
bined with non-transferability and the adversary fails in mounting a concurrent man-in-
the-middle attack aiming at transferring zero-knowledge proofs/arguments.

Besides the well-known importance of both notions, it is still unknown whether one can
design a zero-knowledge protocol that satisfies both notions simultaneously.

In this work we shed light on this question in a very strong sense. We show a statistical
concurrent non-malleable zero-knowledge argument system for NP with a black-box simulator-
extractor.

1 Introduction

The notion of zero knowledge, first introduced in [GMR85], is one of the most pivotal cryptographic
constructs. Depending on both natural and real-world attack scenarios, zero knowledge has been
studied considering different conceptual flavors and practical applications.

Zero knowledge and man-in-the-middle attacks. In distributed settings such as the Internet,
an adversary that controls the network can play concurrently as a verifier in some proofs1 and as

∗Work done while visiting UCLA.
1While in our general discussion, we often refer to zero-knowledge proofs, we will finally need to resort to only

arguments since our goal is to achieve statistical zero-knowledge property.
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a prover in the other proofs. The goal of the adversary is to exploit the proofs it receives from the
provers to then generate new proofs for the verifiers. The original notion of zero knowledge does
not prevent such attacks since it assumes the adversarial verifier to only play as a verifier and only
in sequential sessions.

The need of providing non-transferable proofs secure against such man-in-the-middle (MiM,
for short) attacks was first studied by Dolev, Dwork and Naor in [DDN91]. In [BPS06], Barak,
Prabhakaran and Sahai achieved for the first time such a strong form of zero knowledge, referred
to as concurrent non-malleable zero knowledge (CNMZK, for short) is possible in the plain model.
They provide a poly(λ)-round construction, for λ being the security parameter, based on one-way
functions, and a O(log(λ))-round construction based on collision-resistant hash functions. More
recent results focused on achieving round efficiency with a mild setup [OPV08], computationally
efficient constructions [OPV10], security with adaptive inputs [LP11].

Zero knowledge and forward security. The zero-knowledge property says that the view of
the adversarial verifier does not help her in gaining any useful information. This means that it
does not include information that can be exploited by a PPT machine. However, even though the
execution of a zero-knowledge protocol can be based on the current hardness of some complexity
assumptions, it is quite risky to rely on the assumed resilience of such assumptions against more
powerful machines of the future. What is zero knowledge in a transcript produced today could not
be zero knowledge in the eyes of a distinguisher that will read the transcript in 2040.

It is therefore appealing to provide some forward security flavor so that whatever is zero knowl-
edge today will be zero knowledge forever. Statistical zero knowledge [BMO90, SV03, Oka00,
GSV98, MOSV06, GMOS07, MX13] is the notion that satisfies this requirement. It has been
achieved in constant rounds using collision-resistant hash functions [HM96], and even under the
sole assumption that one-way functions exist requiring more rounds [HNO+09].

Unfortunately, all the known constructions for CNMZK protocols strongly rely on the computa-
tional indistinguishability of the output of the simulator. Techniques so far used to design protocols
that are then proved to be CNMZK require the protocol to fix a witness in a commitment, that
therefore must be statistically binding and thus only computationally hiding. There is therefore
no hope to prove those protocol to be statistical zero knowledge. Moreover it does not seem that
minor changes can establish the statistical zero knowledge property still allowing to prove CNMZK.

The Open Problem. Given the above state-of-the-art a natural question is the following: is it
possible to design an argument system that combines the best of both worlds, namely, a statistical
concurrent non-malleable zero-knowledge argument system?

1.1 Our Contribution

In this work, we provide the first statistical concurrent non-malleable zero-knowledge argument
system. Our construction is an argument of knowledge (AoK, for short) and has a black-box
simulator-extractor producing a statistically indistinguishable distribution.

As mentioned earlier, Barak et al. [BPS06] presented the first CNMZKAoK protocol; we will
refer to their work here as BPS. However, their construction had an inherent limitation that the
simulation can only be computational, the reason being the following. In their protocol, the prover
needs to commit to a valid witness via a statistically binding non-malleable commitment scheme.
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The commitment scheme being statistically binding is extremely crucial in their proof of security.
This implies that when the simulator cheats and commits to a non-witness, the simulated view can
only be computationally indistinguishable and not statistically so.

In this work, we overcome this shortcoming with the following idea. We take the BPS argument
as a starting point and modify it. Firstly, we work on the root of the problem – the non-malleable
commitment. We replace it with a special kind of a commitment scheme called ‘mixed non-malleable
commitment ’ scheme. The notion of mixed commitment was first introduced by Damg̊ard and
Nielsen [DN02]. Our mixed non-malleable commitment is parameterized by a string that if sam-
pled with uniform distribution makes the scheme statistically hiding and computationally binding.
Instead, when it is taken from another (computationally indistinguishable) distribution it is a sta-
tistically binding, computationally hiding, and non-malleable. We will construct such a scheme by
using as distributions non-DDH and DDH tuples.

The next idea would be to append the (modified) BPS argument to a coin-flipping phase in
which the prover and the verifier generate a random string. Thus, in the real-world the above
mixed commitment is statistically hiding. This thus enables us to prove statistical simulatability
of our protocol. Furthermore, in order to also achieve extractability of witnesses for the arguments
given by the adversary, we switch to a hybrid which biases the coin-flipping outcome to a random
DDH tuple. Typically, a coin-flipping protocol would involve the verifier committing to its share
of randomness, the prover sending its share of randomness in the clear, and finally, the verifier
opening the commitment. However, in order to enable the simulator to bias the outcome, instead
of the verifier opening the commitment to its share of randomness, it gives only the committed
value in the clear and presents an AoK for the randomness used. This argument is again played
by using the BPS AoK, since we would need concurrent non-malleability here.

In order to simplify our proofs, we rely on the Robust Extraction Lemma of Goyal et al. [GLP+12]
that generalizes concurrent extractability of the PRS preamble (or concurrently extractable com-
mitments – CECom, for short) [PRS02] in the following sense. Consider an adversary who sends
multiple CECom commitments interleaving them arbitrarily and also interacts with an external
party B in an arbitrary protocol. Then, [GLP+12] shows how to perform concurrent extraction
of the CECom commitments without rewinding the external party B. The extractor designed by
them is called the ‘robust simulator’.

Technical Challenges. While we will encounter multiple technical challenges, which will be
clear as we go ahead, we point out the core technical challenge here and the way we will solve it.

One of the main technical challenges is when we prove witness extractability of our protocol.
Namely, in our hybrid argument, we will encounter two consecutive hybrids Ha and Hb, wherein
a coin-flipping phase of a particular right hand session is ‘intact’ in Ha, but is biased in Hb. This
results in the mixed commitment changing from statistically hiding to statistically binding. In
order to finally be able to argue that the extracted values are indeed valid witnesses, we will need
to argue for the hybrid Hb that the value committed in this commitment is a valid witness. Herein,
we will need to reduce our claim to computational binding of a CECom commitment in the protocol.
Thus, the requirement in this reduction would be that no extraction performed should rewind the
external CECom sender. Even the Robust Extraction Lemma will not be helpful here as the Lemma
requires that the external protocol have round complexity strictly less than the round complexity
of CECom commitments (on which the robust simulator performs extraction) and the external
protocol in this case is a CECom commitment itself. The condition for the Lemma thus cannot be
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met. We get around this difficulty through a carefully designed sequence of hybrid arguments. A
similar difficulty arises in the proof of statistical simulatability of our protocol. Here again, we rely
on a carefully designed sequence of hybrids.

The second main technical challenge, still of the same flavor as the first one above, is in the proof
of witness extractability. Here, we encounter a pair of hybrids: in the former hybrid, we would have
a few CECom commitments of the right session being extracted by the robust simulator; in the
latter hybrid, the modification introduced would be to change the value committed in a (statistically
hiding) CECom commitment of a left session from a valid witness to a zero-string. Here again, we
will not be able to argue a reduction to the hiding property of the CECom commitment of the left
session in question, just by relying on the Robust Extraction Lemma. Here, we instead present a
more detailed hybrid argument. Namely, in the CECom commitment, we change the committed
value one sub-commitment at a time [PRS02]. Since every sub-commitment in the standard CECom
commitment of [PRS02] ranges over just three rounds, we are now still able to apply the Robust
Extraction Lemma.

2 Background

We assume familiarity with interactive Turing machines, denoted ITM. Given a pair of ITMs, A
and B, we denote by 〈A(x), B(y)〉(z) the random variable representing the (local) output of B,
on common input z and private input y, when interacting with A with private input x, when
the random tape of each machine is uniformly and independently chosen. In addition, we denote
viewAB(x, z) to be the random variable representing the content of the random tape of B together
with the messages received by B from A during the interaction on common input x and auxiliary
input z to B.

If D1 and D2 are two distributions, then we denote that they are statistically close by D1 ≈s D2;
we denote that they are computationally indistinguishable by D1 ≈c D2; and we denote that they
are identical by D1 ≡ D2.

Definition 1 (Pseudorandom Language). An NP-language L ⊆ {0, 1}∗ is said to be a pseudoran-
dom language if the following holds. For λ ∈ N, let Dλ be a uniform distribution over L ∩ {0, 1}λ.
Then, for every distinguisher D running in time polynomial in λ, there exists a negligible function
negl(·) such that D can distinguish between Dλ and Uλ with probability at most negl(λ).

Definition 2 (Witness relation). A witness relation for an NP-language L is a binary relation
RL that is polynomially bounded, polynomial time recognizable and characterizes L by L = {x :
∃ws.t.(x,w) ∈ RL} We say that w is a witness for the membership x ∈ L if (x,w) ∈ RL (also
denoted RL(x,w) = 1). We will also let RL(x) denote the set of witnesses for the membership
x ∈ L, i.e., RL(x) = {w : (x,w) ∈ L}.

In the following, we assume a fixed witness relation RL for each NP-language L.

Definition 3 (Statistical Witness-Indistinguishable Argument of Knowledge (sWIAoK)). An inter-
active argument system 〈P,V〉 for an NP-language L is called a statistical witness-indistinguishable
argument of knowledge if it satisfies the following properties:

Statistical witness-indistinguishability. For every interactive machine V∗ and for every two

sequences {w1
x}x∈L, {w2

x}x∈L, such that w1
x, w

2
x ∈ RL(x), the ensembles {viewP(w1

x)
V∗ (x)}x∈L and

{viewP(w2
x)

V∗ (x)}x∈L are statistically indistinguishable.

4



Knowledge Soundness. There exists a PPT ITM called the ‘extractor’ E, such that for every
PPT machine P∗, for every x ∈ L, auxiliary input z, and random tape r, Pr[EP

∗
(x, z, r) =

w : (x,w) ∈ RL] is negligibly close to Pr[〈P∗(z; r),V〉(x) = 1].

Definition 4 (Interactive Argument System). A two-party game 〈P,V〉 is called an Interactive
Argument System for a language L if P,V are PPT ITMs and the following two conditions hold:

Completeness. For every x ∈ L,
Pr[〈P,V〉(x) = 1] = 1.

Soundness. For every x /∈ L, every PPT ITM P∗, there exists a negligible function ε(·) such that,

Pr[〈P∗,V〉(x) = 1] ≤ ε(|x|)

The verifier’s view of an interaction consists of the common input x, followed by its random
tape and the sequence of prover messages the verifier receives during the interaction. We denote by
viewPV∗(x, z) a random variable describing V∗(z)’s view of the interaction with P on common input
x.

We will use various forms of commitment schemes. We will denote by SB, SH, CB, CH the
usual properties that can be enjoyed by classic commitment schemes, namely: statistical binding,
statistical hiding, computational binding and computational hiding.

Statistical Concurrent Non-Malleable Zero Knowledge. The definition of statistical CN-
MZK is taken almost verbatim from [BPS06] except for the additional requirement on the simulation
being statistical. Let 〈P,V〉 be an interactive proof for an NP-language L with witness relation RL,
and let λ be the security parameter. Consider a man-in-the-middle adversary M that participates
in mL “left interactions” and mR “right interactions” described as follows. In the left interactions,
the adversaryM interacts with P1, . . . ,PmL , where each Pi is an honest prover and proves the state-
ment xi ∈ L. In the right interactions, the adversary proves the validity of statements x1, . . . , xmR .
Prior to the interactions, both P1, . . . ,PmL receive (x1, w1), . . . , (xmL , wmL), respectively, where for
all i, (xi, wi) ∈ RL. The adversaryM receives x1, . . . , xmL and the auxiliary input z, which in par-
ticular might contain a-priori information about (x1, w1), . . . , (xmL , wmL). On the other hand, the
statements proved in the right interactions x1, . . . , xmR are chosen byM. Let viewM(x1, . . . , xmL , z)
denote a random variable that describes the view ofM in the above experiment. Loosely speaking,
an interactive argument is statistical concurrent non-malleable zero-knowledge (sCNMZK) if for
every man-in-the-middle adversaryM, there exists a probabilistic polynomial time machine (called
the simulator-extractor) that can statistically simulate both the left and the right interactions for
M, while outputting a witness for every statement proved by the adversary in the right interactions.

Definition 5 ((Black-Box) Statistical Concurrent Non-Malleable Zero Knowledge Argument of
Knowledge). An interactive protocol 〈P,V〉 is said to be a (Black-Box) Statistical Concurrent Non-
Malleable Zero Knowledge (sCNMZK) argument of knowledge for membership in an NP language
L with witness relation RL, if the following hold:

1. 〈P,V〉 is an interactive argument system;
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2. For every mL and mR that are polynomial in λ, for every PPT adversary M launching a
concurrent non-malleable attack (i.e., M interacts with honest provers P1, . . . ,PmL in “left
sessions” and honest verifiers V1, . . . ,VmR in “right sessions”), there exists an expected poly-
nomial time simulator-extractor SE such that for every set of “left inputs” x1, . . . , xmL we
have SE(x1, . . . , xmL) = (view, w1, . . . , wmR) such that:

• view is the simulated joint view of M and V1, . . . ,VmR . Further, for any set of witnesses
(w1, . . . , wmL) defining the provers P1, . . . ,PmL, the view view is distributed statistically
indistinguishable from the view ofM, denoted viewM(x1, . . . , xmL , z), in a real execution;

• In the view view, let trans` denote the transcript of `-th left execution, and transt that of t-
th right execution, ` ∈ [mL],t ∈ [mR]. If xt is the common input in transt, transt 6= trans`
(for all `) and Vt accepts, then RL(xt, wt) = 1 except with probability negligible in λ.

The probability is taken over the random coins of SE. Further, the protocol is black-box
sCNMZK, if SE is a universal simulator that uses M only as an oracle, i.e., SE = SEM.

We remark here that the statistical indistinguishability is considered only against computation-
ally unbounded distinguishers, and not against unbounded man-in-the-middle adversaries. This
restriction is inherent to the definition since we require statistical zero-knowledge and thus cannot
simultaneously ask for soundness against unbounded provers.

Extractable Commitment Schemes.

Definition 6 (Extractable Commitment Schemes). An extractable commitment scheme 〈Sender,Receiver〉
is a commitment scheme such that given oracle access to any PPT malicious sender Sender∗, com-
mitting to a string, there exists an expected PPT extractor E that outputs a pair (τ, σ∗) such that
the following properties hold:

Simulatability. The simulated view τ is identically distributed to the view of Sender∗ (when inter-
acting with an honest Receiver) in the commitment phase.

Extractability. the probability that τ is accepting and σ∗ correspond to ⊥ is at most 1/2. Moreover
if σ∗ 6=⊥ then the probability that Sender∗ opens τ to a value different than σ∗ is negligible.

Lemma 1. [LP09] Comnm is an extractable commitment scheme.

As shown in [LP09], Comnm is an extractable commitment scheme. This is in fact the core
property of the scheme that is relied upon in proving its non-malleability in [DDN00, LP09].

Extractable Mixed Robust Non-Malleable Commitments w.r.t. 1-Round Protocols.
In our protocol we make use of a special kind of commitment scheme, that we call a extractable mixed
robust non-malleable commitment scheme. These are basically the mixed commitment schemes
introduced by Damg̊ard and Nielsen [DN02] that are also non-malleable (or robust) not only w.r.t.
themselves but also w.r.t. 1-round protocols and also extractable.

We shall first discuss how we get mixed non-malleable commitments, and then at the end, we
shall discuss how we also get mixed non-malleable commitments that are also robust w.r.t. 1-round
protocols.
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Intuitively, a mixed non-malleable commitment scheme is a commitment scheme that is param-
eterized by a string srs in such a way that if srs is from some specific distribution, then commitment
scheme is SH, and if srs is from another specific indistinguishable distribution, then the scheme
is non-malleable. We require that both the distributions be efficiently samplable. When srs is
randomly sampled (from the dominion over which both the distributions are defined), we would
require that srs is such that with all but negligible probability the scheme is SH. We denote such a
scheme by NMMXComsrs. More formally:

Definition 7 (Mixed Non-Malleable Commitments). A commitment scheme is said to be a mixed
non-malleable commitment scheme if it is parameterized by a string srs and if there exist two
efficiently samplable distributions D1, D2, such that, D1 ≈c D2, and if srs ← D1 then the commit-
ment scheme is SH and if srs ← D2 then the commitment scheme is non-malleable. Furthermore,
|Supp(D2)|/|Supp(D1)| = negl(λ).

Below, we show how to construct such a scheme. At a high level, we achieve this by using a
mixed commitment scheme which, roughly speaking, is a commitment scheme parameterized by
a string srs in such a way that if srs is from some specific efficiently samplable distribution, then
commitment scheme is SH, and if srs is from another specific indistinguishable efficiently samplable
distribution, then the scheme is SB. We denote such a scheme by MXComsrs. More formally:

Definition 8 (Mixed Commitments). A commitment scheme is said to be a mixed commitment
scheme if it is parameterized by a string srs and if there exist two efficiently samplable distributions
D1, D2, such that, D1 ≈c D2, and if srs← D1 then the commitment scheme is SH and if srs← D2

then the commitment scheme is SB. Furthermore, |Supp(D2)|/|Supp(D1)| = negl(λ).

In [DN02], Damg̊ard and Nielsen gave two constructions of mixed commitment schemes, one
based on one based on the Paillier cryptosystem and the other based on the Okamoto-Uchiyama
cryptosystem. For concreteness, we provide a construction below based on Σ-protocols and that
builds on previous ideas presented in [DG03, CV05, CV07].

Constructing Mixed Commitments. Let us first describe how to construct a mixed commit-
ment scheme. The idea is to have D1 be uniform over {0, 1}poly(λ) and D2 be uniform over a
pseudorandom language L (as per Definition 9) with a Σ-protocol (i.e., public-coin 3-round special-
sound special honest-verifier zero-knowledge proof system). Then, to commit to a value β, sender
would first run the simulator of the Σ-protocol for the statement that srs ∈ L such that the sim-
ulated proof has β as the challenge; let (α, β, γ) be the simulated proof. Then the commitment
would just be α. The opening would be γ.

Observe that if srs 6∈ L, then for any β there is only one accepting (α, β, γ), making the scheme
parameterized by this srs to be SB. Furthermore, with srs sampled uniformly at random from
{0, 1}∗ \ L, we will also be able to argue that the resulting scheme is CH. On the other hand, if
srs ∈ L, then, for every α (in its valid domain as defined by the Σ-protocol), there exists γ′ for
every β′ such that (α, β′, γ′) is an accepting transcript. This implies that there exists an opening of
α to any β′. This makes the scheme SH. Furthermore, with srs sampled uniformly at random from
L, it shall hold for any PPT machine that it can only run the simulator and it is infeasible for the
machine to open α to also any β′ 6= β (with some γ′ as an opening), assuming special-soundness
of the Σ-protocol (Otherwise, one could extract the witness from (α, β, γ, β′, γ′)). This makes the
system only computationally binding. In detail:
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Mixed Commitment from Σ-protocol. Let RL be a hard relation for a pseudorandom lan-
guage L i.e., L = {srs ∈ {0, 1}λ| ∃w : RL(srs, w) = 1} and L ≈c Uλ. Consider a Σ-protocol for the
above language L. The special honest-verifier zero-knowledge property of the Σ-protocol implies
existence of a simulator S that on input the instance srs, a string β and a randomness r, outputs a
pair (α, γ) such that (srs, α, β, γ) is computationally indistinguishable from a transcript (srs, α, β, γ)
played by the honest prover when receiving β as challenge.

The commitment scheme played by sender C and receiver R that we need goes as follows.

Shared Random String: A random string srs ∈ {0, 1}λ is given as a common input to both the
parties;

Commitment Phase: We denote the commitment function by MXComsrs(·; ·) and to commit to
a string β ∈ {0, 1}λ:

1. C runs the Σ-protocol simulator S(srs, β, r) to obtain (α, γ);

2. C sends α to R;

Decommitment Phase: To open α to β:

1. C sends (β, γ) to R;

2. R accepts if (srs, α, β, γ) is an accepting transcript for the Σ-protocol.

If srs ∈ L, then the commitment is computationally binding (since, with two openings one gets
two accepting conversations for the same α, and from the special-soundness property of the Σ-
protocol one can extract the witness) and statistically hiding (which is directly implied by perfect
completeness of the Σ-protocol; i.e., for any α output as the first message by the simulator – for
any β as the challenge – for every β′, given the witness, one can efficiently compute a final message
γ′ such that the verifier accepts). If srs 6∈ L the commitment is statistically binding (since, for any
α, there exists at most one β that makes R accept the decommitment, as there is no witness for
srs ∈ L and two accepting transcripts (α, β, γ), (α, β′, γ′) with β 6= β′ implies a witness owing to
the special-soundness property of the Σ-protocol) and computationally hiding (since, if on input α,
one can guess β efficiently, then this can be used to decide whether or not srs ∈ L, a contradiction).

While there are many instantiations for L, we shall work with the following simple one. Define
L = {(g1, g2, g3, g4) ∈ G4| ∃a, b : a 6= b ∧ ga1 = g2 ∧ gb3 = g4} with G being a prime order group,
where DDH is believed to be hard. That is, L is the language of non-DDH triplets. Note that in
this case if srs is chosen uniformly at random from G4 the commitment is statistically hiding with
overwhelming probability (most strings are not DDH triplets).

Relaxing the assumption. Another example for L is the following language: let (G,E,D) be
a dense cryptosystem (i.e., valid public keys and ciphertexts can be easily extracted from random
strings). The language L is:

L = {(pk0, pk1, c0, c1)|∃r0, r1,m0,m1, s0, s1 : m0 6= m1, (pk0, sk0)← G(1k, r0),

c0 = Epk0(m0, s0), (pk1, sk1)← G(1k, r1), c1 = Epk1(m1, s1))}.

Also in this case most strings are in the language, while the simulator can choose a string not
in the language (i.e., with m0 = m1).
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Moreover, we can plug this mixed commitment MXCom in a zero-knowledge protocol in the SRS
model NMMXCom, so that when srs is a random DDH triple, the zero-knowledge protocol is a proof
(i.e., statistically sound) and computational zero-knowledge, while when the srs is a random non-
DDH triple then the zero-knowledge protocol is statistical zero-knowledge (and computationally
sound). For eg., an implementation of Blum’s protocol by using MXCom as commitment scheme
when the prover commits to the permuted adjacency matrices gives us a computational zero-
knowledge proof-of-knowledge (ZKPoK, for short) if srs of the MXCom commitment used is a
random DDH tuple and a statistical zero-knowledge argument-of-knowledge (ZKAoK, for short) if
the srs is a random non-DDH tuple.

Constructing Mixed Non-Malleable Commitments. As mentioned earlier, we show how
to construct a mixed non-malleable commitment scheme by using a mixed commitment scheme.
For concreteness, we shall work with the mixed commitment scheme MXCom described earlier. To
thus recall, by the construction of MXCom, our mixed non-malleable commitment scheme will be
non-malleable when srs is a random DDH tuple and, is statistically hiding and computationally
binding when srs is a random non-DDH tuple.

Our scheme NMMXComsrs is described as follows. At a high level, our approach is to slightly
modify the DDN non-malleable commitment scheme in [DDN00]. In fact, we shall describe our mod-
ification by considering the concurrent non-malleable commitment scheme that appears in [LP09]
(whose analysis of non-malleability is similar to that of the DDN commitment and is simpler). The
protocol in [LP09] is in fact non-malleable w.r.t. any arbitrary protocols of logarithmic round-
complexity, a property that is called log(λ)-robust non-malleability. This is one of the properties
which will be of a crucial use to us and we shall elaborate on this property shortly. In fact, we only
need 1-robust non-malleability. The scheme of [LP09] is described below.

At a high level, the protocol of the sender who wishes to commit to some value v proceeds as
follows. To catch the core of the intuition, we describe here a simplified version of the protocol while
ignoring the currently unnecessary details (such as parallel repetitions, etc.); later in the formal
description, we shall present the original protocol of [LP09]. The sender proceeds as follows. In the
first stage, upon receiving an output of a one-way function from the receiver, commit to v using
a statistically binding commitment scheme Comsb. In the second stage, engage in log(λ) (special-
sound) WI proofs of knowledge of either the value committed to using Comsb or of a pre-image
of the one-way function output sent by the receiver. (The number of WI proofs is logarithmic in
the length of the identities of the senders; hence, it is considered to be log(λ) in general). We note
here that a special-sound WI proof can be instantiated by using Blum’s Hamiltonicity protocol,
wherein the commitment sent by the WI prover in this protocol is SB.

Now to construct the mixed non-malleable commitment, the idea is to replace the SB commit-
ment Comsb of the first stage and the SB commitment within the Blum’s Hamiltonicity protocol
(where both the commitments are given by the sender to the receiver) with the mixed commit-
ment MXComsrs. We shall analyze the properties of the resulting commitment scheme, denoted by
NMMXComsrs, below.

Recall that if srs is a random DDH tuple, then MXComsrs is SB and CH. Under this case, the
resulting scheme would have the properties identical to the original scheme of [LPV08]; namely it is
SB, CH, and non-malleable. On the other hand, if srs is a random non-DDH tuple, then MXComsrs

is SH and CB. This would render the the resulting scheme to be SH (owing to the SH property
of the commitment scheme in the first phase and witness-indistinguishability of the Hamiltonicity
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protocol that is instantiated with SH commitment) and CB (owing to the computational binding
property of the commitment scheme in the first phase; this is due to the fact that decommitment
of the scheme in [LP09] is simply an opening of the commitment of the first phase). In fact, if srs
is a random string, then it is a non-DDH tuple with all but negligible probability. Hence, we also
have that when srs is a random string, MXComsrs is SH and CB with all but negligible probability.
For future reference, we shall bookmark this into the following proposition.

Proposition 1. If srs is a uniform DDH tuple, then MXComsrs is SB, CH, and non-malleable. If
srs is a uniform random string, then MXComsrs is SH and CB.

Robustness w.r.t. 1-Round Protocols of the Mixed Non-Malleable Commitments.
Recall that we modified the [LP09] non-malleable commitment scheme that is robust w.r.t. 1-
round protocols to get mixed non-malleable commitment scheme. It turns out that the modified
scheme still retains robust w.r.t. 1-round protocols. Here, we only give a high-level description of
the reason behind this fact as this can be easily verified. The reason is that robustness of the non-
malleable commitment scheme in Figure 3 is proved in [LP09] by relying only upon the structure (the
‘designs’, in particular) of the commitment scheme in Figure 3. In particular, this proof does not rely
upon the specifics of the underlying commitment scheme. Now recall that the only modification we
introduced in the robust non-malleable commitment scheme of [LP09] to get a mixed non-malleable
commitment scheme is the following. Instead of using any underlying commitment scheme, we
used a mixed commitment scheme. Thus, the scheme continues to be non-malleable commitment
scheme robust w.r.t. 1-round protocols even when the underlying commitment schemes are mixed
commitments.

Non-Malleability of NMMXComsrs w.r.t. Comnm. Another property of NMMXComsrs that we
need is the following. Let Comnm be the NMCom commitment robust w.r.t. 1-round protocol. We
shall argue below that NMMXComsrs is non-malleable w.r.t. Comnm (as per Definition 16).

Proposition 2. The non-malleable commitment NMMXComsrs is robust w.r.t. the non-malleable
commitment Comnm.

Proof sketch. Essentially, the proof is exactly the same as the proof of non-malleability of
the non-malleable commitment scheme of [LP09] presented in Figure 3. We argue this here next.
Consider a MiM adversary against non-malleability of NMMXComsrs that executes a Comnm session
on the left by playing the role of the receiver and a NMMXComsrs session on the right by playing
the role of a sender. The key technique in proving non-malleability in [DDN00, LPV08, LP09] is
to show that, immaterial of the way a MiM adversary interleaves the left and right commitments,
there exists at least one WI proof (within some design) on the right session such that it is ‘safe’ to
rewind the MiM adversary for this proof; by ‘safe’, we mean that rewinding the MiM adversary at
this point can be done without rewinding the external sender on the left. (Recall that to rewind
a WI proof is to rewind to the point between the first and the second message of the proof). To
then understand what WI proof qualifies to be safe to rewind, we begin by giving a high level idea
of when a proof does not qualify to be safe. Consider any WI proof (αr, βr, γr) on the right. If it
is trying to use and ‘maul’ some WI proof (αl, βl, γl) on the left, then the right proof is positioned
in time with respect to the left one as shown in Figure B. Observe that rewinding such a proof
on the right with a new challenge may make the MiM adversary send a new challenge for the
left proof too asking for a new response which tantamounts to rewinding the sender on the left.
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Figure 1: Prefix (until the dotted line) that is not a safe point.

[DDN00, LPV08, LP09] provide a characterization for the WI proofs on the right that qualify as
safe for being rewound; however, the details of this characterization itself will not be important to
us; the core argument in proving non-malleability in [DDN00, LPV08, LP09] is an argument that,
immaterial of the way a MiM adversary interleaves the left and right commitments, there exists a
WI proof on the right that is safe to rewind. This is so owing to the fact that the adversary can
use only one proof on the left for every proof on the right and to the fact that there are exactly
the same number of proofs on the left and the right. This would imply that if the left and the
right identities are distinct (at least at one bit position), then at proofs corresponding to this bit
position, design0 on the left ‘matches up’ with design1 on the right, depicted in Figure B. With a
closer look at this interleaving, it can be easily derived that at least one of the WI proofs within
this design1 on the right is safe to be rewound.

We first observe that the only way NMMXComsrs differs from Comnm in Figure 3 is that a
specific kind of commitment, namely, a mixed commitment is used to instantiate the underlying
commitments used in building Comnm in Figure 3. Next, we observe that non-malleability of the
commitment scheme NMMXComsrs is mainly due to the structure (or designs) of theWI proofs, and
the same arguments on interleaving and safety of rewinding would hold even if the left commitment
is under an Comnm session.

We remark that in fact the non-malleable commitments NMMXComsrs and Comnm are robust
w.r.t. each other by the same arguments as above. However, it suffices for us that NMMXComsrs is
robust w.r.t. Comnm.

Concurrently Extractable Commitment Schemes. Concurrently extractable commitment
(CECom) schemes consist of committing using the PRS preamble, and decommitting by opening
all the commitments within the preamble [PRS02]. Roughly speaking, the preamble consists of the
sender committing to multiple shares of the value to be committed; then the receiver, in multiple
rounds, would challenge the sender to open a subset of them in such a way that the opened shares
do not reveal the committed value, but this would somehow facilitate consistency checks as shown
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Figure 2: A design0 matches up with design1.

in [PRS02, MOSV06].
A challenge-response pair in the preamble is called a ‘slot’. [MOSV06] formalized concurrent

extractability and showed that the PRS preamble satisfies it if the number of slots therein is
ω(log(λ)). We denote a CECom commitment that is SB by CEComsb, the one that is SH by
CEComsh.

Robust Concurrent Extraction. In [PRS02], Prabhakaran et al. demonstrated an extraction
procedure by which, for an adversary Sender∗ that executes multiple concurrent sessions of CECom
commitments, commitment information (commitment value and randomness) for each session can
be extracted in polynomial time before the corresponding commitment phase is completed.

In [GLP+12], Goyal et al. extended the technique of [PRS02] and showed how to perform
efficient extractions of CECom commitments when an adversary Sender∗, besides concurrently per-
forming CECom commitments, also interacts with an ‘external’ party B in some arbitrary protocol
Π. This setting now additionally requires that the extraction procedure rewinds the adversary
Sender∗ in a way that B does not get rewound in the process. This is achieved in [GLP+12] by
building a robust concurrent simulator (or just ‘robust simulator’) RobustSim that interacts with
both a robust concurrent adversary, which commits to multiple CECom commitments, and an ex-
ternal party B, with which it runs some arbitrary protocol Π. For every CECom commitment
that is successfully completed, Goyal et al. show that, the robust concurrent simulator – without
rewinding the external party – extracts a commitment information, with all but negligible proba-
bility. [GLP+12] present this result as the Robust Extraction Lemma which informally states that if
`external = `external(λ) and `cecom = `cecom(λ) denote the round complexities of Π and the CECom
commitment, respectively, the Lemma guarantees the following two properties for RobustSim:

• RobustSim outputs a view whose statistical distance from the adversary’s view is at most
2−(`cecom−`external·log(T (λ))), where, T (λ) is the maximum number of total CECom commitments
by the adversary.
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• RobustSim outputs commitment information for every CECom commitment sent by the ad-
versary with an assurance that the external party B of protocol Π is not rewound.

3 Statistical Concurrent Non-Malleable Zero-Knowledge

We start by giving an intuition behind the design of our protocol. In [BPS06], Barak et al. gave a
construction of a computational CNMZK argument of knowledge. The simulation for this protocol
was restricted to be only computational due to the following reason. In their protocol, one of
the messages sent by the prover is a non-malleable commitment to a valid witness. Since the non-
malleable commitment is SB, and the simulator, unlike an honest prover, does not use a valid witness
in this non-malleable commitment, the simulated view was only computationally indistinguishable
from the real-world view of a MiM adversary. It will be quite relevant for us to note that the
non-malleable commitment being SB was crucially used in the proof of concurrent non-malleability
of their protocol, therefore it is not possible to replace the above commitment scheme with a
statistically hiding non-malleable commitment. More specifically, the proof would begin with the
real-world view and through a series of hybrids would move towards the simulated view. In some
certain hybrid along the way there would be introduced PRS rewindings to facilitate simulation.
Given such a hybrid that performs PRS rewindings, it would be difficult to establish that one can
extract a value out of the non-malleable commitment and that the extracted value is a valid-witness.
The difficulty here is in ensuring that the PRS rewindings would not interfere with the non-malleable
commitment on which the NMCom extractor is run. The idea in their proof instead was to first
prove for the real-world view itself that the value committed in the NMCom commitment is a valid
witness, and then make transitions to hybrids by introducing PRS rewindings. The point to be
noted here is that it was crucial in their proof that the non-malleable commitment is a statistically
binding commitment, so that they could put forth arguments on the values committed in it. With
this, since introducing PRS rewindings would only bias the distribution of the view output by at
most a negligible amount, their proof boiled down to proving that the value committed in the
NMCom commitment does not adversely change as we move across various hybrids. Now, since we
began with a hybrid where the values committed were valid witnesses, the values committed in the
NMCom commitments after the PRS rewindings too are valid witnesses by non-malleability (and
in particular statistical binding) of the commitment scheme.

Our idea begins from noticing that statistical binding of the NMCom commitment is crucial in
proving extractability of valid witnesses and not important in simulating the view of the adversary.
So the core idea is to somehow ensure that when we prove the indistinguishability of the simulation,
the commitment scheme is statistically hiding. Instead, when we need to argue that the distribution
of the extracted message does not change, then the commitment should be statistically binding.
With this being the crux of our idea, the way we shall execute it is via what we call ‘mixed non-
malleable commitments’. Intuitively, a mixed non-malleable commitment scheme is associated with
two efficiently samplable, computationally indistinguishable distributions, and every commitment
is parameterized by some string. Furthermore, one of the distributions is such that if the string is
uniformly sampled from this distribution then the commitment is SH and CB; on the other hand, a
commitment that is parameterized by a string that is uniformly sampled from the other distribution
is SB and CH. Given such a commitment scheme, our protocol basically is an instantiation of the
BPS protocol except that the NMCom commitment in the BPS protocol is replaced by a mixed
non-malleable commitment. Also, the string that parameterizes this commitment computed jointly
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by both the prover and the verifier is the outcome of a coin-flipping protocol. Namely, in our
mixed non-malleable commitment scheme, the distribution on the parameter that produces a SH,
CB commitment is the uniform distribution. Hence, the parameter generated via the coin-flipping
protocol is SH and CB, as required. The BPS protocol forms the Main BPS Phase and the
coin-flipping protocol is run in the Coin-flipping Phase of our protocol.

A traditional coin-flipping protocol would involve the verifier committing to a random string
in the first round, followed by the prover sending another random string in the clear in the second
round, the verifier opening the commitment in the third round, and finally having the prover’s
and the verifier’s strings XOR-ed as the outcome of the coin-flipping protocol. However, now
that we would also like to be able to cheat and bias the outcome to another (computationally
indistinguishable) distribution (so that the mixed non-malleable commitment would then be SB),
we modify the third round. Namely, instead of the third round being the verifier opening the
commitment by giving both the committed value and the randomness used, the verifier would only
give the committed value and then give an argument that there exists a randomness that would
explain the commitment to this value. However, we won’t be able to work with just any argument
since we are in the concurrent setting. Furthermore, we also would like to ensure that when our
simulator cheats in the argument to bias the coin-flipping outcome, the MiM adversary will not get
any undue advantage. Thus, the argument that we use here is a CNMZK argument. In particular,
we use the BPS argument itself. This argument forms the BPSCFP Phase in our protocol.

Furthermore, towards simplifying our proof, we introduce the following slight modification of
the BPS protocol in the ‘Main BPS Phase’. In the original BPS protocol, the commitment in
which the prover commits the valid witness to is an NMCom commitment; on the other hand, in
the ‘Main BPS Phase’, besides sending the NMCom commitment to the witness, the prover also
sends a concurrently extractable (CECom) commitment to the same witness. The simplification
we achieve by adding the CECom commitment is that even the extraction of the witnesses (by the
simulator-extractor) can be performed just like an extraction on any other CECom commitments in
the protocol. Since, for simulation, we anyway need to employ certain techniques for the extraction
from the other CECom commitments, we are now able to recycle the same techniques for witness
extractions too, thus letting our focus stay on the other crucial subtleties (which we shall see as we
get to the proofs of security).

We will now give a formal description of the protocol.

3.1 Our sCNMZKAoK Protocol 〈P ,V〉

Ingredients.

1. Let CEComsh and CEComsb be SH and SB concurrently-extractable commitment scheme,
respectively. Let each of them be of kcecom-slots, where kcecom ∈ ω(log λ). Let the sender’s
randomness space for these commitments be RandSpacececom.

2. Let Comsh be a SH commitment scheme. Let ksh be its round-complexity, where ksh is a
constant.

3. Let sWIAoK be a statistical WIAoK protocol. Let kswiaok be its round-complexity, where
kswiaok is a constant.

4. Let NMMXCom(·) be our mixed non-malleable commitment scheme. Recall that it satisfies
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extractability and is robust w.r.t. 1-round protocols. Let knmmxcom be its round-complexity,
where knmmxcom is O(log(λ)).

5. Let Comnm be the non-malleable commitment scheme (described in Fig. 3). Recall that
it satisfies extractability and is robust w.r.t. 1-round protocols. Let knmcom be its round-
complexity.

In summary, the round complexities of the sub-protocols in our protocol are as follows: kcecom ∈
ω(log λ), kswiaok, ksh are constants, and knmcom, knmmxcom ∈ O(log(λ)).

Coin-Flipping Phase (CFP).

cfp1 (V → P): Sample rV ← {0, 1}λ, rand ← RandSpacececom and commit to rV using CEComsh

and randomness rand.

cfp2 (P → V): Sample rP ← {0, 1}λ and send rP .

cfp3 (V → P): Send rV .

BPSCFP Phase.

bpscfp1 (P → V): Sample α← {0, 1}λ and commit to α using CEComsb.

bpscfp2 (V → P): Commit to 0λ using Comsh and argue knowledge of a commitment information
(i.e., a commitment value and randomness) using sWIAoK.

bpscfp3 (P → V): Open the commitment of Step bpscfp1 to α.

bpscfp4 (V → P): Commit to rand (used as commitment randomness in Step cfp1) using the
NMCom commitment Comnm. In the rest of the paper, we shall refer to rand as the sub-
witness.

bpscfp5 (V → P): Send sWIAoK to argue knowledge of either rand or rcomsh such that:

1. the value committed to by V with the NMCom commitment at Step bpscfp4 is rand and
rand explains the CECom commitment at Step cfp1 to rV .

2. Randomness rcomsh explains Comsh at Step bpscfp2 being committed to α.

Let srs = rP ⊕ rV .

Main BPS Phase.

bps1 (V → P): Sample σ ← {0, 1}λ and commit to it using CEComsb.

bps2 (P → V): Commit to 0λ using Comsh and argue knowledge of a commitment information
(i.e., a commitment value and randomness) using sWIAoK.

bps3 (V → P): Open the commitment of Step bps1 to σ.

bps4 (P → V): Commit to the witness w using mixed commitment NMMXComsrs.
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bps4+ (P → V): Commit to the witness w using CEComsh
2.

bps5 (P → V): Send sWIAoK to argue knowledge of either w, rnm, rcecom or r′comsh such that:

1. rnm and rcecom explain the NMMXComsrs commitment of Step bps4 and the CECom
commitment of Step bps4+ to w, respectively, and w is such that RL(x,w) = 1,

2. Randomness r′comsh explains Comsh at Step bps2 being committed to σ.

3.2 Proofs of Security

In this section, we prove that our proposed protocol 〈P,V〉 is a statistical concurrent non-malleable
zero-knowledge argument of knowledge. In other words, we show that there exists a simulator-
extractor SE that, for every concurrent MiM adversaryM, outputs a view view that is statistically
indistinguishable from the view viewM(x1, . . . , xmL , z) of M in a real execution, and also outputs
valid witnesses y1, . . . , ymR for all accepting right sessions.

Our simulator-extractor. The simulator-extractor SE runs RobustSim which is the robust con-
current simulator for a robust concurrent attack. The adversary of the robust concurrent attack is
a procedure I that we describe below. SE will then output the output of RobustSimI(z). Recall
that RobustSim runs a given adversary that mounts a robust concurrent attack by committing to
multiple CECom commitments, where the adversary also interacts with an external party B in
an arbitrary external protocol. RobustSim then is guaranteed to extract commitment information
from every CECom commitment sent by the adversary before the completion of its commitment
phase, in such a way that the external party B does not get rewound.

Procedure I(z). I incorporates the MiM adversaryM, initiates an execution, and simulates its
view as follows. Let the mL left sessions be ordered with some arbitrary ordering. Let the mR

right sessions be ordered as follows: Consider any two right sessions, the i-th and the j-th; i ≤ j if
and only if the CEComsb commitment at Step bps1 of the i-th session begins earlier to the CEComsb

commitment at Step bps1 of the j-th session.

For every right session: Run the code of the verifier except isolate CEComsh at Step bps4+ and
relay it to external receiver. Let value y′t be received from the outside (RobustSim) at the end of
the CEComsh commitment.

For every left session: WhenM initiates an `-th new session on the left, I proceeds as follows.

• Run the coin-flipping phase and the BPSCFP phase honestly. Let srs be the outcome.

• Isolate CEComsb at Step bps1 and relay it to an external receiver. Let σ′ be the value received
from the outside (RobustSim) at the end of the CEComsb commitment.

• Then commit to σ′ using Comsh at Step bps2; also, use the same extracted value as the witness
in executing the sWIAoK of Step bps2.

2In order to make the difference from the BPS protocol more easily noticeable, the five steps here that are common
to the BPS protocol are numbered in sequence from bps1 through bps5, while this ‘extra’ step is given a distinctive
notation, bps4+.
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• In Step bps3, let M opens its CEComsb (of Step bps1) to σ. Abort if σ 6= σ′.

• Commit to 0λ using the mixed non-malleable commitment NMMXComsrs in Step bps4.

• Commit to 0λ using the CEComsh commitment in Step bps4+.

• Use σ′ committed to in Step bps2 as the witness in executing sWIAoK of Step bps5.

When M halts, I outputs the view of M together with y′1, . . . , y
′
mR

, and halts.

Statistical simulation. We shall prove that the view output by SE is distributed statistically
close to the real-world view of the MiM adversary M.

Theorem 1. For every PPT adversaryM, {viewM(x1, . . . , xmL)}x1,...,xmL∈L ≈s {view}x1,...,xmL∈L.

We only provide an intuition to the proof here below. Full proof appears in the full version of
the paper.

Proof sketch. To prove the indistinguishability, we first take note of the ways in which the
view generated by the simulator differs from the real-world view of the MiM adversary. Basically,
the differences are that: for left sessions, the simulator does not use valid witnesses but tries to
get ‘fake’ witnesses via the robust simulator; and for the right sessions, the simulator tries to
extract witnesses via the robust simulator. While we know that using the robust simulator can
incur at most negligible distance, what still remains to be shown is that the simulator using fake-
witnesses for the left sessions also creates at most negligible distance from the real-view. For this,
we simply rely on the statistical properties of the sub-protocols in which the simulator uses different
values; namely, we rely upon SH of Comsh of Step bps2, sWI property of sWIAoK of Step bps2,
SH of the mixed non-malleable commitment of Step bps4, and sWI of sWIAoK of Step bps5– the
steps at which the simulator uses different values in left sessions. Except for SH of the mixed
non-malleable commitment of Step bps4, all the above properties are already guaranteed by the
corresponding primitives themselves; however, on the other hand, to ensure that the mixed non-
malleable commitment – parameterized by srs which is the outcome of the coin-flipping protocol –
is SH, we need to ensure that srs is uniformly random with all but negligible probability. Before
we proceed, we thus prove that in the real-world view srs is uniform in every left session with all
but negligible probability.

Claim 1. In the real-world view viewM(x1, . . . , xmL), for every left session, srs is uniformly random
with all but negligible probability.

Proof sketch. We begin by outlining the structure of the proof.

1. First, we show that, there exists a PPT algorithm that can extract a value r′V from CEComsh

of Step cfp1 of every left session before Step cfp2 of that session is reached. Thus, since rP is
sent to the adversary after r′V is extracted, r′V is independent of rP , and since rP is uniformly
random, rP ⊕ r′V is also uniformly random with all but negligible probability.

2. Then, we show that, in every left session, with all but negligible probability, r′V = rV , where,
rV is the value sent by M in Step cfp3.
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The above items together imply that srs = rP ⊕ rV is uniformly random, with all but negligible
probability.

We prove the first step above by relying upon the Robust Extraction Lemma. Basically, the
PPT algorithm (mentioned in the first step above) just emulates honest provers and honest verifiers
toM except that it relays the CEComsh of Step cfp1 of every left session to RobustSim for extraction.
We establish the second step as follows. Recall that a commitment information for r′V of CEComsh

of Step cfp1 in question is extractable as shown for the first step. Furthermore, from the witness-
extractability of the BPS protocol in BPSCFP phase, we can extract a witness – that we call
sub-witness – for rV being committed in the same CEComsh commitment. Thus, if rV 6= r′V , we
break CB of CEComsh.

However, the proof is still not complete. The reason is for an implicit assumption in proving
the second step above that the BPS argument given by the adversary in BPSCFP phase of the left
session is sound. To prove this, we establish the following claim.

Sub-Claim 1. In the real world view, if BPSCFP phase of the `-th left session is accepted by the
prover P`, then the value committed to by M in Comnm at Step bpscfp4 of the `-th left session is a
valid sub-witness.

Proof sketch. Intuitively, Comnm at Step bpscfp4 of the `-th left session contains a valid sub-
witness owing to

computational hiding of CEComsb – to argue thatM does not learn α, committed to by the prover
in CEComsb, and use it in its commitment Comsh and sWIAoK at Step bpscfp2,

knowledge-soundness of sWIAoK in Step bpscfp2– to extract knowledge of commitment information
(i.e., commitment value and randomness) for Comsh in Step bpscfp2 and to verify that the
extracted value will not be α,

knowledge-soundness of sWIAoK in Step bpscfp5– to argue that either the value committed to
in Comnm at Step bpscfp4 is a valid sub-witness or to argue knowledge of a commitment
information for Comsh in Step bpscfp2 with commitment value as α,

and finally, computational binding of Comsh at Step bpscfp2 to show the knowledge extracted is
not α as a commitment value.

We prove each of the above steps by carefully designing interfaces that launch robust concurrent
attacks and by crucially relying upon the Robust Extraction Lemma for extraction of commitment
information out of these interfaces.

With this, we continue with a hybrid argument by moving from the real-world view to the
simulated view. This is facilitated by the already established facts that the messages where the
simulator deviates in its behavior from the real-world are statistically hiding (in some sense).

Witness extractability. We shall prove that the values y′1, . . . , y
′
mR

extracted by the simulator-
extractor SE are valid witnesses for the statements of the corresponding right sessions.

Theorem 2. For every PPT adversary M, the output of the simulator SE(x1, . . . , xmL , z) =
(view, y1, . . . , ymR) is such that, ∀i ∈ [mR], (xi, yi) ∈ RL.
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We discuss some of the core technical difficulties of the proof together with a high-level proof
structure. Full proof appears in the full version of the paper

Proof sketch. Recall that in our protocol, the prover commits to a valid witness in NMMXComsrs

at Step bps4 and also commits to the same valid witness in CEComsh at Step bps4+ (accompanied
by a sWIAoK later in Step bps5 for correctness of behavior). Note that both of these commitments
are extractable. However, we cannot in a straight-forward manner employ the proof techniques
of [BPS06] or [LPTV10] to prove that the values extracted from these commitments by the simulator
are indeed valid witnesses.

We begin by pointing out the reason why we are not able to simply make use of the proofs
of [BPS06] or [LPTV10]. In both [BPS06] and [LPTV10], the prover commits to the witness with a
non-malleable commitment. Thus, the commitment is statistically binding. Their proofs essentially
proceed in the following manner: First, prove that the values committed to in the non-malleable
commitments are valid witnesses. Secondly, move to a hybrid where extractions are performed to
extract ‘trapdoors’ for cheating in the left sessions and to extract witnesses of the right sessions.
Although cheating by the simulator on the left sessions may adversely change the values committed
by M in the commitments of the right sessions, one can argue that the values committed to in
the commitments of the right sessions are still valid witnesses owing to non-malleability of the
commitment schemes.

Indeed, the statistically binding NMCom commitments are the reason why the protocols of [BPS06]
and [LPTV10] are not statistical CNMZK, but only computationally so. Our approach, to recall, is
to use a mixed NMCom commitment which is parameterized by a string that is output of the coin-
flipping phase that precedes the main argument phase. Thus, in the real-world, as proven earlier for
Theorem 1, the parameter is a uniform random string rendering the mixed NMCom commitment
to be SH. (Recall that the commitment being SH was crucial in proving statistical simulation in
Theorem 1). Thus, it is not clear how to solely rely on the proof techniques of [BPS06, LPTV10]
for our proof.

Our proof technique instead is as follows. We begin with the real-world experiment where the
outcome of the coin-flipping protocol is a uniform random string and thus the commitment scheme
at Step bps4 is a SH commitment. Then we start moving towards the hybrid which cheats in right
sessions by biasing the outcome of the coin-flipping protocol to a uniform DDH tuple. The technical
challenge will be the following. Fix any right session. Let Ha and Hb be the two hybrids in our
hybrid sequence such that, the commitment at Step bps4 in Ha is SH while the same commitment
is SB in Hb (due to cheating in the coin-flipping protocol). Here, we need to establish that in Hb,
the committed value in the commitment at Step bps4 is a valid witness. We establish this through a
careful design of hybrids and their sequence. We expand on our techniques and the whole high-level
structure of the proof here below. We shall discuss the further multiple technical difficulties in the
full proof in the full version of the paper.

We begin with a hybrid that is identical to the real-world view. Then we gradually modify the
behavior of the hybrid for the right sessions towards biasing the coin-flipping protocol outcome to
a random DDH tuple (from a uniform random string). Here, we will also prove that the values
committed to by the MiM adversary in the mixed commitment at Step bps4 is a valid witness (note
that, with the outcome of coin-flipping being a random DDH tuple, this commitment scheme is now
SB, thus allowing us to put forth arguments on the values committed in it). Next, we further move
to hybrids which also behave differently in the left sessions by using ‘trapdoors’ (or fake-witnesses)
extracted from the adversary itself (instead of valid witnesses). Here, we argue that such deviation
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in the hybrids’ behavior for the left sessions does not adversely change the values committed to
in the mixed NMCom commitments of the right sessions. Finally, we thereby reach a hybrid that
behaves the same as our simulator-extractor, thus proving that the values extracted by SE are
indeed valid witnesses.

Observe that it is easy to prove indistinguishability of hybrids as we change hybrids’ behavior
for the left sessions. The reason is that the left sessions will still have the outcome of coin-flipping
to be uniformly random and thus the corresponding mixed commitment is SH. Thus, hybrids using
fake-witnesses instead of the real ones will only introduce negligible statistical distance. However,
the challenging part would be to argue indistinguishability of hybrids as they deviate in their
behavior on the right sessions. We expand on the difficulty and our techniques briefly here below.

In order for hybrids to start cheating in coin-flipping phases of the right sessions, it is crucial that
the hybrids are ordered carefully. Note that, we cannot at once move to a hybrid which changes the
outcome of the coin-flipping phase due to soundness of the BPS protocol in BPSCFP phase. Thus,
we first simulate this BPS protocol. We do so by extracting a trapdoor from the adversary in a
way similar to [BPS06]. Then, the next hybrid would be ‘free’ to bias the coin-flipping outcome to
a random DDH tuple. However, note that this change is not statistically indistinguishable but only
computationally so. Hence, this may adversely change the values committed to in the NMCom
commitments in the protocol. However, with a careful sequence of arguments, we will be able to
obtain a reduction to robustness w.r.t. 1-round protocols. Here it will be crucial to ensure that the
other rewindings performed by the hybrids would not rewind the external NMCom receiver of the
reduction.

Let us now consider the first hybrid that biases the coin-flipping outcome of the i-th right session.
By this hybrid, we will already have biased coin-flipping outcomes of the first i − 1 sessions. We
thus need to make sure that this biasing will also not adversely change the values committed to in
the mixed NMCom commitments at Step bps4 of the first i− 1 right sessions. Here again we rely
on w.r.t. 1-round protocols for these NMCom commitments too.

A major technical difficulty would be the following. Fix any right session. Consider the first
hybrid that biases the coin-flipping outcome of this session. Note that the previous hybrid had
coin-flipping outcome to be a random string and thus the mixed commitment at Step bps4 of the
right session here to be SH. But in the current hybrid, due to the bias, the commitment scheme
is SB. Here we need to argue that the committed value is a valid witness. As shown in the full
proof, this would entail proving computational binding of a CEComsh commitment. Here, we are no
longer able to rely only upon the Robust Extraction Lemma to ensure us of successful extractions
for the following reason. In Robust Extraction Lemma, it is essential that the external protocol
whose party is not supposed to be rewound is such that its round complexity is strictly less than
the number of slots of the CECom commitments extracted from. However, in the current case, the
external protocol itself is a CECom commitment and hence this condition can not be met. We get
around this difficulty again with a careful sequencing of hybrid arguments.

Furthermore, the above technical difficulty arises at another juncture in the proof of witness
extractability. Namely, we encounter a hybrid where coin-flippings of all right sessions are biased,
and in the subsequent hybrid we start changing the values committed in CEComsh commitments
of the left sessions. Here, we are still able to rely on the robustness of the concurrent extraction
as follows. Although one cannot use the Robust Extraction Lemma for a reduction to statistical
hiding of the entire left CEComsh commitment, we can consider intermediate hybrids where, at a
time, only one sub-commitment of the CEComsh commitment is changed. Thus, we are still able
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to use robustness of the concurrent extraction since the sub-protocol in question is only of three
rounds (as per the standard CECom commitment of [PRS02]).

Then, once we ensure that the commitments at Step bps4 of right sessions contain valid wit-
nesses, we proceed to argue that the values extracted from the CEComsh commitments are valid
witnesses with the following argument. We, along the way, show that the adversary cannot have
a trapdoor, namely, r′comsh that explains Comsh at Step bps2 being committed to σ. This implies
that, for every right session, the witness that is extractable from the sWIAoK argument at Step
bps5 of is an opening of the CEComsh commitment (together with the opening of the NMMXComsrs

commitment of Step bps4) to a valid witness.
With this, we finally are at a hybrid that extracts valid witnesses from the right sessions.

Furthermore, this hybrid is identical to our simulator-extractor, thus proving witness extractability
of our protocol 〈P,V〉.
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A Notations

The basic notational conventions used in the paper are listed below.
For a fixed λ ∈ N, let domB denote the domain of valid input for an algorithm B. Although the

set domB is a function of λ, we skip mentioning λ explicitly for simplicity of notation. Let S be a
set. Often we let S also denote a uniform distribution on S, whenever it is clear from the context
whether it is the set or a distribution that is in question. We assume familiarity with interactive
Turing machines, denoted ITM. Given a pair of ITMs, A and B, we denote by 〈A(x), B(y)〉(z) the
random variable representing the (local) output of B, on common input z and private input y, when
interacting with A with private input x, when the random tape of each machine is uniformly and
independently chosen. In addition, we denote viewAB(x, z) to be the random variable representing
the content of the random tape of B together with the messages received by B from A during the
interaction on common input x and auxiliary input z to B.

If D1 and D2 are two distributions, then we denote that they are statistically close by D1 ≈s D2;
we denote that they are computationally indistinguishable by D1 ≈c D2; and we denote that they
are identical by D1 ≡ D2.

We often refer to computational binding (respectively, hiding) of a commitment scheme in
short as CB and CH, respectively. Also, we refer to statistical binding (respectively, hiding) of a
commitment scheme in short as SB and SH, respectively. We refer to a protocol 〈A,B〉 as a dummy
protocol if the parties A,B do not exchange any messages (i.e., the number of rounds of the protocol
is zero). For a commitment, by a valid commitment information (or just commitment information),
we mean a value and a randomness such that the randomness explains the commitment to be a
commitment to that value.
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B Preliminaries

Definition 9 (Pseudorandom Language). An NP-language L ⊆ {0, 1}∗ is said to be a pseudoran-
dom language if the following holds. For λ ∈ N, let Dλ be a uniform distribution over L ∩ {0, 1}λ.
Then, for every distinguisher D running in time polynomial in λ, there exists a negligible function
negl(·) such that D can distinguish between Dλ and Uλ with probability at most negl(λ).

Definition 10 (Witness relation). A witness relation for an NP-language L is a binary relation
RL that is polynomially bounded, polynomial time recognizable and characterizes L by L = {x :
∃ws.t.(x,w) ∈ RL} We say that w is a witness for the membership x ∈ L if (x,w) ∈ RL (also
denoted RL(x,w) = 1). We will also let RL(x) denote the set of witnesses for the membership
x ∈ L, i.e., RL(x) = {w : (x,w) ∈ L}.

In the following, we assume a fixed witness relation RL for each NP-language L.

Definition 11 (Statistical Witness-Indistinguishable Argument of Knowledge (sWIAoK)). An in-
teractive argument system 〈P,V〉 for an NP-language L is called a statistical witness-indistinguishable
argument of knowledge if it satisfies the following properties:

Statistical witness-indistinguishability. For every interactive machine V∗ and for every two

sequences {w1
x}x∈L, {w2

x}x∈L, such that w1
x, w

2
x ∈ RL(x), the ensembles {viewP(w1

x)
V∗ (x)}x∈L and

{viewP(w2
x)

V∗ (x)}x∈L are statistically indistinguishable.

Knowledge Soundness. There exists a PPT ITM called the ‘extractor’ E, such that for every
PPT machine P∗, for every x ∈ L, auxiliary input z, and random tape r, Pr[EP

∗
(x, z, r) =

w : (x,w) ∈ RL] is negligibly close to Pr[〈P∗(z; r),V〉(x) = 1].

Definition 12 (Interactive Argument System). A two-party game 〈P,V〉 is called an Interactive
Argument System for a language L if P,V are PPT ITMs and the following two conditions hold:

Completeness. For every x ∈ L,
Pr[〈P,V〉(x) = 1] = 1.

Soundness. For every x /∈ L, every PPT ITM P∗, there exists a negligible function ε(·) such that,

Pr[〈P∗,V〉(x) = 1] ≤ ε(|x|)

The verifier’s view of an interaction consists of the common input x, followed by its random
tape and the sequence of prover messages the verifier receives during the interaction. We denote by
viewPV∗(x, z) a random variable describing V∗(z)’s view of the interaction with P on common input
x.

(Black-Box) Statistical Concurrent Non-Malleable Zero Knowledge Argument of Knowl-
edge. The definition of statistical CNMZK is taken almost verbatim from [BPS06] except for the
additional requirement on the simulation being statistical. Let 〈P,V〉 be an interactive proof for
an NP-language L with witness relation RL, and let λ be the security parameter. Consider a man-
in-the-middle adversaryM that participates in mL “left interactions” and mR “right interactions”
described as follows. In the left interactions, the adversary M interacts with P1, . . . ,PmL , where
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each Pi is an honest prover and proves the statement xi ∈ L. In the right interactions, the ad-
versary proves the validity of statements x1, . . . , xmR . Prior to the interactions, both P1, . . . ,PmL
receive (x1, w1), . . . , (xmL , wmL), respectively, where for all i, (xi, wi) ∈ RL. The adversary M re-
ceives x1, . . . , xmL and the auxiliary input z, which in particular might contain a-priori information
about (x1, w1), . . . , (xmL , wmL). On the other hand, the statements proved in the right interactions
x1, . . . , xmR are chosen by M. Let viewM(x1, . . . , xmL , z) denote a random variable that describes
the view of M in the above experiment. Loosely speaking, an interactive argument is statistical
concurrent non-malleable zero-knowledge (sCNMZK) if for every man-in-the-middle adversaryM,
there exists a probabilistic polynomial time machine (called the simulator-extractor) that can sta-
tistically simulate both the left and the right interactions for M, while outputting a witness for
every statement proved by the adversary in the right interactions.

Definition 13 ((Black-Box) Statistical Concurrent Non-Malleable Zero Knowledge Argument of
Knowledge). An interactive protocol 〈P,V〉 is said to be a (Black-Box) Statistical Concurrent Non-
Malleable Zero Knowledge (sCNMZK) argument of knowledge for membership in an NP language
L with witness relation RL, if the following hold:

1. 〈P,V〉 is an interactive argument system;

2. For every mL and mR that are polynomial in λ, for every PPT adversary M launching a
concurrent non-malleable attack (i.e., M interacts with honest provers P1, . . . ,PmL in “left
sessions” and honest verifiers V1, . . . ,VmR in “right sessions”), there exists an expected poly-
nomial time simulator-extractor SE such that for every set of “left inputs” x1, . . . , xmL we
have SE(x1, . . . , xmL) = (view, w1, . . . , wmR) such that:

• view is the simulated joint view of M and V1, . . . ,VmR . Further, for any set of witnesses
(w1, . . . , wmL) defining the provers P1, . . . ,PmL, the view view is distributed statistically
indistinguishable from the view ofM, denoted viewM(x1, . . . , xmL , z), in a real execution;

• In the view view, let trans` denote the transcript of `-th left execution, and transt that of t-
th right execution, ` ∈ [mL],t ∈ [mR]. If xt is the common input in transt, transt 6= trans`
(for all `) and Vt accepts, then RL(xt, wt) = 1 except with probability negligible in λ.

The probability is taken over the random coins of SE. Further, the protocol is black-box
sCNMZK, if SE is a universal simulator that uses M only as an oracle, i.e., SE = SEM.

Non-Malleable Commitment Schemes. We recall the definition of non-malleability from [LPV08]
(which builds upon the definition of [DDN00, PR05]). Let 〈Sender,Receiver〉 be a tag-based statis-
tically binding commitment scheme. Consider a man-in-the-middle adversaryM that, on auxiliary
input z, participates in one left and one right interaction simultaneously. In the left interaction,
the man-in-the-middle adversary M interacts with Sender, receiving a commitment to value v,
using identity id of its choice. In the right interaction M interacts with Receiver attempting to
commit to a related value ṽ, again using identity ĩd of its choice. If the right commitment is
invalid, or undefined, its value is set to ⊥. Furthermore, if ĩd = id, ṽ is also set to ⊥ – i.e., a
commitment where the adversary copies the identity of the left interaction is considered invalid.
Let nmcM〈Sender,Receiver〉(v, z) denote a random variable that describes the value ṽ and the view of
M, in the above experiment.
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Definition 14 (Non-Malleable Commitment Schemes). A statistically binding commitment scheme
〈Sender,Receiver〉 is said to be non-malleable (with respect to itself) if for every polynomial p(·),
and every probabilistic polynomial-time man-in-the-middle adversary M, the following ensembles
are computationally indistinguishable.

{nmcM〈Sender,Receiver〉(v, z)}λ∈N,v∈{0,1}λ,v′∈{0,1}λ,z∈{0,1}∗

{nmcM〈Sender,Receiver〉(v
′, z)}λ∈N,v∈{0,1}λ,v′∈{0,1}λ,z∈{0,1}∗

Robust Non-Malleable Commitment Schemes.

Definition 15 (Robust Non-Malleable Commitment Schemes). Let 〈Sender,Receiver〉 be a com-
mitment scheme, and B a PPT ITM. We say the commitment scheme 〈Sender,Receiver〉 is non-
malleable w.r.t. B, if for every two sequences {y1

λ}λ∈N and {y2
λ}λ∈N, y1

λ, y
2
λ ∈ {0, 1}λ, such that, for

all PPT ITM A∗, it holds that

{〈B(y1
λ), A∗(z)〉(1λ)}λ∈N,z∈{0,1}∗ ≈ {〈B(y2

λ), A∗(z)〉(1λ)}λ∈N,z∈{0,1}∗

then it also holds that, for every PPT man-in-the-middle adversary M,

{mimB,M
〈Sender,Receiver〉(y

1
λ, z)}λ∈N,z∈{0,1}∗ ≈ {mimB,M

〈Sender,Receiver〉(y
2
λ, z)}λ∈N,z∈{0,1}∗

We say that 〈Sender,Receiver〉 is non-malleable w.r.t k-round protocols if 〈Sender,Receiver〉 is non-
malleable w.r.t any machine B that interacts with the man-in-the-middle adversary in k rounds.

[LP09] show how to construct a robust non-malleable commitment scheme w.r.t. `-round pro-
tocols, where ` is logarithmic in the length of the identifiers and hence is log(λ) in general. In fact,
roughly speaking, they show that any commitment scheme that is ‘extractable’ and has more than
k ‘rewinding slots’ is itself robust non-malleable w.r.t. k-round protocols. In this work, we build
upon the robust non-malleable commitment scheme constructed in [LP09] based on the techniques
from [DDN00] to prepare the ingredients for our final scheme. The [LP09] robust non-malleable
commitment scheme w.r.t. ` rounds is thus described below in Figure 3.

A specific case of robustness of a non-malleable commitment scheme that we will consider in
this work is robustness w.r.t. a different non-malleable commitment scheme.

Definition 16 (Robust Non-Malleability w.r.t. Distinct Commitment Schemes). Let Comnm
L and

Comnm
R be two non-malleable commitment schemes. Let SenderR denote the sender of Comnm

L

commitment scheme. We say that the scheme Comnm
R is robust w.r.t. the scheme Comnm

L, if for
every polynomial p(·), and every probabilistic polynomial-time man-in-the-middle adversaryM, for
every pair of messages y1

λ, y
2
λ ∈ {0, 1}λ, the following holds.

{mimComnm
L,M

Comnm
R (y1

λ, z)}λ∈N,z∈{0,1}∗ ≈ {mimComnm
L,M

〈Sender,Receiver〉(y
2
λ, z)}λ∈N,z∈{0,1}∗ .

26



Common Input : An identifier ID ∈ {0, 1}L, where L = poly(λ). Define ` := log(L) + 1.

Input for Sender : A string V ∈ {0, 1}λ.

Sender ← Receiver: Sender chooses V1, V2, . . . , VL ← {0, 1}λ such that
V1 ⊕ V2 ⊕ . . .⊕ VL = V . For each i ∈ [L], run Stage 1 and Stage 2 in parallel with
v := Vi and id = (i, IDi), where IDi is the i-th bit of ID.

Stage 1 :

Sender ← Receiver: Receiver samples x← {0, 1}λ, computes y = f(x), and sends s
to Sender. Sender aborts if y is not in the range of f .

Sender → Receiver: Sender chooses randomness← {0, 1}λ and sends
c = Comsb(v; randomness).

Stage 2 :

Sender → Receiver: 4` special-sound WI proofs of the statement:
either there exists values v, randomness such that c = Comsb(v; randomness)
or there exists a value x such that y = f(x)
with 4` WI proofs in the following schedule:
For j = 1 to ` do: Execute designidj followed by design1−idj .

Figure 3: O(log(λ))-round Non-Malleable Commitment of [LP09]

Extractable Commitment Schemes.

Definition 17 (Extractable Commitment Schemes). An extractable commitment scheme 〈Sender,Receiver〉
is a commitment scheme such that given oracle access to any PPT malicious sender Sender∗, com-
mitting to a string, there exists an expected PPT extractor E that outputs a pair (τ, σ∗) such that
the following properties hold:

Simulatability. The simulated view τ is identically distributed to the view of Sender∗ (when inter-
acting with an honest Receiver) in the commitment phase.

Extractability. the probability that τ is accepting and σ∗ correspond to ⊥ is at most 1/2. Moreover
if σ∗ 6=⊥ then the probability that Sender∗ opens τ to a value different than σ∗ is negligible.

Lemma 2. [LP09] Comnm is an extractable commitment scheme.

As shown in [LP09], Comnm is an extractable commitment scheme. This is in fact the core
property of the scheme that is relied upon in proving its non-malleability in [DDN00, LP09].

Extractable Mixed Robust Non-Malleable Commitments w.r.t. 1-Round Protocols.
In our protocol we make use of a special kind of commitment scheme, that we call a extractable mixed
robust non-malleable commitment scheme. These are basically the mixed commitment schemes
introduced by Damg̊ard and Nielsen [DN02] that are also non-malleable (or robust) not only w.r.t.
themselves but also w.r.t. 1-round protocols and also extractable.

27



We shall first discuss how we get mixed non-malleable commitments, and then at the end, we
shall discuss how we also get mixed non-malleable commitments that are also robust w.r.t. 1-round
protocols.

Intuitively, a mixed non-malleable commitment scheme is a commitment scheme that is param-
eterized by a string srs in such a way that if srs is from some specific distribution, then commitment
scheme is SH, and if srs is from another specific indistinguishable distribution, then the scheme
is non-malleable. We require that both the distributions be efficiently samplable. When srs is
randomly sampled (from the dominion over which both the distributions are defined), we would
require that srs is such that with all but negligible probability the scheme is SH. We denote such a
scheme by NMMXComsrs. More formally:

Definition 18 (Mixed Non-Malleable Commitments). A commitment scheme is said to be a mixed
non-malleable commitment scheme if it is parameterized by a string srs and if there exist two ef-
ficiently samplable distributions D1, D2, such that, D1 ≈c D2, and if srs ← D1 then the commit-
ment scheme is SH and if srs ← D2 then the commitment scheme is non-malleable. Furthermore,
|Supp(D2)|/|Supp(D1)| = negl(λ).

Below, we show how to construct such a scheme. At a high level, we achieve this by using a
mixed commitment scheme which, roughly speaking, is a commitment scheme parameterized by
a string srs in such a way that if srs is from some specific efficiently samplable distribution, then
commitment scheme is SH, and if srs is from another specific indistinguishable efficiently samplable
distribution, then the scheme is SB. We denote such a scheme by MXComsrs. More formally:

Definition 19 (Mixed Commitments). A commitment scheme is said to be a mixed commitment
scheme if it is parameterized by a string srs and if there exist two efficiently samplable distributions
D1, D2, such that, D1 ≈c D2, and if srs← D1 then the commitment scheme is SH and if srs← D2

then the commitment scheme is SB. Furthermore, |Supp(D2)|/|Supp(D1)| = negl(λ).

In [DN02], Damg̊ard and Nielsen gave two constructions of mixed commitment schemes, one
based on one based on the Paillier cryptosystem and the other based on the Okamoto-Uchiyama
cryptosystem. For concreteness, we provide a construction below based on Σ-protocols.

Constructing Mixed Commitments. Let us first describe how to construct a mixed com-
mitment scheme. The idea is to have D1 be uniform over {0, 1}poly(λ) and D2 be uniform over a
pseudorandom language L (as per Definition 9) with a Σ-protocol (i.e., public-coin 3-round special-
sound special honest-verifier zero-knowledge proof system). Then, to commit to a value β, sender
would first run the simulator of the Σ-protocol for the statement that srs ∈ L such that the sim-
ulated proof has β as the challenge; let (α, β, γ) be the simulated proof. Then the commitment
would just be α. The opening would be γ.

Observe that if srs 6∈ L, then for any β there is only one accepting (α, β, γ), making the scheme
parameterized by this srs to be SB. Furthermore, with srs sampled uniformly at random from
{0, 1}∗ \ L, we will also be able to argue that the resulting scheme is CH. On the other hand, if
srs ∈ L, then, for every α (in its valid domain as defined by the Σ-protocol), there exists γ′ for
every β′ such that (α, β′, γ′) is an accepting transcript. This implies that there exists an opening of
α to any β′. This makes the scheme SH. Furthermore, with srs sampled uniformly at random from
L, it shall hold for any PPT machine that it can only run the simulator and it is infeasible for the
machine to open α to also any β′ 6= β (with some γ′ as an opening), assuming special-soundness
of the Σ-protocol (Otherwise, one could extract the witness from (α, β, γ, β′, γ′)). This makes the
system only computationally binding. In detail:
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Mixed Commitment from Σ-protocol. Let RL be a hard relation for a pseudorandom lan-
guage L i.e., L = {srs ∈ {0, 1}λ| ∃w : RL(srs, w) = 1} and L ≈c Uλ. Consider a Σ-protocol for the
above language L. The special honest-verifier zero-knowledge property of the Σ-protocol implies
existence of a simulator S that on input the instance srs, a string β and a randomness r, outputs a
pair (α, γ) such that (srs, α, β, γ) is computationally indistinguishable from a transcript (srs, α, β, γ)
played by the honest prover when receiving β as challenge.

The commitment scheme played by sender C and receiver R that we need goes as follows.

Shared Random String: A random string srs ∈ {0, 1}λ is given as a common input to both the
parties;

Commitment Phase: We denote the commitment function by MXComsrs(·; ·) and to commit to
a string β ∈ {0, 1}λ:

1. C runs the Σ-protocol simulator S(srs, β, r) to obtain (α, γ);

2. C sends α to R;

Decommitment Phase: To open α to β:

1. C sends (β, γ) to R;

2. R accepts if (srs, α, β, γ) is an accepting transcript for the Σ-protocol.

If srs ∈ L, then the commitment is computationally binding (since, with two openings one gets
two accepting conversations for the same α, and from the special-soundness property of the Σ-
protocol one can extract the witness) and statistically hiding (which is directly implied by perfect
completeness of the Σ-protocol; i.e., for any α output as the first message by the simulator – for
any β as the challenge – for every β′, given the witness, one can efficiently compute a final message
γ′ such that the verifier accepts). If srs 6∈ L the commitment is statistically binding (since, for any
α, there exists at most one β that makes R accept the decommitment, as there is no witness for
srs ∈ L and two accepting transcripts (α, β, γ), (α, β′, γ′) with β 6= β′ implies a witness owing to
the special-soundness property of the Σ-protocol) and computationally hiding (since, if on input α,
one can guess β efficiently, then this can be used to decide whether or not srs ∈ L, a contradiction).

While there are many instantiations for L, we shall work with the following simple one. Define
L = {(g1, g2, g3, g4) ∈ G4| ∃a, b : a 6= b ∧ ga1 = g2 ∧ gb3 = g4} with G being a prime order group,
where DDH is believed to be hard. That is, L is the language of non-DDH triplets. Note that in
this case if srs is chosen uniformly at random from G4 the commitment is statistically hiding with
overwhelming probability (most strings are not DDH triplets).

Relaxing the Assumption. Another example for L is the following language: let (G,E,D) be
a dense cryptosystem (i.e., valid public keys and ciphertexts can be easily extracted from random
strings). The language L is:

L = {(pk0, pk1, c0, c1) | ∃r0, r1,m0,m1, s0, s1 :

m0 6= m1,

(pk0, sk0)← G(1k, r0), c0 = Epk0(m0, s0),

(pk1, sk1)← G(1k, r1), c1 = Epk1(m1, s1))}
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Also in this case most strings are in the language, while the simulator can choose a string not
in the language (i.e., with m0 = m1).

Moreover, we can plug this mixed commitment MXCom in a zero-knowledge protocol in the SRS
model NMMXCom, so that when srs is a random DDH triple, the zero-knowledge protocol is a proof
(i.e., statistically sound) and computational zero-knowledge, while when the srs is a random non-
DDH triple then the zero-knowledge protocol is statistical zero-knowledge (and computationally
sound). For eg., an implementation of Blum’s protocol by using MXCom as commitment scheme
when the prover commits to the permuted adjacency matrices gives us a computational zero-
knowledge proof-of-knowledge (ZKPoK, for short) if srs of the MXCom commitment used is a
random DDH tuple and a statistical zero-knowledge argument-of-knowledge (ZKAoK, for short) if
the srs is a random non-DDH tuple.

Constructing Mixed Non-Malleable Commitments. As mentioned earlier, we show how
to construct a mixed non-malleable commitment scheme by using a mixed commitment scheme.
For concreteness, we shall work with the mixed commitment scheme MXCom described earlier. To
thus recall, by the construction of MXCom, our mixed non-malleable commitment scheme will be
non-malleable when srs is a random DDH tuple and, is statistically hiding and computationally
binding when srs is a random non-DDH tuple.

Our scheme NMMXComsrs is described as follows. At a high level, our approach is to slightly
modify the DDN non-malleable commitment scheme in [DDN00]. In fact, we shall describe our mod-
ification by considering the concurrent non-malleable commitment scheme that appears in [LP09]
(whose analysis of non-malleability is similar to that of the DDN commitment and is simpler). The
protocol in [LP09] is in fact non-malleable w.r.t. any arbitrary protocols of logarithmic round-
complexity, a property that is called log(λ)-robust non-malleability. This is one of the properties
which will be of a crucial use to us and we shall elaborate on this property shortly. In fact, we only
need 1-robust non-malleability. The scheme of [LP09] is described below.

At a high level, the protocol of the sender who wishes to commit to some value v proceeds as
follows. To catch the core of the intuition, we describe here a simplified version of the protocol while
ignoring the currently unnecessary details (such as parallel repetitions, etc.); later in the formal
description, we shall present the original protocol of [LP09]. The sender proceeds as follows. In the
first stage, upon receiving an output of a one-way function from the receiver, commit to v using
a statistically binding commitment scheme Comsb. In the second stage, engage in log(λ) (special-
sound) WI proofs of knowledge of either the value committed to using Comsb or of a pre-image
of the one-way function output sent by the receiver. (The number of WI proofs is logarithmic in
the length of the identities of the senders; hence, it is considered to be log(λ) in general). We note
here that a special-sound WI proof can be instantiated by using Blum’s Hamiltonicity protocol,
wherein the commitment sent by the WI prover in this protocol is SB.

Now to construct the mixed non-malleable commitment, the idea is to replace the SB commit-
ment Comsb of the first stage and the SB commitment within the Blum’s Hamiltonicity protocol
(where both the commitments are given by the sender to the receiver) with the mixed commit-
ment MXComsrs. We shall analyze the properties of the resulting commitment scheme, denoted by
NMMXComsrs, below.

Recall that if srs is a random DDH tuple, then MXComsrs is SB and CH. Under this case, the
resulting scheme would have the properties identical to the original scheme of [LPV08]; namely it is
SB, CH, and non-malleable. On the other hand, if srs is a random non-DDH tuple, then MXComsrs

30



is SH and CB. This would render the the resulting scheme to be SH (owing to the SH property
of the commitment scheme in the first phase and witness-indistinguishability of the Hamiltonicity
protocol that is instantiated with SH commitment) and CB (owing to the computational binding
property of the commitment scheme in the first phase; this is due to the fact that decommitment
of the scheme in [LP09] is simply an opening of the commitment of the first phase). In fact, if srs
is a random string, then it is a non-DDH tuple with all but negligible probability. Hence, we also
have that when srs is a random string, MXComsrs is SH and CB with all but negligible probability.
For future reference, we shall bookmark this into the following proposition.

Proposition 3. If srs is a uniform DDH tuple, then MXComsrs is SB, CH, and non-malleable. If
srs is a uniform random string, then MXComsrs is SH and CB.

Robustness w.r.t. 1-Round Protocols of the Mixed Non-Malleable Commitments.
Recall that we modified the [LP09] non-malleable commitment scheme that is robust w.r.t. 1-
round protocols to get mixed non-malleable commitment scheme. It turns out that the modified
scheme still retains robust w.r.t. 1-round protocols. Here, we only give a high-level description of
the reason behind this fact as this can be easily verified. The reason is that robustness of the non-
malleable commitment scheme in Figure 3 is proved in [LP09] by relying only upon the structure (the
‘designs’, in particular) of the commitment scheme in Figure 3. In particular, this proof does not rely
upon the specifics of the underlying commitment scheme. Now recall that the only modification we
introduced in the robust non-malleable commitment scheme of [LP09] to get a mixed non-malleable
commitment scheme is the following. Instead of using any underlying commitment scheme, we
used a mixed commitment scheme. Thus, the scheme continues to be non-malleable commitment
scheme robust w.r.t. 1-round protocols even when the underlying commitment schemes are mixed
commitments.

Non-Malleability of NMMXComsrs w.r.t. Comnm. Another property of NMMXComsrs that we
need is the following. Let Comnm be the NMCom commitment robust w.r.t. 1-round protocol. We
shall argue below that NMMXComsrs is non-malleable w.r.t. Comnm (as per Definition 16).

Proposition 4. The non-malleable commitment NMMXComsrs is robust w.r.t. the non-malleable
commitment Comnm.

Proof sketch. Essentially, the proof is exactly the same as the proof of non-malleability of
the non-malleable commitment scheme of [LP09] presented in Figure 3. We argue this here next.
Consider a MiM adversary against non-malleability of NMMXComsrs that executes a Comnm session
on the left by playing the role of the receiver and a NMMXComsrs session on the right by playing
the role of a sender. The key technique in proving non-malleability in [DDN00, LPV08, LP09] is
to show that, immaterial of the way a MiM adversary interleaves the left and right commitments,
there exists at least one WI proof (within some design) on the right session such that it is ‘safe’ to
rewind the MiM adversary for this proof; by ‘safe’, we mean that rewinding the MiM adversary at
this point can be done without rewinding the external sender on the left. (Recall that to rewind
a WI proof is to rewind to the point between the first and the second message of the proof). To
then understand what WI proof qualifies to be safe to rewind, we begin by giving a high level idea
of when a proof does not qualify to be safe. Consider any WI proof (αr, βr, γr) on the right. If it
is trying to use and ‘maul’ some WI proof (αl, βl, γl) on the left, then the right proof is positioned
in time with respect to the left one as shown in Figure B. Observe that rewinding such a proof
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Figure 4: Prefix (until the dotted line) that is not a safe point.

on the right with a new challenge may make the MiM adversary send a new challenge for the
left proof too asking for a new response which tantamounts to rewinding the sender on the left.
[DDN00, LPV08, LP09] provide a characterization for the WI proofs on the right that qualify as
safe for being rewound; however, the details of this characterization itself will not be important to
us; the core argument in proving non-malleability in [DDN00, LPV08, LP09] is an argument that,
immaterial of the way a MiM adversary interleaves the left and right commitments, there exists a
WI proof on the right that is safe to rewind. This is so owing to the fact that the adversary can
use only one proof on the left for every proof on the right and to the fact that there are exactly
the same number of proofs on the left and the right. This would imply that if the left and the
right identities are distinct (at least at one bit position), then at proofs corresponding to this bit
position, design0 on the left ‘matches up’ with design1 on the right, depicted in Figure B. With a
closer look at this interleaving, it can be easily derived that at least one of the WI proofs within
this design1 on the right is safe to be rewound.

We first observe that the only way NMMXComsrs differs from Comnm in Figure 3 is that a
specific kind of commitment, namely, a mixed commitment is used to instantiate the underlying
commitments used in building Comnm in Figure 3. Next, we observe that non-malleability of the
commitment scheme NMMXComsrs is mainly due to the structure (or designs) of theWI proofs, and
the same arguments on interleaving and safety of rewinding would hold even if the left commitment
is under an Comnm session.

We remark that in fact the non-malleable commitments NMMXComsrs and Comnm are robust
w.r.t. each other by the same arguments as above. However, it suffices for us that NMMXComsrs is
robust w.r.t. Comnm.

Concurrently Extractable Commitment Schemes. Concurrently extractable commitment
(CECom, for short,) schemes consist of committing using the PRS preamble, and decommitting
by opening all the commitments within the preamble [PRS02]. More specifically, the preamble
uses an underlying commitment scheme Com, and roughly speaking, the sender first commits to
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many shares of the value v to be committed using Com; this is followed by several rounds of
interaction where in each round, the receiver sends a random challenge, and the sender responds
with appropriate decommitments. A challenge-response pair is called a ‘slot’.

This commitment scheme can be either statistically binding or statistically hiding depending
on whether the underlying commitment protocol (used within the preamble) is either statistically
binding or statistically hiding, respectively. We denote a SH concurrently extractable commitment
scheme by CEComsh and a SB one by CEComsb.

We will not require details of the CECom scheme itself, but only rely on certain properties of
it established in [GLP+12]; we thus provide an informal definition of a CECom scheme as defined
in [MOSV06].

Definition 20 (Concurrently Extractable Commitment Schemes (Informal)). A commitment scheme
〈Sender,Receiver〉 is said to be concurrently extractable if there exists a CEC− Sim whose output
has two parts and that satisfies the following two properties.

• For every adversarial sender Sender∗ that interacts with multiple receivers concurrently only
in the commitment phase, the first part of the output of CEC− Sim, CEC− SimSender∗

1 is
distributed statistically close to 〈Receiver,Sender∗〉.

• For every session s in the output CEC− SimSender∗
1 , there exists a message M(s) in the

second part of CEC− Sim’s output CEC− SimSender∗
2 such that no adversary (efficient if the

commitment scheme is only computationally binding) having generated the commitment phase
transcript s could have opened s to value different than M(s).

In [PRS02], Prabhakaran et al. demonstrated an extraction procedure by which, for an ad-
versary Sender∗ that executes multiple concurrent sessions of CECom commitments, commitment
information (commitment value and randomness) can be extracted in polynomial time in such a
way that the extraction outputs the commitment information for a CECom commitment before
the commitment phase is completed.
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Robust Concurrent Extraction. In [GLP+12], Goyal et al. extended the technique of [PRS02]
and showed how to perform efficient extractions of CECom commitments when an adversary A∗,
besides concurrently performing CECom commitments, also interacts with an ‘external’ party B
in some arbitrary protocol Π. This setting now additionally requires that the extraction procedure
rewinds the adversary A∗ in a way that B does not get rewound in the process. This is achieved
in [GLP+12] by building a robust concurrent simulator (or just ‘robust simulator’, for short).
RobustSim interacts with both a robust concurrent adversary, which commits to multiple CECom
commitments, and an external party B, with which it runs some arbitrary protocol Π. For every
CECom commitment that is successfully completed, Goyal et al. show that, the robust concurrent
simulator – without rewinding the external party – extracts a value (together with its randomness)
that can explain the commitment, with all but negligible probability.

The requirements for such a concurrent extraction is formalized by considering an online extrac-
tor which is allowed to run in exponential time and which extracts the commitment information of
the CECom commitment, before the completion of the commitment phase (and no later). The on-
line extractor also outputs the view of the adversary in the main-thread. With this, it would suffice
to show that the output by the robust concurrent simulator (i.e., the view and the commitment
information) is statistically close to the view output by the online extractor. This indistinguisha-
bility for the robust simulator in [GLP+12] is established in their Robust Extraction Lemma that
we recall below.

PROTOCOL Π. Let Π = 〈B,A〉 be an arbitrary two-party computation protocol. Let domB
denote the domain of valid inputs for algorithm B, and let `external = `external(λ) denote the round
complexity of Π.

The Robust Concurrent Attack. Let A∗ be an algorithm, and β ∈ domB an input. In the
robust-concurrent attack, A∗ interacts with a special, not necessarily polynomial time, party E ,
called the “online extractor”. Party E simultaneously participates in one execution of the protocol
Π, and several executions of CECom commitments, all with A∗. Party E follows the (honest)
algorithm B(β) in the execution of Π with A∗. Further, it follows the (honest) receiver algorithm
in each execution of the CECom commitments. If A∗ successfully completes a CECom commitment
s, E sends a string αs to A∗. The scheduling of all messages in all sessions – Π as well as CECom
commitments – is controlled by A∗ including starting new sessions and finishing or aborting existing
sessions. At some point, A∗ halts. We say that A∗ launches the robust concurrent attack.

For β ∈ domB, z ∈ {0, 1}∗, let REALA
∗
E,Π(β, z) denote the output of the following probabilistic

experiment: on input an auxiliary input z, the experiment starts an execution of A∗. Adversary
A∗ launches the robust-concurrent attack by interacting with the special party E throughout the
experiment, as described above. When A∗ halts, the experiment outputs the view of A∗ which
includes: all messages sent/received by A∗, the auxiliary input z, the randomness of A∗.

We are now ready to present the Robust Extraction Lemma. Informally speaking, the lemma
states that there exists an interactive PPT machine RobustSim, a.k.a the robust (concurrent) sim-
ulator, whose output is statistically close to REALA

∗
E,Π(β, z) even when given that the final response

of E at the end of a successful CECom commitment session is actually a valid commitment infor-
mation for that commitment. Further, the robust simulator does not rewind B, and runs in time
polynomial in total sessions opened by A∗.

Lemma 3 ([GLP+12]). There exists an interactive Turing machine RobustSim, called the “robust
simulator”, such that, for every PPT A∗, for every Π = 〈B,A〉, there exists a party E, called the

34



“online extractor”, for every β ∈ domB, and every z ∈ {0, 1}∗, the following conditions hold:

1. Validity constraint. For every output ν of REALA
∗
E,Π(β, z), we have:

(a) for every statistically-binding CECom commitment s (appearing in ν) with transcript τs,
if there exists a unique value v ∈ {0, 1}λ in the commitment-transcript τs, then αs = v,

(b) for every statistically-hiding CECom commitment s (appearing in ν) with transcript τs,
if there exists a valid opening (vs, rands) in the view ν, then αs = vs,

where αs is the value E sends at the completion of s.

2. Statistical simulation. If `external = `external(λ) and `cecom = `cecom(λ) denote the round
complexities of Π and the CECom commitment respectively, then the statistical distance be-
tween distributions REALAE,Π(λ, β, z) and OUTs[B(β)↔ RobustSimA∗(z)] is given by

∆(λ) ≤ 2−(`cecom−`external·log(T (λ)))

where T (λ) is the maximum number of total CECom commitments between A∗ and E. Further,
the running time of RobustSim is poly(λ) · T (λ)2.

Corollary 3 (Identical simulation if no CECom played with the online extractor [GLP+12]). If
the robust concurrent adversary A∗ sends no CECom commitments to the online extractor E then
the view output by the robust simulator is an identical simulation of the real-world view of A∗. That
is:

REALAE,Π(λ, β, z) ≡ OUTs[B(β)↔ RobustSimA∗(z)].

Remark 1. We note that in fact the value returned by the robust simulator is not just the com-
mitment value but also the commitment randomness. However, wherever not necessary we avoid
explicitly mentioning the randomness returned by the robust simulator.

C Proofs of Security

In this section, we prove that our proposed protocol 〈P,V〉 is a statistical concurrent non-malleable
zero-knowledge argument of knowledge. Recall from Definition 13 that 〈P,V〉 is a statistical con-
current non-malleable zero-knowledge argument of knowledge protocol, if it satisfies the following
properties;

1. 〈P,V〉 is an interactive argument system,

2. Simulatability and Extractability: for every mL,mR that are polynomial in λ, there
exists a PPT simulator-extractor SE that, for every concurrent man-in-the-middle adversary
M with some auxiliary information z, outputs a view, view, and also outputs y1, . . . , ymR for
all accepting right sessions except for those right sessions that are just copied off from some
left session, such that the outputs satisfy the following properties:

(a) Statistical Simulation: view is statistically indistinguishable from the view viewM(x1, . . . , xmL , z)
of M in a real execution;
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(b) Witness Extractability: y1, . . . , ymR are valid witnesses for the statements of the
corresponding sessions.

That is, we would like that SE(x1, . . . , xmL , z) = (view, y1, . . . , ymR).

Although witness extractability implies that the protocol is an interactive argument system, we
provide a separate proof for the latter for completeness; this may also serve as a warm-up for the
techniques coming up ahead.

C.1 〈P ,V〉 is an Interactive Argument System

We shall now prove that 〈P,V〉 is an interactive argument system.

Lemma 4. 〈P,V〉 is an interactive argument system.

Proof. We shall show that our protocol 〈P,V〉 is an interactive argument system by establishing
its completeness and soundness (as defined in Definition 12). Completeness directly follows from
that of the sub-protocols.

It remains to show that any PPT adversarial prover P∗ can make V accept any x 6∈ L with
at most negligible probability. To prove this, looking ahead, we would need NMMXComsrs in Step
bps4 to be computationally binding; before we go further, let us first ensure this. We ensure this
by arguing that, if V accepts then srs is uniformly random with all but negligible probability, and
from Proposition 3, such an NMMXComsrs is CB.

Now consider an execution that is accepted by the verifier (and hence not aborted by either the
prover or the verifier). We observe the following.

• rV is statistically hidden in CEComsh of Step cfp1.

• rV is revealed at Step cfp3 only after P∗ sends rP (in Step cfp2).

• rV is uniformly random.

Thus, we have that srs = rP ⊕ rV is uniformly random (for any adversarially chosen rP ) with all
but negligible probability.

Now, given that the NMMXComsrs in Step bps4 is computationally binding, at a high level, the
soundness of our protocol reduces to

• computational hiding of CEComsb – to argue that P∗ does not learn σ, committed to by the
prover in CEComsb, and use it in its commitment Comsh and sWIAoK at Step bps2,

• knowledge-soundness of sWIAoK in Step bps2– to extract knowledge of commitment informa-
tion (i.e., commitment value and randomness) for Comsh in Step bps2 and to verify that the
extracted value will not be σ,

• knowledge-soundness of sWIAoK in Step bps5– to argue knowledge of a commitment informa-
tion for NMMXComsrs at Step bps4 with commitment value as a valid witness or knowledge
of a commitment information for Comsh in Step bps2 with commitment value as σ,

• and finally, computational binding of Comsh at Step bps2 to show the knowledge extracted is
not σ as a commitment value.
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Using CH of CEComsb and knowledge-soundness of sWIAoK in Step bps2. We begin by
showing that one can extract a commitment information for Comsh at Step bps2 from sWIAoK at
the same step, and owing to the computational hiding of CEComsb at Step bps1, the value will not
be σ.

Consider an adversarial prover P ∗1 against knowledge-soundness of sWIAoK which behaves as
follows.

• P ∗1 runs RobustSimI
(1)
sound(z), where I

(1)
sound is described as follows. I

(1)
sound incorporates P∗ in a

black-box way and interacts with it by playing the code of the honest verifier, except that

I
(1)
sound isolates sWIAoK in Step bps2 and forwards it to an external sWIAoK verifier.

• Upon completion of this sWIAoK protocol, if the external sWIAoK verifier accepts, then it

runs sWIAoK extractor on RobustSimI
(1)
sound(z).

Since the sWIAoK argument is isolated and relayed to an external sWIAoK verifier, (with no other

messages being isolated by I
(1)
sound), knowledge-soundness of sWIAoK implies that the sWIAoK ex-

tractor extracts a valid opening – a commitment value and randomness – for the Comsh commitment
of Step bps2. This also implies that the value is not σ (committed to in CEComsb of Step bps1)
with all but negligible probability, as otherwise we can build an adversary ACH that breaks com-
putational hiding of CEComsb of Step bps1 with the same probability as P ∗1 extracting σ. ACH
runs RobustSimI

(2)
sound(z), where I

(2)
sound behaves the same as I

(1)
sound except that, besides isolating the

sWIAoK argument of Step bps2, also isolates CEComsb of Step bps1. While the CEComsb commit-
ment is forwarded to an external CECom receiver, ACH itself runs the honest verifier code of the
isolated sWIAoK argument. ACH also runs the sWIAoK extractor on the isolated sWIAoK argu-

ment. Since neither I
(2)
sound nor I

(1)
sound isolate any CECom commitments, applying Corollary 3 of

the Robust Extraction Lemma, the view of the adversary P∗ when run by ACH is identical to its
view when run by P ∗1 . Furthermore, since the view of the sWIAoK extractor also remains identical,
we have that the probability that sWIAoK extractor extracts σ when run by P ∗1 is equal to that
when run by ACH , thus breaking computational hiding of CEComsb of Step bps1 with the same
probability.

Using knowledge-soundness of sWIAoK in Step bps5 and CB of Comsh at Step bps2.
Now, we show that one can extract a witness for sWIAoK of Step bps5, and from its knowledge-
soundness, we have that either we extract a commitment information (i.e., a commitment value
and randomness) in NMMXComsrs at Step bps4 such that this value is a valid witness that x ∈ L or
we extract an opening of Comsh at Step bps2 to σ. Finally, we will see that CB of Comsh at Step
bps2 implies that the extracted value is not an opening to σ, which implies extraction of a valid
witness, and existence of a valid witness in turn implies soundness.

Consider an adversarial prover P ∗2 against knowledge-soundness of sWIAoK which behaves as
follows.

• P ∗2 runs RobustSimI
(3)
sound(z), where I

(3)
sound behaves the same as I

(1)
sound, except for the following

modification. Recall that I
(1)
sound isolated sWIAoK of Step bps2 and forwarded it to an external

sWIAoK verifier; here I
(3)
sound runs the sWIAoK verifier’s task of sWIAoK of Step bps2 by itself.

• I(3)
sound instead isolates sWIAoK of Step bps5 and forwards it to an external sWIAoK verifier.
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• Upon completion of this sWIAoK protocol, if the sWIAoK verifier accepts, then it runs sWIAoK

extractor on RobustSimI
(3)
sound(z).

Since the sWIAoK argument is isolated, knowledge-soundness of sWIAoK implies that the sWIAoK
extractor extracts a valid sWIAoK witness – either y such that (x, y) ∈ RL, or an opening of Comsh

at Step bps2 to σ. We shall shortly show that owing to CB of Comsh of Step bps2, the extracted
value is not a Comsh opening to σ. Given this, we have that the extracted value is some valid
witness y. Existence of a valid witness thus implies soundness.

Now it remains to show that the extracted output of sWIAoK extractor above is not an opening
of Comsh to σ, with all but negligible probability. Assume for contradiction that the the extracted
output is an opening of Comsh to σ with some non-negligible probability ε. Then we construct an
adversary ACB that breaks CB of Comsh with probability ε− negl(λ).

ACB is described as follows. ACB runs RobustSimI
(4)
sound(z), where I

(4)
sound behaves the same as

I
(3)
sound, except for the following modification.

• Unlike I
(3)
sound (or I

(1)
sound) which isolates only one of the two sWIAoK sub-protocols present in

our protocol, ACB isolates both the sWIAoK protocols, one at Step bps2 and and the other
at Step bps5.

• Furthermore, it also isolates Comsh of Step bps2 and forwards it to an external Comsh receiver.

However, the sWIAoK verifiers’ roles for both the isolated sWIAoK arguments are played by ACB
itself. As proven earlier, the extracted output of sWIAoK at Step bps2 is an opening of Comsh,
with all but negligible probability; furthermore, the extracted value, however, is not σ, with all
but negligible probability. Thus, we have that the extracted output obtained by ACB out of this
sWIAoK is (δ, randδ), such that δ 6= σ and (δ, randδ) is a valid opening of Comsh. Furthermore, as also
proven above, the extracted output of sWIAoK at Step bps2 is either an opening of NMMXComsrs

to a valid witness y, or an opening of Comsh at Step bps2 to σ. If the extracted output is the
latter, i.e., an opening of Comsh to σ, then ACB has openings of Comsh (which is isolated and
given to an external Comsh receiver) to two distinct values δ and σ. In that event, ACB breaks

computational binding of Comsh. Since neither I
(4)
sound nor I

(3)
sound isolate any CECom commitments,

applying Corollary 3 of the Robust Extraction Lemma, the view of the adversary P∗ when run by
ACB is identical to its view when run by P ∗2 . Thus, ACB breaks computational binding of Comsh

with probability ε−negl(λ) (where, negl(λ) corresponds to the event that ACB fails in the sWIAoK
extraction from sWIAoK at Step bps2).

Since Comsh is computationally binding, we have proven that the value extracted from sWIAoK
at Step bps5 is an opening of NMMXComsrs to y with all but negligible probability. From the
existence of a valid witness, we have that x ∈ L, thus proving soundness.

C.2 〈P ,V〉 Satisfies Simulatability and Extractability

Here, we prove that there exists a PPT simulator-extractor SE that, for every concurrent man-in-
the-middle adversary M with some auxiliary information z, outputs a view, view, that is statis-
tically indistinguishable from the view viewM(x1, . . . , xmL , z) of M in a real execution, and also
outputs valid witnesses y1, . . . , ymR for all accepting right sessions except for those right sessions
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that are just copied off from some left session. That is, we would like that SE(x1, . . . , xmL , z) =
(view, y1, . . . , ymR). In the following we describe our simulator-extractor SE .

Our simulator-extractor. LetM be a concurrent man-in-the-middle adversary and let x1, . . . , xmL ∈
L be the statements of the left sessions. The simulator-extractor SE outputs the output of
RobustSimI(z), where procedure I – which has black-box access to adversary M – is described
shortly. Before we proceed, to briefly recall, the robust simulator RobustSim interacts with an
adversary I which mounts a robust concurrent attack by committing to multiple CECom commit-
ments and interacting with an external party B in a protocol Π. Under such an attack, RobustSim
is guaranteed to extract commitment information from every CECom commitment sent by the
adversary I before the completion of its commitment phase, in such a way that the external party
B does not get rewound.

Procedure I(z). Procedure I launches the robust-concurrent attack by committing in several
CECom commitments to external receivers. At the end of each of those CECom commitments,
it expects to receive a string. I incorporates the MiM adversary M internally as a black-box. I
initiates an execution of M, simulating its view as follows. Let the mL left sessions be ordered
with some arbitrary ordering. Let the mR right sessions be ordered as follows: Consider any two
right sessions, the i-th and the j-th; i ≤ j if and only if the CEComsb commitment at Step bps1 of
the i-th session begins earlier to the CEComsb commitment at Step bps1 of the j-th session.

For right sessions: When M initiates an t-th new session on the right, I runs the code of the
honest verifier of 〈P,V〉 except for the following modification.

• Initiate a new CECom commitment with an external CECom receiver and uponM initiating
CEComsh at Step bps4+, relay messages between M and the external receiver. Let value y′t
be received from the outside at the end of the CEComsh commitment.

• Include y′t in the output (of I).

For left sessions: When M initiates an `-th new session on the left, I proceeds as follows.

• Run the coin-flipping phase and the BPSCFP phase honestly. Let srs be the outcome.

• Initiate a new CECom commitment with an external CECom receiver and uponM reaching
the BPS phase and initiating CEComsb at Step bps1, relay messages between M and the
external receiver. Let value σ′ be received from the outside at the end of the CEComsb

commitment.

• Then commit to σ′ using Comsh at Step bps2; also, use the same extracted value as the witness
in executing the statistical WIAoK of Step bps2.

• Let σ be the value that M opens its CEComsb commitment (of Step bps1) to in Step bps3.
Abort if σ 6= σ′.

• Commit to 0λ using the mixed non-malleable commitment NMMXComsrs in Step bps4.

• Commit to 0λ using the CEComsh commitment in Step bps4+.
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• Use the value, σ′, committed to in Step bps2 as the witness in executing sWIAoK of Step
bps5.

When M halts, I outputs the view of M together with y′1, . . . , y
′
mR

, and halts.
Running Time of SE. Notice that except for the extraction of committed values from the CECom
commitments, all steps of the simulator in every session take only as much time as they would for
the honest prover in the real world. Furthermore, recall that the robust concurrent simulator runs
in time poly(λ) ·T (λ)2, where T (λ) is the maximum number of total CECom commitments isolated
and forwarded to external CECom verifiers while interacting with M. Hence, the running time of
the simulator as far as the simulator’s extraction step is concerned is also polynomial in λ. Hence,
overall, the running time of the simulator is polynomial in the running time of the adversary M,
λ, and |x1|, . . . , |xmL |.

Statistical Simulation: We shall prove that the view output by SE is distributed statistically
close to the real-world view of the MiM adversary M.

Theorem 4.
{viewM(x1, . . . , xmL)}x1,...,xmL∈L ≈s {view}x1,...,xmL∈L,

where, viewM(x1, . . . , xmL) is the view of the adversary M in the real-world and view is the view
output by the simulator-extractor SE.

Proof. We begin by providing an intuition to the proof. To prove the indistinguishability, we firstly
take note of the ways in which the view generated by the simulator differs from the real-world
view of the MiM adversary. Basically, the differences are that, for left sessions, the simulator
does not use valid witnesses but tries to get ‘fake-witnesses’ (which we also sometimes refer to
as ‘trapdoors’) via the robust simulator; and for the right sessions, the simulator tries to extract
witnesses via the robust simulator. While we know that using the robust simulator can incur at
most negligible distance, what still remains to be shown is that the simulator using fake-witnesses
for the left sessions also creates at most negligible distance from the real-view. For this, we simply
rely on the statistical properties of the sub-protocols in which the simulator uses different values;
namely, we prove statistical indistinguishability between the distributions of the real and simulated
views by relying upon SH of Comsh of Step bps2, sWI property of sWIAoK of Step bps2, SH
of the mixed non-malleable commitment of Step bps4, and sWI of sWIAoK of Step bps5– the
steps at which the simulator uses different values in left sessions. Except for SH of the mixed
non-malleable commitment of Step bps4, all the above properties are already guaranteed by the
corresponding primitives themselves; however, on the other hand, to ensure that the mixed non-
malleable commitment – parameterized by srs which is the outcome of the coin-flipping protocol
– is SH, we need to ensure that srs is uniformly random with all but negligible probability (see
Proposition 3). Let us thus begin proving the lemma by arguing that in the real-world view srs is
uniform in every left session with all but negligible probability. We thus first establish the following
claim.

Claim 2. In the real-world view viewM(x1, . . . , xmL), for every left session, srs is uniformly random
with all but negligible probability.

Proof. We begin by outlining the structure of the proof.
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1. Firstly, we show that, there exists a PPT algorithm that can extract a value r′V from CEComsh

of Step cfp1 of every left session before Step cfp2 of that session is reached. Thus, since rP is
sent to the adversary after r′V is extracted, r′V is independent of rP , and since rP is uniformly
random, rP ⊕ r′V is also uniformly random with all but negligible probability.

2. Then, we show that, in every left session, with all but negligible probability, r′V = rV , where,
rV is the value sent by M in Step cfp3.

The above items together imply that srs = rP ⊕ rV is uniformly random, with all but negligible
probability. In the rest of the proof, we shall refer to the above two steps as the ‘steps of our proof’.

Towards proving these steps, we shall present an equivalent description of the real-world exper-
iment and then proceed with our proof by using this description as the base. More specifically, this
equivalent description consists of an interface Ireal that incorporates the MiM adversary M as a
black-box; then, the output of the real-world experiment will be the output of the robust simulator
run on Ireal. Ireal, intuitively will be a dummy interface that does not isolate any sub-protocols.
That is, it invokes M and runs the code of the honest provers and honest verifiers. We shall later
build upon this interface while slowly isolating various sub-protocols.

Procedure Ireal(z). LetM be a concurrent man-in-the-middle adversary and let x1, . . . , xmL ∈ L
be the statements of the left sessions. For every ` ∈ [mL], Ireal receives y` such that (x`, y`) ∈ RL.
Ireal incorporates the MiM adversary M internally, as a black-box. Ireal invokes M. For every left
session initiated by M, Ireal runs the code of the honest prover of 〈P,V〉. For every right session,
it runs the code of the honest verifier of 〈P,V〉. This basic interface does not isolate any CECom
commitments. When M halts, Ireal outputs the view of M, and halts.

Extracting r′V before Step cfp2 for any left session. Consider any ` ∈ [mL]. We shall show
that one can efficiently extract r′V before Step cfp2 of the `-th left session.

We pursue this step of extracting r′V from CEComsh of Step cfp1 by modifying the interface Ireal

to I
(1)
real which isolates the CEComsh commitment of Step cfp1 of the `-th left session and forwards

it to an external receiver. And then we run the robust simulator on I
(1)
real.

In detail, we construct a PPT algorithm hyb that interacts withM, outputs a view distributed
statistically close to viewM(x1, . . . , xmL), and also extracts a value r′V from CEComsh of Step cfp1

of the `-th left session before Step cfp2 of that session is reached. hyb simply runs RobustSimI
(1)
real(z),

where I
(1)
real is a modified version of Ireal and is described as follows. I

(1)
real – with a black-box access

to adversary M – behaves the same way as Ireal except that it also isolates CEComsh commitment

of Step cfp1 of the `-th left session and forwards it to an external CECom receiver. I
(1)
real additionally

outputs the value r′V that RobustSim gives to I
(1)
real after extracting it from the isolated CEComsh

commitment.
Now to argue extractability of r′V and to argue statistical indistinguishability of the view output

by hyb from the real-world view, we need to invoke the Robust Extraction Lemma of [GLP+12], for
which we consider the following: CEComsh of Step cfp1 is of kcecom-slots and the external protocol
that the robust simulator is participating in, here, is the empty protocol (i.e., `cecom = kcecom and
`external = 0). Now by applying the Robust Extraction Lemma, we have that statistical distance
between the outputs of the simulator and hyb is at most:

∆(λ) ≤ 2−(kcecom−0·log(T (λ))) ≤ negl(λ),
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since, kcecom ∈ ω(log(λ)).
Also by applying the Robust Extraction Lemma, if BPSCFP phase of the `-th left session is

successfully completed, RobustSim, and hence hyb, fail to extract r′V with at most negligible proba-

bility. Since RobustSimI
(1)
real(z) runs in polynomial time (from the Robust Extraction Lemma stated

in Lemma 3), we have proven that one can extract r′V from the Step cfp1 CECom commitment of

the `-th left session before Step cfp2 is reached. Hence, in Step cfp2, when I
(1)
real sends uniformly

chosen rP , we have that rP ⊕ r′V is uniformly random, with all but negligible probability. This
establishes the first step of our proof.

Showing that r′V = rV . Now it remains to show that, in every left session, with all but negligible
probability, r′V = rV , where, rV is the value given by M in Step cfp3. Assume for contradiction
that there exists a left session ` such that r′V 6= rV with some non-negligible probability ε. Then we
construct an adversary ACB that breaks computational binding property of CEComsh (of Step cfp1)
with probability ε− negl(λ). That is ACB should be able to open a random CEComsh commitment
to two distinct values with probability ε − negl(λ). Intuitively, recall that we have shown how to
extract an opening of this commitment to r′V in the description of hyb; it remains to show how ACB
can get an opening (of the same commitment) to rV too. Observe that in our protocol the verifier
would never open the CEComsh commitment, but would only argue knowledge of the committed
value in the BPSCFP phase. In fact, we can show that the value committed to in the NMCom
commitment Comnm – which is SB since it is parameterized by a random DDH tuple ddh – is the
randomness rand which is an opening of the CEComsh commitment to rV . (Indeed, referring back
to the description of our protocol, rand is what an honest verifier commits to using Comnm; the
idea thus will be to show that the verifier cannot cheat here). Then ACB would obtain this rand by
running the NMCom extractor. (Recall that we refer to rand as the sub-witness for the session).

Towards maintaining the flow of the proof, let us for now proceed in proving that ACB breaks
computational binding property of CEComsh with probability ε − negl(λ), under the assumption
that the value committed to in the NMCom commitment Comnm of BPSCFP phase is rand; at the
end of the proof of this lemma, in Sub-claim 2, we shall establish that this assumption is true with
all but negligible probability. Description of ACB follows.
ACB behaves the same way as hyb, with the only two differences being the following.

1. While hyb ran RobustSimI
(1)
real(z), ACB runs RobustSimI

(2)
real(z), where I

(2)
real differs from I

(1)
real as

follows.

• I(2)
real isolates the NMCom commitment Comnm at Step bpscfp4 of the `-th left session.

(Recall that the only message that I
(1)
real isolates is the CECom commitment CEComsh of

Step cfp1 of the same left session.)

2. ACB runs the code of the honest NMCom receiver for the isolated NMCom commitment.

3. ACB runs the NMCom extractor on RobustSimI
(2)
real(z) for the isolated NMCom commitment.

Observe that, since the NMCom commitment is isolated, rewindings by the robust simulator do
not interfere with the NMCom commitment. (An alternative and a more intuitive reason, especially
here in this part of the proof, is that the only two messages isolated are the CECom commitment at
Step cfp1 and the NMCom commitment at Step bpscfp4 of the same session. Thus, we have that the
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isolated CECom commitment completes before the beginning of the NMCom commitment, thus
ensuring us that the rewindings on the CECom commitment will not interfere with the NMCom
commitment).

Thus, extractability of the NMCom commitment ensures that ACB succeeds in extracting a
valid sub-witness. Also, since the CEComsh of Step cfp1 is isolated and forwarded to an external
CECom receiver, ACB outputting two openings to two distinct values for this commitment amounts
to breaking binding of this commitment. Moreover, to ensure extractability from the isolated
CECom commitments and to ensure that the view ofM in its interaction with ACB is statistically
close to the view output by hyb, we apply the Robust Extraction Lemma of [GLP+12] (stated
in Lemma 3), which roughly says that the robust simulator which avoids rewinding any external
parties outputs a view that is statistically close to the view output by an online extractor which
(not necessarily running in polynomial time) with all but negligible probability provides a valid
commitment information for every CECom commitment relayed to the online extractor.

In order to apply the Robust Extraction Lemma, we will first create two hybrids hyb∗A and
hyb∗B, whose outputs are identical, and the output of the former is statistically close to the view
of M when run by hyb and the output of the latter is statistically close to the view of the MiM
adversary M when run by ACB.

hyb∗A is described as follows. It simply outputs the view output by the online extractor, namely,

REAL
I

(1)
real
E,Π (β, z), where the external protocol Π here is the empty protocol. Now, we can invoke the

Robust Extraction Lemma, for which we consider the following: the CECom commitments, that
are isolated and relayed to external CECom receivers, have kcecom-slots and the external protocol
that the robust simulator is participating in, here, is the empty protocol. Thus, we have that
`cecom = kcecom and `external = 0. Now by applying the Robust Extraction Lemma, we have that

statistical distance between the views REAL
I

(1)
real
E,Π (β, z) and the view of the adversary when run by

hyb is at most:
∆(λ) ≤ 2−(kcecom−0·log(T (λ))) ≤ negl(λ),

since, kcecom ∈ ω(log(λ)) and T is at most a polynomial.
Next, we describe another hybrid hyb∗B whose output is identical to that of hyb∗A. For this

consider an interface, I
(B)
extr behaves the same way as I

(1)
real except that it also isolates the Comnm

commitment at Step bpscfp4 of the `-th left session and forwards it to an external NMCom receiver.

hyb∗B simply outputs the view output by the online extractor, namely, REAL
I

(B)
extr
E,Π (β, z), where the

external protocol Π here consists of the Comnm commitment at Step bpscfp4 of the `-th left session
and the external party runs the code of NMCom receiver for the isolated commitments. Again,
we can invoke the Robust Extraction Lemma, for which we consider the following: the CECom
commitments, that are isolated and relayed to external CECom receivers, have kcecom-slots and the
external protocol Π that the robust simulator is participating in, here, is the Comnm commitment
at Step bpscfp4 of the `-th left session. Thus, we have that `cecom = kcecom and `external = knmcom.
Now by applying the Robust Extraction Lemma, we have that statistical distance between the

views REAL
I

(B)
extr
E,Π (β, z) and the view of the M during its interaction with ACB is at most:

∆(λ) ≤ 2−(kcecom−knmcom·log(T (λ))) ≤ negl(λ),

since, kcecom ∈ ω(log(λ)), knmcom ∈ O(log(λ)), and T is at most a polynomial.
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Thus, we have proven that the view of the MiM adversaryM during its interaction with ACB is
statistically close to its view during its interaction with hyb. Also, by invoking the Robust Extrac-
tion Lemma, we have that the CECom extraction is successful with all but negligible probability.

We have thus proven that, with all but negligible probability, ACB extracts (r′V , rand
′) through

robust simulator and rand through the NMCom extractor for rV , with these values being such that
rand explains rV being committed to CEComsh commitment of Step cfp1 and rand′ explains r′V
being committed to in the same CEComsh commitment.

Moreover, we have also proven that the view of the MiM adversary M when run by ACB is
statistically close to the view of M when run by hyb. Since rV 6= r′V with probability ε− negl(λ),
ACB thus breaks computational binding of CEComsh commitment with probability ε− negl(λ).

Finally, once we prove validity of our assumption (made earlier in the proof) that the value
committed to in the NMCom commitment Comnm at Step bpscfp4 of the `-th left session is indeed
a valid sub-witness with all but negligible probability, we will have established the second (and the
final) step of the proof (listed at the beginning of the proof). We now set out to prove validity of
this assumption.

Sub-Claim 2. In the real world view viewM(x1, . . . , xmL), if BPSCFP phase of the `-th left session
is accepted by the `-th prover P`, then the value committed to by M in the NMCom commitment
Comnm at Step bpscfp4 of the `-th left session is a valid sub-witness.

Proof. Intuitively, Comnm at Step bpscfp4 of the `-th left session contains a valid sub-witness owing
to:

• computational hiding of CEComsb – to argue that M does not learn α, committed to by the
prover in CEComsb, and use it in its commitment Comsh and sWIAoK at Step bpscfp2,

• knowledge-soundness of sWIAoK in Step bpscfp2– to extract knowledge of commitment infor-
mation (i.e., commitment value and randomness) for Comsh in Step bpscfp2 and to verify that
the extracted value will not be α,

• knowledge-soundness of sWIAoK in Step bpscfp5– to argue that either the value committed
to in Comnm at Step bpscfp4 is a valid sub-witness or to argue knowledge of a commitment
information for Comsh in Step bpscfp2 with commitment value as α,

• and finally, computational binding of Comsh at Step bpscfp2 to show the knowledge extracted
is not α as a commitment value.

Using CH of CEComsb and knowledge-soundness of sWIAoK in Step bpscfp2. We begin by
showing that one can extract a commitment information for Comsh at Step bpscfp2 from sWIAoK at
the same Step, and by computational hiding of CEComsb at Step bpscfp1, the value will not be α.

Consider an adversarial prover P ∗1 against knowledge-soundness of sWIAoK which behaves as fol-

lows. Here again we consider the dummy interface Ireal and build upon it. P ∗1 runs RobustSimI
(2′)
real (z),

where I
(2′)
real where I

(2′)
real differs from Ireal in the following sense.

• I(2′)
real isolates sWIAoK in Step bpscfp2 of the `-th left session and forwards it to an external
sWIAoK verifier.
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Upon completion of this sWIAoK protocol, if the sWIAoK verifier accepts, then it runs sWIAoK

extractor on RobustSimI
(2′)
real (z).

Observe that the only sub-protocol isolated by I
(2′)
real is the sWIAoK protocol. Hence, there

are no other rewindings that could interfere with his sWIAoK protocol. Thus, since the sWIAoK
argument is isolated and relayed to an honest external sWIAoK verifier, knowledge-soundness of
sWIAoK implies that the sWIAoK extractor extracts a valid sWIAoK witness – the value committed
to together with the randomness used – of the Comsh commitment of Step bpscfp2. This also implies
that the value is not α (committed to in CEComsb of Step bpscfp1) with all but negligible probability,
as otherwise we can build an adversary ACH that breaks computational hiding of CEComsb of Step
bpscfp1 as follows.

Assume for contradiction that the value extracted by P ∗1 is α with some non-negligible proba-
bility ε. Then we shall show that ACH breaks hiding with probability ε−negl(λ). ACH is described

as follows. ACH runs RobustSimI
(2̄′)
real (z), where I

(2̄′)
real behaves the same as I

(2′)
real except that, besides

isolating the sWIAoK argument of Step bpscfp2, also isolates CEComsb of Step bps1. While the
CEComsb commitment is forwarded to an external CECom sender, ACH itself runs the honest veri-
fier code of the isolated sWIAoK argument. If the sWIAoK verifier (run by ACH) accepts the sWIAoK
argument, then ACH also runs the sWIAoK extractor on the isolated sWIAoK argument. Further-
more, ACH does not continue the interaction with M after the sWIAoK argument. Crucially, note
that the isolated sWIAoK argument (at Step bpscfp2) begins strictly after the completion of the
isolated CEComsb commitment (at Step bpscfp1) as they both belong to the same session. Hence,
the sWIAoK rewindings do not interfere with the isolated CEComsb commitment thus ensuring that
the external CECom sender will not be rewound.

Finally, note that neither I
(2′)
real nor I

(2̄′)
real (which are the interfaces used by P ∗1 and ACH , re-

spectively,) neither I
(2)
sound nor I

(1)
sound isolate any CECom commitments, applying Corollary 3 of the

Robust Extraction Lemma, the view of the adversaryM when run by ACH is identical to its view
when run by P ∗1 until the sWIAoK argument at Step bpscfp2 of the `-th left session, (after which
ACH aborts). Furthermore, since the view of the sWIAoK extractor also remains identical, we have
that the probability that sWIAoK extractor extracts α when run by P ∗1 is equal to that when run
by ACH , thus breaking computational hiding of CEComsb of Step bps1 with the same probability.

Using knowledge-soundness of sWIAoK in Step bpscfp5 and CB of Comsh at Step bpscfp2.
Now, we show that one can extract a witness for sWIAoK of Step bpscfp5, and from its knowledge-
soundness, we have that either we extract a commitment information (i.e., a commitment value
and randomness) in Comnm at Step bpscfp4 such that this value is a valid sub-witness or we extract
an opening of Comsh at Step bpscfp2 to α. Finally, we will see that CB of Comsh at Step bpscfp2

implies that the extracted value is not an opening of Comsh to α. Putting it all together, we will
have established soundness of the argument proved in the BPSCFP phase. Finally, since Comnm is
statistically binding, we will have that the value committed in it is a valid sub-witness, rand, with
all but negligible probability.

Consider an adversarial prover P ∗2 against knowledge-soundness of sWIAoK which behaves as

follows. Recall that P ∗1 executed RobustSimI
(2′)
real (z), where I

(2′)
real differs from Ireal in that it isolated

sWIAoK in Step bpscfp2 of the `-th left session. P ∗2 instead runs RobustSimI
(2′′)
real (z), where I

(2′′)
real

instead isolates sWIAoK in Step bpscfp5 of the same session. That is, I
(2′′)
real differs from Ireal as
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follows.

• I(2′′)
real isolates sWIAoK in Step bpscfp5 of the `-th left session and forwards it to an external
sWIAoK verifier.

Upon completion of this sWIAoK protocol, if the sWIAoK verifier accepts, then it runs sWIAoK

extractor on RobustSimI
(2′′)
real (z).

Like for P ∗1 , the only sub-protocol isolated by I
(2′′)
real is the sWIAoK protocol. Hence, there

are no other rewindings that could interfere with this sWIAoK protocol. Thus, since the sWIAoK
argument is isolated and relayed to an honest external sWIAoK verifier, knowledge-soundness of
sWIAoK implies that the sWIAoK extractor extracts a valid sWIAoK witness – namely, either rand
such that rand explains CEComsh at Step cfp1 to be a commitment to rV , or an opening of Comsh

at Step bpscfp2 to α.
We shall shortly show that owing to CB of Comsh, the extracted value is not a Comsh opening

to α. With this, we will have proven that the extracted value is rand. Since Comnm is statistically
binding, the value committed in it should be rand itself, with all but negligible probability.

Now it remains to be shown that the extracted output of sWIAoK extractor above is not an
opening of Comsh to α with all but negligible probability. Assume for contradiction that the the
extracted output is an opening of Comsh to α with probability ε′. Then we construct an adversary
A′CB that breaks CB of Comsh with probability ε′ − negl(λ).

A′CB runs RobustSimI
(2̄′′)
real (z), where I

(2̄′′)
real differs from Ireal in the following sense.

• I(2̄′′)
real isolates Comsh of Step bpscfp2 of the `-th session and forwards it to an external Comsh

receiver.

• I(2̄′′)
real also isolates sWIAoK in Step bpscfp2 and sWIAoK in Step bpscfp5 of the `-th left ses-

sion. (Recall that in contrast the interfaces for P ∗1 , P ∗2 isolated only one of the two sWIAoK
arguments).

A′CB itself runs the code of the honest sWIAoK verifiers for these sWIAoK arguments. Furthermore,
A′CB checks if both the sWIAoK protocols are accepting. If so, then it runs the sWIAoK extractor

on RobustSimI
(2̄′′)
real (z) once over the sWIAoK protocol at Step bpscfp2 and again over the sWIAoK

protocol at Step bpscfp5. If either extraction fails, it aborts.
Observe that the only sub-protocols isolated by A′CB are the sWIAoK arguments at Step bpscfp2

and at Step bpscfp5 and the Comsh commitment of Step bpscfp2, all of the same `-th session. Hence
we are assured that the sWIAoK extractions do not interfere with the isolated Comsh commitment
thus implying that the external Comsh receiver will not be rewound. This in turn implies that A′CB
outputting two openings to two distinct values amounts to breaking binding of Comsh.

As proven earlier, the extracted output of sWIAoK at Step bpscfp2 is an opening of Comsh with
all but negligible probability; as also proven earlier, the extracted value, however, is not α with
all but negligible probability. Thus, we have the extracted output obtained by A′CB out of this
sWIAoK is (δ, randδ), such that δ 6= α and (δ, randδ) is a valid opening of Comsh. Furthermore, as
also proven above, the extracted output of sWIAoK at Step bpscfp5 is either an opening of Comnm to
a value rand such that rand explains CEComsh at Step cfp1 to be a commitment to rV , or an opening
of Comsh at Step bpscfp2 to α. If the extracted output is the latter, i.e., an opening of Comsh to α,
then A′CB has openings of Comsh (which is isolated) to two distinct values δ and α. Thus, A′CB
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breaks computational binding of Comsh with probability ε′ − negl(λ), under the assumption that
the view of the MiM adversary M when run by A′CB is statistically close to its view when run
by P ∗2 . Now to prove right the assumption: we make the following observations. The interface in

A′CB, namely I
(2̄′′)
real , behaves the same way as Ireal except that it also isolates certain sub-protocols,

and even the isolated protocols are run honestly. Also, neither interfaces of A′CB and P ∗2 isolate
any CECom commitments, applying Corollary 3 of the Robust Extraction Lemma, the view of the
adversaryM when run by A′CB is identical to its view when run by P ∗2 , under the event that A′CB
does not abort due to failure in sWIAoK extractions. Furthermore, since the sWIAoK extractor fails
in the extraction with only negligible probability, we have proven that A′CB breaks computational
binding of Comsh with probability ε′ − negl(λ) (where, negl(λ) corresponds to the event that A′CB
fails in either of the two sWIAoK extractions).

Thus, we have that the value extracted from sWIAoK at Step bpscfp5 is an opening of Comnm

to rand with all but negligible probability. Since Comnm is SB, the value committed in it should be
rand itself, with all but negligible probability, thus proving Sub-claim 2.

This concludes the proof of Claim 2.

We have thus proven that in the real-world view of the adversary, for every left session, srs
is uniformly random with all but negligible probability. With this we are now ready to prove
statistical indistinguishability between the real-world view of the adversary and the simulated view
output by the simulator-extractor SE . We begin with the real-world game and reach SE through
a series of hybrids hyb0, . . . , hyb7 as follows. Also, let us denote the view output by a hybrid hybi
by view(i).

hyb0: This is identical to the real-world experiment. To understand the upcoming hybrids easily,
we choose to explain this hybrid again in terms of the dummy interface Ireal, defined in the proof
of Claim 2. Recall that Ireal receives valid witnesses for all left sessions, invokes the MiM adversary
M, and simply runs the code of honest provers and honest verifiers in the left and right sessions,
respectively. hyb0 outputs RobustSimIreal(z). For the sake of notations, we shall rename Ireal as

I
(0)
real.

hyb1: hyb1 runs RobustSimI
(1)
real(z), where I

(1)
real behaves the same way as I

(0)
real except for the following

modification.

• For every right session, I
(1)
real initiates a new CECom commitment with an external CECom

receiver and upon M initiating CEComsh at Step bps4+, relays messages between M and
the external receiver. Let value y′t be received from the outside at the end of the CEComsh

commitment.

Claim 3.
view(1) ≈s view(0).

Proof. We prove this by applying the Robust Extraction Lemma. Since in hyb0, I
(0)
real does not

isolate any CECom commitments, to apply the Robust Extraction Lemma, we will first create an
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intermediate hybrid hyb∗1. hyb∗1 simply outputs the view output by the online extractor, namely,

REAL
I

(1)
real
E,Π (β, z), where the external protocol Π here is the empty protocol. Note that this view is

identical to the view of the MiM adversary M when run by hyb0, since I
(1)
real behaves the same

way as I
(0)
real except that it also isolates certain CECom commitments and relays them to external

CECom receivers. That is,

REAL
I

(1)
real
E,Π (β, z) ≡ view(0).

Now, we can invoke the Robust Extraction Lemma, for which we consider the following: the
CECom commitments, that are isolated and relayed to external CECom receivers, have kcecom-slots
and the external protocol that the robust simulator is participating in, here, is the empty protocol.
Thus, we have that `cecom = kcecom and `external = 0. Now by applying the Robust Extraction

Lemma, we have that statistical distance between the views REAL
I

(1)
real
E,Π (β, z) and view(1) output by

H∗1 and H1, respectively, is at most:

∆(λ) ≤ 2−(kcecom−0·log(T (λ))) ≤ negl(λ),

since, kcecom ∈ ω(log(λ)) and T is at most a polynomial. Thus,

view(1) ≈s REAL
I

(1)
real
E,Π (β, z).

hyb2: hyb2 runs RobustSimI
(2)
real(z), where I

(2)
real behaves the same way as I

(1)
real except for the following

modification.

• For every left session, I
(2)
real initiates a new CECom commitment with an external CECom

receiver and upon M initiating CEComsb at Step bps1, relays messages between M and the
external receiver. Let value σ′ be received from the outside at the end of the CEComsb

commitment.

Claim 4.
view(2) ≈s view(1).

Proof. Recall that hyb1 and hyb2 run RobustSimI
(1)
real(z) and RobustSimI

(2)
real(z), respectively, where

I
(1)
real and I

(2)
real differ as follows. While I

(1)
real isolates only some CECom commitments of the right ses-

sions, I
(2)
real also isolates some CECom commitments of the left sessions. Now to establish statistical

indistinguishability between the views output by hyb1 and hyb2, we apply the Robust Extraction

Lemma. Since I
(1)
real does not isolate certain CECom commitments that are isolated by I

(2)
real, to

apply the Robust Extraction Lemma, we will first create an intermediate hybrid hyb∗2. hyb∗2 sim-

ply outputs the view output by the online extractor, namely, REAL
I

(2)
real
E,Π (β, z), where the external

protocol Π here is the empty protocol. Note that this view is statistically close to the view of the

MiM adversary M when run by hyb1, since I
(2)
real behaves the same way as I

(1)
real except that it also
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isolates certain CECom commitments that were originally not isolated by I
(1)
real and relays them to

external CECom receivers. That is,

REAL
I

(2)
real
E,Π (β, z) ≈s view(1).

Now, we can invoke the Robust Extraction Lemma, for which we consider the following: the
CECom commitments, that are isolated and relayed to external CECom receivers, have kcecom-slots
and the external protocol that the robust simulator is participating in, here, is the empty protocol.
Thus, we have that `cecom = kcecom and `external = 0. Now by applying the Robust Extraction

Lemma, we have that statistical distance between the views REAL
I

(2)
real
E,Π (β, z) and view(2) output by

H∗2 and H2, respectively, is at most:

∆(λ) ≤ 2−(kcecom−0·log(T (λ))) ≤ negl(λ),

since, kcecom ∈ ω(log(λ)) and T is at most a polynomial. Thus,

view(2) ≈s REAL
I

(2)
real
E,Π (β, z).

hyb3. hyb3 differs from hyb2 in that, while hyb2 ran RobustSimI
(2)
real(z), hyb3 runs RobustSimI

(3)
real(z),

where I
(3)
real differs from I

(2)
real for every left session as follows.

• Recall that I
(2)
real (among other messages) isolated the CEComsb commitments at Step bps1 of

the left session.

• Let value σ′ be received from the outside at the end of the CEComsb commitment. Then
commit to σ′ using Comsh at Step bps2; also, use the same extracted value as the witness in
proving sWIAoK at Step bps2.

Claim 5.
view(3) ≈s view(2).

Proof. Since Comsh at Step bpscfp2 is a statistically hiding commitment scheme, and sWIAoK is
statistical witness-indistinguishability, the claim follows.

hyb4. hyb4 differs from hyb3 in that, while hyb3 ran RobustSimI
(3)
real(z), hyb4 runs RobustSimI

(4)
real(z),

where I
(4)
real differs from I

(3)
real in every left session as follows.

• Recall that I
(3)
real isolated the CEComsb commitment at Step bps1 of the left session. Let the

extracted value received from the outside be σ′. Also, in Step bps3, let σ be the value that
M opens the CEComsb commitment to. If σ 6= σ′, then abort.

Claim 6.
view(4) ≈s view(3).
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Proof. Assume for contradiction that there exists ` ∈ [mL] such that for the `-th left session,
σ 6= σ′, with some non-negligible probability ε. Then we construct an adversary that breaks CB of
the CEComsb commitment.

Recall that hyb4 isolates the CEComsb commitment at Step bpscfp1 of the `-th left session (among
other messages). It thus receives an opening for it, say (σ′, randσ′) from the outside. Furthermore,
M provides an opening to the same CEComsb commitment at Step bps3; call it (σ, randσ). From
the assumption in the proof that α 6= α′ with some non-negligible probability ε, we can construct
an adversary that breaks CB of the CEComsb commitment with the same probability. This clearly
follows from the fact that the CEComsb commitment in question is already isolated and relayed to
an external CECom receiver. Thus, hyb4 itself can be deemed our adversary against CB of the
CEComsb commitment, a contradiction. Thus, σ = σ′, with all but negligible probability, and the
Claim follows.

hyb5. hyb5 differs from hyb4 in that, while hyb4 ran RobustSimI
(4)
real(z), hyb5 runs RobustSimI

(5)
real(z),

where I
(5)
real differs from I

(4)
real in every `-th left session as follows.

• Recall that, in the `-th left session in question, I
(4)
real committed to a valid witness y` in

NMMXComsrs at Step bps4 and in CEComsh at Step bps4+. Furthermore, it uses this com-
mitted value y` and the randomnesses used in the NMMXComsrs and CEComsh commitments

as the witness in proving sWIAoK at Step bps5. Here, the modification is that I
(5)
real uses the

commitment information from Comsh at Step bps2 where it committed to σ as the witness
for the sWIAoK argument.

Claim 7.
view(5) ≈s view(4).

Proof. Since sWIAoK at Step bps5 is statistical witness-indistinguishability, the claim follows.

hyb6. hyb6 differs from hyb5 in that, while hyb5 ran RobustSimI
(5)
real(z), hyb6 runs RobustSimI

(6)
real(z),

where I
(6)
real differs from I

(5)
real in every `-th left session as follows.

• Recall that, in the `-th left session in question, I
(5)
real committed to a valid witness y` in

NMMXComsrs at Step bps4. Here, the modification is that I
(6)
real commits to 0λ in NMMXComsrs

at Step bps4.

Claim 8.
view(6) ≈s view(5).

Proof. Recall that we have proven in Claim 2 that for every left session srs is uniformly random
with all but negligible probability. Thus, from Proposition 3, NMMXComsrs at Step bps4 of left
sessions are SH with all but negligible probability. The claim thus immediately follows.
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hyb7. hyb7 differs from hyb6 in that, while hyb6 ran RobustSimI
(6)
real(z), hyb7 runs RobustSimI

(7)
real(z),

where I
(7)
real differs from I

(6)
real in every `-th left session as follows.

• Recall that, in the `-th left session in question, I
(6)
real committed to a valid witness y` in

CEComsh at Step bps4+. Here, the modification is that I
(7)
real commits to 0λ in CEComsh at

Step bps4+.

Claim 9.
view(7) ≈s view(6).

Proof. Since CEComsh is SH, the claim follows.

Note that hyb7 does not use any witness for the left sessions. By construction, hyb7 is identical
to our simulator-extractor SE .

We have thus proven Theorem 4.

Witness Extractability: We shall prove that the values y′1, . . . , y
′
mR

extracted by the simulator-
extractor SE are valid witnesses for the statements of the corresponding right sessions.

Theorem 5. For every PPT adversary M, the output of the simulator SE(x1, . . . , xmL , z) =
(view, y1, . . . , ymR) is such that, ∀i ∈ [mR], (xi, yi) ∈ RL.

Proof. We shall prove this theorem through a series of hybrids Hi, for i = 1, . . . , 7. Every Hi
outputs a view, view

(i)
extr. We shall show that the final hybrid outputs a view that is identical to the

view output by our simulator-extractor SE . Furthermore, every Hi will also output a list of values

y
′(i)
1 , . . . , y

′(i)
mR . We shall show for one of the hybrids that these values are valid witnesses for the

statements being proved in the right sessions. Finally, we shall prove that, not only the views but
also these values are (computationally) indistinguishable across the above hybrids, implying that
the values output by our simulator-extractor SE are also valid witnesses, thus establishing ‘witness
extractability’.

We define 2mR random variables {b(i)t , β
(i)
t }

mR
t=1, where b

(i)
t is a bit denoting whether according

to view
(i)
extr verifier Vt accepted the proof from the adversary or not, and β

(i)
t is the value contained

in the NMMXComsrs commitment received by Vt in Step bps4; if there is no unique value, then β
(i)
t

is defined to be ⊥.

hybreal: This is just the real-world experiment. Like in the proof of Claim 2, we interpret the
real-world view as output of the robust simulator RobustSim which interacts with an interface that
launches a robust concurrent attack by incorporating the MiM adversary M and by playing the
role of honest provers and honest verifiers in left and right sessions, respectively. To recall, Ireal is
described as follows.
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hyb0: This is similar to the real-world experiment hybreal except for a slight modification.
Recall that the real-world view is just the output of RobustSimIreal(z), where, Ireal is a dummy

interface, defined in the proof of Claim 2. Recall that Ireal receives valid witnesses for all left sessions,
invokes the MiM adversary M, and simply runs the code of honest provers and honest verifiers

in the left and right sessions, respectively. The modification is that hyb0 runs RobustSimI
(0)
extr(z),

where I
(0)
extr differs from Ireal as follows.

• For every t-th right session, isolate CEComsh commitment at Step bps4+ and forward it to an

external CECom receiver. Let the value received from the outside be y
′(1)
t .

Besides outputting the view view
(0)
extr, H0 also outputs y

′(0)
1 , . . . , y

′(0)
mR .

Remark 2. From now onwards, all the upcoming hybrids shall isolate CEComsh commitment at
Step bps4+ of every right session. We shall denote the mR values extracted in any hybrid by

y
′(ind)
1 , . . . , y

′(ind)
mR , where ind is the index of the corresponding hybrid. In fact, these are the values

that every hybrid here shall output besides the view of the MiM adversary M.

Sub-Claim 3.
view

(0)
extr ≈s viewM(x1, . . . , xmL),

where, viewM(x1, . . . , xmL) is the real-world view of M.

Proof. We prove this by applying the Robust Extraction Lemma. Since Ireal does not isolate any
CECom commitments, to apply the Robust Extraction Lemma, we will first create an intermediate

hybrid hyb∗0. hyb∗0 simply outputs the view output by the online extractor, namely, REAL
I

(0)
extr
E,Π (β, z),

where the external protocol Π here is the empty protocol. Note that this view is identical to the

view of the MiM adversaryM when run by the real-world experiment, since I
(0)
extr behaves the same

way as Ireal except that it also isolates certain CECom commitments and relays them to external
CECom receivers. That is,

REAL
I

(0)
real
E,Π (β, z) ≡ viewM(x1, . . . , xmL).

Now, we can invoke the Robust Extraction Lemma, for which we consider the following: the
CECom commitments, that are isolated and relayed to external CECom receivers, have kcecom-slots
and the external protocol that the robust simulator is participating in, here, is the empty protocol.
Thus, we have that `cecom = kcecom and `external = 0. Now by applying the Robust Extraction

Lemma, we have that statistical distance between the views REAL
I

(0)
extr
E,Π (β, z) and view

(0)
extr output by

H∗0 and hyb0, respectively, is at most:

∆(λ) ≤ 2−(kcecom−0·log(T (λ))) ≤ negl(λ),

since, kcecom ∈ ω(log(λ)) and T is at most a polynomial. Thus,

view
(0)
extr ≈s REAL

I
(1)
real
E,Π (β, z).

Hence, the claim.

Claim 10. For every right session, with all but negligible probability, srs is uniformly random.
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Proof. Consider any t-th right session. We observe the following.

• rV is statistically hidden in CEComsh of Step cfp1.

• rV is revealed at Step cfp3 only after M sends rP (in Step cfp2).

• rV is uniformly random.

Hence, we have that srs = rP ⊕ rV (for any adversarially chosen rP ) is uniformly random with all
but negligible probability.

H1: H1 runs RobustSimI
(1)
extr(z), where we define I

(1)
extr to be identical to I

(0)
extr, except that it

biases the coin-flipping phase of every right session to a random DDH tuple by ‘cheating’ in the
BPS argument at the BPSCFP phase. It does so by proceeding as follows for every right session.

1. In Step cfp1, (like in I
(0)
extr), choose a random string and commit to it using CEComsh.

2. In Step cfp2, let rP be the value sent by M.

3. In Step cfp3, sample a random DDH tuple srs. Define rV := rP ⊕ srs. Send rV .

4. Isolate the CECom commitment CEComsb at Step bpscfp1 and forward it to an external
CECom receiver.

5. Let value α′ be received from outside at the end of the CEComsb commitment. Then commit
to α′ using Comsh at Step bpscfp2; also, use the same extracted value as the witness in proving
the statistical ZKAoK of Step bpscfp2.

6. Let α be the value that M opens its CEComsb (of Step bpscfp1) to in Step bpscfp3. Abort if
α 6= α′.

7. Commit to 0λ using the mixed non-malleable commitment Comnm in Step bpscfp4.

8. Use the value, α′, committed to in Step bpscfp2 as the witness in proving sZKAoK of Step
bpscfp5.

9. Isolate CEComsh commitment at Step bps4+ and forward it to an external CECom receiver.

Let the value received from the outside be y
′(1)
t .

10. Execute the rest of the steps of any right session honestly, like in I
(0)
extr.

For every left session, proceed exactly the same way as I
(0)
extr. Namely, run the code of honest prover

(using valid witness) for every left session.

Besides outputting the view view
(1)
extr, H1 also outputs y

′(1)
1 , . . . , y

′(1)
mR .

Note that view
(1)
extr is not statistically indistinguishable from view

(0)
extr, the reason being the fol-

lowing: While in view
(0)
extr, for every right session, srs is uniformly random with all but negligible

probability, as proven in Claim 10, in view
(1)
extr, I

(1)
extr biases the outcome of the coin-flippings of the

right sessions to random DDH tuples. Thus, it maybe the case thatM is now also able to bias the
coin-flippings of some left sessions. We would first like to prove that this is not the case; i.e., we
shall prove that for every left session srs is still uniformly random with all but negligible probability.
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Claim 11. For every left session, with all but negligible probability, srs is uniformly random.

Proof. We begin by sketching the outline of the proof. Recall that until now our approach in
proving uniform distribution of srs in left sessions was to first construct a PPT algorithm that
extracts r′V from CEComsh of Step cfp1 and then argue that the value rV given by M is such
that rV = r′V , with all but negligible probability. That is the statement that M gives a BPS
argument for in the BPSCFP phase of the left session is for the same r′V that was extracted, with all
but negligible probability. Since rP would then be sent only after the extraction of r′V , we could
argue that rP being uniformly random implies srs = rP ⊕ rV being uniformly random too, with all
but negligible probability. However, we cannot näıvely proceed with these steps any more for the

following reason. Note that I
(2)
extr differs from I

(1)
extr (at least) in the following two ways.

1. In every right session, while I
(1)
extr sent the same rV that it committed to in Step cfp1 at

Step cfp3, I
(2)
extr cheats in cfp3 by sampling a random DDH tuple srs and by setting rV to be

rV := rP ⊕ srs.

2. In every right session, while I
(1)
extr committed to a valid sub-witness rand – used as the ran-

domness in the CEComsh commitment of Step cfp1– in Comnm in Step bpscfp4, I
(2)
extr commits

to 0λ using Comnm in Step bpscfp4.

Note that both the changes are not statistically indistinguishable, but only computationally so.
Hence, it maybe the case thatM also is now able to prove a false statement in BPSCFP phase of a
left session thus biasing the distribution of srs on the left far from uniform, although computationally
indistinguishable from the latter. Our task thus would be to ensure that the computational changes

introduced by I
(2)
extr do not lead srs on left sessions to be distributed statistically far from uniform.

The proof shall proceed by defining a sequence of ‘sub-hybrids’ from H0 to H1. Consider the
sequence of sub-hybrids, H0,0,H0,1, . . . ,H0,mR , and further ‘intermediate-hybrids’ H0,i:1, . . . ,H0,i:7

that interpolate between H0,i and H0,i+1, defined as follows. The sequence of the sub-hybrids, as
we shall shortly describe, correspond to the following ordering of the right sessions: Consider any
two right sessions, i-th and j-th; i ≤ j if and only if the CEComsb commitment at Step bps1 of
the i-th session begins earlier to the CEComsb commitment at Step bps1 of the j-th session. The
hybrids are defined as below.

Sub-hybrid H0,0. H0,0 is identical to H0. Recall that H0 ran RobustSimI
(0)
extr(z). For notational

purposes, we shall define I
(0,0)
extr to be identical to I

(0)
extr.

Sub-Claim 4.
view

(0,0)
extr ≡ view

(0)
extr.

Proof. This follows immediately from the fact that H0,0 is identical to H0.

Intermediate-hybrid H0,i:1. H0,i:1 differs from H0,i in that, while H0,i ran RobustSimI
(0,i)
extr (z),

H0,i:1 runs RobustSimI
(0,i:1)
extr (z), where I

(0,i:1)
extr differs from I

(0,i)
extr as follows.
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• In the i+ 1-th right session, isolate the CEComsb commitment at Step bpscfp1 and forward it
to an external CECom receiver.

Sub-Claim 5.
view

(0,i:1)
extr ≈s view(0,i)

extr .

Proof. Recall thatH0,i andH0,i:1 run RobustSimI
(0,i)
extr (z) and RobustSimI

(0,i:1)
extr (z), respectively, where

I
(0,i)
extr and I

(0,i:1)
extr differ in that I

(0,i:1)
extr isolates one more CECom commitment than I

(0,i)
extr and relays

it to an external CECom receiver.
Now to establish statistical indistinguishability between the views output by H0,i and H0,i:1, we

apply the Robust Extraction Lemma. Since I
(0,i)
extr does not isolate certain CECom commitments

that are isolated by I
(0,i:1)
extr , to apply the Robust Extraction Lemma, we will first create an inter-

mediate hybrid hyb∗0,i:1. hyb∗0,i:1 simply outputs the view output by the online extractor, namely,

REAL
I

(0,i:1)
extr
E,Π (β, z), where the external protocol Π here is the empty protocol. Note that this view is

statistically close to the view of the MiM adversary M when run by H0,i, since I
(0,i:1)
extr behaves the

same way as I
(0,i)
extr except that it also isolates certain CECom commitments that were originally not

isolated by I
(0,i)
extr and relays them to external CECom receivers. That is,

REAL
I

(0,i:1)
extr
E,Π (β, z) ≈s view(0,i)

extr .

Now, we can invoke the Robust Extraction Lemma, for which we consider the following: the
CECom commitments, that are isolated and relayed to external CECom receivers, have kcecom-slots
and the external protocol that the robust simulator is participating in, here, is the empty protocol.
Thus, we have that `cecom = kcecom and `external = 0. Now by applying the Robust Extraction

Lemma, we have that statistical distance between the views REAL
I

(0,i:1)
extr
E,Π (β, z) and view

(0,i)
extr output

by H∗0,i:1 and H0,i:1, respectively, is at most:

∆(λ) ≤ 2−(kcecom−0·log(T (λ))) ≤ negl(λ),

since, kcecom ∈ ω(log(λ)) and T is at most a polynomial. Thus,

view
(0,i:1)
extr ≈s REAL

I
(0,i:1)
extr
E,Π (β, z).

Intermediate-hybrid H0,i:2. H0,i:2 differs fromH0,i:1 in that, whileH0,i:1 ran RobustSimI
(0,i:1)
extr (z),

H0,i:2 runs RobustSimI
(0,i:2)
extr (z), where I

(0,i:2)
extr differs from I

(0,i:1)
extr as follows.

• Recall that I
(0,i:1)
extr isolated CEComsb commitment at Step bpscfp1 of the i+ 1-th right session.

• Let value α′ be received from outside at the end of the CEComsb commitment. Then commit
to α′ using Comsh at Step bpscfp2; also, use the same extracted value as the witness in proving
sWIAoK at Step bpscfp2.

55



Sub-Claim 6.
view

(0,i:2)
extr ≈s view(0,i:1)

extr .

Proof. Since Comsh at Step bpscfp2 is a statistically hiding commitment scheme, and sWIAoK is
statistically witness-indistinguishable, the sub-claim follows.

Intermediate-hybrid H0,i:3. H0,i:3 differs fromH0,i:2 in that, whileH0,i:2 ran RobustSimI
(0,i:2)
extr (z),

H0,i:3 runs RobustSimI
(0,i:3)
extr (z), where I

(0,i:3)
extr differs from I

(0,i:2)
extr as follows.

• Recall that I
(0,i:2)
extr isolated the CEComsb commitment at Step bpscfp1 of the i + 1-th right

session. Let the extracted value received from the outside be α′. Also, in Step bpscfp3, let α
be the value that M opens the CEComsb commitment to. If α 6= α′, then abort.

Sub-Claim 7.
view

(0,i:3)
extr ≈s view(0,i:2)

extr .

Proof. Recall that H0,i:3 isolates the CEComsb commitment at Step bpscfp1 of the i + 1-th right
session (among other messages). It thus receives an opening for it, say (α′, randα′) from the outside.
Furthermore, M provides an opening to the same CEComsb commitment at Step bpscfp3; call it
(α, randα). Since CEComsb is SB, α = α′ with all but negligible probability, and hence the sub-claim
follows.

Intermediate-hybrid H0,i:4. H0,i:4 differs fromH0,i:3 in that, whileH0,i:3 ran RobustSimI
(0,i:3)
extr (z),

H0,i:4 runs RobustSimI
(0,i:4)
extr (z), where I

(0,i:4)
extr differs from I

(0,i:3)
extr as follows.

• Recall that, in the i+ 1-th session, I
(0,i:3)
extr committed to the value rand – used as randomness

in committing rV at Step cfp1– in Comnm at Step bpscfp4. Furthermore, it uses this committed
value rand as the witness in proving sWIAoK at Step bpscfp5. Here, the modification is that

I
(0,i:4)
extr uses the commitment information from Comsh at Step bpscfp2, where it committed to
α, as the witness in proving sWIAoK at Step bpscfp5.

Sub-Claim 8.
view

(0,i:4)
extr ≈s view(0,i:3)

extr .

Proof. Since sWIAoK at Step bpscfp5 is statistically witness-indistinguishable, the sub-claim follows.
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Intermediate-hybrid H0,i:5. H0,i:5 differs fromH0,i:4 in that, whileH0,i:4 ran RobustSimI
(0,i:4)
extr (z),

H0,i:5 runs RobustSimI
(0,i:5)
extr (z), where I

(0,i:5)
extr differs from I

(0,i:4)
extr as follows.

• Recall that, in the i + 1-th right session, I
(0,i:4)
extr committed to the value rand – used as

randomness in committing rV at Step cfp1– in Comnm at Step bpscfp4. Here, the modification

is that I
(0,i:5)
extr commits to 0λ in Comnm at Step bpscfp4.

Sub-Claim 9.
view

(0,i:5)
extr ≈c view(0,i:4)

extr .

Proof. Recall that the NMCom commitment Comnm at Step bpscfp4 is computational hiding. Since
the only modification introduced in H0,i:5 is in the value committed to in the NMCom commitment
Comnm at Step bpscfp4, the sub-claim follows.

Sub-Claim 10. In H0,i:5, ∀` ∈ [mL], if P` accepts the BPS argument of BPSCFP phase, then the
value committed to by M in the Comnm commitment at Step bpscfp4 of the `-th left session is a
valid sub-witness.

Proof. Observe that the change introduced by H0,i:5 is only computationally indistinguishable,
but not statistically so. Furthermore, the value committed to in the SB NMCom commitment
Comnm at Step bpscfp4 of any left session is not revealed by M in any part of the protocol. Hence,
computational hiding of the Comnm commitment itself would not suffice in arguing that the value
committed to by the adversary M in the Comnm commitment at Step bpscfp4 of any left session
does not change adversely. For this, we shall rely upon non-malleability of the Comnm commitment.

Assume for contradiction that there exists ` ∈ [mL] such that, with some non-negligible prob-
ability ε, P` accepts the BPS argument of BPSCFP phase, but the value committed to by M in
the Comnm commitment at Step bpscfp4 of the `-th left session is not a valid sub-witness. Then
we construct an adversary Anmcom against non-malleability of the NMCom commitment that wins
with probability ε− negl(λ).
Anmcom behaves exactly the same way as H0,i:4 except that it also isolates the Comnm commit-

ment at Step bpscfp4 of the `-th left session and Comnm commitment at Step bpscfp4 of the i+ 1-th
right session, and forwards them to an external NMCom receiver and to an external NMCom
sender, respectively. Furthermore, Anmcom sends the sub-witness rand (i.e., the value committed
to in the isolated Comnm commitment of the i+ 1-th right session by H0,i:4) and 0λ (i.e., the value
committed to in the isolated Comnm commitment of the i + 1-th right session by H0,i:5) to the
external NMCom sender, who chooses one of the values to commit to.

Before we proceed we shall first prove that the view of the MiM adversary M during its inter-
action with Anmcom in the case where the value committed to in the isolated Comnm commitment
of the i + 1-th right session is rand is statistically close to the view output by H0,i:4. For this, we
apply the Robust Extraction Lemma. Since Anmcom also isolates two NMCom commitments and
relays them to external parties, to apply the Robust Extraction Lemma, we will first create two
intermediate hybrids hyb∗0,i:4,A and hyb∗0,i:4,B, whose outputs are identical, and the output of the
former is statistically close to the view of the MiM adversaryM when run by H0,i:4 and the output
of the latter is statistically close to the view of the MiM adversary M when run by Anmcom in the
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case where the value committed to in the isolated Comnm commitment of the i+ 1-th right session
is rand.

hyb∗0,i:4,A is described as follows. It simply outputs the view output by the online extractor,

namely, REAL
I

(0,i:4)
extr
E,Π (β, z), where the external protocol Π here is the empty protocol. Now, we can

invoke the Robust Extraction Lemma, for which we consider the following: the CECom commit-
ments, that are isolated and relayed to external CECom receivers, have kcecom-slots and the external
protocol that the robust simulator is participating in, here, is the empty protocol. Thus, we have
that `cecom = kcecom and `external = 0. Now by applying the Robust Extraction Lemma, we have

that statistical distance between the views REAL
I

(0,i:4)
extr
E,Π (β, z) and view

(0,i:4)
extr is at most:

∆(λ) ≤ 2−(kcecom−0·log(T (λ))) ≤ negl(λ),

since, kcecom ∈ ω(log(λ)) and T is at most a polynomial.
Next, we describe an intermediate hybrid hyb∗0,i:4,B whose output is identical to that of hyb∗0,i:4,A.

For this consider an interface, I
(0,i:4,B)
extr behaves the same way as I

(0,i:4)
extr except that it also isolates

the Comnm commitment at Step bpscfp4 of the `-th left session and Comnm commitment at Step
bpscfp4 of the i + 1-th right session, and forwards them to an external NMCom receiver and to
an external NMCom sender, respectively. hyb∗0,i:4,B simply outputs the view output by the online

extractor, namely, REAL
I

(0,i:4,B)
extr
E,Π (β, z), where the external protocol Π here consists of the Comnm

commitment at Step bpscfp4 of the `-th left session and Comnm commitment at Step bpscfp4 of the
i + 1-th right session, and the external party running the codes of NMCom receiver and NMCom
sender (committing to rand), respectively, for these isolated commitments. Again, we can invoke the
Robust Extraction Lemma, for which we consider the following: the CECom commitments, that are
isolated and relayed to external CECom receivers, have kcecom-slots and the external protocol that
the robust simulator is participating in, here, Π here consists of the Comnm commitment at Step
bpscfp4 of the `-th left session and Comnm commitment at Step bpscfp4 of the i+ 1-th right session,
and the external party running the codes of NMCom receiver and NMCom sender (committing
to rand), respectively, for these isolated commitments. Thus, we have that `cecom = kcecom and
`external = 2knmcom. Now by applying the Robust Extraction Lemma, we have that statistical

distance between the views REAL
I

(0,i:4,B)
extr
E,Π (β, z) and the view of the M during its interaction with

Anmcom in the case where the value committed to in the isolated Comnm commitment of the i+1-th
right session is 0rand is at most:

∆(λ) ≤ 2−(kcecom−2knmcom·log(T (λ))) ≤ negl(λ),

since, kcecom ∈ ω(log(λ)), knmcom ∈ O(log(λ)), and T is at most a polynomial.
Thus, we have proven that the view of the MiM adversaryM during its interaction with Anmcom

in the case where the value committed to in the isolated Comnm commitment of the i+ 1-th right
session is rand is statistically close to the view output by H0,i:4.

Also, similarly, we have that the view of the MiM adversary M during its interaction with
Anmcom in the case where the value committed to in the isolated Comnm commitment of the i+ 1-
th right session is 0λ is statistically close to the view output by H0,i:5.

Hence, by the construction of Anmcom, H0,i:4, and H0,i:5, we have that if the external NMCom
sender commits to the valid sub-witness rand in Comnm, then the view of the adversary M in its
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interaction with Anmcom is a statistical simulation of the view view
(0,i:4)
extr ; on the other hand, if

the external NMCom sender commits to 0λ, then the view of the adversary M in its interaction

with Anmcom is a statistical simulation of the view view
(0,i:5)
extr . Putting this all together, from the

assumption that, forH0,i:5, with some non-negligible probability ε, for the `-th left session P` accepts
the BPS argument of BPSCFP phase but the value committed to by M in Comnm commitment at
Step bpscfp4 is not a valid sub-witness, and from induction that this is not the case in H0,i:4, we have
that Anmcom breaks non-malleability of the NMCom commitment with probability ε− negl(λ).

Sub-Claim 11. In H0,i:5, ∀i, j ≤ i, β(0,i:4)
j ≈c β(0,i:5)

j .

Proof. We shall see shortly that in H0,i:5, for every j ≤ i NMMXComsrs commitment at Step bps4 of
the j-th right session is statistically binding. In particular, this will be clear in the hybridH0,i:7. We
now argue that changing the value committed in Comnm at Step bpscfp4 of the i+ 1-th right session
does not adversely change the value committed to by the adversary in NMMXComsrs commitment
at Step bps4 of the j-th right session.

Observe that the change introduced by H0,i:5 is only computationally indistinguishable, but not
statistically so. Furthermore, the value committed to in the SB NMCom commitment NMMXComsrs

at Step bps4 of any right session is not revealed by M in any part of the protocol. Hence, compu-
tational hiding of the NMMXComsrs commitment itself would not suffice in arguing that the value
committed to by the adversary M in the NMMXComsrs commitment at Step bps4 of any left ses-
sion does not change adversely. For this, we shall rely upon non-malleability of the NMMXComsrs

commitment w.r.t. Comnm commitment (as per Definition 16).
Assume for contradiction that there exists i ∈ [mR], j ∈ [1, i] such that, with some non-negligible

probability ε, the values committed to in NMMXComsrs at Step bps4 of the j-th right session in the

hybrids H0,i:4 and H0,i:5 can be distinguished with probability ε; that is, β
(0,i:4)
j and β

(0,i:5)
j can be

distinguished with probability ε. Then we construct an adversary Anmcom against non-malleability
of NMMXComsrs w.r.t. Comnm that wins with probability ε− negl(λ).
Anmcom behaves exactly the same way as H0,i:4 except that it also isolates the NMMXComsrs

commitment at Step bps4 of the i + 1-th right session and Comnm commitment at Step bpscfp4 of
the i + 1-th right session, and forwards them to an external NMCom receiver and to an external
NMCom sender, respectively. Furthermore, Anmcom sends the sub-witness rand (i.e., the value
committed to in the isolated Comnm commitment of the i+1-th right session by H0,i:4) and 0λ (i.e.,
the value committed to in the isolated Comnm commitment of the i + 1-th right session by H0,i:5)
to the external NMCom sender, who chooses one of the values to commit to.

Before we proceed we shall first prove that the view of the MiM adversary M during its inter-
action with Anmcom in the case where the value committed to in the isolated Comnm commitment
of the i + 1-th right session is rand is statistically close to the view output by H0,i:4. For this, we
apply the Robust Extraction Lemma. Since Anmcom also isolates two NMCom commitments and
relays them to external parties, to apply the Robust Extraction Lemma, we will first create two
intermediate hybrids hyb∗0,i:4,A and hyb∗0,i:4,B, whose outputs are identical, and the output of the
former is statistically close to the view of the MiM adversaryM when run by H0,i:4 and the output
of the latter is statistically close to the view of the MiM adversary M when run by Anmcom in the
case where the value committed to in the isolated Comnm commitment of the i+ 1-th right session
is rand.

hyb∗0,i:4,A is described as follows. It simply outputs the view output by the online extractor,

59



namely, REAL
I

(0,i:4)
extr
E,Π (β, z), where the external protocol Π here is the empty protocol. Now, we can

invoke the Robust Extraction Lemma, for which we consider the following: the CECom commit-
ments, that are isolated and relayed to external CECom receivers, have kcecom-slots and the external
protocol that the robust simulator is participating in, here, is the empty protocol. Thus, we have
that `cecom = kcecom and `external = 0. Now by applying the Robust Extraction Lemma, we have

that statistical distance between the views REAL
I

(0,i:4)
extr
E,Π (β, z) and view

(0,i:4)
extr is at most:

∆(λ) ≤ 2−(kcecom−0·log(T (λ))) ≤ negl(λ),

since, kcecom ∈ ω(log(λ)) and T is at most a polynomial.
Next, we describe an intermediate hybrid hyb∗0,i:4,B whose output is identical to that of hyb∗0,i:4,A.

For this consider an interface, I
(0,i:4,B)
extr behaves the same way as I

(0,i:4)
extr except that it also isolates

the NMMXComsrs commitment at Step bps4 of the j-th right session and Comnm commitment at
Step bpscfp4 of the i + 1-th right session, and forwards them to an external NMCom receiver and
to an external NMCom sender, respectively. hyb∗0,i:4,B simply outputs the view output by the

online extractor, namely, REAL
I

(0,i:4,B)
extr
E,Π (β, z), where the external protocol Π here consists of the

NMMXComsrs commitment at Step bps4 of the j-th right session and Comnm commitment at Step
bpscfp4 of the i + 1-th right session, and the external party running the codes of NMCom receiver
and NMCom sender (committing to rand), respectively, for these isolated commitments. Again,
we can invoke the Robust Extraction Lemma, for which we consider the following: the CECom
commitments, that are isolated and relayed to external CECom receivers, have kcecom-slots and
the external protocol that the robust simulator is participating in, here, Π here consists of the two
isolated NMCom commitments, and the external party running the codes of NMCom receiver and
NMCom sender (committing to rand), respectively, for these isolated commitments. Thus, we have
that `cecom = kcecom and `external = knmcom + knmmxcom. Now by applying the Robust Extraction

Lemma, we have that statistical distance between the views REAL
I

(0,i:4,B)
extr
E,Π (β, z) and the view of the

M during its interaction with Anmcom in the case where the value committed to in the isolated
Comnm commitment of the i+ 1-th right session is 0rand is at most:

∆(λ) ≤ 2−(kcecom−(knmcom+knmmxcom)·log(T (λ))) ≤ negl(λ),

since, kcecom ∈ ω(log(λ)), knmcom, knmmxcom ∈ O(log(λ)), and T is at most a polynomial.
Thus, we have proven that the view of the MiM adversaryM during its interaction with Anmcom

in the case where the value committed to in the isolated Comnm commitment of the i+ 1-th right
session is rand is statistically close to the view output by H0,i:4.

Also, similarly, we have that the view of the MiM adversary M during its interaction with
Anmcom in the case where the value committed to in the isolated Comnm commitment of the i+ 1-
th right session is 0λ is statistically close to the view output by H0,i:5.

Hence, by the construction of Anmcom, H0,i:4, and H0,i:5, we have that if the external NMCom
sender commits to the valid sub-witness rand in Comnm, then the view of the adversary M in its

interaction with Anmcom is a statistical simulation of the view view
(0,i:4)
extr ; on the other hand, if

the external NMCom sender commits to 0λ, then the view of the adversary M in its interaction

with Anmcom is a statistical simulation of the view view
(0,i:5)
extr . Putting this all together, from the

assumption that, the values committed to in NMMXComsrs at Step bps4 of the j-th right session in
the hybrids H0,i:4 and H0,i:5 can be distinguished with probability ε, we have that Anmcom breaks
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non-malleability of the NMMXComsrs commitment w.r.t. Comnm commitment with probability
ε− negl(λ).

Intermediate-hybrid H0,i:6. H0,i:6 differs fromH0,i:5 in that, whileH0,i:5 ran RobustSimI
(0,i:5)
extr (z),

H0,i:6 runs RobustSimI
(0,i:6)
extr (z), where I

(0,i:6)
extr differs from I

(0,i:5)
extr as follows.

• Isolate CEComsh commitment at Step bps4+ of the i+ 1-th right session and forward it to an

external CECom receiver. Let the value received from the outside be y
′(0,i:6)
i+1 .

Besides outputting the view view
(0,i:6)
extr , H0,i:6 also outputs y

′(0,i:6)
1 , . . . , y

′(0,i:6)
i+1 .

Sub-Claim 12.
view

(0,i:6)
extr ≈s view(0,i:5)

extr .

Proof. Recall that H0,i:5 and H0,i:6 run RobustSimI
(0,i:5)
extr (z) and RobustSimI

(0,i:6)
extr (z), respectively,

where I
(0,i:5)
extr and I

(0,i:6)
extr differ in that I

(0,i:6)
extr isolates one more CECom commitment than I

(0,i:5)
extr

and relays it to an external CECom receiver.
Now to establish statistical indistinguishability between the views output by H0,i:5 and H0,i:6,

we apply the Robust Extraction Lemma. Since I
(0,i:5)
extr does not isolate certain CECom commit-

ments that are isolated by I
(0,i:6)
extr , to apply the Robust Extraction Lemma, we will first create

an intermediate hybrid hyb∗0,i:6. hyb∗0,i:6 simply outputs the view output by the online extractor,

namely, REAL
I

(0,i:6)
extr
E,Π (β, z), where the external protocol Π here is the empty protocol. Note that this

view is statistically close to the view of the MiM adversary M when run by H0,i:5, since I
(0,i:6)
extr

behaves the same way as I
(0,i:5)
extr except that it also isolates certain CECom commitments that were

originally not isolated by I
(0,i:5)
extr and relays them to external CECom receivers. That is,

REAL
I

(0,i:6)
extr
E,Π (β, z) ≈s view(0,i:5)

extr .

Now, we can invoke the Robust Extraction Lemma, for which we consider the following: the
CECom commitments, that are isolated and relayed to external CECom receivers, have kcecom-slots
and the external protocol that the robust simulator is participating in, here, is the empty protocol.
Thus, we have that `cecom = kcecom and `external = 0. Now by applying the Robust Extraction

Lemma, we have that statistical distance between the views REAL
I

(0,i:6)
extr
E,Π (β, z) and view

(0,i:6)
extr output

by H∗0,i:6 and H0,i:6, respectively, is at most:

∆(λ) ≤ 2−(kcecom−0·log(T (λ))) ≤ negl(λ),

since, kcecom ∈ ω(log(λ)) and T is at most a polynomial. Thus,

view
(0,i:6)
extr ≈s REAL

I
(0,i:6)
extr
E,Π (β, z).

Thus, we have that view
(0,i:6)
extr ≈s view(0,i:5)

extr .
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Intermediate-hybrid H0,i:7. H0,i:7 differs fromH0,i:6 in that, whileH0,i:6 ran RobustSimI
(0,i:6)
extr (z),

H0,i:7 runs RobustSimI
(0,i:7)
extr (z), where I

(0,i:7)
extr differs from I

(0,i:6)
extr as follows.

• Recall that in Step cfp3 of the i + 1-th right session, I
(0,i:6)
extr gives the value rV that was

committed to in CEComsh of Step cfp1 of the same session. The modification now is that

I
(0,i:7)
extr samples a random DDH tuple srs, defines rV := rP ⊕ srs, and sends rV .

• I(0,i:7)
extr isolates CEComsh commitment at Step bps4+ of the i+ 1-th right session and forwards

it to an external CECom receiver. Let the value received from the outside be y
′(0,i:7)
i+1 .

Besides outputting the view view
(0,i:7)
extr , H0,i:7 also outputs y

′(0,i:7)
1 , . . . , y

′(0,i:7)
i+1 .

Sub-Claim 13.
view

(0,i:7)
extr ≈c view(0,i:6)

extr .

Proof. This immediately follows from the DDH assumption.

Sub-Claim 14. In H0,i:7, ∀` ∈ [mL], if P` accepts the BPS argument of BPSCFP phase, then the
value committed to by M in Comnm commitment at Step bpscfp4 of the `-th left session is a valid
sub-witness.

Proof. Observe that the change introduced by H0,i:7 is only computationally indistinguishable,
but not statistically so. Furthermore, as mentioned earlier, the value committed to in the SB
NMCom commitment Comnm at Step bpscfp4 of any left session is not revealed by M in any part
of the protocol. Hence, computational indistinguishability of DDH tuples from uniform strings is
insufficient to argue that the value committed to by the adversary M in the Comnm commitment
at Step bpscfp4 of any left session does not change adversely. For this, we shall rely upon robust
non-malleability of the Comnm commitment scheme w.r.t. 1-round protocols (see Definition 15).

Assume for contradiction that there exists ` ∈ [mL] such that P` accepts the BPS argument of
BPSCFP phase, but the value committed to byM in Comnm commitment at Step bpscfp4 of the `-th
left session is not a valid sub-witness, with some non-negligible probability ε. Then, by relying on
the DDH assumption, we construct an adversary Arob−nmcom against robust non-malleability of the
NMCom commitment scheme w.r.t. 1-round protocols that succeeds with probability ε− negl(λ).
Arob−nmcom behaves exactly the same way as H0,i:6 except that it also isolates the Comnm

commitment at Step bpscfp4 of the `-th left session and the Step cfp3 message of the i+ 1-th right
session, and forwards them to an external NMCom receiver and to an external DDH challenger,
respectively. The DDH challenger chooses srs which is either a random DDH tuple or a uniform
random string (and sets rV accordingly).

Before we proceed to analyze the success probability of Arob−nmcom, we need to show that the
view of the MiM adversary M during its interaction with Arob−nmcom in the case where the string
received from the external DDH challenger is a uniform random string (in the isolated message of
Step cfp3 of the i + 1-th right session) is statistically close to the view output by H0,i:6. For this,
we apply the Robust Extraction Lemma. Since Arob−nmcom also isolates the Comnm commitment
at Step bpscfp4 of the `-th left session and the Step cfp3 message of the i+ 1-th right session, and
relays them to external parties, to apply the Robust Extraction Lemma, we will first create two
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intermediate hybrids hyb∗0,i:6,A and hyb∗0,i:6,B, whose outputs are identical, and the output of the
former is statistically close to the view of the MiM adversaryM when run by H0,i:6 and the output
of the latter is statistically close to the view of the MiM adversary M when run by Arob−nmcom in
the case where the string received from the external DDH challenger is a uniform random string.

hyb∗0,i:6,A is described as follows. It simply outputs the view output by the online extractor,

namely, REAL
I

(0,i:6)
extr
E,Π (β, z), where the external protocol Π here is the empty protocol. Now, we can

invoke the Robust Extraction Lemma, for which we consider the following: the CECom commit-
ments, that are isolated and relayed to external CECom receivers, have kcecom-slots and the external
protocol that the robust simulator is participating in, here, is the empty protocol. Thus, we have
that `cecom = kcecom and `external = 0. Now by applying the Robust Extraction Lemma, we have

that statistical distance between the views REAL
I

(0,i:6)
extr
E,Π (β, z) and view

(0,i:6)
extr is at most:

∆(λ) ≤ 2−(kcecom−0·log(T (λ))) ≤ negl(λ),

since, kcecom ∈ ω(log(λ)) and T is at most a polynomial.
Next, we describe an intermediate hybrid hyb∗0,i:6,B whose output is identical to that of hyb∗0,i:6,A.

For this consider an interface, I
(0,i:6,B)
extr behaves the same way as I

(0,i:6)
extr except that it also isolates the

Comnm commitment at Step bpscfp4 of the `-th left session and Comnm commitment at Step bpscfp4

of the i+ 1-th right session, and forwards them to an external NMCom receiver and to an external
NMCom sender, respectively. hyb∗0,i:6,B simply outputs the view output by the online extractor,

namely, REAL
I

(0,i:6,B)
extr
E,Π (β, z), where the external protocol Π here consists of the Comnm commitment

at Step bpscfp4 of the `-th left session and the Step cfp3 message of the i+ 1-th right session, and
the role of the external party is to run the code of the NMCom receiver and the DDH challenger,
respectively, for the isolated sub-protocols. Again, we can invoke the Robust Extraction Lemma,
for which we consider the following: the CECom commitments, that are isolated and relayed to
external CECom receivers, have kcecom-slots and the external protocol that the robust simulator
is participating in, here, Π here consists of the consists of two sub-protocols: namely, one Comnm

commitment of knmcom rounds and one 1-round protocol. Thus, we have that `cecom = kcecom and
`external = knmcom + 1. Now by applying the Robust Extraction Lemma, we have that statistical

distance between the views REAL
I

(0,i:6,B)
extr
E,Π (β, z) and the view of the M during its interaction with

Arob−nmcom in the case where the string received from the external DDH challenger is a uniform
random string is at most:

∆(λ) ≤ 2−(kcecom−(knmcom+1)·log(T (λ))) ≤ negl(λ),

since, kcecom ∈ ω(log(λ)), knmcom ∈ O(log(λ)), and T is at most a polynomial.
Thus, we have proven that the view of the MiM adversary M during its interaction with

Arob−nmcom in the case where the string received from the external DDH challenger is a uniform
random string is statistically close to the view output by H0,i:6.

Also, similarly, we have that the view of the MiM adversary M during its interaction with
Arob−nmcom in the case where the string received from the external DDH challenger is a random
DDH tuple is statistically close to the view output by H0,i:7.

We have thus proven that if the external DDH challenger sends a uniform random string, then
the view of the adversary M in its interaction with Arob−nmcom is a statistical simulation of the
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view view
(0,i:6)
extr ; on the other hand, if the external DDH challenger sends a random DDH tuple, then

the view of the adversary M in its interaction with Arob−nmcom is a statistical simulation of the

view view
(0,i:7)
extr . Thus, from the assumption that, for H0,i:7, for the `-th left session, P` accepts the

BPS argument of BPSCFP phase, but the value committed to byM in Comnm commitment at Step
bpscfp4 is not a valid sub-witness, with some non-negligible probability ε, and from induction that
this is not the case in H0,i:6, by relying on the DDH assumption, we have that Arob−nmcom breaks
robust non-malleability of the NMCom commitment with probability ε− negl(λ).

Note that the last intermediate hybrid H0,mR:7 is identical to H1. Hence, if for any left session,
if the BPSCFP phase is accepted by the prover, then the value committed to by M in Comnm

commitment at Step bpscfp4 of every left session is a valid sub-witness rand; i.e., the committed
value is rand such that (rV , rand) form a valid opening to the CEComsh commitment at Step cfp1

of that session.
With this, we can argue that for every left session, r′V = rV , with all but negligible probability.

Intuitively, this now follows from computational binding of CEComsh commitment at Step cfp1,
since we have ensured that the value committed to in Comnm commitment at Step bpscfp4 of every
left session is a valid sub-witness rand, where (rV , rand) forms a valid opening to the CEComsh

commitment. To formalize this argument, assume for contradiction that for some `-th left ses-
sion r′V 6= rV with some non-negligible probability ε. Then we can construct an adversary ACB
against computational binding of CEComsh commitment at Step cfp1 such that ACB succeeds with
probability ε− negl(λ) as follows.

ACB behaves the same way asH1 except for a few modifications. Recall thatH1 ran RobustSimI
(1)
extr(z),

where the only sub-protocols that I
(1)
extr isolated are certain CECom commitments. ACB runs

RobustSimI
(1∗)
extr (z) where I

(1∗)
extr differs from I

(1)
extr in the following sense.

• I(1∗)
extr (besides the CECom commitments isolated by I

(1)
extr) also isolates CEComsh commitment

at Step cfp1 of the `-th left session and forwards it to an external CECom receiver.

• I(1∗)
extr also isolates the NMCom commitment Comnm commitment at Step bpscfp4 of the `-th

left session.

ACB itself runs the code of the honest NMCom receiver for the isolated NMCom commitment.

Furthermore, ACB also runs the NMCom extractor on RobustSimI
(1∗)
extr (z) for the isolated NMCom

commitment.
Now recall that we had earlier proven that the value committed to in Comnm commitment at

Step bpscfp4 of any left session whose BPSCFP phase is accepted by the prover is a valid sub-witness
rand (i.e., a randomness that explains the CEComsh commitment at Step cfp1 of that session to rV
that is given by M at Step cfp3). Hence, ACB has two openings of the CECom commitment in
question, one being (r′V , rand

′) obtained from the robust simulator, and the other being (rV , rand),
where rV is the value given byM at Step cfp3 in the corresponding session, and rand is an opening
of the same CECom commitment to rV obtained via the NMCom extractor. Hence, if r′V 6= rV ,
then ACB has two openings of the same CECom commitment (that is isolated and forwarded to
an external CECom receiver) to two distinct values.

Now it remains to show that the view of the adversaryM when run by ACB is statistically close

to the view view
(1)
extr output by H1. Note that the only difference is that ACB additionally isolates
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a CECom commitment and a NMCom commitment. Like before, this indistinguishability can
again be proven by applying the Robust Extraction Lemma. Since ACB additionally also isolates
a CECom commitment and a NMCom commitment, to apply the Robust Extraction Lemma, we
will first create two intermediate hybrids hyb∗0,A and hyb∗0,B, whose outputs are identical, and the
output of the former is statistically close to the view of the MiM adversary M when run by H1

and the output of the latter is statistically close to the view of the MiM adversaryM when run by
ACB.

hyb∗0,A is described as follows. It simply outputs the view output by the online extractor, namely,

REAL
I

(1)
extr
E,Π (β, z), where the external protocol Π here is the empty protocol. Now, we can invoke the

Robust Extraction Lemma, for which we consider the following: the CECom commitments, that
are isolated and relayed to external CECom receivers, have kcecom-slots and the external protocol
that the robust simulator is participating in, here, is the empty protocol. Thus, we have that
`cecom = kcecom and `external = 0. Now by applying the Robust Extraction Lemma, we have that

statistical distance between the views REAL
I

(0)
extr
E,Π (β, z) and view

(0)
extr is at most:

∆(λ) ≤ 2−(kcecom−0·log(T (λ))) ≤ negl(λ),

since, kcecom ∈ ω(log(λ)) and T is at most a polynomial.
Next, we describe an intermediate hybrid hyb∗0,B whose output is identical to that of hyb∗0,A.

For this consider an interface, I
(0,B)
extr behaves the same way as I

(0)
extr except that it also isolates

also isolates CEComsh commitment at Step cfp1 of the `-th left session and forwards them to an
external CECom receiver, and the NMCom commitment Comnm commitment at Step bpscfp4 of
the `-th left session and forwards it to an external NMCom receiver. hyb∗0,B simply outputs the

view output by the online extractor, namely, REAL
I

(0,B)
extr
E,Π (β, z), where the external protocol Π here

is the NMCom commitment Comnm commitment at Step bpscfp4 of the `-th left session, and the
role of the external party is to run the code of the NMCom receiver. Again, we can invoke the
Robust Extraction Lemma, for which we consider the following: the CECom commitments, that
are isolated and relayed to external CECom receivers, have kcecom-slots and the external protocol
that the robust simulator is participating in, here, Π here is an Comnm commitment of knmcom

rounds. Thus, we have that `cecom = kcecom and `external = knmcom. Now by applying the Robust

Extraction Lemma, we have that statistical distance between the views REAL
I

(0,B)
extr
E,Π (β, z) and the

view of the M during its interaction with ACB is at most:

∆(λ) ≤ 2−(kcecom−knmcom·log(T (λ))) ≤ negl(λ),

since, kcecom ∈ ω(log(λ)), knmcom ∈ O(log(λ)), and T is at most a polynomial.

Thus, we have that the adversaryM when run by ACB is statistically close to the view view
(1)
extr

output by H1.
Thus, ACB breaks computational binding of the CEComsh commitment with probability ε −

negl(λ).
Finally, we thus have that, srs = rP⊕rV is uniformly random, with all but negligible probability.

Thus, Claim 11.

Claim 12.
(b

(1)
t = 1) =⇒ RL(xt, β

(1)
t ) = 1.
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Proof. We begin by providing some intuition to the proof. Before we present a sketch of the proof,
it will be helpful to recall certain aspects. Recall that the modification introduced as we move from
H0,(i−1):7 to H0,i:7 is that, in the i+ 1-th right session while H0,(i−1):7 sent that random rV in Step
cfp3 that it committed to in Step cfp1, H0,i:7 chooses an rV such that the resulting srs = rP ⊕ rV
is a random DDH tuple. This modification thus renders NMMXComsrs at Step bps4 of the i+ 1-th
right session to be SB and CH (see Proposition 3).

At a high level, the structure of our proof would be to establish the following two claims:

1. We shall first prove that, in view
(0,i:7)
extr , if the i+ 1-th verifier accepts the i+ 1-th right session,

then the value committed to in NMMXComsrs at Step bps4 of the i + 1-th right session is a
valid witness for the statement of that session.

2. The modification of biasing the srs of the i + 1-th right session from uniformly random to
a random DDH tuple does not adversely affect the values committed to in NMMXComsrs at
Step bps4 of the j-th right session for every j ≤ i.

Clearly, putting these two claims together would give us that in view
(0,i:7)
extr , the values committed

to in NMMXComsrs at Step bps4 of every accepted right session is a valid witness, as required.
We shall now proceed to establish each of these claims.

Sub-Claim 15. ∀i, in view
(0,i:7)
extr , (b

(0,i:7)
i+1 = 1) =⇒ RL(xi+1, β

(0,i:7)
i+1 ) = 1.

Proof. Here, we need to prove that ∀i, in view
(0,i:7)
extr , if Vi+1 accepts, then the value committed to

in NMMXComsrs in Step bps4 of the (i+ 1)-th right session is a valid witness.
Before we proceed to present the formal proof, here follows a high-level sketch of the proof

for an intuition. The idea would be to follow our earlier proof strategy of proving soundness of
our argument system. (Namely, the idea to prove soundness would be to reduce soundness to
knowledge-soundness of sWIAoK at Step bps2 and sWIAoK at Step bps5 while making use of certain
properties like CH, and CB of certain other sub-protocols in the Main BPS Phase.) A particular
aspect of such a proof that will be crucial to us is the fact that we will need a reduction to CH
property of CEComsb at Step bps1 of the i + 1-th right session. For this, in our reduction, we will
need to isolate this sub-protocol and delegate the task of sending M the CECom commitment to
an external CECom sender. Although, until now, our proofs had crucially used Robust Extraction
Lemma, for this reduction we will not be able to work our way through with just this Lemma. The
reason here is that the Robust Extraction Lemma can be successfully invoked only when the isolated
protocol is of round-complexity strictly smaller than that of the other CECom commitments. This
is necessary to render the view output by the robust simulator to be statistically close and to render
the extraction successful with all but negligible probability. What comes to our rescue here is a
careful ordering of our hybrids. The ordering of hybrids is such that at this point in the sequence
of hybrids, delegating the task of the CECom sender for CEComsb at Step bps1 of the i + 1-th
right session can be done in such a way that all other CECom commitments that are isolated
and forwarded to external CECom receivers are completed strictly earlier to the beginning of this
CEComsb commitment, ignoring the isolated CEComsh commitments at Step bps4+ of the right
sessions, since in the reductions these commitments need not be isolated as the values extracted
from them are not used by the hybrids in any part of the execution. This proof direction is as
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against assuring that the isolated sub-protocol will not be rewound just by the property of the
robust simulator.

We are now ready to present the formal proof.
Let t ∈ [mR]. To gain further insight into the proof, intuitively, NMMXComsrs at Step bps4 of

the t-th right session contains a valid witness owing to

• computational hiding of CEComsb – to argue that M does not learn σ, committed to by the
verifier in CEComsb, and use it in its Comsh commitment and sWIAoK at Step bps2,

• knowledge-soundness of sWIAoK in Step bps2– to extract knowledge of commitment informa-
tion (i.e., committed value and randomness) for Comsh in Step bps2 and to verify that the
extracted value will not be σ,

• knowledge-soundness of sWIAoK in Step bps5– to argue that either the value committed to in
NMMXComsrs at Step bps4 is a valid (sub-)witness or the value committed to by the adversary
in Step bps2 is σ,

• and finally, computational binding of Comsh at Step bps2 to show that the value committed
to in this commitment is not σ.

Using CH of CEComsb and knowledge-soundness of sWIAoK in Step bps2. We begin by
showing that one can extract the committed value and the randomness in Comsh at Step bps2 from
sWIAoK at the same Step, and by computational hiding of CEComsb at Step bps1, the value will
not be σ.

Consider an adversarial prover P ∗1 against knowledge-soundness of sWIAoK which behaves as

follows. P ∗1 runs RobustSimĨ1(z), where Ĩ1 behaves the same way as I
(0,i:7)
extr except for the following

modifications.

• Recall that the only sub-protocols isolated by I
(0,i:7)
extr are the CEComsb commitments at Step

bpscfp1 and CEComsh commitments at Step bps4+ of the first i+1 right sessions. On the other
hand, Ĩ2 additionally isolates sWIAoK in Step bps2 of the t-th right session and forwards it
to an external sWIAoK verifier.

Upon completion of this sWIAoK protocol, if the sWIAoK verifier accepts, then it runs sWIAoK

extractor on RobustSimĨ2(z).
To argue a reduction to knowledge-soundness of the sWIAoK argument in question, we will need

to argue that the view of the adversary M when run by P ∗1 is statistically close to the view of the

adversaryM when run by I
(0,i:7)
extr . For this, we apply the Robust Extraction Lemma. Since P ∗1 also

isolates sWIAoK protocol and relays it to an external party, to apply the Robust Extraction Lemma,
we will first create two intermediate hybrids hyb∗0,i:7,A and hyb∗0,i:7,B, whose outputs are identical,
and the output of the former is statistically close to the view of the MiM adversary M when run
by H0,i:7 and the output of the latter is statistically close to the view of the MiM adversary M
when run by P ∗1 .

hyb∗0,i:7,A is described as follows. It simply outputs the view output by the online extractor,

namely, REAL
I

(0,i:7)
extr
E,Π (β, z), where the external protocol Π here is the empty protocol. Now, we can

invoke the Robust Extraction Lemma, for which we consider the following: the CECom commit-
ments, that are isolated and relayed to external CECom receivers, have kcecom-slots and the external
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protocol that the robust simulator is participating in, here, is the empty protocol. Thus, we have
that `cecom = kcecom and `external = 0. Now by applying the Robust Extraction Lemma, we have

that statistical distance between the views REAL
I

(0,i:7)
extr
E,Π (β, z) and view

(0,i:7)
extr is at most:

∆(λ) ≤ 2−(kcecom−0·log(T (λ))) ≤ negl(λ),

since, kcecom ∈ ω(log(λ)) and T is at most a polynomial.
Next, we describe an intermediate hybrid hyb∗0,i:7,B whose output is identical to that of hyb∗0,i:7,A.

For this consider an interface, I
(0,i:7,B)
extr behaves the same way as I

(0,i:7)
extr except that it also isolates the

sWIAoK protocol in Step bps2 of the t-th right session. hyb∗0,i:7,B simply outputs the view output by

the online extractor, namely, REAL
I

(0,i:7,B)
extr
E,Π (β, z), where the external protocol Π here is the sWIAoK

protocol in Step bps2 of the t-th right session, and the external party running the code of the
sWIAoK verifier for the isolated sWIAoK argument. Again, we can invoke the Robust Extraction
Lemma, for which we consider the following: the CECom commitments, that are isolated and
relayed to external CECom receivers, have kcecom-slots and the external protocol that the robust
simulator is participating in, here, Π here is the sWIAoK protocol in Step bps2 of the t-th right
session, and the external party running the code of the sWIAoK verifier for the isolated sWIAoK
argument. Thus, we have that `cecom = kcecom and `external = kswiaok. Now by applying the Robust

Extraction Lemma, we have that statistical distance between the views REAL
I

(0,i:7,B)
extr
E,Π (β, z) and the

view of the M during its interaction with P ∗1 is at most:

∆(λ) ≤ 2−(kcecom−kswiaok·log(T (λ))) ≤ negl(λ),

since, kcecom ∈ ω(log(λ)), kswiaok is a constant, and T is at most a polynomial.
Thus, we have proven that the view of the MiM adversary M during its interaction with P ∗1 is

statistically close to the view output by H0,i:7.
Moreover, since the sWIAoK argument is isolated and relayed to an honest external sWIAoK

verifier, knowledge-soundness of sWIAoK implies that the sWIAoK extractor extracts a valid sWIAoK
witness – the value committed to together with the randomness used – of the Comsh commitment of
Step bps2. This also implies that the value is not σ (committed to in CEComsb of Step bps1) with all
but negligible probability, as otherwise we can build an adversary ACH that breaks computational
hiding of CEComsb of Step bps1 as follows.

Assume for contradiction that the value extracted by P ∗1 is σ with some non-negligible probabil-
ity ε. Then we shall show that ACH breaks hiding with probability ε−negl(λ). ACH is described as

follows. ACH runs RobustSimĨ2(z), where Ĩ2 behaves the same as Ĩ1 except that, besides isolating
the sWIAoK argument of Step bps2, also isolates CEComsb of Step bps1 of the t-th right session.
While the CEComsb commitment is forwarded to an external CECom sender, ACH itself runs the
honest verifier code of the isolated sWIAoK argument. If the sWIAoK verifier (run by ACH) ac-
cepts the sWIAoK argument, then ACH also runs the sWIAoK extractor on the isolated sWIAoK
argument. Furthermore, ACH does not continue the interaction with M after the sWIAoK argu-
ment. Crucially, note that the isolated sWIAoK argument (at Step bps2) begins strictly after the
completion of the isolated CEComsb commitment (at Step bps1) as they both belong to the same
session. Furthermore, observe that the only other sub-protocols isolated by Ĩ2 are the CEComsb

commitments at Step bpscfp1 of the first i + 1 commitments. Also recall that the ordering of the
right sessions is by the order in which the CEComsb commitments at Step bps1 begin. Thus, since
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in any given session Step bpscfp1 is completed well before Step bps1 of that session, all the isolated
CECom commitments are completed before the beginning of the isolated CEComsb commitments
at Step bps1 of the i+1-th right session. Hence, neither the sWIAoK rewindings nor the rewindings
by the robust simulator interfere with the isolated CEComsb commitment thus ensuring that the
external CECom sender will not be rewound.

Finally, note that the view of the MiM adversary M when run by ACH is statistically close to
the view of M when run by P ∗1 until the sWIAoK argument at Step bps2 of the t-th right session,
after which ACH aborts. We thus have that ACH breaks computational hiding of CEComsb of Step
bps1 with probability ε− negl(λ).

Using knowledge-soundness of sWIAoK in Step bps5 and CB of Comsh at Step bps2. Now,
we show that, for the i + 1-th right session, one can extract the witness used in sWIAoK of Step
bps5, and from its knowledge-soundness, we have that either we extract the value committed to
in NMMXComsrs at Step bps4 and a commitment information of CEComsh at Step bps4+ such that
both the openings are to a common value that is a valid sub-witness or we extract an opening
of Comsh at Step bps2 to σ. Finally, we will see that CB of Comsh at Step bps2 implies that the
extracted value is not an opening of Comsh to σ. Putting it all together, we will have established
soundness of the argument proved in the BPS phase. Finally, since NMMXComsrs is statistically
binding, we will have that the value committed to in it is a valid sub-witness, rand with all but
negligible probability.

Consider an adversarial prover P ∗2 against knowledge-soundness of sWIAoK which behaves as

follows. Recall that P ∗1 executed RobustSimĨ1(z), where Ĩ1 behaved the same way as I
(0,i:7)
extr except

that it also isolated the sWIAoK argument in Step bps2 of the t-th right session, but did not
isolate any CEComsh commitments at Step bps4+ of right sessions. P ∗2 instead isolates the sWIAoK

argument in Step bps5 of the t-th right session. More formally, P ∗2 runs RobustSimĨ3(z), where Ĩ3

behaves the same way as I
(0,i:7)
extr except for the following modifications.

• Recall that the only sub-protocols isolated by I
(0,i:7)
extr are the CEComsb commitments at Step

bpscfp1 and CEComsh commitments at Step bps4+ of the first i + 1 right sessions. On the
other hand, Ĩ3 also isolates sWIAoK in Step bps5 of the t-th right session and forwards it to
an external sWIAoK verifier.

Upon completion of this sWIAoK protocol, if the sWIAoK verifier accepts, then it runs sWIAoK

extractor on RobustSimĨ3(z).
Recall that we proved that the view of the adversary M when run by P ∗1 is statistically close

to the view of the adversary M when run by I
(0,i:7)
extr . On precisely the same lines, it can be proven

that the view of the adversaryM when run by P ∗2 is statistically close to the view of the adversary

M when run by I
(0,i:7)
extr .

Moreover, since the sWIAoK argument is isolated and relayed to an honest external sWIAoK ver-
ifier, knowledge-soundness of sWIAoK implies that the sWIAoK extractor extracts a valid sWIAoK
witness – either yt, rnm, rcecom such that (x, yt) ∈ RL with rnm and rcecom explaining the commit-
ments NMMXComsrs of Step bps4 and the CECom commitment of Step bps4+ to yt, respectively, or
an opening of Comsh at Step bps2 to σ. We shall shortly show that owing to CB of Comsh of Step
bps2, the extracted value is not a Comsh opening to σ. Given this, we have that the extracted value
contains a valid witness yt and a commitment information of the NMMXComsrs commitment of Step
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bps4 to yt together with a commitment information CEComsh Step bps4+ to yt. Since NMMXComsrs

is statistically binding, the value committed to in it should be a valid witness itself with all but
negligible probability.

Now it remains to show that the extracted output of sWIAoK extractor above is not an opening
of Comsh to σ with all but negligible probability. Assume for contradiction that the extracted
output is an opening of Comsh to σ with some non-negligible probability ε. Then we construct an
adversary A′CB that breaks CB of Comsh also with probability ε− negl(λ).

A′CB is described as follows. A′CB runs RobustSimĨ4(z), where Ĩ4 behaves the same as Ĩ3 (run
by P ∗2 ), except for the following modification.

• Unlike Ĩ3 (or Ĩ1) which isolates only one of the two sWIAoK protocols present in our protocol,
A′CB isolates both the sWIAoK protocols, one at Step bps2 and the other at Step bps5 of the
i+ 1-th right session.

• Furthermore, it also isolates Comsh of Step bps2 and forwards it to an external Comsh receiver.

However, the sWIAoK verifiers’ task for both the isolated sWIAoK arguments are run by A′CB itself.
Furthermore, if both the isolated sWIAoK arguments are accepted, then A′CB also runs the sWIAoK

extractor on RobustSimĨ4(z) – once for each of the two isolated sWIAoK arguments.
Now observe that since the sWIAoK arguments are isolated, rewindings by the robust simulator

do not interfere with these sWIAoK arguments. Knowledge-soundness of sWIAoK thus implies that
the sWIAoK extractor extracts valid sWIAoK witnesses for both the sWIAoK arguments. Further-
more, since the Comsh commitment is isolated and forwarded to an external receiver, it also holds
that rewindings by the robust simulator do not interfere with this commitment. Thus, outputting
two openings to two distinct values amounts to breaking binding of Comsh.

As proven earlier, the extracted output of sWIAoK at Step bps2 is an opening of Comsh with all
but negligible probability; as also proven earlier, the extracted value, however, is not σ with all but
negligible probability. Thus, we have the extracted output obtained by A′CB out of this sWIAoK is
(δ, randδ), such that δ 6= σ and (δ, randδ) is a valid opening of Comsh. Furthermore, as also proven
above, the extracted output of sWIAoK at Step bps5 is either an opening of NMMXComsrs to a
value rand such that rand explains CEComsh at Step cfp1 to be a commitment to rV , or an opening
of Comsh at Step bps2 to σ. If the extracted output is the latter, i.e., an opening of Comsh to σ,
then A′CB has openings of Comsh (which is isolated) to two distinct values δ and σ. Thus, A′CB
breaks computational binding of Comsh with probability ε − negl(λ), under the assumption that
A′CB statistically simulates the view of M while interacting with P ∗2 . We shall argue validity of
this assumption shortly. This proves that the value extracted from sWIAoK at Step bps5 should be
an opening of NMMXComsrs to rand. Since NMMXComsrs is SB, the value committed to in it should
be a valid witness itself, with all but negligible probability, thus proving Sub-claim 2. Thus it only
remains to prove statistical simulation by A′CB of the view of M when incorporated by P ∗2 .

Lastly, we will need to argue that the view of the adversaryM when run by A′CB is statistically
close to the view of the adversary M when run by P ∗2 .

For this, we apply the Robust Extraction Lemma. Since P ∗2 also isolates a sWIAoK protocol and
A′CB two sWIAoK protocols and a Comsh commitment, to apply the Robust Extraction Lemma,
we will first create two intermediate hybrids hyb∗0,i:7,C and hyb∗0,i:7,D, whose outputs are identical,
and the output of the former is statistically close to the view of the MiM adversary M when run
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by P ∗2 and the output of the latter is statistically close to the view of the MiM adversary M when
run by A′CB.

hyb∗0,i:7,C is described as follows. It simply outputs the view output by the online extractor,

namely, REALĨ3E,Π(β, z), where the external protocol Π here is the sWIAoK in Step bps5 of the t-

th right session. (Recall that Ĩ3 is the interface incorporated by P ∗2 . Now, we can invoke the
Robust Extraction Lemma, for which we consider the following: the CECom commitments, that
are isolated and relayed to external CECom receivers, have kcecom-slots and the external protocol
that the robust simulator is participating in, here, is the sWIAoK in Step bps5 of the t-th right
session. Thus, we have that `cecom = kcecom and `external = kswiaok. Now by applying the Robust
Extraction Lemma, we have that statistical distance between the view of the MiM adversary M
when run by P ∗2 and the view REALĨ3E,Π(β, z) is at most:

∆(λ) ≤ 2−(kcecom−kswiaok·log(T (λ))) ≤ negl(λ),

since, kcecom ∈ ω(log(λ)), kswiaok is a constant, and T is at most a polynomial.
Next, we describe an intermediate hybrid hyb∗0,i:7,D whose output is identical to that of hyb∗0,i:7,C .

For this consider an interface, I
(0,i:7,D)
extr behaves the same way as I

(0,i:7)
extr except that it also isolates

both the sWIAoK protocols, one at Step bps2 and the other at Step bps5 of the i + 1-th right
session; furthermore, it also isolates Comsh of Step bps2. hyb∗0,i:7,D simply outputs the view output

by the online extractor, namely, REAL
I

(0,i:7,D)
extr
E,Π (β, z), where the external protocol Π here consists

of the sWIAoK protocol at Step bps2, the sWIAoK protocol at Step bps5 of the i + 1-th right
session, and Comsh of Step bps2. Again, we can invoke the Robust Extraction Lemma, for which we
consider the following: the CECom commitments, that are isolated and relayed to external CECom
receivers, have kcecom-slots and the external protocol that the robust simulator is participating in,
here, Π here consists of two sWIAoK protocols and one Comsh commitment. Thus, we have that
`cecom = kcecom and `external = ksh + 2kswiaok. Now by applying the Robust Extraction Lemma, we

have that statistical distance between the views REAL
I

(0,i:7,D)
extr
E,Π (β, z) and the view of the M during

its interaction with A′CB is at most:

∆(λ) ≤ 2−(kcecom−ksh+2kswiaok·log(T (λ))) ≤ negl(λ),

since, kcecom ∈ ω(log(λ)), ksh, kswiaok are constants, and T is at most a polynomial.
Thus, we have proven that the view of the MiM adversaryM during its interaction with A′CB

is statistically close to the view during its interaction with P ∗2 .

With this, we have proven that, view
(1)
extr, for any right session, if the verifier accepts the session

then the value committed to in NMMXComsrs of every accepting right session should be a valid
witness, with all but negligible probability, thus proving Sub-claim 15.

Recall that our final objective in this proof is to prove that, in view
(1)
extr, for any i ∈ [mR], if the

t-th verifier accepts the t-th right session, then the value committed to in NMMXComsrs at Step
bps4 of the t-th right session is a valid witness for the statement of that session. Towards this,

we have completed the first step: namely, we have proven that in view
(0,i:7)
extr , if the i+ 1-th verifier

accepts the i + 1-th right session, then the value committed to in NMMXComsrs at Step bps4 of
the i + 1-th right session is a valid witness for the statement of that session. Thus, to fulfill our
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objective, it remains to show that as we move from H0,i:6 to H0,i:7, the modification of biasing the
srs of the i+ 1-th right session from uniformly random to a random DDH tuple does not adversely
affect the values committed to in NMMXComsrs at Step bps4 of the j-th right session for every j ≤ i.
We shall establish this final step in the following.

Sub-Claim 16. ∀i, ∀j ≥ i, β((0,i:6))
j ≈c β((0,i:7))

j .

Proof. Fix any i ∈ [mR]. We consider the views view
(0,i:6)
extr and view

(0,i:7)
extr generated by the hybrids

H0,i:6 and H0,i:7, respectively. We shall prove that in moving from H0,i:6 and H0,i:7, where the only
modification we introduce is that in the i + 1-th right session the srs which used to be uniformly

random in view
(0,i:6)
extr is biased to a random DDH tuple, the values that were committed to in

NMMXComsrs at Step bps4 of j-th session for any j ≤ i does not adversely change. Before we
proceed we provide some intuition to the proof.

Note that for all j ≤ i, in view
(0,i:7)
extr , the srs is already biased to random DDH tuples. Also in

view
(0,i:6)
extr , all the first i right sessions have their srs biased to random DDH tuples. Hence, in both

the views view
(0,i:6)
extr and view

(0,i:7)
extr , NMMXComsrs at Step bps4 of the first i right sessions are SB

and CH (see Proposition 3), (and thus, in both view
(0,i:6)
extr and view

(0,i:7)
extr , for all j ≤ i, β

((0,i:6))
j and

β
((0,i:7))
j are well defined). Thus to now prove that the committed values in these NMMXComsrs

commitments do not adversely change as we move from H0,i:6 to H0,i:7, we rely upon robust non-
malleability of the Comnm commitment scheme w.r.t. 1-round protocols (see Definition 15). The
details follow.

Observe that the change introduced by H0,i:7 is only computationally indistinguishable, but
not statistically so. Furthermore, as mentioned earlier, the value committed to in the SB NMCom
commitment NMMXComsrs at Step bps4+ of any right session is not revealed by M in any part
of the protocol. Hence, computational indistinguishability of DDH tuples from uniform strings is
insufficient to argue that the value committed to by the adversary M in the Comnm commitment
at Step bpscfp4 of any left session does not change adversely. For this, we shall rely upon robust
non-malleability of the Comnm commitment scheme w.r.t. 1-round protocols.

Assume for contradiction that there exists j ∈ [mR] such that j ≤ i and the values β
((0,i:6))
j

and β
((0,i:7))
j committed to in NMMXComsrs at Step bps4+ at the j-th right session in view

(0,i:6)
extr and

view
(0,i:7)
extr , respectively, are computationally distinguishable by some PPT distinguisher with some

non-negligible probability ε. Then, by relying on the DDH assumption, we construct an adversary
Arob−nmcom against robust non-malleability of the NMCom commitment scheme w.r.t. 1-round
protocols.
Arob−nmcom behaves exactly the same way as H0,i:6 except that it also isolates the NMMXComsrs

commitment at Step bps4+ of the j-th right session and the Step cfp3 message of the i+ 1-th right
session, and forwards them to an external NMCom receiver and to an external DDH challenger,
respectively. The DDH challenger chooses srs which is either a random DDH tuple or a uniform
random string (and sets rV accordingly).

Before we proceed to analyze the success probability of Arob−nmcom, we need to show that the
view of the MiM adversary M during its interaction with Arob−nmcom in the case where the string
received from the external DDH challenger is a uniform random string (in the isolated message of
Step cfp3 of the i + 1-th right session) is statistically close to the view output by H0,i:6. For this,
we apply the Robust Extraction Lemma. Since Arob−nmcom also isolates the Comnm commitment
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at Step bps4+ of the j-th right session and the Step cfp3 message of the i+ 1-th right session, and
relays them to external parties, to apply the Robust Extraction Lemma, we will first create two
intermediate hybrids hyb∗0,i:6,C and hyb∗0,i:6,D, whose outputs are identical, and the output of the
former is statistically close to the view of the MiM adversaryM when run by H0,i:6 and the output
of the latter is statistically close to the view of the MiM adversary M when run by Arob−nmcom in
the case where the string received from the external DDH challenger is a uniform random string.

hyb∗0,i:6,C is described as follows. It simply outputs the view output by the online extractor,

namely, REAL
I

(0,i:6)
extr
E,Π (β, z), where the external protocol Π here is the empty protocol. Now, we can

invoke the Robust Extraction Lemma, for which we consider the following: the CECom commit-
ments, that are isolated and relayed to external CECom receivers, have kcecom-slots and the external
protocol that the robust simulator is participating in, here, is the empty protocol. Thus, we have
that `cecom = kcecom and `external = 0. Now by applying the Robust Extraction Lemma, we have

that statistical distance between the views REAL
I

(0,i:6)
extr
E,Π (β, z) and view

(0,i:6)
extr is at most:

∆(λ) ≤ 2−(kcecom−0·log(T (λ))) ≤ negl(λ),

since, kcecom ∈ ω(log(λ)) and T is at most a polynomial.
Next, we describe an intermediate hybrid hyb∗0,i:6,D whose output is identical to that of hyb∗0,i:6,C .

For this consider an interface, I
(0,i:6,D)
extr behaves the same way as I

(0,i:6)
extr except that it also isolates

the Comnm commitment at Step bps4+ of the j-th right session and the Step cfp3 message of
the i + 1-th right session, and forwards them to an external NMCom receiver and a DDH chal-
lenger, respectively. hyb∗0,i:6,D simply outputs the view output by the online extractor, namely,

REAL
I

(0,i:6,D)
extr
E,Π (β, z), where the external protocol Π here consists of the Comnm commitment at Step

bps4+ of the j-th right session and the Step cfp3 message of the i + 1-th right session, and the
role of the external party is to run the code of the NMCom receiver and the DDH challenger,
respectively, for the isolated sub-protocols. Again, we can invoke the Robust Extraction Lemma,
for which we consider the following: the CECom commitments, that are isolated and relayed to
external CECom receivers, have kcecom-slots and the external protocol that the robust simulator
is participating in, here, Π here consists of the consists of two sub-protocols: namely, one Comnm

commitment of knmcom rounds and one 1-round protocol. Thus, we have that `cecom = kcecom and
`external = knmcom + 1. Now by applying the Robust Extraction Lemma, we have that statistical

distance between the views REAL
I

(0,i:6,D)
extr
E,Π (β, z) and the view of the M during its interaction with

Arob−nmcom in the case where the string received from the external DDH challenger is a uniform
random string is at most:

∆(λ) ≤ 2−(kcecom−(knmcom+1)·log(T (λ))) ≤ negl(λ),

since, kcecom ∈ ω(log(λ)), knmcom ∈ O(log(λ)), and T is at most a polynomial.
Thus, we have proven that the view of the MiM adversary M during its interaction with

Arob−nmcom in the case where the string received from the external DDH challenger is a uniform
random string is statistically close to the view output by H0,i:6.

Also, similarly, we have that the view of the MiM adversary M during its interaction with
Arob−nmcom in the case where the string received from the external DDH challenger is a random
DDH tuple is statistically close to the view output by H0,i:7.
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We have thus proven that if the external DDH challenger sends a uniform random string, then
the view of the adversary M in its interaction with Arob−nmcom is a statistical simulation of the

view view
(0,i:6)
extr ; on the other hand, if the external DDH challenger sends a random DDH tuple,

then the view of the adversary M in its interaction with Arob−nmcom is a statistical simulation

of the view view
(0,i:7)
extr . Thus, from the assumption that, for H0,i:7, for the j-th right session, Pj

accepts, but the value committed to by M in NMMXComsrs commitment at Step bps4+ is not a
valid witness, with some non-negligible probability ε, and from induction that this is not the case in
H0,i:6, by relying on the DDH assumption, we have that Arob−nmcom breaks robust non-malleability
of the NMCom commitment with probability ε− negl(λ).

This completes the proof of Claim 12.

Now we have established that for every accepting j-th right session for j ≤ i, the value contained

in NMMXComsrs at Step bps4 is a valid witness. Next, we shall prove that the values y
′(0,i:7)
j extracted

by H0,i:7 from CEComsh at Step bps4 of the j-th right sessions are valid witnesses.

Sub-Claim 17. ∀i, ∀j ≤ i, in view
(0,i:7)
extr , (b

(0,i:7)
j = 1) =⇒ (xj , y

′(0,i:7)
j ) ∈ RL.

Proof. We begin with a high-level sketch of the proof. Assume for contradiction that, with some
non-negligible probability ε, there exists j ∈ [mR] such that j ≤ i and for hybrid H0,i:7 the j-th

verifier accepts the j-th right session, but (xj , y
′(0,i:7)
j ) 6∈ RL. Then we can construct an adversary

A∗CB that breaks computational binding of CEComsh at Step bps4. To pull through this reduction,
we will along the way show that by knowledge-soundness of sWIAoK in Step bps5, the value extracted
by H0,i:7 is in fact the value committed to in NMMXComsrs at Step bps4 of that session, which we
have already proven to be a valid witness. To in turn pull this argument, along the way, we will
also invoke knowledge-soundness of sWIAoK in Step bps2 and computational binding of Comsh in
Step bps2 and computational hiding of CEComsb at Step bps1.

Recall that in the proof of Sub-claim 15, we had proven that in a view that is statistically close to

in view
(0,i:7)
extr if the sWIAoK argument in Step bps2 is isolated and forwarded to an external sWIAoK

verifier then by running an sWIAoK extractor on it would give an opening of Comsh commitment
at Step bps2 and by invoking computational hiding of the CEComsb commitment at Step bps1, this
extracted opening value is not the value committed to in the CEComsb commitment at Step bps1.
Also recall that in the proof of Sub-claim 15, we had proven that in a view that is statistically

close to in view
(0,i:7)
extr if the sWIAoK argument in Step bps5 is isolated and forwarded to an external

sWIAoK verifier then by running an sWIAoK extractor on it would give openings of NMMXComsrs

at Step bps4 and CEComsh at Step bps4+ to the same value yj , which we have proven in Claim 12
to be a valid witness as NMMXComsrs of this session is SB.

With this, we are now ready to construct an adversary A∗CB that breaks computational binding
of CEComsh (at Step bps4). This adversary behaves the same way as H0,i:7 except for a few

modifications. Recall that H0,i:7 ran RobustSimI
(0,i:7)
extr (z) where I

(0,i:7)
extr isolated certain CECom

commitments including CEComsh commitments at Step bps4+ of the first i+ 1 right sessions. A∗CB
runs RobustSimĨ5(z), where Ĩ5 differs from I

(0,i:7)
extr in the following sense.
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• Ĩ5 also isolates sWIAoK argument in Step bps5 of the j-th right session. Let (y
′(0,i:7,a)
j , rrobustcecom )

be the commitment information received from the outside for CEComsh commitment at Step
bps4+ of the j-th right session.

Upon completion of this sWIAoK protocol, if the sWIAoK verifier accepts, then it runs sWIAoK ex-

tractor on RobustSimĨ5(z). If the sWIAoK extractor returns an opening of the CEComshcommitment

of Step bps4+, then output this opening together with the opening (y
′(0,i:7,a)
j , rrobustcecom ) to the same

commitment.
We shall now analyze the success probability of A∗CB in breaking computational binding of

CEComsh commitment. Firstly, we recall that like we showed in the proof of Sub-claim 15, owing to
knowledge-soundness of the sWIAoK argument at Step bps5 and computational binding of Comsh at
Step bps2, the extracted value from the sWIAoK extractor is yt, rnm, rcecom such that (x, yt) ∈ RL
with rnm and rcecom explaining the commitments NMMXComsrs of Step bps4 and the CECom
commitment of Step bps4+ to yt, respectively. Thus, A∗CB already has an opening (yt, rcecom) of
the isolated CEComsh commitment to a valid witness yt. Furthermore, from the sWIAoK extractor,

it also has an opening (y
′(0,i:7,a)
j , rrobustcecom ) of the same commitment to y

′(0,i:7,a)
j . Thus, if y

′(0,i:7,a)
j 6= yt,

then A∗CB breaks computational binding of CEComsh commitment. In the following we shall show

that the probability of the event that y
′(0,i:7,a)
j 6= yt for A∗CB is negligibly close to the probability

that the extracted value by H0,i:7 for the j-th right session is not a valid witness.
Note that both H0,i:7 and A∗CB extract an opening of CEComsh commitment at Step bps4+ of

the j-th right session via robust simulator. Furthermore, both the algorithms run in polynomial
time. Thus, we only need to show statistical indistinguishability in the outputs (views together
with the values output) of these algorithms.

For this, we apply the Robust Extraction Lemma. Since A∗CB also isolates sWIAoK protocol
and relays it to an external party, to apply the Robust Extraction Lemma, we will first create two
intermediate hybrids hyb∗0,i:7,A and hyb∗0,i:7,B, whose outputs are identical, and the output of the
former is statistically close to the view of the MiM adversaryM when run by H0,i:7 and the output
of the latter is statistically close to the view of the MiM adversary M when run by A∗CB.

hyb∗0,i:7,A is described as follows. It simply outputs the view output by the online extractor,

namely, REAL
I

(0,i:7)
extr
E,Π (β, z), where the external protocol Π here is the empty protocol. Now, we can

invoke the Robust Extraction Lemma, for which we consider the following: the CECom commit-
ments, that are isolated and relayed to external CECom receivers, have kcecom-slots and the external
protocol that the robust simulator is participating in, here, is the empty protocol. Thus, we have
that `cecom = kcecom and `external = 0. Now by applying the Robust Extraction Lemma, we have

that statistical distance between the views REAL
I

(0,i:7)
extr
E,Π (β, z) and view

(0,i:7)
extr is at most:

∆(λ) ≤ 2−(kcecom−0·log(T (λ))) ≤ negl(λ),

since, kcecom ∈ ω(log(λ)) and T is at most a polynomial.
Next, we describe an intermediate hybrid hyb∗0,i:7,B whose output is identical to that of hyb∗0,i:7,A.

For this consider an interface, I
(0,i:7,B)
extr behaves the same way as I

(0,i:7)
extr except that it also isolates

the sWIAoK argument in Step bps5 of the j-th right session. hyb∗0,i:7,B simply outputs the view

output by the online extractor, namely, REAL
I

(0,i:7,B)
extr
E,Π (β, z), where the external protocol Π here

is the sWIAoK argument in Step bps5 of the j-th right session, and the external party running

75



the code of the sWIAoK verifier for the isolated sWIAoK argument. Again, we can invoke the
Robust Extraction Lemma, for which we consider the following: the CECom commitments, that
are isolated and relayed to external CECom receivers, have kcecom-slots and the external protocol
that the robust simulator is participating in, here, Π here is the sWIAoK protocol in Step bps2 of the
t-th right session, and the external party running the code of the sWIAoK verifier for the isolated
sWIAoK argument. Thus, we have that `cecom = kcecom and `external = kswiaok. Now by applying the

Robust Extraction Lemma, we have that statistical distance between the views REAL
I

(0,i:7,B)
extr
E,Π (β, z)

and the view of the M during its interaction with A∗CB is at most:

∆(λ) ≤ 2−(kcecom−kswiaok·log(T (λ))) ≤ negl(λ),

since, kcecom ∈ ω(log(λ)), kswiaok is a constant, and T is at most a polynomial.
Thus, we have that the adversary M when run by A∗CB is statistically close to the view when

run by H0,i:7. Thus we have that A∗CB breaks binding of the CEComsh commitment with probability
ε− negl(λ).

H2. H2: H2 runs RobustSimI
(2)
extr(z), where we define I

(2)
extr to be identical to I

(1)
extr, except for the

following modification.

• I(2)
hyb also isolates CEComsb commitments of Step bps1 of all left sessions and relays them to

external CECom receivers.

Claim 13.
view

(2)
extr ≈s view

(1)
extr.

Proof. Recall that the only sub-protocols isolated by I
(1)
extr are certain CECom commitments of

the right sessions which are forwarded to external CECom receivers. Also recall that the only

difference we introduced as we moved from H1 to H2 is that I
(2)
extr also isolated certain other CECom

commitments of the right sessions and forwarded them to external CECom receivers.
With this, to argue statistical indistinguishability between the views output by these two hy-

brids, we invoke the Robust Extraction Lemma. To apply the Robust Extraction Lemma, we will
first create an intermediate hybrid hyb∗2. hyb∗1 simply outputs the view output by the online ex-

tractor, namely, REAL
I

(2)
real
E,Π (β, z), where the external protocol Π here is the empty protocol. Since in

hyb1, I
(1)
real only isolates some CECom commitments, we can invoke the Robust Extraction Lemma,

for which we consider the following: the CECom commitments, that are isolated and relayed to
external CECom receivers, have kcecom-slots and the external protocol that the robust simulator is
participating in, here, is the empty protocol. Thus, we have that `cecom = kcecom and `external = 0.
Now by applying the Robust Extraction Lemma, we have that statistical distance between the

views REAL
I

(2)
real
E,Π (β, z) and view(1) output by H∗2 and H1, respectively, is at most:

∆(λ) ≤ 2−(kcecom−0·log(T (λ))) ≤ negl(λ),
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since, kcecom ∈ ω(log(λ)) and T is at most a polynomial. Thus,

view(2) ≈s REAL
I

(1)
real
E,Π (β, z).

Furthermore, since I
(2)
real also only isolates some CECom commitments, we can invoke the Robust

Extraction Lemma, just as before, to have that statistical distance between the views REAL
I

(2)
real
E,Π (β, z)

and view(2) output by H∗2 and H2, respectively, is at most:

∆(λ) ≤ 2−(kcecom−0·log(T (λ))) ≤ negl(λ).

Thus,

view(2) ≈s REAL
I

(2)
real
E,Π (β, z).

Thus, we have that view
(2)
extr ≈s view

(1)
extr.

H3. H3 runs RobustSimI
(3)
extr(z), where we define I

(3)
extr to be identical to I

(2)
extr, except for the following

modification.

• Recall that I
(2)
hyb (among other messages) isolated the CEComsb commitments at Step bps1 of

the left session.

• Let value σ′ be received from outside at the end of the CEComsb commitment. Then commit
to σ′ using Comsh at Step bps2; also, use the same extracted value as the witness in proving
sWIAoK at Step bps2.

Claim 14.
view

(3)
extr ≈s view

(2)
extr.

Proof. Since Comsh at Step bpscfp2 is a statistically hiding commitment scheme, and sWIAoK is
statistically witness-indistinguishable, by applying the Robust Extraction Lemma exactly as before,
the sub-claim follows.

H4. H4 runs RobustSimI
(4)
extr(z), where we define I

(4)
extr to be identical to I

(3)
extr, except for the following

modification.

• Recall that I
(3)
hyb isolated the CEComsb commitment at Step bps1 of the left session. Let the

extracted value received from the outside be σ′. Also, in Step bps3, let σ be the value that
M opens the CEComsb commitment to. If σ 6= σ′, then abort.

Claim 15.
view

(4)
extr ≈s view

(3)
extr.
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Proof. Assume for contradiction that there exists ` ∈ [mL] such that for the `-th left session,
σ 6= σ′, with some non-negligible probability ε. Then we construct an adversary that breaks CB of
the CEComsb commitment.

Recall that H4 isolates the CEComsb commitment at Step bpscfp1 of the `-th left session (among
other messages). It thus receives an opening for it, say (σ′, randσ′) from the outside. Furthermore,
M provides an opening to the same CEComsb commitment at Step bps3; call it (σ, randσ). From
the assumption in the proof that α 6= α′ with some non-negligible probability ε, we can construct
an adversary that breaks CB of the CEComsb commitment with the same probability. This clearly
follows from the fact that the CEComsb commitment in question is already isolated and forwarded
to an external CECom receiver. Thus, H4 itself can be deemed our adversary against CB of the
CEComsb commitment, a contradiction. Thus, σ = σ′, with all but negligible probability, and the
Claim follows.

H5. H5 runs RobustSimI
(5)
extr(z), where we define I

(5)
extr to be identical to I

(4)
extr, except for the following

modification.

• Recall that, in the j-th left session in question, I
(4)
hyb committed to a valid witness yj in

NMMXComsrs at Step bps4. Furthermore, it uses this committed value yj as the witness in
the CEComsh commitment at Step bps4+ and also in proving sWIAoK at Step bps5. Here, the

modification is that I
(5)
hyb uses the commitment information from Comsh at Step bps2 where it

committed to σ.

Claim 16.
view

(5)
extr ≈s view

(4)
extr.

Proof. Note that we will no longer be able to directly apply the Robust Extraction Lemma as (one
of) the external protocols in question here is a CECom commitment itself, while Robust Extraction
Lemma can only be applied to external protocols of round complexity strictly less than that of the
CECom commitments rewound by the robust simulator. However, we can still prove the claim
by a simple hybrid argument: Firstly, the CEComsh commitment is changed one sub-commitment
at a time. We recall here that the the standard CEComsh commitment from [PRS02] consists of
multiple Comsh sub-commitment each of which correspond to only three rounds. Since the external
protocol in question now is just of three rounds, we apply the Robust Extraction Lemma exactly as
before and get statistical indistinguishability. Secondly, sWIAoK at Step bps5 is statistically witness-
indistinguishable, again by applying the Robust Extraction Lemma, the sub-claim follows.

H6. H6 runs RobustSimI
(6)
extr(z), where we define I

(6)
extr to be identical to I

(5)
extr, except for the following

modification.

• Recall that, in the j-th left session in question, I
(5)
hyb committed to a valid witness yj in

NMMXComsrs at Step bps4. Here, the modification is that I
(6)
hyb commits to 0λ in NMMXComsrs

at Step bps4.

Claim 17.
view

(6)
extr ≈s view

(5)
extr.
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Proof. By applying the Robust Extraction Lemma exactly as before, this immediately follows from
the statistical hiding property of the NMCom commitment NMMXComsrs at Step bps4 of the left
session.

Note that H6 does not use any witness for the left sessions and it outputs valid witness of the
accepted right sessions.
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