arXiv:1304.2454v2 [cs.NI] 26 Oct 2013

Secure End-to-End Communication with Optimal Throughput In
Unreliable Networks

Paul Bunn* Rafail Ostrovsky'

Abstract. We demonstrate the feasibility of end-to-end communication in highly unreliable networks.
Modeling a network as a graph with vertices representing nodes and edges representing the links between
them, we consider two forms of unreliability: unpredictable edge-failures, and deliberate deviation from
protocol specifications by corrupt and maliciously controlled nodes.

We present a routing protocol for end-to-end communication that is simultaneously resilient to both forms
of unreliability. In particular, we prove that our protocol is secure against arbitrary actions of the corrupt
nodes controlled by a polynomial-time adversary, achieves correctness (Receiver gets all of the messages
from Sender, in-order and without modification), and enjoys provably optimal throughput performance, as
measured using competitive analysis. Competitive analysis is utilized to provide protocol guarantees again
malicious behavior without placing limits on the number of the corrupted nodes in the network.

Furthermore, our protocol does not incur any asymptotic memory overhead as compared to other pro-
tocols that are unable to handle malicious interference of corrupt nodes. In particular, our protocol requires
O(n?) memory per processor, where n is the size of the network. This represents an O(n?) improvement
over all existing protocols that have been designed for this network model.

Keywords: Network Routing, Asynchronous Protocols, End-to-End Communication, Competitive Analysis,
Multi-Party Computation in Presence of Dishonest Majority, Fault Localization, Communication Complexity

1 Introduction

With the immense range of applications and the multitude of networks encountered in practice,
there has been an enormous effort to study routing in various settings. In the present paper, we
investigate the feasibility of routing in a network in which neither the nodes nor the links are reliable.

We adopt the same definition of unreliability (with respect to both the links and the nodes) as
was introduced in [I7]. Namely, for the network links, we do not assume any form of stability: the
topology of the network is dynamic (links may spontaneously fail or come back to life at any time),
transmission time across each link may vary from link to link as well as across the same link from
one transmission to the next (i.e. asynchronous edges), and there is no guarantee that there are
enough links available (even over time) for communication to even be possible.

Meanwhile, unreliability of network nodes means that they may actively and maliciously deviate
from protocol specifications, attempting to disrupt communication as much as possible. In partic-
ular, a malicious adversary may corrupt an arbitrary subset of nodes, taking complete control over
them and coordinate attacks to interfere with communication between the uncorrupt nodes.

Admittedly, few guarantees can be achieved by any protocol that is forced to operate in networks
with so few assumptions. Indeed, the absence of any assumption on connectivity means that suc-
cessful routing may be impossible, for instance if all of the links remain forever inactive. Therefore,

*Google Inc. paulbunn@google.com
fUCLA Departments of Computer Science and Mathematics. rafail@cs.ucla.edu

http://arxiv.org/abs/1304.2454v2

instead of measuring the efficacy of a given protocol in terms of its absolute performance, we will
employ competitive analysis to evaluate protocols: the throughput-performance of a given protocol
with respect to the network conditions encountered will be compared to the performance of an
ideal protocol (one that has perfect information regarding the schedule of active/inactive links and
corrupt nodes, and makes perfect routing decisions based on this information).

The combination of this strong notion of unreliability together with the use of competitive anal-
ysis provides a meaningful mechanism to evaluate routing protocols in networks that demonstrate
unreliability in unknown ways. For example, we are able to compare protocols that route in networks
that are susceptible to all of the above forms of unreliability, but e.g. remain stable most of the time
with respect to the edges (or alternatively e.g. most of the nodes remain uncorrupted). Therefore,
by allowing networks to exhibit all forms of unreliability, we compromise absolute performance for
robustness. That is, no protocol will route packets quickly through a network that displays all forms
of unreliability, but protocols with high competitive-ratio are guaranteed to do as well as possible,
regardless of the actual network conditions.

Our approach for developing a routing protocol in unreliable networks will be from a theoretical
perspective. In Section Pl we provide a formal model for both forms of unreliability and offer
definitions of throughput and security/correctness in this model. Section [B] describes a protocol that
is provably optimal with respect to throughput-efficiency (as measured via competitive-analysis), is
provably secure, and requires reasonable memory of internal nodes. We emphasize that the focus of
this paper is on the theoretical feasibility of routing in highly unreliable networks, and in particular
no attempt has been made to minimize constants or prototype our protocol in live experiments.

1.1 Previous Work

Development and analysis of routing protocols relies heavily on the assumptions made by the
network model. In this section, we explore various combinations of assumptions that have been
made in recent work, highlighting positive and negative results with respect to each network model,
emphasizing clearly which assumptions are employed in each case. Since our work focuses on
theoretical results, for space considerations we do not discuss below the vast amount of research
and analysis of routing issues for specific network systems encountered in practice, e.g. the Internet.
For example, there are a number of internet routing protocols used in practice that we will not
discuss here: TCP, BGP, OSPF, etc. In the presence of adversarial conditions, these protocols often
try to achieve “best effort” results instead of guaranteeing eventual delivery of all messages.

The amount of research regarding network routing and analysis of routing protocols is extensive,
and as such we include only a sketch of the most related work, indicating how their models differ
from ours and providing references that offer more detailed descriptions.

END-TO-END COMMUNICATION: While there is a multitude of problems that involve end-to-end
communication (e.g. End-to-End Congestion Control, Path-Measurement, and Admission Control),
we discuss here work that consider networks whose only task is to facilitate communication between
the Sender and Receiver. Some of these include a line of work developing the Slide protocol (the
starting point of our protocol): Afek and Gafni and Rosen [2], Awerbuch et al. [II], Afek et al.
[1], and Kushilevitz et al. [2I]. The Slide protocol (and its variants) have been studied in a variety
of network settings, including multi-commodity flow (Awerbuch and Leighton [10]), networks con-
trolled by an online bursty adversary (Aiello et al. [3]), synchronous networks that allow corruption
of nodes (Amir et al. [6]). Bunn and Ostrovsky consider in [I7] an identical network model to
the one considered in the present paper, and prove a matching upper and lower bound on optimal

throughput performance for this model. However, the mechanisms they employ to handle malicious
activity is extremely expensive (in terms of memory); indeed an open problem posed in [I7] was
whether a protocol can achieve security against malicious nodes at no extra (asymptotic) cost with
respect to memory. We answer this question affirmatively in this paper, presenting a protocol that
reduces memory requirements by a factor of n? (from ©(n*) to ©(n?), for networks with n nodes).

FAULT DETECTION AND LOCALIZATION PROTOCOLS: There have been a number of papers that
explore the possibility of corrupt nodes that deliberately disobey protocol specifications in order
to disrupt communication. In particular, there is a recent line of work that considers a network
consisting of a single path from the sender to the receiver, culminating in the recent work of Barak
et al. [12] (for further background on fault localization see references therein). In this model, the
adversary can corrupt any node (except the sender and receiver) in an adaptive and malicious man-
ner. Since corrupting any node on the path will sever the honest connection between sender and
receiver, the goal of a protocol in this model is not to guarantee that all messages sent are received.
Instead, the goal is to detect faults when they occur and to localize the fault to a single edge.
Goldberg et al. [19] show that a protocol’s ability to detect faults relies on the assumption that
One-Way Functions (OWF) exist, and Barak et al. [I2] show that the (constant factor) overhead (in
terms of communication cost) incurred for utilizing cryptographic tools (such as MACs or Signature
Schemes) is mandatory for any fault-localization protocol. Awerbuch et al. [9] also explore routing
in the Byzantine setting, although they do not present a formal treatment of security, and indeed a
counter-example that challenges their protocol’s security is discussed in the appendix of [12].
Fault Detection and Localization protocols focus on very restrictive network models (typically
synchronous networks with fixed topology and some connectivity assumptions), and throughput-
performance is usually not considered when analyzing fault detection/localization protocols.

COMPETITIVE ANALYSIS: Competitive Analysis was first introduced by Sleator and Tarjan [25] as a
mechanism for measuring the worst-case performance of a protocol, in terms of how badly the given
protocol may be out-performed by an off-line protocol that has access to perfect information. Recall
that a given protocol has competitive ratio 1/ (or is A\-competitive) if an ideal off-line protocol has
advantage over the given protocol by at most a factor of A.

One place competitive analysis has been used to evaluate performance is the setting of distributed
algorithms in asynchronous shared memory computation, including the work of Ajtai et al. [5]. This
line of work has a different flavor than the problem considered in the present paper due to the na-
ture of the algorithm being analyzed (computation algorithm versus network routing protocol). In
particular, network topology is not a consideration in this line of work (and malicious deviation of
processors is not considered).

Competitive analysis is a useful tool for evaluating protocols in unreliable networks (e.g. asyn-
chronous networks and/or networks with no connectivity guarantees), as it provides best-possible
standards (since absolute performance guarantees may be impossible due to the lack of network
assumptions). For a thorough description of competitive analysis, see [14].

Max-FLow AND MULTI-COMMODITY FLOW: The Max-Flow and Multi-Commodity Flow models
assume synchronous networks with connectivity guarantees and incorruptible nodes (max-flow net-
works also typically have fixed topology and are global-control: routing protocols assume nodes can
make decisions based on a global-view of the network; as opposed to only knowing what is happening
with adjacent links/nodes). There has been a tremendous amount of work in these areas, see e.g.
Leighton et al. [22] for a discussion of the two models and a list of results, as well as Awerbuch and
Leighton [10] who show optimal throughput-competitive ratio for the network model in question.

ADMISSION CONTROL AND ROUTE SELECTION: There are numerous models that are concerned
with questions of admission control and route selection: The Asynchronous Transfer Model (see
e.g. Awerbuch et al. [8]), Queuing Theory (see e.g. Borodin and Kleinberg [15] and Andrews et al.
[7]), Adversarial Queuing Theory (see e.g. Broder et al. [I6] and Aiello et al. [4]). For an extensive
discussion about these research areas, see [24] and references therein.

The admission control/route selection model assumes synchronous communication and incor-
ruptible nodes and makes connectivity /liveness guarantees. Among the other options (fixed or
dynamic topology, global or local control), each combination has been considered by various au-
thors, see the above reference for further details and results within each specific model.

1.2 Our Results

We consider the feasibility of end-to-end routing in highly unreliable networks, where unreliabil-
ity is encountered with respect to both the network’s edges and its nodes. In particular, we consider
asynchronous networks with dynamic topology and no connectivity guarantees; comprised of cor-
ruptible nodes that may deviate from protocol specifications in a deliberately malicious manner.

We present a protocol that routes effectively in this network setting, utilizing standard cryp-
tographic tools to guarantee correctness with low memory burden per node. We use competitive-
analysis to evaluate the throughput-efficiency of our protocol, and demonstrate that our protocol
achieves optimal throughput. Our protocol therefore represents a constructive proof of the following
theorem (see Section 2] for definitions of our network model and the above terms):

Theorem 1. Assuming Public-Key Infrastructure and the existence of a group-homomorphic en-
cryption scheme, there exists a routing protocol that achieves correctness and optimal competitive-
ratio 1/n in a distributed asynchronous network with bounded memory and dynamic topology (and
no connectivity assumptions), even if an arbitrary subset of malicious nodes deliberately disobey the
protocol specifications in order to disrupt communication as much as possible.

As mentioned in Section [T} our protocol solves an open problem from [17], which was to
provide provable security (while maintaining optimal throughput) at no additional cost (in terms
of required processor memory) over protocols that do not provide security against corrupt nodes.
Our protocol utilizes novel techniques to achieve exactly this: the memory burden is reduced fro
O(n*) to ©(n?), which matches the memory requirements of a corresponding (insecure) protocol of
[1]. We provide here a brief overview of the new insights that enabled us to achieve this reduction.

We begin by describing why the ©(n?) bits of memory per node was required in [I7] to ensure
security. Consider the packet-replacement adversarial strategy, where corrupt nodes replace new
packets they receive with duplicate copies of old packets that they have already transferred, thereby
effectively deleting all new packets the Sender inserts. The protocol of [I7] protected against this
strategy by having each node maintain a signed transaction with each of its neighbors, recording
the number of times every packet was passed between them. While this approach ensures that
a node performing packet-replacement will be caught, it is extremely costly in terms of required
memory: Fach node has to remember, for every packet p it encountered, the number of times
it sent/received p along each of its adjacent edges. For networks with n nodes, since there were
O(n3) relevant packets? and a node may have ©(n) neighbors, the memory burden of storing this

!These bounds ignore the cost of security parameter k and bandwidth parameter P, which are treated as constants.
Including them explicitly would yield memory costs of @(kPn*) for the protocol of [I7] versus ©(kPn?) here.

2The n® appearing here is not a bound on the size of the input stream of packets (which can be any arbitrarily
large polynomial in n); it is an upper-bound on the number of packets being stored by the internal nodes at any time.

transaction information was ©(n*). Not only did this large memory complexity mean the protocol
of [I7] was unlikely to be feasibly implemented in practice, it was also the case that the cost of n*
for storing the transaction history (for the purpose of identifying corrupt behavior) far out-weighed
the per-node memory costs of the data packets being transferred (n?), so the memory resources
were being consumed by network monitoring as opposed to routing.

The present paper overcomes both of these issues, reducing the overall memory burden to ©(n?),
as well as allocating the majority of resources to routing instead of monitoring. In order to achieve
this, we had to abandon the idea of tracking each individual packet, and develop a novel technique
to address packet-replacement. We began by generalizing the per-packet tracking of [17] as follows:
We partition the D = ©(n3) packets to be sent into K sets {S1,...,Sk} (we will optimize for the
value of K (k), which depends on the security-parameter k, in Section B]), and then we have nodes
record transaction information with their neighbors on a per-set basis rather than a per-packet basis.
Namely, nodes maintain K counters of how many packets in each set they have transferred with
each neighbor, so that if a packet p € S is transferred between two nodes, the nodes increment a
counter for set S. In this way, if a malicious node replaces a packet p € S with a packet p’ € &,
the per-set counters will help in detecting this if S # §’.

With this generalization, we see that as K varies in [1, D], there is a trade-off in the memory
burden of storing the transactions versus the probability of protecting against packet-replacement:
the smaller K is, the lower the per-node memory burden but the higher the probability a node per-
forming packet-replacement can get away with it. The primary technical achievement of this paper
was in developing a mechanism that guarantees that any packet-replacement strategy performed by
malicious node(s) will succeed only with negligible probability, even for small values of K.

We achieve this by first using error-correction to ensure that our protocol is robust enough to
handle minor amounts of packet-replacement and still transmit messages, so that in order to impede
communication via the packet-replacement strategy, a large number of packets must be replaced.
Next, we observe that if a malicious node replaces a packet p € S with p’ € &', then if the choices
of p and p’ are uniformly random (among the D total packets), then the probability that S = &’
is roughly 1/K. By using cryptography, we are able to obfuscate the partitioning of packets into
sets in a manner that is invisible to all nodes except the Sender, and we demonstrate how this
reduces any adversarial strategy of packet-replacement to the uniform case of replacing one packet
with a randomly chosen second packet. With this reduction in hand, it becomes a straightforward
probabilistic analysis for choosing an appropriate value for the parameter K so as to minimize
memory burden and still guarantee (with negligible probability of error) that packet-replacement
will be detected. Details of the protocol and this analysis can be found in Section Bl

2 The Model

In this section, we describe formally the model in which we will be analyzing routing protocols.
The network is viewed as a graph G with n vertices (or nodes), two of which are designated as the
Sender and Receiver. The Sender has a stream of messages {m1,ma, ... } that it wishes to transmit
through the network to the Receiver.

For ease of discussion, we assume that all edges in the network have a fixed bandwidth /capacity,
and that this quantity is the same for all edges. We emphasize that this assumption does not restrict
the validity of our claims in a more general model allowing varying bandwidths, but is only made
for ease of exposition. We will use the following terminology throughout this paper (see protocol
description in Section [B.] for more explanation of these terms an how they are used):

Definition 2. Let P denote the bandwidth (e.g. in bits) of each edge. A packet (of size < P) will
refer to any bundle of information sent across an edge. A message refers to one of the Sender’s input
m;, and we assume without loss of generality that each message is comprised of ©(kPn?) bits (k
is the security parameter; see below). A (message) codeword refers to an encoded message, which
will be partitioned into codeword parcels, whose size is small enough such that one codeword parcel
(plus some control information) fits in the bandwidth of an edge P. More generally, we will refer
to the various components of a packet as parcels. A (message) transmission consists of the rounds
required to send a single codeword from Sender to Receiver.

We model asynchronicity via an edge-scheduling adversary A that controls edges as follows. A
round consists of a single edge E(u,v) (chosen by the adversary) being activated:

1. If A has at least one packet from u to be sent to v, then A delivers exactly one of them (of
A’s choosing) to v; the same is done for one packet from v to u

2. After seeing the delivered packet, u chooses the next packet to send v and gives it to A (v
does the same for u); A will store these until the next round that E(u,v) is activated

If u does not have a packet it wishes to send v in Step (2), then u can choose to send nothing.
Alternatively, u may send multiple packets to A in Step 2, but only one of these packets (of A’s
choosing) gets delivered in Step 2 of the next round E(u,v) is activated. The Adversary does not
send anything to v in Step (1) if it is not storing a packet from u to v during round E(u,v).

Definition 3. A packet will be said to be in an outstanding request if u has sent the packet to A
as in Step (2) of some round, but that packet has not yet been delivered by .A.

Aside from obeying the above specified rules, we place no additional restriction on the edge-
scheduling adversary. In other words, it may activate whatever edges it likes (this models the fact
our network makes no connectivity assumptions), wait indefinitely long between activating the same
edge twice (modeling both the dynamic and asynchronous features of our network), and do anything
else it likes (so long as it respects steps (1) and (2) above each time it activates an edge) in attempt
to hinder the performance of a routing protocol.

In addition to the edge-scheduling adversary, our network model also allows for a polynomially
bounded (in number of nodes n and a security parameter k) node-controlling adversary to corrupt
the nodes of the network. The node-controlling adversary is malicious, meaning that it can take
complete control over the nodes it corrupts and force them to deviate from any protocol in whatever
manner it likes. We further assume that the node-controlling adversary is adaptive, which means it
can corrupt nodes at any stage of the protocol, deciding which nodes to corrupt based on what it
has observed thus far. We do not impose any “access-structure” limitations on the node-controlling
adversary: it may corrupt any nodes it likes (although if the Sender and/or Receiver is corrupt,
secure routing between them is impossible). We say a routing protocol is correct (or secure) if the
messages reach the Receiver in-order and unaltered.

The separation of the (edge-scheduling and node-controlling) adversaries into two distinct enti-
ties is solely for conceptual purposes to emphasize the nature of unreliability in the edges versus the
nodes. For ease of discussion, we will often refer to a single adversary that represents the combined
efforts of the edge-scheduling and node-controlling adversaries.

Finally, our network model is on-line and distributed, in that we do not assume that the nodes
have access to any information (including future knowledge of the adversary’s schedule of activated

edges) aside from the packets they receive during a round they are a part of. Also, we insist that
nodes have bounded memoryﬁ which is at least Q(n?).

Our mechanism for evaluating the throughput performance of protocols in this network model
will be as follows: Let f;;‘ : N — N be a function that measures, for a given protocol P and adversary
A, the number of messages that the Receiver has received as a function of the number of rounds
that have passed. Note that in this paper, we will consider only deterministic protocols, so f7“§1 is
well-defined. The function f734 formalizes our notion of throughput.

We utilize competitive analysis to gauge the throughput-performance of a given protocol against
all possible competing protocols:

Definition 4. We say that a protocol P has competitive-ratio 1/ (respectively is A-competitive) if
there exists a constant ¢ and function g(n, C) (where C' is the memory bound per node) such that
for all possible adversaries A and for all x € N, the following holds for all protocols P’

forx) < (e) - fpx) + 9(n.0) (1)
Note that while g may depend on the network size n and the bounds placed on processor memory
C, both g and c are independent of the round x and the choice of adversary A. Also, equation () is
only required to hold for protocols P’ that never utilize a corrupt node once it has been corrupted.
We assume a Public-Key Infrastructure (PKI) that allows digital signatures. In particular, before
the protocol begins we choose a security parameter sufficiently large and run a key generation
algorithm for a digital signature scheme, producing n = |G| (secret key, verification key) pairs
(sky,vky). As output to the key generation, each processor u € G is given its own private signing
key sk, and a list of all n signature verification keys vk, for all nodes v € GG. In particular, this
allows the Sender and Receiver to sign messages to each other that cannot be forged (except with
negligible probability in the security parameter) by any other node in the system.
We also assume the existence of a group-homomorphic encryption scheme £ on a group G

E:G—=H, with E(giog g2) = E(91) on E(g2)s

where og (respectively o) represents the group operation on G (respectively H). To simplify the
exposition, in what follows we will assume G = Zy for sufficiently large N. We note that such
a scheme exists under most of the commonly used cryptographic assumptions, including factoring
[23], discrete log [18], quadratic residuosity [20], and subgroup decision problem [13]. We extend our
encryption scheme to Z% in the natural way:

ELNX - XLy — Hx---xH via E(g,-..,9x5):=(E(q1),---,E(9K))

Finally, we assume that internal nodes have capacity C' € Q(Pn?) (and in particular C' > 24Pn?),
and that P = Q(k? + logn) (where P is the capacity of each edge and k is the security parameter
for the encryption scheme).

3 Routing Protocol

In this section we present a routing protocol that enjoys competitive-ratio 1/n with respect to
throughput (which is optimal, see [I7]) in networks modelled as in Section

3For simplicity, we assume all nodes have the same memory bound (which may be a function of the number of
nodes n and security parameter k), although our argument can be readily extended to handle the more general case.

) is taken as the infimum of all values that satisfy (D), and is typically a function of network size n.

%G| should be larger than the total number of codeword parcel transfers (during any transmission) between two
nodes, when at least one of the nodes is honest. |G| € Q(kn?) is sufficient (see protocol description in Section B1).

3.1 Description of the Routing Protocol

The starting point of our protocol will be the Slide Protocol, introduced by Afek et at. [2],
and further developed in a series of works: [I1], [I], [21], [6], and [I7]. The original Slide protocol
assumes that nodes have buffers (viewed as stacks) able to store C' = ©(n?) packets at any time,
and simply put, it calls for a node u to send a packet to node v across an activated edge E(u,v) if
v is storing fewer packets in its buffer than u.

The Slide protocol is robust in its ability to handle edge-failures (modelled here via the edge-
scheduling adversary). This robustness is achieved via the use of error-correction to account for
packets that get stuck in the buffer of a node that became isolated from the rest of the network due
to edge-failures. In particular, each message is expanded into a codeword, which is then partitioned
into D := knC//\ parcels {p;}, where X\ is the tolerable error rate and k is the security parameter.
Recall from Definition B that messages have size |m| = O(kPn?), and in particular they are small
enough so that a codeword parcel (plus some control information of ©(k? 4 logn) bits, see below)
can be transmitted in a single round; i.e. |p;| = |m|/D < P—©O(k?+logn). The Receiver can decode
the codeword and obtain the original message block provided he receives (1—\)D codeword parcels.

Our protocol modifies the original Slide protocol to provide security against a node-controlling
adversary at no additional (asymptotic) cost: we achieve optimal throughput (competitive-ratio
1/n), and the memory per internal node is within a factor of two of the memory requirement of the
original Slide protocol. We obtain security against malicious nodes by including extra control infor-
mation (described below) with each packet transfer, and by having nodes sign all communications.
As mentioned in Section [[L2] our protocol closely resembles that of [17], except we have changed the
nature of the control information so that our protocol is able to provide security without incurring
any extra (asymptotic) memory costs.

The rules governing codeword parcel transfers are the same as in Slide (a node should send a
parcel to its neighbor if it is currently storing more parcels), except for the caveat that nodes should
not transfer any codeword parcels before they have received all of the Sender’s alert parcels for
the current codeword transmission (explained below); and nodes should never transfer codeword
parcels with blacklisted or eliminated nodes (see below). Also, all communication is signed to
ensure authenticity: the Sender signs all packets upon inserting them into the network (so a node
can verify the authenticity of each codeword parcel), and control information between two nodes
is signed by both nodes. In the following subsections, we present our protocol by describing the
control information, routing rules, blacklist, and overall execution of the protocol.

Control Information. When a node is selecting a codeword parcel to send to an adjacent node,
he will have room to bundle four parcels of control information plus the codeword parcel in a single
packetﬁ In particular, every packet transferred will include one parcel of each of the four categories
of control information (how the node selects the specific parcel within each category will be explained
in the Routing Rules below):

1. Sender/Receiver Alerts. The Sender’s alert consists of up to 2n parcels, all time-stamped with
the index of the present codeword transmission. The first of these indicates the status (S1 or
F2-F4, see below) of the previous transmission; and the next n parcels give the time-stamp
of the most recent (up to) n transmissions that failed (F2-F4). The final n — 1 parcels are for
each of the nodes (excluding the Sender), indicating if that node is blacklisted or eliminated

5The size of the codeword parcels are deliberately set to ensure a packet has room to fit these five parcels, since
codeword parcels were designed to have size P — ©(k* + logn).

(see below), and if so the transmission this happened. The Receiver’s alert consists of a single
parcel indicating either that the Receiver successfully decoded the current codeword, or that
it has received inconsistent potential information (see below).

2. Potential Information. Each node v maintains (in a single parcel) up-to-date information about
its potential drop ®,, (see Definition [B]) for the current codeword transmission.

3. Status Information. For each of its neighbors, a node will maintain (in a single parcel) up-to-
date information regarding all codeword parcel transfers with that neighbor for the current
codeword transmission. More specifically, this information contains the net potential drop ®,,,
and obfuscated count ¥, ,, across each adjacent edge E(u,v) (see Definitions [l and [below).

4. Testimonies. At the end of a codeword transmission T, a node will have one final (current as
of the end of the transmission) status parcel (®y, Py v, Pou, Yo, Yo,u) for each neighbor. If
the node later (in a future transmission) learns that T failed (see below), then these n — 1
status parcels become the node’s testimony for transmission T. Since nodes do not participate
in routing codeword parcels until the Sender has its testimony (see blacklist below), each
node will only ever have at most one transmission T for which it needs to remember its own
testimony; thus, at any time, there are at most (n — 1)? testimony parcels in the network

Each of these types of control information serve a separate function. The Sender’s alert parcels mark
the start of a new codeword transmission, and relay information about which previous transmissions
failed (so that nodes know which testimony parcels to store and transfer) and which nodes are
blacklisted /eliminated (see below). The Receiver’s alert parcel marks the end of a transmission,
which either indicates a successful transmission (Receiver could decode the codeword) or that the
transmission failed due to inconsistencies in potential differences (see below); ultimately it is the
Sender who will process the Receiver’s alert parcel and determine the next steps.

Potential parcels are ultimately used by the Receiver, who will use them to determine if there are
any inconsistencies, and if so form a Receiver alert indicating a failed transmission (see (@) below).

Unlike all other control information, status parcels are not transferred through the network
(ultimately to Sender or Receiver), but rather are only kept locally and transferred between the
two nodes for which the status parcel is keeping up-to-date records for the current transmission.
Testimony parcels are ultimately used by the Sender to identify a corrupt node.

We now formalize these concepts with a handful of definitions.

Definition 5. The height H,, of an internal node w is the number of codeword parcels u is currently
storing in its buffer (including those in outstanding requests, of which v is maintaining a copy). The
height of the Sender is defined to be the constant C' (the capacity of an internal node’s buffer); and
the Receiver’s height is defined to be zero.

Definition 6. The potential difference ¢, of two nodes u and v is the difference in their heights
(always measured as a positive quantity): ¢, := |H, — H,|. The directional potential drop @,
over an edge E(u,v) will be the sum of the potential differences for the rounds when u transferred

"Since it is the Sender who ultimately collects testimonies to identify malicious behavior, his testimony parcels
need not be stored or transferred to any node other than itself.

v a codeword parcelﬁ

(I)u,v = Z ¢u,v (2)
uU—v
The potential drop over an edge E(u,wv) will be the sum of the directional potential drops across
the edge: ®,., + ®,4. The potential drop at a node u ®,, will be the sum of the potential drops
over all its adjacent edges:

D, = Z(q)u,v + (bv,u) (3)

veG

Recall from Section (2] the existence of a homomorphic encryption scheme € on ZK. At the start
of each codeword transmission, the Sender randomly partitions the D codeword parcels into K := k
sets, making a uniform random choice for each parcel. Define the distribution x,: D — Z% (which
depends on the codeword transmission T) to represent these assignments; i.e. if parcel p has been
assigned to the i*" set, then x(p) is the unit vector in Zﬁ with a ‘1’ in the ¥ coordinate. Note
that only the Sender knows y, and it will remain obfuscated from all internal nodes, as the only
information they will ever see are the encrypted values £(x(p)) (which are computed by the Sender
and bundled in the same packet as the codeword parcel, so that (p,E(x(p))) will travel in the same
packet as it is transferred through the network to the Receiver).

Definition 7. The directed obfuscated count ¥, ,, between two nodes is an (encrypted) K-tuple,
in which the i*" coordinate represents the number of codeword parcels p with X(p) = ¢ that have
been transferred from u to v. Since p and E(x(p)) are always passed together in a single packet, the
current directed obfuscated count can be computed by any internal node along any of its adjacent
edges as:

Uy = Zg(X(p))v (4)

PEPu,v

where B, ,, denotes the multiset of codeword parcels transferred from u to v. The obfuscated count

v, at u is:

pPEU

where the sum is taken over the (current codeword) parcels p that u is storing at the end of the
current transmission. Notice that the homomorphic properties of the encryption scheme &£ allow
the nodes to compute the right-hand-side of () and (&).

Routing Rules. Figure [l gives a succinct description of a node’s instructions for when it is part
of an activated edge.

Recall that Step 2 of an activated edge calls for node u to send a packet to A that it wishes to
deliver to v next time E(u,v) is activated. The following rules explain how u decides which data to
include in the packet (see Send Next Packet in Figure [I):

1. Current Height H,, (see Definition [l)

8Formally, for a packet transferred during Step (1) of an edge activation, the heights used to compute the potential
difference are not the current heights of the nodes, but rather the heights each of the nodes had the previous time
the edge was activated. See Figure[I] in which these heights are denoted as H, and H,q.

10

Routing Rules for node u along FE(u,v)

Notation: (Hoid, Poid, € (X(poia))) denotes prev. ht. and codeword parcel u sent v;

Input (Received via A):

Height H, of v, codeword parcel p and &€ (x(p)),

Control Information: alert parcel, status parcel, potential parcel, testimony parcel

DO:

Verify status parcel and all signatures are valid, if not, Skip to Send Next Packet

Store alert parcel, potential parcel, and testimony parcel

If w or v is blacklisted or eliminated, or u hasn’t rec’d all parcels from Sender’s alert:
Skip to Send Next Packet

If u is the Sender and H, < C 4+ 2n — C/2n:

Insert poia: Ignore p, Delete poid, Update @y,v, Yu,0, and Py
If w is the Receiver and H, > C/2n — 2n:

Receive p: Store p, Update @y u, Yo,u, and P,
If u is not Sender or Receiver and Hyq > Hy — 2n 4+ C/2n:

Send poia: Ignore p, Delete poid, Update @y,v, Yy, and Py,
If w is not Sender or Receiver and Hoq < Hy + 2n — C/2n:

Receive p: Store p (and keep poiq), Update @y 0, ¥y, and @,

Send Next Packet

Figure 1: Succinct Description of Packet Transfer Rules of Our Protocol
2. Codeword Parce]ﬁ (p, E(x(p)): Chosen randomly among those not already in outstanding request

3. Control Information: Send up to one parcel of each type of control information, selected as
follows. Let Ny, Na,..., N, denote the nodes and A = A(u,v) the number of times F(u,v)
has been activated so far['d Then wu includes the following parcels of control information:

Sender /Receiver Alert: Receiver’s alert (if u has it); otherwise next Sender alert parcel
- Status Information: (®y 4, Py u, Yuw, You)

Potential Information: Let ¢ = A (mod n); select parcel @y, (if u has it)

Testimony: Let i = A (mod n); select next testimony parcel of N;’s (if u has it)

Putting It All Together. The above sections have focused on what happens in a single codeword
transmission. We now give an overview of the entire protocol, including how/when the transmission
of one message codeword ends and the next begins, and how the blacklist is used to regulate the
influence of potentially corrupt nodes.

The end of each transmission is marked by one of the following four events:

S1 Sender gets Receiver alert indicating successful decoding of the current codeword
F2 Sender gets Receiver alert indicating inconsistencies in potential differences

F3 Sender inserted all (current) codeword parcels (and S1 did not occur)

F4 Sender is able to identify a corrupt node

In the case of S1, the codeword was delivered successfully, and the Sender will begin the next
codeword transmission. In the case of F4, the Sender will re-start a new transmission for the same
codeword and indicate (in the Sender alert) that the corrupt node has been eliminated from the

°If at any time ®,, > kCD, then u stops transferring codeword parcels altogether (sending a special indicator L
for its height H so that other nodes know not to exchange codeword parcels with «). Since each codeword parcel
transfer corresponds in an increase of at least C'/n-2n = ©(n) to ¥, this ensures honest nodes will transfer at most
O(Kn%) codeword parcels, and also bounds the number of distinct signatures from wu per transmission by O(k*n?)).

ONote that in order to determine which control information parcels to send, u will have to store the following
along each edge: a) how many times A = A(u,v) edge E(u,v) has been activated in the current transmission; b) the
previous alert parcel u sent to v; c) for each node Nj, the previous testimony packet of N;’s that u sent to v.

11

network. All nodes are forbidden transferring codeword packets with eliminated nodes (a node will
always know the list of eliminated nodes via the Sender’s alert before it has any codeword parcels
to transfer; see Figure [I).

Cases F2 and F3 correspond to failed attempts to transfer the current codeword due to corrupt
nodes disobeying protocol rules. When a transmission T fails as in cases F2 and F3, the nodes
(excluding the Sender) that are not already on a blacklist or eliminated will be put on transmission
T’s blacklist; more generally, we will say a node is on the blacklist (or blacklisted) if there is some
transmission T for which the node is on T’s blacklist. Thus after a transmission fails as in F2 or F3,
every node (except for the Sender) is either eliminated or blacklisted. As indicated in the Routing
Rules of Figure [Tl packets sent to/from a blacklisted node will not contain a codeword parcel (just
control information). A node is removed from the blacklist either when the Sender has received its
complete testimony, or when a node is eliminated (whichever happens first). In the former case,
the Sender will add a new parcel to the Sender alert, simply indicating the node has been removed
from the blacklist. In the latter case, the Sender will immediately end the transmission as in F4
(described above). We will say a (non-eliminated) node participated in a transmission if that node
was not on the blacklist for at least one round of the transmission.

When one transmission ends as in S1 or F2-F4 and before the next begins, the Sender constructs
the (up to) 2n parcels of the Sender alert. As indicated in the Routing Rules of Figure [Il nodes
do not begin transferring codeword parcels until they have received the complete Sender alert. If
a node learns that it is on the blacklist for some transmission T (note that by construction, T will
necessarily be the previous transmission that the node participated in), then the node constructs
its testimony for T, which is simply the final values of its status parcels along all its adjacent edges:

Node u’s testimony for a Transmission T = { @y, Py, Yo, Vovs Yo u fvea,

where ®, ., ®y,, ¥y, ¥y, and ¥, , denote the value of these parcels at the end of T. If a node
learns it is not blacklisted, then it can delete its own status parcels from the previous transmission
it participated in. In terms of storing and transferring other nodes’ testimony parcels: nodes only
keep the most recent testimony parcels of the other nodes.

Finally, if the Receiver is able to decode the current codeword, or if the Receiver notices in-
consistencies (see (@) below) from the potential parcels {®,}, then the Receiver constructs a single
alert parcel indicating this fact. Once the Sender gets this parcel, he will end the current message
transmission either as S1 or F2 (as appropriate). The signal that will alert the Receiver of poten-
tial inconsistencies is if the following equation is ever satisfied (based on the most recent potential
parcels @, that the Receiver has):

> ®, > kCD (6)

ueG

3.2 Analysis of the Routing Protocol

In this section we present proofs regarding the correctness of our protocol, its memory require-
ments, and its competitive-ratio with respect to throughput.

Theorem 8. The protocol of Section 31 requires O(n?P) bits of memory for internal nodes.

Proof. Recall that P € Q(k?) (for security parameter k), so that signatures (of size O(k) bits) on
all communication and the obfuscated count E(x(p)) (encrypted k-tuple, with each coordinate k
bits for the encryption, for a total of O(k?) bits) fit inside a single packet. A node must store up

12

to C = ©(n?) codeword parcels of size O(P). In terms of control information, at any time a node
must store: At most 2n parcels from the Sender/Receiver alerts; at most n status parcels; at most
n? testimony parcels; and at most n potential parcels. []

Lemma 9. The protocol of Section [31] satisfies the following three properties:

1. After a corrupt node is eliminated (or at the outset of the protocol) and before the next corrupt
node is eliminated, there can be at most n-1 failed transmissions {T1,..., Tp-1} before there is
an index 1 €[1,n] such that the Sender has all testimonies from nodes participating in T;.

2. For any transmission that fails as in F2, the Sender can eliminate a corrupt node if it receives
the testimony from every node that participated in that transmission.

3. For any transmission that fails as in F3, (with all but negligible probability in the security
parameter k) the Sender can eliminate a corrupt node if it receives the testimony from every
node that participated in that transmission.

Proof. The intuition for Statement (1) is that the blacklist forces corrupt nodes to return their
testimonies to the Sender if they want to further disrupt future transmissions. In particular, nodes
for which the Sender is missing a testimony parcel will not be allowed to transfer (codeword) parcels
in future transmissions, as they will be on the blacklist. Therefore, we can associate to each failed
transmission (at least) one distinct node for which the Sender is still missing a testimony parcel,
where by “distinct” we mean this node cannot be associated to more than one transmission (since
after a node is associated to a failed transmission, the Sender will not require its testimony for
any transmissions after that one, as it will not have participated in those transmissions). Thus,
by a simple counting argument there can be at most n — 1 failed transmissions before the Sender
necessarily has all testimonies from nodes participating in one of those failed transmissions. This
argument is formalized in [I7]| (their proof remains valid here, as both protocols utilize the same
principles of the blacklist).

Regarding Statement (2), notice that a transmission fails as in Case F2 when a corrupt node
is transferring codeword parcels against transfer rules (e.g. from smaller heights to larger heights,
or when a corrupt node is duplicating codeword parcels). Both of these can be detected via the
potential differences portion of the nodes’ testimonies. In particular, there will necessarily exist
some node u whose cumulative directional potential drop is greater for parcels sent than for parcels
received: ZvEG Dy > ZveG ®, . The existence of such a node u, and the fact that u is corrupt, is
proven rigorously in [I7]; their proof remains valid here, as both protocols utilize the same potential
difference parcels portion of the control information.

Statement (3) is the primary novel contribution our protocol achieves, and will be proven via a
sequence of lemmas below.]

Before proving Statement (3), we demonstrate how Lemma [0 yields Theorem [

Lemma 10. Let P denote the protocol described in Section [31l. For any adversary A, for any
protocol P', and for any x € N, if at any time P’ has received ©(xn) messages, then P has received
Q(x — n?) messages.

Proof. In the rounds that form any transmission for P (regardless of whether it ended as in S1 or
F2-F4), any competing protocol P’ can deliver at most ©(kn2C) packets. This fact is proven in
[17], and the proof remains valid here as the protocol rules for transferring codeword parcels is the
same for both protocols (only the specific data stored in the control information is different).

13

There are at most n? failed transmissions F2-F4 (Statement (1) of Lemma [)), and the above
guarantees that in these transmissions, any competing protocol P’ can deliver at most O(n) messages
(since messages consist of ©(knC') packets). Therefore, any competing protocol can deliver at most
O(n3) messages during failed transmissions. Note that the extra (at most) O(n?®) messages that
a competing protocol delivers does not affect competitive-ratio, as they can be absorbed in the
additive term g(n,C) for competitive-ratio (see Definition M.

Meanwhile for all successful transmissions, our protocol delivers a message of ©(knC') parcels,
which as noted above is within a factor of n of the throughput performance of any protocol P/. =

Proof of Theorem [l Recall that correctness means that the Receiver gets the (unaltered) messages
sent by the Sender in-order. The integrity of the messages received by the Receiver is assured
(with all but negligible probability in the security parameter) by the fact that the Sender signs all
messages, and no (honest) node (and in particular the Receiver) ever accepts a packet that does
not have a valid signature. Finally, error-correction (which allows for some codeword parcels to
arrive out of order and/or get lost in transmission) together with the fact that the Sender repeats
all codeword transmissions that failed as in Case F2-F4 ensures that the Receiver gets all messages
in order. That our protocol achieves competitive-ratio 1/n follows immediately from Lemma [0 H

The proof of Statement (3) of Lemma [will rely on the novel use of the obfuscated count
portion of the control information. The intuition for how the obfuscated counts can be used to
identify a corrupt node performing packet replacement was given in Section To see how packet
replacement relates to failing as in F3, recall that Case F3 means that the Sender has inserted all
D codeword parcels, and yet the Receiver has not gotten (1 — A\)D of them (since otherwise the
Receiver could have decoded the message and the transmission would have ended as in S1). Since
there can be at most (n — 2)C' parcels that are (validly) stored in the buffers of the internal nodes,
parcel deletion/replacement must have occurred: D > (1 — X)D + (n — 2)C. This is exactly the
situation for which the obfuscated count allows the Sender to identify a corrupt node.

Let s denote the Sender and r denote the Receiver. As a simplification, we will drop the £ from
our notation (writing instead simply x(p)), since ultimately it is the Sender (who has the decryption
key for £) who will be evaluating these parcels. For a given message transmission, let S denote
the set of codeword parcels that the Sender inserted to an internal node (i.e. not to the Receiver).
Let R be the multiset of codeword parcels that the Receiver received from the internal nodes (i.e.
not the Sender); note that R may be a multiset, as corrupt nodes may have duplicated codeword
parcels.

Note that there is potential ambiguity in the notation V¥, ,: it can either represent the values u
has stored (with signatures from v) for codeword parcels sent from u to v; or it can represent the
values v has stored (with signatures from u) for parcels sent from u to v. If u and v are honest,
these quantities will match. When discussing these quantities when they are both returned to the
Sender via the testimonies, we use the following convention which removes ambiguity:

1. If the hamming distance between u and v’s testimony for (the decrypted value of) ¥, ,, is
greater than one, then the Sender can immediately eliminate a corrupt node. After all, all
nodes should be verifying the values sent by their neighbor are valid before communicating
more codeword parcels with them (see Figure 1). So if u and v’s values for ¥,, ,, have hamming
distance greater than one, the Sender can necessarily identify the node that returned the less
recent value for ¥, , (status parcels are time-stamped with the round)

11f the time-stamps indicate the two values for ¥, , are from the same round, then both v and v are corrupt.

14

2. If the hamming distance between u and v’s testimony for (the decrypted value of) WU, ,, is
exactly equal to one, then the Sender sets the more outdated value to the more current value,
and also adjusts ¥,, of the appropriate node (w € {u,v}) accordingly. For example, if v is
the difference in the two values for ¥, , and u has the more current!2 timestamp, then the
Sender sets v’s value for ¥,, ,, equal to u’s value and modifies ¥,, by v: ¥, := ¥, + v (thus,
the quantity ¥, , + ¥, remains constant through these changes).

The following equalities come from the fact that every contribution to ¥, (respectively ¥, ,)
can be ascribed to a single codeword parcel that the Sender inserted (respectively, that the Receiver

received); see Figure 1:
D Ueu =Y x(p) and D W, = x(p) (7)

ueG\{r,s} peES ueG\{r,s} PER
The following equation expresses the fact that for every codeword parcel an honest node receives,

that codeword parcel will either have been transferred (exactly once) to an adjacent node, or the
codeword parcel will still be in that node’s buffer at the end of the transmission; see Figure 1:

For any uncorrupt node u: 0,...,0) = ¥, + Z Wy — Yyu) (8)
veG\u
Lemma 11. If the equality in (8) holds for all nodes u € G\ {r, s}, then:
dxp) = > T+ > x(p) 9)
peES ueG\{r,s} PER

Proof. This lemma simply states that the sum of the characteristic vectors x(p) for each parcel
inserted by the Sender will equal the sum of the characteristic vectors received by the Receiver plus
the sum of the characteristic vectors of the parcels still stored by the internal nodes at the end of
the transmission. Note that (@) will always hold if there are no corrupt nodes; but in the case a
corrupt node is performing packet replacement, (3) will only hold if the set of parcels replaced have
the same distribution within the sets (as determined by x) as the parcels they were replaced with.

Formally, consider:
Z Z (\IJU,U_\IJU,U) = (0,70) =

ueG veG\u

Z Z (\I]u,v - \IIU,U) - Z \I]v,r - Z \Ijs,v =
ueG\{r,s} veG\u vEG\T vEG\s

Z Z (\Iju,v - \I’v,u) = Z X(p) - Z X(p)’ (10)
u€G\{r,s} vEG\u PER peS

where the first equality is by symmetry; the second comes from the first by separating terms and
noting that ¥, , = 0 = ¥, ; for all v (since the Sender never receives a codeword parcel and the
Receiver never sends a codeword parcel); and the third is (7]). Therefore:

(0770) = Z v, + Z Z (\I/u,v_\:[]v,u) =

ueG\{r,s} ueG\{r,s} veG\u

(0,..,0) = > Ty + > x(0) — > x(p)

ueG\{r,s} PER pES

121f 4 and v’s returned values for U, » are both time stamped with the same round, then the Sender treats the
value coming from the receiving node (in this case v) as the more current value.

15

where the first equality is by hypothesis (that equality (&) is true for all nodes v € G\ {r,s}) and
the second equality comes from the first via ([I0). [

Lemma 12. Suppose a transmission fails as in Case F3, and at some later point the Sender has
collected all of the testimonies from all nodes participating in that transmission, and that equation
@) is satisfied for all nodes. The probability that the following equality is satisfied is negligible in k:

Z \I/s,u = Z (\I]u+qju,r) (11)

ueG\{r,s} ueG\{r,s}
More precisely, (IT) is satisfied with probability at most: %
(v2r)

Proof. Fix a transmission that satisfies the hypotheses of the lemma, and let {¥y,, ¥y, 4, ¥y 4 tuvea
denote the testimonies the Sender has collected. Let Rn := S NR, i.e. R represents a set (as
opposed to a multiset) consisting of the same parcels as R (if there was no corrupt activity, then
RA = R). Since (considered as multisets) Rn C R, by Lemma [IT] there exists ¢ C S such that

R C Q and:
dx) = D T+ > x(p) (12)
peQ ueG\{r,s} PERN
Consequently:
Z \I’s,u — Z (\Iju+\Iju,r) =
ueG\{r,s} u€G\{r,s}
dxp) = DT+ xp) &
peES ueG\{r,s} PER
> o x) = D xv), (13)
PES\Q PER\Rn

where the first implication is () and the second is ([I2]). The right-hand side of (I3) represents
the sum of the characteristic vectors x(p) for the parcels p that the Adversary duplicated (e.g. via
packet replacement). Meanwhile, the left-hand side of (3] is completely random, based on the
choice of x : D — Z&. Notice that @ = (S\ Q) N (R \ Rn) by definition of R and choice of Q.
The fact that these sets are disjoint means that the quantities on both sides of (I3) are independent
from each other.

Therefore, the probability that the equality in (I3) holds is equal to the probability that a
random assignment y(p) for each p € S\ Q produces the vector described by the right-hand side of
(13). Notice that if R = Rn (i.e. no malicious packet replacement was performed), then Q@ = S, and
([13) is vacuously satisfied. But if the Adversary attempts to invoke a packet replacement strategy,
the probability that the Adversary’s strategy will maintain equality in (I3]) is equivalent to the
probability that the Adversary can correctly predict the outcome distribution of an experiment in
which m balls are distributed into K buckets, where each of the m = |S\Q| balls are assigned a bucket
uniformly at random. It is a straightforward argument (see Fact [I6 for details) that demonstrates

this probability is bounded above b eK (2m)' ™% where we have used that [S\Q| > (k—1)nC:

S\Q| = IS|=1Q] = D= |Wul, —|Rn| > D=(n—=2)C=(1=XD > (k—1)nC,
ueG\{r,s}

" Notice that |S\ Q| does not appear anywhere in (vVeK) (V/ 271')17K. Although the exact probability does depend
on |[S\ 9|, the bound is valid as long as |S \ Q| > K (see Fact [I6]), which will happen since K := k.

16

where the second equality is via (I2)) and because we are in Case F3 (Sender inserted all codeword
parcels), the next inequality is because the Receiver could not decode (and hence got fewer than
(1 = X)D distinct codeword parcels) and by the fact that ||, ||, < C for all nodes u (as otherwise
the Sender could immediately eliminate u as corrupt, since u is storing more codeword parcels than
allowed), and the final inequality is by construction: D := knC/\. Note that we are using the

standard l;-norm || - ||, on Z%:

||(’Ul,’U2, .. avk‘)Hl — |/UI| + -+ |/Uk‘|a
where v; € [0..N — 1] are the canonical representatives in Zy. |

Corollary 13. Suppose a transmission fails as in Case F3, and at some later point the Sender
has collected all of the testimonies from all nodes participating in that transmission. Then with
overwhelming probability, there will be a node w € G\ {r,s} that fails to satisfy (§), and thus the
Sender can eliminate u as corrupt.

Proof. Suppose for the sake of contradiction that all nodes satisfy (8). Then Lemma [I2] states that
(1) will not be satisfied (with overwhelming probability), and so:

(0,000,0) # Y Wy 4+ Y (o — V) (14)

ueG\{r,s} ueG\{r,s}

Also, by symmetry we have the trivial identity:

0,...00= > 3 (Typ—Tyy) (15)

ueG\{r,s} veG\{u,r,s}

Combining (I4]) and (IZ) and using the fact that ¥, , = 0 =¥, for all u (since the Sender never
receives a codeword parcel and the Receiver never sends a codeword parcel), with overwhelming
probability:

0,0,0) # 3 Wy + > > (W —Ty) (16)

ueG\{r,s} ueG\{r,s} veG\u

Therefore, there must be at least one node u € G\ {r, s} that violates (&), which contradicts the
hypothesis.]

Statement (3) of Lemma [follows immediately from Corollary We conclude by stating (and
proving) some basic results from probability that led to the bound used in Lemma

Fact 14. For positive integers m, k and a sequence of non-negative integers {ni}le satisfying m =
Zle ng, the quantity (n1!na!. .. ng!) is minimized if |n; — nj| <1 for all pairs (i, 7).

Proof. (Proof by contradiction.) Suppose that there is a sequence {nq,...,n;} that achieves the
minimal value for (nilng!...ni!) and yet does not satisfy the hypothesis that |n; —n;| < 1 for
all pairs (i,7). In particular, let ¢ and j be such that n; —n; > 2, and let M = nqlna!...ny!

denote the minimal value obtained by this sequence {ni,...,nx}. But this leads to a contradiction,
since a lower minimum can be obtained from the sequence {n/,n5, ..., n}} satisfying: n; =n; — 1,
n; =n; + 1, and n; = ny for all other values of I € [1..k]. [

17

Fact 15. Let m, k, N be positive integers with N > m >k, and let X be a random variable defined
by:

X=3 e, (17)
=1

where e; € Zlfv is the characteristic vector with a ‘17 in the j** position, and {Y;} are independent
random wvariables satisfying Pr]Y; = j| = 1/k (for any j € [1..k]). For any random vector v =
(n1,n2,...,nE) with Y, n; = m, the probability X = v obeys:

PriX=v] = <;Z><m;2nl>"'<m_nl_zim_nk1> (18)

k.m
_ 1 m!

Proof. Consider the following scenario: m (unlabelled) balls are to be partitioned into k labelled
buckets, where each ball is assigned a bucket in a uniformly random manner. At the end of this
experiment, we may express the distribution of balls in buckets as the k-tuple: (ni,ne,...,ng) € Z’fv,
where n; denotes the number of balls that ended up in bucket 7. It is clear that such an experiment
describes the random variable X, that is, for any v € Zf“'\, with m = Zle n;, we have that the above
experiment results in the distribution v with the same probability that X = v. Therefore, we prove
the bound in (I8) in terms of the scenario of partitioning m (unlabelled) balls into & (labelled)
buckets.

Let v = (ny,ng,...,ng) be fixed, and we determine the probability that the experiment will
result in the distribution of balls in buckets as described by v. The fact that this probability is as
described in (I8]) comes from a counting argument: the first term in the numerator is the number of
ways n1 balls can be chosen from m balls to be assigned to the first bucket; the second term counts
the number of ways ng balls can be chosen from the remaining m — n; balls to be assigned to the
second bucket; and so on. The denominator of the right-hand side of (I8]) counts the total number
of ways m balls can be distributed among k buckets. The second equality is a straightforward

computation. n

The following fact formalizes the probability of correctly predicting the outcome of an experiment
in which m balls are distributed in k& buckets, where the choice of bucket for each ball is uniformly
random. In particular, it states that the distribution with the highest probability is the one in which
the m balls are evenly distributed among the k buckets (i.e. each bucket has m/k balls), and that

Vek
(V)
Fact 16. Let m,k, N be positive integers with N > m > k. Let W C Zlfv be a subset of vectors
v € ZK, such that [vll; = m. Let X be a random variable as described in the hypothesis of LemmalLd
For any fized element v € W, the probability that X = v is maximal if v = (m/k,m/k, ... 7m/k:)
and for this v, the probability that X = v is bounded from above by:

Vek

the probability of this distribution is bounded above by

— (19)

(v2r)
4The hypotheses of the lemma do not assume k|m; when this is not the case, interpret v = (m/k,m/k,...,m/k)
to mean v = (|m/k|,...,|m/k], [m/k],...,[m/k]), where the number of terms equal to [m/k] is the remainder of

m divided by k.

18

Proof. For any random vector v = (n1,ng,...,n) with Y. n; = m, Fact [[0] demonstrates that the
probability X = v obeys:
1 m/!
PriX = == —— 20
"l vl (k:m> nylng!. .. ng! (20)

By Fact [[4] (20) is maximized if |n; —n;| < 1 for all pairs (4, 7), in which case n; > |m/k] for all 4,
and then plugging this into (20]):

PriX=v] = (kim) #'nk'
m!
<(w)
<L> M(%)m
(V2T (122)/0) #)

km
where the final inequality is via Stirling’s Formula. Since the quantity on the right side of (1)) is
monotone decreasing as m increases (for fixed k > 1), the probability is maximal for m = k (given
the constraint m > k), and then (2I)) becomes:

B> (21)

VR
(vam)

as claimed. [

PriX=v] < (22)

The equalities of () and (§) and the proofs of Lemmas [T [2] and Corollary [I3 relied on the
fact that the coordinates of V¥, , never “wrapped-around,” i.e. no coordinate ever became as large
as N; in particular, we assumed addition on Z* rather than Z’fv. The following Lemma assures us
that if the Sender ever needs to use the {V¥, ,} values to eliminate a corrupt node, then the values
of the ¥,, ,, are the same as if they were in ZF, i.e. no coordinate ever reset as a result of getting as
large as N.

Lemma 17. For any honest node u € G, if at any time there exists any node v € G such that a
coordinate of Wy, (or W, ,) is N — 1, then necessarily a corrupt node can be identified.

Proof. We mentioned in Section Bl that N := |G| € Q(kn*), and more precisely, we demand N >
3nD. In this case, if any honest node has exchanged N codeword parcels with a neighbor, then these
N transfers (each of which causes a potential drop of at least |H' — H| > C'/2n — 2n) in aggregate
will correspond to a potential drop of at least CD, since N > 3nD implies N(C/2n — 2n) > CD
(this uses the fact that C' > 12n?). Therefore, if any honest node has exchanged N codeword
parcels with a neighbor, then a corrupt node can be identified as is done for Case F2 of transmission
failure. |

References

[1] Y. Afek, B. Awerbuch, E. Gafni, Y. Mansour, A. Rosen, N. Shavit. “Slide- The Key to Poly. End-to-End
Communication.” J. of Algorithms 22, pp. 158-186. 1997.

[2] Y. Afek, E. Gafni, A. Rosén. “The Slide Mechanism with Applications in Dynamic Networks.” PODC, pp.
35-46. 1992.

19

3l
(4]
(5]

[6]
(7l

(8]
[l

[10]
[11]
[12]

[13]
[14]
[15]

116]
17]
18]
19]
120]
[21]
[22]
23]
[24]

[25]

W. Aiello, E. Kushilevitz, R. Ostrovsky, and A. Rosén. “Adaptive Packet Routing For Bursty Adversarial
Traffic.” J. Comput. Syst. Sci. 60(3): 482-509. 2000.

W. Aiello, R. Ostrovsky, E. Kushilevitz, and A. Rosén. “Dynamic Routing on Networks with Fixed-Size
Buffers.” SODA, pp. 771-780. 2003.

M. Ajtai, J. Aspnes, C. Dwork, and O. Waarts. “A Theory of Competitive Analysis for Distributed Algorithms.”
FOCS, pp. 82-40. 1994.

Y. Amir, P. Bunn, and R. Ostrovsky. “Authenticated Adversarial Routing.” TCC, pp. 163-182. 2009.

M. Andrews, B. Awerbuch, A. Fernandez, J. Kleinberg, T. Leighton, and Z. Liu. “Universal Stability Results
for Greedy Contention-Resolution Protocols.” FOCS, pp. 880-389. 1996.

B. Awerbuch, Y. Azar, and S. Plotkin. “Throughput-Competitive On-Line Routing.” FOCS, pp. 401-411. 1993.

B. Awerbuch, D. Holmer, C. Nina-Rotaru, and H. Rubens. “An On-Demand Secure Routing Protocol Resilient
to Byzantine Failures.” Workshop on Wireless Security, pp. 21-30. 2002.

B. Awerbuch and T. Leighton. “Improved Approximation Algorithms for the Multi-Commodity Flow Problem
and Local Competitive Routing in Dynamic Networks.” STOC, pp. 487-496. 1994.

B. Awerbuch, Y Mansour, N Shavit “End-to-End Communication With Polynomial Overhead.” FOCS, pp.358-
363. 1989.

B. Barak, S. Goldberg, and D. Xiao. “Protocols and Lower Bounds for Failure Localization in the Internet.”
EUROCRYPT, pp. 341-360. 2008.

D. Boneh, E. Goh, and K. Nissim. “Evaluating 2-DNF Formulas on Ciphertexts.” TCC, pp. 325-842. 2005.
A. Borodin and R. El-Yaniv. “Online Computation and Competitive Analysis.” Camb. Univ Press. 1998.

A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, and D. Williamson. “Adversarial Queuing Theory.” STOC,
pp. 376-385. 1996.

A. Broder, A. Frieze, and E. Upfal. “A General Approach to Dynamic Packet Routing with Bounded Buffers.”
FOCS, pp. 390-399. 1996.

P. Bunn and R. Ostrovsky. “Asynchronous Throughput-Optimal Routing In Malicious Networks.” ICALP, Vol.
37, pp. 236-248 2010.

T. ElGamal. “A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms.” IEEE
Transactions on Info. Theory, Vol. 31, pp. 469-472. 1985.

S. Goldberg, D. Xiao, E. Tromer, B. Barak, and J. Rexford. “Path-Quality Monitoring in the Presence of
Adversaries.” SIGMETRICS Vol. 36, pp. 193-204. 2008.

S. Goldwasser and S. Micali. “Probabilistic encryption.” J. of Computer and System Sciences, Vol. 28, pp.
270-299. 1984.

E. Kushilevitz, R. Ostrovsky, and A. Rosén. “Log-Space Polynomial End-to-End Communication.” SIAM
Journal of Computing 27(6): 1531-1549. 1998.

T. Leighton, F. Makedon, S. Plotkin, C. Stein, E. Tardos, and S. Tragoudas. “Fast Approximation Algorithms
for Multicommodity Flow Problem.” STOC. 1991.

T. Okamoto and S. Uchiyama. “A New Public-Key Cryptosystem as Secure as Factoring.” FUROCRYPT, pp.
308-318. 1998.

S. Plotkin. “Competitive Routing of Virtual Circuits in ATM Networks.” IEEE J. on Selected Areas in Com-
munications, Vol. 13, No. 6, pp. 1128-1136. 1995.

D. Sleator and R. Tarjan. “Amortized Efficiency of List Update and Paging Rules.” Commun. ACM, Vol. 28,
No. 2, pp. 202-208. 1985.

20

	1 Introduction
	1.1 Previous Work
	1.2 Our Results

	2 The Model
	3 Routing Protocol
	3.1 Description of the Routing Protocol
	3.2 Analysis of the Routing Protocol

