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Abstract. Finding heavy-elements (heavy-hitters) in streaming data is one of the central, and well-
understood tasks. Despite the importance of this problem, when considering the sliding windows model
of streaming (where elements eventually expire) the problem of finding L2-heavy elements has remained
completely open despite multiple papers and considerable success in finding L1-heavy elements.
Since the L2-heavy element problem doesn’t satisfy certain conditions, existing methods for sliding
windows algorithms, such as smooth histograms or exponential histograms are not directly applicable to
it. In this paper, we develop the first polylogarithmic-memory algorithm for finding L2-heavy elements
in the sliding window model.
Our technique allows us not only to find L2-heavy elements, but also heavy elements with respect to
any Lp with 0 < p ≤ 2 on sliding windows. By this we completely “close the gap” and resolve the
question of finding Lp-heavy elements in the sliding window model with polylogarithmic memory, since
it is well known that for p > 2 this task is impossible.
We demonstrate a broader applicability of our method on two additional examples: we show how to
obtain a sliding window approximation of the similarity of two streams, and of the fraction of elements
that appear exactly a specified number of times within the window (the α-rarity problem). In these
two illustrative examples of our method, we replace the current expected memory bounds with worst

case bounds.

1 Introduction

A data stream S is an ordered multiset of elements {a0, a1, a2 . . .} where each element at ∈ {1, . . . , u} arrives
at time t. In the sliding window model we consider at each time t ≥ N the last N elements of the stream, i.e.
the window W = {at−(N−1), . . . , at}. These elements are called active, whereas elements that arrived prior
to the current window {ai | 0 ≤ i < t − (N − 1)} are expired. For t < N , the window consists of all the
elements received so far, {a0, . . . , at}.

Usually, both u and N are considered to be extremely large so it is not applicable to save the entire
stream (or even one entire window) in memory. The problem is to be able to calculate various characteristics
about the window’s elements using small amount of memory (usually, polylogarithmic in N and u). We refer
the reader to the books of Muthukrishnan [39] and Aggarwal (ed.) [1] for extensive surveys on data stream
models and algorithms.

One of the main open problems in data streams deals with the relations between the different streaming
models [37], specifically between the unbounded stream model and the sliding window model. In this paper
we provide another important step in clarifying the connection between these two models by showing that
finding Lp-heavy hitters is just as doable on sliding windows as on the entire stream.

We focus on approximation-algorithms for certain statistical characteristics of the data streams, specif-
ically, finding frequent elements. The problem of finding frequent elements in a stream is useful for many
applications, such as network monitoring [42] and DoS prevention [23,18,4], and was extensively explored
over the last decade (see [39,17] for a definition of the problem and a survey of existing solutions, as well
as [13,36,26,32,16,3,19,44,27]).

We say that an element is heavy if it appears more times than a constant fraction of some Lp norm of the
stream. Recall that for p > 0, the Lp norm of the frequency vector4 is defined by Lp = (

∑

i n
p
i )

1/p, where ni is

4 Throughout the paper we use the term “Lp norm” to indicate the Lp norm of the frequency vector, i.e., the pth
root of the pth frequency moment Fp =

∑
i n

p
i [2], rather than the norm of the data itself.
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the frequency of element i ∈ [u], i.e., the number of times i appears in the window. Since different Lp can be
considered, we obtain several different ways to define a “heavy” element. Generally speaking (as mentioned
in [30]), when considering frequent elements (heavy-hitters) with respect to Lp, the higher p is, the better.
Specifically, identifying frequent elements with respect to L2 is better than L1 since an L1 algorithm can
always be replaced with an L2 algorithm, with less or equal memory consumption (but not vice versa).

Naturally, finding frequent elements with respect to the L2 norm is a more difficult task (memory-wise)
than the equivalent L1 problem. To demonstrate this fact let us regard the following example: let S be a
stream of size N , in which the element a1 appears

√
N times, while the rest of the elements a2, . . . , aN−

√
N

appear exactly once in S. Say we wish to identify a1 as an heavy element. Note that n1 = 1√
N
L1 while

n1 = cL2, where c is a constant, lower bounded by 1√
2
. Therefore, as N grows, n1/L1 → 0 goes to zero,

while n1/L2 is bounded by a constant. If an algorithm finds elements which are heavier than γLp with
memory poly(γ−1, logN, log u), then for p = 2 we get a polylogarithmic memory, while for p = 1 the memory
consumption is super-logarithmic.

We focus on solving the following L2-heaviness problem:

Definition 1.1 ((γ, ǫ)-approximation of L2-frequent elements). For 0 < ǫ, γ < 1, output any element
i ∈ [u] such that ni > γL2 and no element such that ni < (1− ǫ)γL2.

The L2 norm is the most powerful norm for which we can expect a polylogarithmic solution, for the frequent-
elements problem. This is due to the known lower bound of Ω(u1−2/p) for calculating Lp over a stream [41,6].

There has been a lot of progress on the question of finding L1-frequent elements, in the sliding window
model [3,44,27], however those algorithms cannot be used to find L2-frequent elements with an efficient
memory. In 2002, Charikar, Chen and Farach-Colton [13] developed the CountSketch algorithm that can
approximate the “top k” frequent-elements on an unbounded stream, where k is given as an input. Formally,
their algorithm outputs only elements with frequency larger than (1− ǫ)φk, where φk is the frequency of the
kth most frequent element in the stream, using memory proportional to L2

2/(ǫφk)
2. Since the “heaviness”

in this case is relative to φk, and the memory is bounded by the fraction L2
2/(ǫφk)

2, Charikar et al.’s
algorithm finds in fact heaviness in terms of the L2 norm. A natural question is whether one can develop an
algorithm for finding frequent-elements that appear at least γL2 times in the sliding window model, using
poly(γ−1, logN, log u) memory.

Our Results. We give the first polylogarithmic algorithm for finding an ǫ-approximation of the L2-frequent
elements in the sliding window model. Our algorithm is able to identify elements that appear within the
window a number of times which is at least a γ-fraction of the L2 norm of the window, up to a multiplicative
factor of (1 − ǫ). In addition, the algorithm guarantees to output all the elements with frequency at least
(1 + ǫ)γL2.

Theorem 1.2. There exists an efficient sliding window algorithm that outputs a (γ, ǫ)-approximation of the
L2-frequent-elements, with probability at least 1− δ and memory poly(ǫ−1, γ−1, logN, log δ−1).

We note that the CountSketch algorithm works in the unbounded model and does not apply directly
on sliding windows. Moreover, CountSketch solves a slightly different (yet related) problem, namely, the
top-k problem, rather than the L2 heaviness. To achieve our result on L2 heavy hitters, we combine in a non-
trivial way the scheme of Charikar et al. with a sliding-window approximation for L2 as given by Braverman
and Ostrovsky [9]. Variants of these techniques sufficient to derive similar results were known since 2002,5

however no algorithm for L2 heavy hitters was reported despite several papers on L1 heavy hitters.
Our solution gives another step in the direction of making a connection between the unbounded and

sliding window models, as it provides an answer for the very important question of heavy hitters in the
sliding window model. The result joins the various solutions of finding L1-heavy hitters in sliding win-
dows [26,3,40,4,44,27,28], and can be used in various algorithms that require identifying L2 heavy hitters,

5 Indeed, we use the algorithm of Charikar et al. [13] that is known since 2002. Also, it is possible to replace (with
some non-trivial effort) our smooth histogram method for L2 computation with the algorithm of Datar, Gionis,
Indyk and Motwani [21] for L2 approximation.
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such as [31,8] and others. More generally, our paper resolves the question of finding Lp-heavy elements on
sliding windows for all values of p that allows small memory one-pass solutions (i.e. for 0 < p ≤ 2). By this
we completely close the gap between the case of p ≤ 1, solved by previous works, and the impossibility result
for the case of p > 2.

A Broader Perspective. In fact, one can consider the tools we develop for the frequent elements problem
as a general method that allows obtaining a sliding window solution out of an algorithm for the unbounded
model, for a wide range of functions. We explain this concept in this section.

Many statistical properties were aggregated into families, and efficient algorithms were designed for
those families. For instance, Datar, Gionis, Indyk and Motwani, in their seminal paper [21] showed that
a sliding window estimation is easy to achieve for any function which is weakly-additive by using a data
structure named exponential histograms [21]; for certain functions that decay with time, one can maintain
time-decaying aggregates [15]; another data structure, named smooth-histogram [9] can be used in order to
approximate an even larger set of functions, known as smooth functions. See [1] for a survey of synopsis
construction.

In this paper we introduce a new concept which uses a smooth-histogram in order to perform sliding
window approximation of non-smooth properties. Informally speaking, the main idea is to relate the non-
smooth property f with some other, smooth6, property g, such that changes in f are bounded by the
changes in g. By maintaining a smooth-histogram for the smooth function g, we partition the stream into
sets of sub-streams (buckets). Due to the properties of the smooth-histogram we can bound the error (of
approximating g) for every sub-stream, and thus get an approximation of f . We use the term semi-smooth
to describe these kinds of algorithms.

We demonstrate the above idea by showing a concrete efficient sliding window algorithm for the properties
of rarity and similarity [20]; we stress that neither is smooth (see Section 4 for definitions of these problems).
Although there already exist algorithms for these problems with expected polylogarithmic memory [20],
our techniques improve these results and obtain a worst case memory consumption of essentially the same
magnitude (up to a factor of log logN).

In addition to the properties of rarity and similarity, we believe that the tools we develop here can be
used to build efficient sliding window approximations for many other (non-smooth) properties and provide
a general new method for computing on sliding windows. Indeed, in a subsequent work Tirthapura and
Woodruff [43] use our methods to compute various correlated aggregations. It is important to note that
trying to build a smooth-histogram (or any other known sketch) directly to f will not preserve the required
invariants, and the memory consumption might not be efficient.

Previous Works.
Frequent elements. Finding elements that appear many times in the stream (“heavy hitters”) is a very
central question and thus has been extensively studied both for the unbounded model [22,34,16,38] and
for the sliding window model [3,40,44,27] as well as other variants such as the offline stream model [36],
insertion and deletion model [19,32], finding heavy-distinct-hitter [4], etc. Reducing the processing time was
done by [35] into O(1ǫ ) and by [28] into O(1).

Another problem which is related to finding the heavy hitters, is the top-k problem, namely, finding the
k most frequent elements. As mentioned above, Charikar, Chen and Farach-Colton [13] provide an algorithm
that finds the k most frequent elements in the unbounded model (up to a precision of 1± ǫ). Golab, DeHaan,
Demaine, López-Ortiz and Munro [26] solve this problem in the jumping window model.

Similarity and α-rarity. The similarity problem was defined in order to give a rough estimation of close-
ness between files over the web [11] (and independently in [14]). Later, it was shown how to use min-hash
functions [29] in order to sample from the stream, and estimate the similarity of two streams.

The notion of α-rarity, introduced by Datar and Muthukrishnan [20], is that of finding the fraction of
elements that appear exactly α times within the stream. This quantity can be seen as finding the fraction
of elements with frequency within certain bounds.

6 Of course, other kinds of aggregations can be used, however our focus is on smooth histograms.
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The questions of rarity and similarity were analyzed, both for the unbounded stream and the sliding
window models, by Datar and Muthukrishnan [20], achieving an expected memory bound of O(logN+log u)
words of space for a constant ǫ, α, δ. At the bit level, their algorithm requires O(α · ǫ−3 log δ−1 logN(logN +
log u)) bits for α-rarity and O(ǫ−3 log δ−1 logN(logN + log u)) bits for similarity, with 1 − δ being the
probability of success7.

2 Preliminaries

2.1 Notations

We say that an algorithm Af is an (ǫ, δ)-approximation of a function f , if for any input S, (1 − ǫ)f(S) ≤
Af (S) ≤ (1+ǫ)f(S), except with probability δ over Af ’s coin tosses. We denote this relation as Af ∈ (1±ǫ)f
for short. We denote an output of an approximation algorithm with a hat symbol, e.g., the estimator of f is
denoted f̂ .

The set {1, 2, . . . , n} is usually denoted as [n]. If a stream B is a suffix of A, we denote B ⊆r A. For
instance, let A = {q1, q2, . . . , qn} then B = {qn1

, qn1+1, . . . , qn} ⊆r A, for 1 ≤ n1 ≤ n. The notation
A ∪ C denotes the concatenation of the stream C = {c1, c2, . . . , cm} to the end of stream A, i.e., A ∪ C =
{q1, q2, . . . , qn, c1, c2, . . . cm}. The notation |A| denotes the number of different elements in the stream A,
that is the cardinality of the set induced by the multiset A. The size of the stream (i.e. of the multiset) A
will be denoted as ‖A‖, e.g., for the example above ‖A‖ = n.

We use the notation Õ(·) to indicate an asymptotic bound which suppresses terms of magnitude
poly(log 1

ǫ , log log
1
δ , log logN, log log u).

2.2 Smooth histograms

Recently, Braverman and Ostrovsky [9] showed that a function f can be ǫ-approximated in the sliding window
model, if f is a smooth function, and if it can be calculated (or approximated) in the unbounded stream
model. Formally,

Definition 2.1. A polynomial function f is (α, β)-smooth if it satisfies the following properties: (i) f(A) ≥ 0;
(ii) f(A) ≥ f(B) for B ⊆r A; and (iii) there exist 0 < β ≤ α < 1 such that if (1 − β)f(A) ≤ f(B) for
B ⊆r A, then (1− α)f(A ∪ C) ≤ f(B ∪C) for any C.

If an (α, β)-smooth f can be calculated (or (ǫ, δ)-approximated) on an unbounded stream with memory
g(ǫ, δ), then there exists an (α+ǫ, δ)-estimation of f in the sliding window model using O( 1β logN(g(ǫ, δβ

logN )+

logN)) bits [9].

The key idea is to construct a “smooth-histogram”, a structure that contains estimations on O( 1β logN)-
suffixes of the stream, A1 ⊇r A2 ⊇r . . . ⊇r Ac 1

β
log(n). Each suffix Ai is called a Bucket. Each new element

in the stream initiates a new bucket, however adjacent buckets with a close estimation value are removed
(keeping only one representative). Since the function is “smooth”, i.e., monotonic and slowly-changing, it is
enough to save O( 1β logN) buckets in order to maintain a reasonable approximation of the window. At any
given time, the current window W is between buckets A1 and A2, i.e. A1 ⊇r W ⊇r A2. Once the window
“slides” and the first element of A2 expires, we delete the bucket A1 and renumber the indices so that A2

becomes the new A1, A3 becomes the new A2, etc. We use the estimated value of bucket A1 to estimate the
value of the current window. The relation between the value of f on the window and on the first bucket is
given by (1− α)f(A1) ≤ f(A2) ≤ f(W ) ≤ f(A1) .

7 These bounds are not explicitly stated in [20], but follow from the analysis (see Lemma 1 and Lemma 2 in [20]).
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3 A Semi-Smooth Estimation of Frequent Elements

In this section we develop an efficient semi-smooth algorithm for finding elements that occur frequently
within the window. Let ni be the frequency of element i ∈ {1, . . . , u}, i.e., the number of times i appears
in the window. The first frequency norm and the second frequency norm of the window are defined by

L1 =
∑u

i=1 ni = N and L2 =
(
∑u

i=1 n
2
i

)
1

2 . In many previous works, (e.g., [16,3,39,44,27]) the task of finding
heavy-elements is defined using the L1 norm as follows,

Definition 3.1 ((γ, ǫ)-approximation of L1-heavy hitters). Output any element i ∈ [u] such that
ni ≥ γL1 and no element such that ni ≤ (1− ǫ)γL1.

Our notion of approximating frequent elements is given by Definition 1.1. An equivalent definition which
we use in our proof is the following:

Definition 3.2. For 0 < ǫ, γ < 1, output all elements i ∈ [u] with frequency higher than (1 + ǫ)γL2, and do
not output any element with frequency lower than (1− ǫ)γL2.

Observe that the L2 approximation is stronger than the above L1 definition. If an element is heavy in terms
of L1 norm, it is also heavy in terms of the L2 norm,

ni ≥ γL1 = γ
∑

j

nj =⇒ n2
i ≥ γ2

(

∑

j

nj

)2

≥ γ2
∑

j

n2
j = (γL2)

2 ,

while the opposite direction does not apply in general.
In order to identify the frequent elements in the current window, use a variant of the CountSketch

algorithm of Charikar et al. [13], which provides an ǫ-approximation (in the unbounded stream model) for
the following top-frequent approximation problem.

Definition 3.3 ((k, ǫ)-top frequent approximation). Output a list of k elements such that every ele-
ment i in the output has a frequency ni > (1 − ǫ)φk, where φk is the frequency of the k-th most frequent
element in the stream.

The CountSketch algorithm guarantees that any element that satisfies ni > (1 + ǫ)φk, appears in the
output. This algorithm runs on a stream of size n and succeeds with probability at least 1− δ, and memory

complexity of O
((

k + 1
(ǫγ)2

)

log n
δ

)

, for every δ > 0, given that φk ≥ γL2.

Definition 3.3 and Definition 1.1 do not describe the same problem, yet they are strongly connected. In
fact, our method allows solving the frequent elements problem under both definitions, however in this paper
we focus on solving the L2-frequent-elements problem, as defined by Definition 3.2. In order to do so, we use
a variant of the CountSketch algorithm with specific parameters tailored for our problem (See full details
in Appendix A). This variant outputs a list of elements, and is guaranteed to output every element with
frequency at least (1 + ǫ′)γL2 and no element of frequency less than (1− ǫ′)γL2, for an input parameter ǫ′.

We stress that CountSketch is not sufficient on its own to prove Theorem 1.2. The main reason is that
this algorithm works in the unbounded stream model, rather than in the sliding window model. Another
reason is that it must be tweaked in order not to output false positives. Our solution below makes a use of
smooth-histograms to overcome these issues.

3.1 Semi-smooth algorithm for frequent elements approximation

We construct a smooth-histogram for the L2 norm, and partition the stream into buckets accordingly. It

is known that the L2 property is a (ǫ, ǫ2

2 )-smooth function [9]. Using the method of Charikar et al. [13],
separately on each bucket, with a careful choice of parameters, we are able to approximate the (γ, ǫ)-frequent
elements problem on a sliding window (Fig. 1).

Theorem 3.4. The semi-smooth algorithm ApproxFreqElements (Fig. 1) is a (γ,O(ǫ))-approximation
of the L2-frequent elements problem, with success probability at least 1− δ.
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ApproxFreqElements(γ, ǫ, δ)

1. Maintain an ( ǫ
2
, δ
2
)-estimation of the L2 norm of the window, using a smooth-histogram.

2. For each bucket of the smooth-histogram, A1, A2, . . . maintain an approximated list of the k = 1

γ2 + 1 most

frequent elements, by running (γ, ǫ
4
, δ
2
)−CountSketchb.

(see CountSketchb’s description in Appendix A).
3. Let L̂2 be the approximated value of the L2 norm of the current window W , as given by the the smooth-

histogram. Let q1, . . . , qk ∈ {1, . . . , u} be the list of the k most heavy elements in A1, along with n̂1, . . . , n̂k

their estimated frequencies, as outputted by CountSketchb.
4. Output any element qi that satisfies n̂i >

1

1+ǫ
γL̂2.

Fig. 1. A semi-smooth algorithm for the frequent elements problem

Proof. Recall that the smooth-histogram data structure of the L2 guarantees us an estimation L̂2 which is
(1± ǫ)L2(W ); in addition there exists some α such that (1− α)L2(A1) ≤ L2(W ) ≤ L2(A1). In our case the
inequality is satisfied for α = ǫ/2 (see Theorem 3 and Definition 3 in [9]). Any element j with frequency
nj(W ) > (1 + ǫ)γL2(W ) satisfies

nj(A1) ≥ nj(W ) ≥ (1 + ǫ)γL2(W ) ≥ (1 + ǫ)(1− ǫ/2)γL2(A1) ,

and will be added to the output list in Step 2, since Proposition A.3 guarantees that any element i such that
ni(Ai) > (1 + ǫ/4)γL2(A1) is identified by CountSketchb (assuming ǫ < 1

2 ).
In order to show that all of the required elements survive Step 4, we use Lemma A.2 to bound the

estimated frequency n̂i reported by CountSketchb, and show it is above the required threshold. If ni(W ) >
(1 + ǫ)γL2(W ) then

n̂i(A) > ni(A)−
ǫ

8
γL2(A) > ni(W )− ǫ

2− ǫ
L2(W ) >

[

1 + ǫ − ǫ

2− ǫ

]

γL2(W ) ,

recalling that L̂2 < (1 + ǫ)L2(W ) implies that the element survives Step 4.
While we are guaranteed that all the (1+ ǫ)γL2(W )-frequent elements appear in the output list, it might

contain other elements which are not heavy enough. We now prove that Step 4 eliminates any element of
frequency less than (1− cǫ)γL2(W ), for a constant c.

Lemma 3.5. If for an element i there exists some ζ >
√
ǫ such that ni(A1) > ζL2(A1), then there exist a

constant ξ > 0 such that ni(W ) > ξL2(W ).

Proof. By the properties of the smooth-histogram,

L2(W )2 > (1− ǫ/2)2L2(A1)
2 > (1− ǫ)L2(A1)

2

ni(W )2 +
∑

j 6=i

nj(W )2 > ni(A1)
2 +

∑

j 6=i

nj(A1)
2 − ǫL2(A1)

2

ni(W )2 > ni(A1)
2 − ǫL2(A1)

2 > (ζ2 − ǫ)L2(A1)
2

and ni(W ) > ξL2(W ) for ξ ≤
√

(ζ2 − ǫ). ⊓⊔

Suppose some element i survives Step 4, then n̂i(A1) >
1

1+ǫγL̂2 >
1−ǫ
1+ǫγL2(W ). By Lemma A.2,

ni(A1) ≥ n̂i(A1)−
ǫ

8
γL2(A1) ≥

(

(1 − ǫ)(1− ǫ
2 )

1 + ǫ
− ǫ

8

)

γL2(A1) > (1− 3ǫ)γL2(A1),

and by Lemma 3.5, ni(W ) ≥
√
1− 7ǫ · γL2(W ). This proves that for small enough ǫ there exists some

constant c such that the algorithm doesn’t output any element with frequency lower than (1 − cǫ)γL2(W ).
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To conclude, except for probability δ/2 we are able to partition the stream into L2-smooth buckets, and
except for probability δ/2, the CountSketchb algorithm outputs a list which can be used to identify the
frequent elements of the window. Using a union bound we conclude that the entire algorithm succeeds except
with probability δ. This completes the proof of the theorem. ⊓⊔

Memory Usage. The memory usage of the protocol is composed of two parts: maintaining a (ǫ/2, δ/2)-
smooth-histogram of L2, and running CountSketchb on each of the buckets. According to [9] (corollary 5),
maintaining a smooth-histogram for L2 can be done with memory

O

(

1
ǫ2 log

2 N + 1
ǫ4 logN log

logN

δǫ

)

for a relative error of ǫ/2 + ǫ2/8, with success probability at least 1 − δ/2. For small enough ǫ we have
ǫ/2 + ǫ2/8 < ǫ as required.

As for the second part, recall that one instance of CountSketchb requires a memory of O
(

1
ǫ2γ2 log

n
δ

)

(see Appendix A), where n is the size of the input. In our case the maximal size of the input is the size
of the first bucket, ‖A1‖. Note that log ‖A1‖ = O(logN) since (1 − α)L2(A1) ≤ L2(W ) ≤ N . The number
of CountSketchb instances is bounded by the number of buckets, O( 1

ǫ2 logN) [9], which leads to a total
memory bound of

O

(

1

γ2ǫ4
logN log

N

δ
+

1

ǫ4
logN log

1

ǫ

)

.

3.2 Extensions to any Lp with p < 2

It is easy to see that the same method can be used in order to approximate Lp-heavy elements for any
0 < p < 2, up to a 1 ± ǫ precision. The algorithms and analysis remain the same, except for using a
smooth-histogram for the Lp norm, and changing the parameters by constants.

Theorem 3.6. For any p ∈ (0, 2], there exists a sliding window algorithm that outputs all the elements with
frequency at least (1 + ǫ)γLp, and no element with frequency less then (1 − ǫ)γLp. The algorithm succeeds
with probability at least 1− δ and takes poly(ǫ−1, γ−1, logN, log δ−1) memory.

4 Estimation of Non-Smooth Properties Relativized to the Number of

Distinct Elements

In this section we extend the method shown above and apply it to other non-smooth functions. In contrast
to the smooth L2 used above, in this section we use a different smooth function to partition the stream,
namely the distinct elements count problem. This allows us to obtain efficient semi-smooth approximations
for the (non-smooth) similarity and α-rarity tasks.

4.1 Preliminaries

We now show that counting the number of distinct elements in a stream is smooth. This allows us to partition
the stream into a smooth-histogram structure, where each two adjacent buckets have approximately the same
number of distinct elements.

Proposition 4.1. Define DEC(A) as the number of distinct elements in the stream A, i.e., DEC(A) = |A|.
The function DEC is an (ǫ, ǫ)-smooth-function, for every 0 ≤ ǫ ≤ 1.

7



Proof. Properties (i) and (ii) of Definition 2.1 follow directly from DEC’s definition. As for property (iii),
assume that B ⊆r A and (1− ǫ)DEC(A) ≤ DEC(B), then

(1− ǫ)DEC(A ∪ C) = (1 − ǫ) [DEC(A) + DEC(C \A)]
≤ DEC(B) + (1 − ǫ)DEC(C \A)
≤ DEC(B) + DEC(C \B)

= DEC(B ∪ C),

where “A \B” represents the set of all the elements in A which are not in B. ⊓⊔

There have been many works on counting distinct elements in streams, initiated by Flajolet and Mar-
tin [24], and later improved by many others [2,25,7,5]. Recently, Kane, Nelson and Woodruff provided an
optimal algorithm for (ǫ, δ)-approximating the number of distinct elements [33], using O(( 1

ǫ2 + log u) log 1
δ )

bits and O(1) time. We use the method of Kane et al. in order to construct a smooth-histogram for the
distinct elements count with memory Õ

(

(log u+ 1
ǫ2 )

1
ǫ logN log 1

δ +
1
ǫ log

2 N
)

, suppressing log logN and log 1
ǫ

terms.
Another tool we use is min-wise hash functions [12,10], used in various algorithms in order to estimate

different characteristics of data streams, especially the similarity of two streams [12]. Informally speaking,
these functions have a meaning of uniformly sampling an element from the stream, which makes them a very
useful tool.

Definition 4.2 (min-hash). Let Π = {πi} be a family of permutations over [u] = {1, . . . , u}. For a subset
A ⊆ [u] define hi to be the minimal permuted value of πi over A, hi = mina∈A πi(a). A family {hi} of such
functions is called exact min-wise independent hash functions (or min-hash) if for any subset A ⊆ [u] and
a ∈ A,

Pr
i
[hi(A) = πi(a)] =

1

|A| .

The family {hi} is called ǫ-approximated min-wise independent hash functions (or ǫ-min-hash) if for any
subset A ⊆ [u] and a ∈ A,

Pr
i
[hi(A) = πi(a)] ∈

1

|A| (1 ± ǫ).

A specific construction of ǫ-min-hash functions was presented by Indyk [29], using only O(log 1
ǫ log u) bits.

The time per hash calculation is bounded by O(log 1
ǫ ). Min-hash functions can be used in order to estimate

the similarity of two sets, by using the following lemma,

Lemma 4.3. ([10]. See also [20].) For any two sets A and W and an ǫ′-min-hash function hi, it holds that

Pri [hi(A) = hi(W )] = |A∩W |
|A∪W | ± ǫ′.

4.2 A semi-smooth estimation of α-rarity

In the following section we present an algorithm that estimates the α-rarity of a stream (in the sliding window
model), i.e., the ratio of elements that appear exactly α times in the window. The rarity property is known
not to be smooth, yet by using a smooth-histogram for distinct elements count, we are able to partition the
stream into O(1ǫ logN) buckets, and estimate the α-rarity in each bucket.

Definition 4.4. An element x is α-rare if it appears exactly α times in the stream. The α-rarity measure,

ρα, denotes the ratio of α-rare elements in the entire stream S, i.e., ρα =
|{x | x is α-rare in S}|

DEC(S) .

Our algorithm follows the method used by [20] to estimate α-rarity in the unbounded model. The estima-
tion is based on the fact that the α-rarity is equal to the portion of min-hash functions that their min-value
appears exactly α times in the stream.
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However, in order to estimate rarity over sliding windows, one needs to estimate the ratio of min-hash
functions of which the min-value appears exactly α times within the window. Our algorithm builds a smooth-
histogram for DEC in order to partition the stream into buckets, such that each two consecutive buckets
have approximately the same number of distinct elements. In addition, we sample the bucket using a min-
wise hash, and count the α + 1 last occurrences of the sampled element xi in the bucket. We estimate the
α-rarity of the window by calculating the fraction of min-hash functions of which the appropriate min-value
xi appears exactly α times within the window. Due to feasibility reasons we use approximated min-wise
hashes, and prove that this estimation is an ǫ-approximation of the α-rarity of the current window (up to a
pre-specified additive precision). The semi-smooth algorithm ApproxRarity for α-rarity is defined in Fig. 2.

ApproxRarity(ǫ, δ)

1. Randomly choose k ǫ
2
-min-hash functions h1, h2, . . ., hk.

2. Maintain an (ǫ, δ
2
)-estimation of the number of distinct elements by building a smooth histogram.

3. For every bucket instance Aj of the smooth-histogram and for each one of the hash functions hi, i ∈ [k]
(a) maintain the value of the min-hash function hi over the bucket, hi(Aj)
(b) maintain a list Li(Aj) of the most recent α+ 1 occurrences of hi(Aj) in Aj

(c) whenever the value hi(Aj) changes, re-initialize the list Li(Aj), and continue maintaining the occurrences
of the new value hi(Aj).

4. Output ρ̂α, the ratio of the min-hash functions hi, which has exactly α active elements in Li(A1), i.e. the
ratio

ρ̂α = |{i s.t. Li(A1) consists exactly α active elements}|/k .

Fig. 2. Semi-smooth algorithm for α-rarity

The ApproxRarity algorithm provides an (ǫ, δ)-approximation for the α-rarity problem, up to an ad-
ditive error of ǫ. As proven by Datar et al. [20], the ratio of min-hash functions that have exactly α active
elements in the window is an estimation of ρα. This is true even when using the min-value of the inclusive
bucket A1 rather than the min-value of the current windows W .

Theorem 4.5. The semi-smooth algorithm (Fig. 2) is an (ǫ, δ)-approximation for the α-rarity problem, up
to an additive precision.

Proof. For the sake of simplicity we treat the multisets A1, W , etc., as sets. Let Rα be the set of elements
which are α-rare in the window W . Following Lemma 4.3, with Rα ⊆ A1,

Pr[hi(A1) = hi(Rα)] =
|Rα ∩ A1|
|Rα ∪ A1|

± ǫ

2
=

|Rα|
|A1|

± ǫ

2
.

The algorithm outputs an approximation of Pr
[

Li(A1) consists of exactly α active elements
]

, which
equals to Pr[hi(A1) = hi(Rα)], since hi(A1) = hi(Rα) if and only if Li(A1) consists of α active elements.
Let xi be the element which minimizes hi on A1, h(xi) = h(A1). If the number of active elements in Li(A1)
is not α, then xi 6∈ Rα, thus h(A1) 6= h(Rα). For the other direction, if hi(A1) = hi(Rα) then L1(A1) counts
the number of occurrences of xi in the bucket, and since xi ∈ Rα, it appears exactly α times within the
window.

We build a smooth-histogram for DEC by using the algorithm of Kane et al. [33] as an approxima-
tion of DEC for the unbounded model (see Theorem 3 in [9]). The smooth-histogram guarantees8 that
(1− ǫ)|A1| ≤ |W | ≤ |A1|, thus

|Rα|
|A1|

≤ |Rα|
|W | = ρα ,

|Rα|
|A1|

≥ (1− ǫ)
|Rα|
|W | ≥ (1 − ǫ)ρα .

8 Actually, it guarantees even a better bound, specifically, (1− ǫ
2
)|A1| ≤ |W | ≤ |A1|.
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Therefore, estimating the ratio ρα using k hash functions results with a value (1 ± ǫ)ρα ± ǫ
2 up to some

additive error ǫ′ determined by k. Finally, using Chernoff’s inequality we can bound the additive error so
that ǫ′ < ǫ

2 , except for probability δ
2 . In order to achieve the desired precision we require k = Ω( 1

ǫ2 log
1
δ ),

and the estimation satisfies

ρ̂α ∈ (1 ± ǫ)ρα ± ǫ ,

except for probability at most δ. This concludes the correctness of the algorithm. ⊓⊔

Memory Usage. The memory consumption of the ApproxRarity algorithm is as follows. Maintaining
a smooth histogram for DEC is done using the method of Kane et al. [33] as the underlying algorithm
for DEC in the unbounded model, with memory Õ

(

(log u + 1
ǫ2 )

1
ǫ logN log 1

δ + 1
ǫ log

2 N
)

; k seeds for the
ǫ
2 -min-hash functions: O(k log 1

ǫ log u); Saving a list Li and a value hi for each bucket Aj and for i ∈ [k]:

O([log u+ α logN ]kǫ logN).

We note that this improves the expected memory bound of Datar et al. [20] into a worst case bound of
the same magnitude (up to a log logN term). In most of the practical cases log u and logN are very close,
and we can assume that log u = O(logN). In that case, the space complexity is Õ

(

k
ǫα log2 N

)

bits, with

k = Ω( 1
ǫ2 log

1
δ ), and the time complexity is Õ

(

kα
ǫ logN

)

calculations per element, suppressing poly(log 1
ǫ ,

log logN) terms.

4.3 A semi-smooth estimation of streams similarity

In this section we present an algorithm for calculating the similarity of two streams X and Y . As in the
case of the rarity, the similarity property is known not to be smooth, however we are able to design a semi-
smooth algorithm that estimates it. We maintain a smooth-histogram of the distinct elements count in order
to partition each of the streams, and sample each bucket of this partition using a min-hash function. We
compare the ratio of sample agreements in order to estimate the similarity of the two streams.

Definition 4.6. The (Jaccard) similarity of two streams, X and Y is given by S(X,Y ) = |X∩Y |
|X∪Y | .

Recall that for two streams X and Y , a reasonable estimation of S(X,Y ) is given by the number of min-hash
values they agree on [20]. In other words, let h1, h2, . . . , hk be a family of ǫ-min hash functions and let

Ŝ(X,Y ) = |{i ∈ [k] s.t. hi(X) = hi(Y )}| /k ,

then Ŝ(X,Y ) ∈ (1 ± ǫ)S(X,Y ) + ǫ(1 + p), with success probability at least 1 − δ, where p and δ are
determined by k. Based on this fact, Datar et al. [20] showed an algorithm for estimating similarity in the
sliding window model, that uses expected memory of O(k(log 1

ǫ + logN)) words with k = Ω( 1
ǫ3p log

1
δ ).

Using smooth-histograms, our algorithm reduces the expected memory bound into a worst-case bound. The
semi-smooth algorithm ApproxSimilarity is rather straightforward and is given in Fig. 3.

Theorem 4.7. The semi-smooth algorithm for estimating similarity (Fig. 3), is an (ǫ, δ)-approximation for
the similarity problem, up to an additive precision.

Proof. Following Lemma 4.3,

Pr[hi(AX) = hi(AY )] =
|AX ∩ AY |
|AX ∪ AY |

± ǫ′.

For convenience, once again we treat buckets AX , AY ,WX ,WY as sets. Notice that we can write AX =
WX ∪ (AX \ WX) and that 0 ≤ |AX \WX | ≤ ǫ′

1−ǫ′ |WX |, which follows from the guarantee of the smooth-
histogram that (1 − ǫ′)|AX | ≤ |WX | ≤ |AX | (and same for AY and WY ). Using elementary set operations,

10



ApproxSimilarity(ǫ, δ)

1. Randomly choose k ǫ′-min-hash functions, h1, . . . , hk. The constant ǫ′ will be specified later, as a function
of the desired precision ǫ.

2. For each stream (X and Y ) maintain an (ǫ′, δ
2
)-estimation of the number of distinct elements by building a

smooth histogram.
3. For each stream and for each bucket instance A1, A2, . . . , separately calculate the values of each of the

min-hash functions hi, i = 1 . . . k.
4. Let AX (AY ) be the first smooth-histogram bucket that includes the current window WX (WY ) of the stream

X (Y ). Output the ratio of hash-functions hi which agree on the minimal value, i.e.,

σ̂(WX ,WY ) = |{i ∈ [k] s.t. hi(AX) = hi(AY )}| /k .

Fig. 3. A semi-smooth algorithm for estimating similarity

we can estimate |WX ∪WY | using |AX ∪AY |,

|WX ∪WY | ≤ |AX ∪ AY | ≤ |WX ∪WY |+
ǫ′

1− ǫ′
|WX |+ ǫ′

1− ǫ′
|WY |

≤ |WX ∪WY |+ 2
ǫ′

1− ǫ′
|WX ∪WY |

=
1 + ǫ′

1− ǫ′
|WX ∪WY | .

In addition, any two sets S,Q always satisfy |S∩Q|
|S∪Q| =

|S|+|Q|
|S∪Q| − 1, thus the similarity estimation satisfies

|AX ∩ AY |
|AX ∪ AY |

=
|AX |+ |AY |
|AX ∪ AY |

− 1 ≤
1

1−ǫ′ |WX |+ 1
1−ǫ′ |WY |

|WX ∪WY |
− 1 =

1

1− ǫ′
|WX ∩WY |
|WX ∪WY |

+
ǫ′

1− ǫ′
, and

|AX ∩ AY |
|AX ∪ AY |

≥ |WX ∩WY |
1+ǫ′

1−ǫ′ |WX ∪WY |
=

1− ǫ′

1 + ǫ′
|WX ∩WY |
|WX ∪WY |

,

Finally, setting ǫ′ ≤ ǫ/2 gives an estimation σ̂(WX ,WY ) ∈ (1 ± ǫ)S(WX ,WY ) ± ǫ, up to an additional
additive error, which can be arbitrarily decreased using Chernoff’s bound, by increasing k. Specifically, this
additional error is bounded by O(ǫ) when k = Ω( 1

ǫ2 log
1
δ ), with success probability at least 1−O(δ). ⊓⊔

Memory Usage. Let us summarize the memory consumption of the ApproxSimilarity algorithm. Main-
taining a smooth histogram for DEC: Õ

(

(log u + 1
ǫ2 )

1
ǫ logN log 1

δ + 1
ǫ log

2 N
)

; k seeds for ǫ/2-min-hash

functions: O(k log 1
ǫ log u); Keeping the hash value for each hi: O

(

k 1
ǫ logN log u

)

.
Our algorithm improves the currently known expected bound [20] into a worst case bound of the same

magnitude (up to a log logN term). Taking k = Ω( 1
ǫ2 log

1
δ ) and assuming log u = O(logN), we achieve a

memory bound of Õ
(

k 1
ǫ log

2 N
)

, with Õ(k 1
ǫ logN) calculations per element, suppressing poly(log 1

ǫ , log logN)
elements.

5 Conclusions

We have shown the first polylogarithmic algorithm for identifying L2 heavy-hitters up to 1 ± ǫ precision,
over sliding windows. Our result supplies another insight about the relations between the unbounded and
sliding window models, for the central question of heavy-hitters. As the Lp-heavy-hitters problem is more
difficult for larger p, and for p > 2 there cannot exist a polylogarithmic solution, our algorithm provides a
small-memory solution for the “strongest” Lp norm.
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Although our main concern was the L2 norm, the algorithm can easily be extended for any Lp with
0 < p ≤ 2. Moreover, a polylogarithmic approximation of the top-k problem in sliding window is immediate
using our methods.

The tools shown in this paper can be applied to many other properties, if there exists a smooth function
which is correlated to the target function. We have shown how to employ the same techniques in order to
obtain an efficient sliding window algorithm for the similarity and α-rarity problems, with essentially the
same memory consumption as the current state of the art, however, our bound applies for the worst case
rather than holds only in expectation. We believe that our method can be used to improve the memory
efficiency of many other sliding-window algorithms for non-smooth properties.
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Appendix

A The CountSketchb Algorithm

In this section we describe the CountSketchb algorithm and prove several of its properties. Let us sketch
the details of the CountSketch algorithm as defined in [13]. CountSketch is defined by three parameters
(t, b, k) such that the algorithm takes space O(tb + k), and if t = O(log n

δ ) and b ≥ max(8k, 256 L2

ǫ2φ2

k

) then

the algorithm outputs any element with frequency at least (1 + ǫ)φk, except with probability δ. φk is the
frequency of the kth-heavy element, and L2 is the L2-frequency norm of the entire (n-element) stream.
The algorithm works by computing, for each element i, an approximation n̂i of its frequency. The scheme

guarantees that with high probability, for every element i, |n̂i − ni| < 8L2(S)√
b

(see Lemma 4 in [13]).

For 0 < ǫ′, γ, δ ≤ 1 define (γ, ǫ′, δ)-CountSketchb as the algorithm CountSketch, setting k = 1
γ2 + 1

and letting b = 256
γ2ǫ′2 (the parameter t remains as in the original scheme). The choice of k follows from the

following known fact.

Lemma A.1. There are at most 1
γ2 elements with frequency higher than γL2.

Proof. Assume that there arem elements with frequency higher than γL2. It follows that L2 = (
∑u

j=1 n
2
j)

1/2 ≥√
m · γL2. Clearly, m ≤ 1

γ2 . ⊓⊔

Setting k = 1
γ2 + 1 ensures that the output list is large enough to contain all the elements with frequency

γL2 or more.
However, CountSketchb does not guarantee anymore to output all the elements with frequency higher

than (1+ ǫ′)φk and no element of frequency less than (1− ǫ′)φk (Lemma 5 of [13]), since the value of b might
not satisfy the conditions of that lemma.

We can still follow the analysis of [13] and claim that the frequency approximation of each element is
still bounded (Lemma 4 of [13]),

Lemma A.2. With probability at least 1− δ, for all elements i ∈ [u] in the stream S,

|n̂i − ni| < 8
L2(S)√

b
< 1

2γǫ
′L2(S)

where n̂i is the approximated frequency of i calculated by CountSketchb, and ni is the real frequency of
the element i.

The proof is immediate from [13]. The above lemma allows us to bound the frequencies of the outputted
elements

Proposition A.3. The (γ, ǫ′, δ)−CountSketchb algorithm outputs all the elements whose frequency is at
least (1 + ǫ′)γL2(S).

Proof. An element is not in the output list only if there are (at least) k elements with higher approximated
frequency. Due to Lemma A.2, any element i with frequency ni > (1+ ǫ′)γL2(S) has an estimated frequency
of at least n̂i ≥ (1+ 1

2ǫ
′)γL2(S), so it can be replaced only by an element with frequency higher than γL2(S),

however, there are at most k elements with ni ≥ γL2(S), specifically, at most k − 1 elements other than i
itself, which completes the proof. ⊓⊔

The memory consumption of CountSketchb is bounded by O((k + b) log |S|
δ )) [13], which in our case

gives O( 1
γ2ǫ′2 log

|S|
δ ).
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