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Abstract. Consider a setting of two mutually distrustful parties Alice and Bob who want to securely
evaluate some function on pre-specified inputs. The well studied notion of two-party secure computation
allows them to do so in the stand-alone setting. Consider a deterministic function (e.g., 1-out-of-2 bit
OT) that Alice and Bob can not evaluate trivially and which allows only Bob to receive the output. We
show that Alice and Bob can not securely compute any such function in the concurrent setting even
when their inputs are pre-specified. Our impossibility result also extends to all deterministic functions in
which both Alice and Bob get the same output. Our results have implications in the bounded-concurrent
setting as well.
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1 Introduction

Consider a setting of two mutually distrustful parties Alice and Bob who want to securely evaluate a function
f . The well studied notion of two-party secure computation [Yao86,GMW87] allows them to do so. However
this notion is only relevant to the stand-alone setting where security holds only if a single protocol session
is executed in isolation. Additionally these secure computation protocols are interactive and Alice and Bob
are expected to preserve state information during the protocol execution.

What if Alice and Bob want to evaluate multiple functions concurrently? This problem has drawn a lot of at-
tention in the literature. A large number of secure protocols (in fact under an even stronger notion of security
called UC security) based on [CF01,CLOS02,BCNP04,CPS07,Kat07,CGS08,LPV09,GO07,GK08,GGJS11]
various trusted setup assumptions have been proposed. To address the problem of concurrent security for
secure computation in the plain model, a few candidate definitions have been proposed, including input-
indistinguishable security [MPR06,GGJS12] and super-polynomial simulation [Pas03,PS04,BS05,LPV09,CLP10].
Both of these notions, although very useful in specialized settings, do not suffice in general. Additionally
other models that limit the level of concurrency have also been considered [Pas04,Goy12] or allow simu-
lation using additional outputs from the ideal functionality [GJO10]. Among these models the model of
m-bounded concurrency [PR03,Pas04] which allows for m different protocol executions to overlap has re-
ceived a lot of attention in the literature [PR03,Pas04,Lin04,Lin08]. Unbounded concurrent oblivious transfer
in the restricted model where all the inputs in all the executions are assumed to be independent has been
constructed in [GM00].

At the same time, impossibility results ruling out the existence of secure protocols in the concurrent
setting have been shown. UC secure protocols for most functionalities of interest have been ruled out in
[CF01,CKL06]. Concurrent self-composability [Lin04] for a large class of interesting functionalities (i.e.,
bit transmitting functionalities) has been ruled out however only in a setting in which the honest parties
choose their inputs adaptively (i.e., “on the fly”). Instead, in the very natural setting of static (pre-specified)
inputs only the FZK+OT functionality [BPS06] (i.e., a mix of the zero-knowledge and the oblivious transfer
functionalities) and the functionality that evaluates a pseudorandom function on a committed key [Goy12]
have been ruled out.

This leaves a large gap between the very few functionalities (e.g., ZK + OT ) for which the impossi-
bility [BPS06,Goy12] has been proved, and the functionalities for which there exist secure protocols (e.g.,
concurrent zero knowledge [DNS98,RK99,KP01,PRS02,BPS06]). In this paper, we ask the following basic
question:

What functions can Alice and Bob concurrently securely compute in the plain model in the natural setting
of static (i.e., pre-specified) inputs?

1.1 Our Results

In this paper we give the following two results.

Impossibility results for concurrent self computation. We show (assuming one-way functions) that
no two-party protocol concurrent securely realizes any symmetric (where both parties get the same
output) or asymmetric (only one party gets the output) deterministic functionality [Kil88,Kil00,BMM99]
that is complete3 in the stand-alone setting. Our impossibility results hold even in the very restricted
setting of static inputs (inputs of honest parties are pre-specified) and fixed roles (i.e, the adversary can
corrupt only one party who plays the same role across all executions).
We additionally show that an m-bounded concurrently secure protocol for any symmetric deterministic
functionality must have a communication complexity of at least m

kc bits where c ≥ 0 (depending on the
functionality) is a constant and k is the security parameter. This bound corresponds to m bits for the
case of string OT.
Independently of our work, exciting results concerning the impossibility of concurrently secure com-
putation have been obtained recently by Agrawal et. al. We refer the reader to [AGJ+12], for more
details.

3 A functionality is said to be complete if it can be used to securely realize any other functionality.
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Impossibility results for stateless two-party secure computation. The question of general secure
computation with stateless parties has been studied in [GS09,GM11a]. It might seem that secure com-
putation with stateless parties should imply secure computation in the concurrent but stateful setting.
However interestingly, this is not true as the definition of secure computation among stateless parties
only requires the existence of a simulator that can additionally benefit from the stateless nature of
honest parties (technically speaking, the ideal-world adversary can rewind the functionality). Goyal and
Maji [GM11a] showed a positive result for stateless secure computation for a large class of (in partic-
ular for all functionalities except the ones which behave as a weak form of pseudorandom generators)
functionalities. In this work, we show unconditionally that there exists a functionality that can not
be securely realized between two stateless parties. Similar results have been obtained concurrently and
independently by Goyal and Maji [GM12].

1.2 Technical Overview - Impossibility of Concurrent Self Composition

Consider two parties Alice and Bob executing a two-party secure computation protocol. Now consider a
real-world adversary that corrupts either Alice or Bob and is allowed to participate in any arbitrary (still
polynomial) number of executions of the protocol. In this setting we construct a real-world adversary that
interacts with the honest party in an execution of the protocol, referred to as the main execution that can
not be simulated in the ideal world. The starting point for realizing such an adversary is the idea that
the adversary has secure computation at its disposal and it can use it to its advantage. More specifically,
an adversary can at will interact with the honest party in multiple additional executions of the secure
computation protocol and use the “information” obtained in these additional executions to complete the
main execution. In order to realize the impossibility we need to establish what this “information” is and how
can this be obtained. Looking ahead this “information” is going to be the very messages that the adversary
needs to send in the main execution and it is going to be obtained via secure computation with the honest
party. In this paper we extend this intuition to show impossibility of concurrent secure computation for a very
general class of functionalities. However, in order to build intuition we start by considering the impossibility
for the special case of 1-out-of-2 string oblivious transfer (OT).

String OT. Consider two parties Alice and Bob executing an instance of the string OT protocol in which
Alice plays the role of the sender and Bob plays the role of the receiver. We refer to this execution as the
main execution. Now in order to complete the main execution adversary needs to execute some function
securely with Alice.

First we begin by addressing the issue of providing Bob with the ability to execute some function exactly
once. Observe that providing malicious Bob with a garbled circuit allows him to evaluate (once) any function
securely as long as he can obtain the right secret keys for evaluating the garbled circuit. However obtaining
such keys is not a problem as malicious Bob has access to a string OT channel with Alice. More specifically,
if we set garbled circuit keys as the inputs of Alice then malicious Bob can obtain the keys of his choice
and evaluate any function securely. Very roughly we have established that malicious Bob can evaluate any
function securely allowing it with an access to a source of “information” of its choice.

The next question to ask is “What is the right information?” Observe that malicious Bob needs to
send messages as the receiver in the main execution of the protocol.4 Now note that the “information”
that malicious Bob receives may very well be the very messages that it needs to send to Alice in the main
execution. Bob obtains the messages it sends to Alice using secure evaluation. This allows us to argue that
no ideal-world simulator can simulate the view of this “virtual” receiver. In arguing this we crucially rely of
the fact that the ideal-world simulator is limited and can obtain only one key corresponding to each input
wire of the garbled circuit. Additionally, we would like to stress two points:

- Observe that malicious Bob obtains the keys from Alice in a very straightforward and well specified
manner. On the other hand a simulator trying to simulate malicious Bob is not required to follow this
strategy. In particular the simulator could potentially obtain keys in an adaptive manner that depends
on the garbled circuit it gets as input. To deal with this problem, we use a construction of Yao’s garbled
circuit secure against malicious adversaries [GKR08].

4 Our proof builds upon the intuitive application of chosen protocol attack as in [BPS06].
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- Since we are in the static input setting all the inputs of Alice must be specified before any execution of
the protocol is started. In our setting the inputs of the honest Alice consist of the keys for the garbled
circuit, and can always be specified before the execution of the protocol. On the other hand malicious
Bob can follow any arbitrary polynomial-time strategy. In particular the adversary can choose its inputs
adaptively.

Bit OT. The intuition described above crucially relies on the fact that the adversary can execute multiple
instances of the string OT protocol in order to obtain the desired keys for input wires of the garbled
circuit and thereby evaluate the circuit. Note that the adversary described in the setting of string OT will
continue to work when provided with an access to a protocol that can be used to evaluate bit OTs. However
unfortunately, we will not be able to rule out simulators that obtain potentially different bits of the key
strings. We solve this problem using the string OT construction from bit OT of [BCS96]. The key idea of
the construction in [BCS96] is to “encode” the keys of the garbled circuit in a manner such that the partial
information obtained by any simulator on the encoded keys is essentially “useless.” An important feature of
the [BCS96] technique is that it allows us to specify inputs of Alice before any bit OT protocol is executed.

Extending to general functionalities. In extending the impossibility result to general functionalities the
challenge lies in realizing a form of bit OT but without the use of adaptive inputs for honest parties. The
key idea in achieving this is to exploit the “uncertainty” in the input of honest Alice that must exist in the
eyes of any simulator that is constrained to keep the outputs of the real-world execution and the ideal-world
execution indistinguishable. In the case of symmetric functionalities (which are complete in the stand-alone
malicious setting) the outputs of honest Alice plays a crucial role in ensuring this. In particular in order to
make sure that Alice gets the correct output a simulator simulating malicious Bob is forced into leaving some
“uncertainty” in the input of honest Alice. On the other hand asymmetric functionalities (again, which are
complete in the stand-alone malicious setting) do not provide any output to honest Alice but posses a more
general structure. In particular these functionalities have a structure that leaves some “uncertainty” in the
input of the honest Alice regardless of the input of malicious Bob. This allows us to argue our impossibility
result.

1.3 Technical Overview - Impossibility of Stateless Two-Party Computation

Consider three stateless parties Alice, Bob and Charlie executing two instances of a two-party secure com-
putation protocol. Malicious Bob5 interacts with an honest Alice in the first instance and with an honest
Charlie in the second instance. In this setting malicious Bob can evaluate any function securely with Charlie
and use it as source of “information.” Just like in the concurrent security case we can ask the question:
“What is the right information?” Observe that the adversary needs to send messages in the execution of the
protocol with Alice. Now note that the “information” that malicious Bob receives from Charlie may very
well be these next messages that it needs to send to Alice. This allows us to construct a “virtual” party that
malicious Bob securely implements with the help of honest Charlie. Now observe that a simulator might
have non-black box access to malicious Bob, however, this is essentially useless because malicious Bob acts
just like a “message forwarding machine.” Therefore simulator only has black-box access to malicious Bob
which alone of course does not help the simulator because a malicious Bob on being rewound can always
reset honest Charlie as it is stateless. Therefore we can conclude that no ideal-world adversary can simulate
the view of malicious Bob because an ability to do so will contradict the security of the underlying protocol
itself.

2 Preliminaries and Definitions

Let k denote a security parameter. We say that a function is negligible in the security parameter k if it is
asymptotically smaller than the inverse of any fixed polynomial. Otherwise, the function is said to be non-
negligible in k. We say that an event happens with overwhelming probability if it happens with a probability

5 We stress that a malicious Bob is not required to be stateless.
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p(k) ≥ 1 − ν(k) where ν(k) is a negligible function of k. In this section, we recall the definitions of basic

primitives studied in this paper. Let
c≡ stand for computational indistinguishability of two distributions.

Our definitions of concurrent security are judiciously borrowed from the work of Lindell [Lin08]. Some of
the text has been taken verbatim from [Lin08], however, the definitions have been tailored and simplified to
suit our requirements.

Two-party computation. A two-party protocol problem is cast by specifying a function that maps pairs
of inputs to pairs of outputs (one input/output for each party). We refer to such a map as a functionality
and denote it by f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, where f = (f1, f2), i.e. for every pair of inputs
(x, y), we have a pair of outputs (f1(x, y), f2(x, y)). Thus for example, the oblivious transfer functionality is
denoted by FOT ((m0,m1), b) = (⊥,mb).

In the context of concurrent composition each party actually uses many inputs. These are represented
by vectors of inputs x̄, ȳ for the two parties. Furthermore, let ℓ = |x̄| = |ȳ| denote the number of sessions the
two parties interact in. In this work we consider the setting of static inputs as opposed to adaptive inputs.
More specifically in the setting of static inputs, the inputs of both parties are specified before the execution
of any protocol. This differs from the more general setting of adaptive inputs, in which honest parties choose
inputs for sessions on the fly (possibly using the information obtained in previous sessions).

Adversarial Behavior. Throughout this paper we only consider a malicious and static adversary. In a two-
party interaction, such an adversary chooses one of the parties before the protocol begins (who is referred
to as a corrupted party) and may then interact with the honest party on behalf of the corrupted party while
arbitrarily deviating from the specified protocol. Furthermore, in this work, we consider secure computation
protocols with aborts and no fairness. This notion is well studied in literature [GL02]. More specifically, the
adversary can abort at any point and the adversary can decide when (if at all) the honest parties will receive
their output even when it receives its own output. The scheduling of the message delivery is decided by the
adversary.

Note that we study the security of the protocols in a setting where multiple instances of a two-party
protocol (between P1 and P2) are being executed. In order to obtain stronger impossibilities, we look at the
setting in which the same party plays the role of P1 (and similarly P2) across all executions of the protocol.
We refer to this as the setting of fixed roles. In this setting, an adversary can corrupt only one party that
consistently plays the role of P1 (or P2) across all sessions.

Observe that we consider a very restricted adversary (in terms of what it can do) and provide impossibility
results in this paper. Furthermore, all the impossibility results in this setting directly translate to more
demanding settings.

Security of protocols (informal). We give an informal description of the definition here and refer the
reader to Appendix A for formal definitions. We start by giving the definition in the stand-alone case, in
which the parties execute only one instance of the protocol. The security of a protocol is defined by comparing
what an adversary can do in the real-world execution of the protocol to what it could have done in an ideal
scenario. The real-world execution of the protocol ρ corresponds to the actual interaction of the adversary
with honest parties. The execution of ρ (with security parameter k, initial inputs (x, y), and auxiliary input
z to the adversary A), denoted EXECρ,A(k, x, y, z), is defined as the output pair of the honest party and
A, resulting from the above process. The ideal scenario is formalized by considering an ideal incorruptible
trusted third party to whom the parties send their inputs. The trusted party computes the functionality
on the inputs and returns to each party its respective output. Then the ideal execution of f (with security
parameter k, initial inputs (x, y) and auxiliary input z to S), denoted by EXECf,S(k, x, y, z) is denoted as
the output pair of the honest party and the adversary S from the above execution. Informally, we require
that executing a protocol in the real world roughly emulates the ideal process.

Next we extend the definition to the concurrent setting. Unlike in the case of stand-alone computation, in
the concurrent setting the real-world protocol can be executed multiple times. Correspondingly, in the ideal
world, the trusted party computes the functionality many times, each time upon the received inputs. Loosely
speaking, a protocol is secure if any adversary interacting in the real-world protocol (where no trusted third
party exists) can do no more harm than if it was involved in a corresponding ideal computation, as described
above.

Bounded Concurrency. The notion of concurrent self composition allows for an unbounded (though,
still polynomial) number of executions of a protocol. We sometimes refer to this notion of concurrent self
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composition as unbounded concurrency, in order to distinguish it from m-bounded concurrency that we
describe next. In the setting of m-bounded concurrency, the number of concurrent executions is a priori
bounded by m (a fixed polynomial). More specifically, we require that in the interval between the beginning
and termination of any given execution, the number of different sessions executed is at most m. Furthermore,
the protocol design and hence the running time of each party (in a single session) can depend on this bound.

Resettability. The notion of resettably secure computation [GS09,GM11a] is also defined by comparing
what an adversary can do in the real-world execution of the protocol to what it could have done in an
ideal scenario, however there are two crucial differences. The real-world adversary in the resettable setting
is allowed to reset (or, “rewind”) honest parties. In a similar way, the ideal-world adversary in the resettable
setting can query the ideal functionality on behalf of the adversary multiple times, each time with a different
input of its choice (while the input of the honest party remains the same). We give a formal definition of
this notion in Appendix A.

3 Impossibility of Static Input Concurrency

In this section we prove that the string OT functionality can not be concurrently and securely realized even
in the setting of static inputs and against adversaries that corrupt only one party that plays a fixed role.
Next we generalize this and provide a general theorem allowing us to argue impossibility for a broader class
(we do this in Section 4) of functionalities.

3.1 The Case of String OT

In this section we start by first giving an impossibility result for the string OT functionality. Roughly
speaking, string OT is a two-party functionality between a Sender S, with input (m0,m1) and a Receiver
R with input b which allows R to learn mb without learning anything about m1−b. At the same time the
Sender S learns nothing about b. More formally string OT functionality FOT : ({0, 1}p(k) × {0, 1}p(k)) ×
{0, 1} → {0, 1}p(k) is defined as, FOT ((m0,m1), b) = mb, where p(·) is any polynomial and only R gets
the output. We show that for some polynomial p(·) (to be fixed later), there does not exist a protocol π
that concurrently securely realizes the FOT functionality. More specifically we show that there exists an
adversary A who starts ℓ(k) sessions (to be fixed later) of the protocol π with honest parties (with pre-
specified inputs drawn from a particular distribution D) such that no ideal-world adversary whose output
is computationally indistinguishable from the output of real-world adversary A exists. We stress that the
adversary (we construct) corrupts only one of the two parties – the Sender S or the Receiver R – in all the
ℓ(k) sessions. In other words we are in the setting of fixed roles (and our results of course extend also to the
setting where the adversary plays different roles).

Theorem 1 (impossibility of static input concurrent-secure string OT) Let π be any protocol which imple-
ments6 the FOT functionality for a particular (to be determined later) polynomial p(k). Then, (assuming
one-way functions exist) there exists a polynomial ℓ(k) and a distribution D over ℓ(k)-tuple of inputs and
an adversarial strategy A such that for every probabilistic polynomial-time simulation strategy S, definition
(Definition 1) of concurrent security cannot be satisfied when the inputs of the parties are drawn from D.

Proof Intuition. We start by giving an informal outline of the proof and give the full proof after that.

1. Setting up a chosen protocol attack: As stated earlier our goal is to construct a real-world adversary
that can achieve something in the real world that is infeasible for any ideal-world adversary to accomplish
in the ideal world. The starting point for realizing such an adversary is to consider a chosen protocol
attack [KSW97,Lin03,BPS06] and adapt it to our setting. Let us start by considering a protocol π that
concurrently securely realizes the FOT functionality. The key attack methodology of chosen protocol
attack (first considered in the context of zero-knowledge protocols) is to consider a specific protocol
π′ (which may depend on π and hence the name “chosen protocol attack”) which when concurrently

6 We say that a protocol implements a functionality if the protocol allows two parties to evaluate the desired function.
This protocol however may not be secure.
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executed with π renders π completely insecure. Next we present the chosen protocol attack in our specific
setting. Consider a setting with four parties A, B̃, C̃,D. (Looking ahead parties B̃ and C̃ will be corrupted
by the adversary.) In this setting A and B̃ execute an instance of the OT protocol π where A plays the
role of the Sender (with inputs say (m0,m1)) and B̃ plays the role of the Receiver (with some choice
bit c as input). At the same time, parties C̃ (with inputs say (m′

0,m
′
1)) and D (with a bit b ∈ {0, 1}

and values mb, w as input) execute the following chosen protocol π′ (which depends on π) and is meant
to render π insecure. We now describe this protocol π′. π′ involves first an execution of π between C̃
and D in which C̃ plays the role of the sender (with inputs say (m′

0,m
′
1)) and D plays the role of the

receiver. Now note that D playing the role of the receiver obtains the value m′
b in the execution of π. D

now checks if m′
b = mb and sends w to C̃ if this is indeed the case. Observe that in the above setting A

is provided with (m0,m1) as input and D is provided with b and the corresponding mb as input.
Next we show how concurrent execution of protocol π with the protocol π′ renders π insecure. Towards
this goal, consider a real-world adversary A that corrupts B̃ and C̃, ignores their inputs and proceeds as
follows7. Our adversary A merely acts as an intermediary who forwards the messages he receives from
honest A to honest D on behalf of C̃ and similarly forwards the messages it receives from honest D to
honest A on behalf of B̃8. Our adversary A will be able to complete the execution of π with Sender A and
the execution of π (executed as a part of π′) with receiver D. This setting roughly amounts to A and D
executing a protocol π in which A has inputs (m0,m1) and D has input b. Additionally in this execution,
D will always obtain the value mb which will match its input mb and therefore it will always send the
value w to A. Our adversary outputs this value w as its output. On the other hand, executing merely an
ideal version of π and obtaining its output will not help B̃, C̃ to successfully complete an interaction with
D and thus the adversary does not output w. This results in breaking the indistinguishability between
the real world and the ideal world, contradicting the security definition of π.
Now that, we have described an adversarial strategy in a four party scenario where A interacts in an
execution of π and an execution of π′. We would like to move to a setting with only concurrent executions
of the protocol π.

2. Using Yao [Yao86] for simulating parties C̃,D in the head: With the goal of completely removing
the execution of π′ between the adversary and an external party D we provide the adversary with a
garbled circuit to simulate the execution of the protocol π′ “in the head”. Just like the previous scenario
consider an adversary A, who interacts with A in an execution of π. In this execution, A with input
(m0,m1) acts as the Sender and A acts as the Receiver. We will refer to this execution as the main
execution of π. However, we need this adversary A to send messages to A on behalf of a receiver. Our
approach for the generation of these messages is to provide the adversary A with a garbled circuit as an
auxiliary input that it can use to evaluate the next messages on behalf of D in π, in effect simulating the
interaction of C̃ with D “in its head”. In other words A now acts on behalf of the party B̃ and interacts
with A in an execution of protocol π and executes the chosen protocol via evaluating the garbled circuit.
This allows us to simulate the protocol π′. However, note that in order to securely evaluate the garbled
circuit, the adversary A will need keys corresponding to the input wires. Furthermore, since we will rely
on the security of the garbled circuits itself we will need to ensure that only one key per wire can be
obtained. Looking ahead this will be crucial when considering ideal-world adversaries and try to reach
a contradiction. Loosely speaking this will guarantee that garbled circuits will be useful for a one-time
evaluation only, revealing only the input/output behavior of the underlying function.
Next, we show how to achieve this task.

Garbled circuit keys: In the above setting note that A needs to obtain keys for secure evaluation of the
garbled circuit. We achieve this by using other invocations of the OT protocol π at our disposal. Note
that corresponding to each input wire of the garbled circuit we will have two keys and the adversary
A needs to learn one of them in order to evaluate the garbled circuit correctly. Corresponding to each

7 Recall that we are in setting of static inputs. This setting requires that the inputs of the honest parties be pre-
specified before any execution of the protocol happens. On the other hand our adversary A may deviate arbitrarily
from the protocol specification based on his input and auxiliary input. In particular, it could adaptively decide on
the messages it sends in the protocol ignoring the input it obtains completely.

8 We remark that in case the underlying protocol uses identities, then we will think of C̃ as using the identity of A
and B̃ as using the identity of D. As we will see later, this continues to work in our setting.
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input wire of the garbled circuit we will provide the two keys to honest party A. The adversary A can
choose and obtain the appropriate keys in multiple executions of the OT protocol π. We refer to these
executions as the additional executions of π. Note that this will involve an executions of the OT protocol
that is interleaved with the main invocation of the OT protocol. The benefits achieved here are two
fold. Firstly, we are now able to transfer the appropriate garbled circuit keys to the adversary A via
executions of π. This makes the chosen protocol attack in the setting where only multiple instance of π
are executed concurrently possible. Secondly, loosely speaking, the adversary A for each input wire can
obtains only one of the two keys that the honest party A holds. This intuitively follows from the sender
security of the OT protocol π. Furthermore note here that since the honest party A always plays the
role of the sender, the adversary A is corrupting only the receiver in all executions of π. This concludes
the construction of our real-world adversary.

Remark on static nature of inputs. Observe that the inputs provided to the honest party A include the
values m0, m1 and the garbled circuit keys which can all be fixed in advance. Recall that since we are
in the static input setting this is required for our adversary. Additionally a garbled circuit, generated as
above, is provided as an auxiliary input to the adversary.

3. The contradiction: Now that we have roughly specified the details of our real-world adversary A we
will provide the key idea behind why no simulator (or the ideal-world adversary) S can simulate the view
of the adversary A in all executions of π given access to the ideal functionality FOT only. Observe that
the real-world adversary A is a deterministic procedure that uses garbled circuits to securely evaluate the
messages it needs to send to A. From the security of garbled circuits, the messages sent by the adversary
A in the main session roughly amount to be the messages generated by an external honest party. In
particular this means that S essentially has only black-box access to the source of these messages and
it can not rewind it. (This involves a number of technicalities and we refer the reader to Appendix B
for details.) Therefore the simulator S can not simulate the view of the adversary in the main session
allowing us to reach a contradiction.

Implications for bounded concurrency. Observe that the attack described in the above proof (in the
unbounded concurrent setting) has natural implications in the bounded setting as well. In particular, the
number of sessions that our adversary executes, or the “extent” of concurrency used by the adversary in
the proof above in order to arrive at a contradiction is bounded by the communication complexity of the
protocol. More specifically the adversary needs to make one additional OT call for every bit that the Sender
sends in the protocol. This yields the following corollary:

Corollary 1 Let π be any protocol that securely realizes the FOT functionality under m-bounded concurrent
self-composition. Then (assuming one-way functions) the communication complexity of (a single session of)
π is at least m bits.

Implications in the setting of very limited concurrency. Observe that the attack described in the
above proof (in the setting of arbitrary concurrent composition) has natural implications even if we restrict
ourselves to a very limited concurrent composition. In particular, the adversary in the proof above only
interleaves the main session with the rest of the sessions all of which are executed just sequentially.

Full Proof of Theorem 1. We start by recalling and building some notation that we will use in our proof.
Next we will consider specifics of our setting. This in particular will include the details on the specifications
of inputs of all parties. Then we will define formally the strategy of the real-world adversary. Finally, we will
argue that the output of this real-world adversary can not be computationally indistinguishable from the
output of any ideal-world adversary.

Notation. Let π be a two-party protocol between a Sender S with inputs (m0,m1) and a Receiver R with
a choice bit b. Without loss of generality we assume that S sends both the first and the last message in the
protocol. Further assume that S sends exactly n messages in the execution of this protocol π. Therefore R
sends n − 1 messages. For the sake of contradiction let us assume that π concurrently securely realizes the
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FOT functionality. Let π′ be a protocol between a sender S with inputs (m0,m1) and a receiver R with a
choice bit b and additional inputs m̃ and w. In the protocol π′, S and R first proceed by executing π with
inputs (m0,m1) and b respectively. At the end of the execution of π, R obtains mb. R checks to see if m̃ = mb

and sends w to S if this is indeed the case. Otherwise, it just sends ⊥ to S. Note that R sends n messages
in the execution of this protocol π′.

Now, consider the next message function Fi(b,m,w, r,M1,M2 . . . ,Mi) where i ∈ [n] of R for the protocol
π′. More specifically, Fi(b,m,w, r,M1,M2, . . . ,Mi) generates the ith message that an honest R on input
(b,m,w) and random coins r would generate corresponding to the execution in which M1,M2 . . .Mi are
sent to R for the protocol π′. Let F [b,m,w, r] be a reactive functionality parameterized by b,m,w, r that
can be invoked n times. The ith invocation of F [b,m,w, r] expects an input M1, . . . ,Mi and outputs the
ith message that R would have sent in π′. The functionality has the values b,m,w, r which are built into
the functionality itself. Let (Yao1, Yao2) be an implementation of the garbled circuit technique as defined in
Definition 5. Roughly speaking Yao1 is an algorithm that takes the description of a reactive functionality as
input and outputs a garbled circuit and the associated keys. Note that there are two keys for every input
wire. Yao2 on the other hand takes as input the garbled circuit and a key corresponding to each wire and
outputs an evaluation of the garbled circuit. Since, we are in the malicious case the adversary can obtain
the keys for input wire adaptively. We deal with this issues using a technique from [GKR08]. We refer the
reader to Appendix B.2 for details.

Our setting. Now we are ready to describe our setting. After we describe our setting we will be ready to
describe our real-world adversary A. Consider a setting of two parties S and R executing ℓ(k) invocation
of π. S plays the role of the sender in all these executions and on the other hand R plays the role of the
receiver. Since we are in the static input setting we need to specify the inputs of all parties. More specifically
we specify the distribution D according to which the inputs of the parties S and R are sampled.

– Let m0,m1 ← {0, 1}p(k), b ← {0, 1}, r ← {0, 1}∗, w ← {0, 1}k, (GC,Z) = Yao1(F [b,mb, w, r]). Let µ(k)
be the number of input wires in the garbled circuit GC. Then ℓ(k) = µ(k) + 1. Also Z contains two

garbled circuit keys corresponding to each wire. More specifically it consists of values
(Z1,0,Z2,0...Zµ(k),0

Z1,1,Z2,1...Zµ(k),1

)
where Zi,0, Zi,1 correspond to the keys for the ith input wire. We will distinguish the sessions into two
categories. We will refer to one of the sessions as the main session. Rest of the sessions are referred to
as additional sessions.

– Input to Honest Sender: Let (m0,m1) be the input of S in the main session. For each i ∈ [µ(k)], let
(Zi,0, Zi,1) be the input of the honest sender in the ith additional session.

– Input to Receiver: Let ȳ be a vector of ℓ(k) bits all chosen randomly. Set ȳ as the input of the receiver.

Description of our real-world adversary A. The real-world adversary corrupts the receiver R and receives the
garbled circuit GC generated in the above described sampling procedure (distribution D) as auxiliary input.
Our adversary on input the garbled circuit GC proceeds as follows. It ignores the message D generates for
the honest receiver. Let the messages that S sends to R in the main session be M1,M2, . . . ,Mn (recall that
n is the number of messages S sends to R in the protocol π). Upon receiving Mi where i ∈ [n] from S, the
adversary obtains its response to be sent in the main session by evaluating the garbled circuit GC on input
M1,M2, . . .Mi. Let B denote the concatenation of M1,M2, . . .Mi. In order to achieve this, the adversary
needs the keys Zj,Bj where j ∈ |B|. Note that among these some of the keys have previously already been
received. R obtains the ones that have not been obtained previously by initiating multiple, concurrent, OT
protocols to which, by construction, the sender provides (Zi,0, Zi,1), 1 ≤ i ≤ µ(k) as inputs. On obtaining
these keys, A invokes Yao2, and computes the output. For every i ∈ [n − 1] it responds to S in the main
session using the obtained output. Finally for i = n it outputs the obtained value as its output.

Next we claim that the real-world adversary described above always (except with negligible probability)
succeeds in outputting the value w generated by the sampling procedure D.

Adversarial behavior in the ideal world. Recall that we started by assuming that the protocol π is concurrently
secure. Therefore there exists an ideal-world adversary, S that outputs a distribution that is computationally
indistinguishable from the one that our real-world adversary described above generates. Let us recall that
S interacts with the ideal functionality FOT in a main session and a sequence of additional sessions. The
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additional sessions however are used just to obtain garbled circuit keys. For notational convenience let K
denote the oracle that is used to obtain garbled circuit keys. More specifically, S obtains the garbled circuit
keys from the key oracle K rather than the ideal functionality FOT . Next we will convert the simulator S
into an algorithm M that interacts with the FOT ideal functionality corresponding to the main session only.
However, unlike S, M does not obtain a garbled circuit and it does not query the key oracle K. Instead it
interacts with an ideal functionality F [b,mb, w, r].

Removing the garbled circuit. According to the security definition of garbled circuits (Definition 5), there
exists a simulator YaoSimS which interacts with S in a black-box manner and the ideal functionality
F [b,mb, w, r] whose outputs are computationally indistinguishable from that of S. AlgorithmM is described
as follow: M is essentially the algorithm YaoSimS . It internally executes the simulator YaoSimS . Whenever a
query is made by YaoSimS to the ideal functionality F [b,mb, w, r], M performs it and also whenever a query
is made to FOT , M performs that too.

Note that the machineM just constructed interacts with F [b,mb, w, r] and with FOT for the main session
(in which the honest sender talking to FOT has input (m0,m1)) and is such that its output and the output
or the real-world adversary are computationally indistinguishable. This in particular means that the output
of M always (except with negligible probability) includes the value w. However, in order to be able to obtain
w from F [b,mb, w, r], M must query FOT (for the main session) with the bit b. Otherwise, M will fail to
output w with probability at least 1

2 . This follows information theoretically as M has no access to mb and
w which are strings chosen uniformly at random unless it queries FOT with b. In particular this means that
M can be used to extract the choice bit b of an external honest receiver R. This is a contradiction based on
the stand-alone security of the receiver.

3.2 General Theorem for Impossibility Results

In order to extend our results to more general functionalities we present a general theorem that allows us to
argue impossibility for any functionality which satisfies certain special properties. We next state our theorem.
In Section 4 we will use this theorem to argue impossibility for large classes of functionalities.

Theorem 2 Let F be any two-party functionality between a Sender S and a Receiver R. Consider a protocol
π that securely realizes F in the concurrent setting. Then (assuming one-way functions) at least one of the
following is not true.

1. Key Transmission. There exists a real-world adversary A1 and a distribution (x̄, z) ← D1(X0, X1)
with inputs X0, X1 (each one bit long) such that the following holds. A1 on input b, z interacting with
an honest S with input x̄ in concurrent executions of π outputs Xb such that every ideal-world adversary
S1 running on input (b, z) that simulates A1 can be simulated 9 by querying an oracle that holds X0 and
X1 for only one of the values except with negligible probability.

2. Chosen Protocol Attack. There exists a chosen protocol π′ for π and a distribution (x, y)← D2 such
that there exists a real-world adversary A2 (with auxiliary input z) that interacts with an honest sender
A of π with input x and a honest receiver D of π′ with input y and that there exists no corresponding
simulator S2. Namely, for every hybrid-world adversary S2 interacting with the ideal functionality F
(that talks to A) and a honest receiver D of π′ we have

EXECF,π′,S2(k, x, y, z) ̸
c≡ EXECπ,π′,A2(k, x, y, z)

We start by giving the intuition. The key difference between the theorem as stated above (beside the
natural generalization) from Theorem 1 is that the above theorem requires transmission of bits only. More
specifically, the adversary gets to choose one bit among X0 and X1 and gets Xb as the response. On the
other hand in the case of string OT these values were actually strings. We deal with this problem by using

9 Note that there are two levels of simulation happening here. First, any adversary A1 who runs π with honest
party input drawn from D(X0, X1) is being simulated by an ideal world adversary S1 with access to only the ideal
functionality F . Second, such a simulator S1 learns only one of the two values X0 or X1. That is, his ideal-world
interaction can actually be simulated by querying for only one of the two values (to generate the honest party
input).
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a specialized garbled circuit (see Appendix C for more details) construction in which all the keys are bits.
This construction involves applying an encoding function to the keys of the garbled circuit thereby obtaining
encoded key bits. These encoded key bits are then transferred via bit OTs. The security guarantee is that
each key for every input wire is encoded in a manner such that even an adversary that obtains bits of its
choice can not learn more than one key per input wire. We next prove this theorem.

Proof of Theorem 2 As pointed out earlier this theorem is a generalization of Theorem 1 with some
additional technicalities. For the sake of completeness (at the cost of some repetition) we will reprove this
theorem from scratch.

We start by recalling and building some notation that we will use in our proof. Next we will consider
specifics of our setting. This in particular will include the details on the specifications of inputs of all parties.
Then we will define formally the strategy of the real world adversary. Finally, we will argue that the output
of this real world adversary can not be computationally indistinguishable from the output of any ideal world
adversary.

Notation. Let π be a two party protocol between a sender S with input x and a receiver R with input y.
For the sake of contradiction lets assume that π concurrently securely realizes the functionality F and also
assume that both (1) and (2) from the statement of Theorem 2 hold. Let π′ be the chosen protocol (as
required by the theorem) between a sender S with input x′ and a receiver R with input y′. Without loss of
generality we assume that S sends the first message in the protocol π′ and R sends the last message in the
protocol π′. Further assume that R sends exactly n messages in the execution of this protocol π′.

Now, consider the next message function F (y′, r,M1,M2, . . . ,Mi) where i ∈ [n] of R for the protocol
π′. More specifically, Fi(y

′, rM1,M2, . . . ,Mi) generates the ith message that an honest R on input y′ and
random coins r would generate corresponding to the execution in which M1,M2, . . . ,Mi are sent to R in the
execution of π′. Let F [y′, r] be a reactive functionality parameterized by y′, r that can be invoked n times.
The ith invocation of F [y′, r] expects an input Mi and outputs the ith message that R would would have
sent in π′. The functionality has the values y′, r which are built into the functionality itself.

In this proof we will use a garbled circuit construction with the special feature (see Appendix C for
more details) that the keys in this construction consist of bits rather than strings. Roughly speaking Yao1
is an algorithm that takes the description of a reactive functionality as input and outputs a garbled circuit
and the associated keys. Yao2 on the other hand takes as input the garbled circuit and multiple key bits
corresponding to each input wire (that allow it to evaluate the key corresponding to any input wire) and
outputs an evaluation of the garbled circuit.10

Our setting. Now we are ready to describe our setting. After we describe our setting we will be ready to
describe our real-world adversary A. Consider a setting of two parties S and R executing ℓ(k) invocation
of π. S plays the role of the sender in all these executions and on the other hand R plays the role of the
receiver. Since we are in the static input setting we need to specify the inputs of all parties. More specifically
we specify the distribution D according to which the inputs of the parties S and R are sampled.

– Let (xmain, ymain)← D2 (D2 is a distribution as required by the theorem), (GC,Z) = Yao1(F [ymain, r]).

Specifically Z is the value
(Z1,0,Z2,0,...,Zµ(k),0

Z1,1,Z2,1,...,Zµ(k),1

)
where Zi,0, Zi,1 are needed for the evaluation of the garbled

circuit GC. Let µ(k) be the number of pairs of pairs of bits in Z. Then ℓ(k) = µ(k)ν(k) + 1 (ν(k) is
specified by the theorem). We will distinguish the sessions into two categories. We will refer to one of
the sessions as the main session. The remaining sessions are referred to as additional sessions.

– Input to Honest Sender: Let xmain be the input of S in the main session. For each i ∈ µ(k), let((
x1,i,0,x2,i,0,...,xν(k),i,0

x1,i,1,x2,i,1,...,xν(k),i,1

)
, zi

)
← D1(Zi,0, Zi,1) (D1 is a distribution as required by the theorem). Finally,

for every i ∈ [µ(k)], j ∈ [ν(k)], let (xj,i,0, xj,i,1) be the input of the honest sender S in the (i−1)·ν(k)+jth
additional session.

10 Just like in the setting of string OT we use the technique from [GKR08] to deal with issues of adaptivity. We refer
the reader to Appendix B.2 for details. Additionally this construction of garbled circuits (see Appendix C for more
details) allows us to “encode” the keys for the garbled circuit in a way such that the keys now correspond to bits
rather than strings. We use the encoding of [BCS96].
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– Input to Receiver: Let ȳ be a vector of ℓ(k) inputs of R all chosen randomly (from the appropriate
distribution). Set ȳ as the input of the receiver.

Description of our real-world adversary A. The real world adversary A corrupts the receiver R and receives
the garbled circuit GC and zi for all i ∈ µ(k) generated in the above described sampling procedure (distri-
bution D) as auxiliary input. A ignores the input that D generates for the honest receiver and proceeds as
follows. Our adversary A internally executes A2 (required by the theorem). Looking ahead we will reach a
contradiction by constructing a simulator for the adversary A2. The adversary A2 expects to interact with
an honest sender of π and an honest receiver of the protocol π′. The adversary A simulates the honest sender
of π (for A2) using the messages it obtains from the external honest party S. On the other hand in order to
simulate the honest receiver of the protocol π′, our adversary A′ uses the garbled circuit GC as follows. Let
the messages that A2 sends for R in the execution of π′ be M1,M2, . . . ,Mn (recall that n is the number of
messages R sends to S in the protocol π′). Upon receivingMi where i ∈ [n] from S, the adversary obtains its
response to be sent in the main session by evaluating the garbled circuit GC on inputMi. In order to achieve
this, it needs multiple values Zi,b for an i ∈ [µ(k) · ν(k)] and a bit b of its choice. Note that the adversary
A will need multiple bits for this evaluation. We will explain how it can obtain Zi,b. A can obtain all other
inputs in an analogous manner. In order to obtain Zi,b, A starts an execution of A1 with input (b, zi). By
assumption (1) from the theorem we have that A1 can always obtain Zi,b. In doing so A1 executes ν(k)
execution of π. In particular it will execute π for the sessions {(i− 1) · ν(k)+1, (i− 1) · ν(k)+2, . . . , i · ν(k)}.
On obtaining these keys, A invokes Yao2 (note that Yao2 first decodes the actual keys for the input wires
of the garbled circuit from the obtained key bits) and computes the output. This allows A to successfully
(except with negligible probability) execute A2. Our adversary outputs the output generated by A2.

Adversarial behavior in the ideal world. Recall that we started by assuming that the protocol π is concurrently
secure. Therefore there exists an ideal world adversary, S that outputs a distribution that is computationally
indistinguishable from the one that our real world adversary A described above generates. Let us recall that
S interacts with the ideal functionality F in the main session and a sequence of additional sessions. The
additional sessions however are used just to obtain bits that are in turn used to evaluate garbled circuit keys.
For notational convenience let K denote the oracle that is used to provide these bits. More specifically, S
obtains the key bits from the key oracle K rather than the ideal functionality F . Next we will convert this
simulator S into an algorithm M that interacts with the ideal functionality F corresponding to the main
session only. However, unlike S it does not obtain a garbled circuit and it does not query the key oracle K.
Instead it interacts with an ideal functionality F [ymain, r].

Removing the garbled circuit. Consider an algorithmM that internally executes the simulator S. According to
the security definition of garbled circuits (Definition 5), there exists a simulator YaoSimS which interacts with
S in a black-box manner and the ideal function F [ymain, r] and outputs a computationally indistinguishable
distribution. Note that F [ymain, r] corresponds exactly to an honest receiver of the protocol π′ with input
ymain. Additionally note that YaoSimS internally executes the simulator of the OT protocol of (Appendix C)
in order to simulate the bit queries of S using one key query (corresponding to an input wire of the circuit)
only.

Note that the machine M just constructed interacts with with F for the main session (where the honest
party S has input xmain) and an honest receiver of the protocol π′ with input ymain. Further more the
output of M is computationally indistinguishable from the output generated by real world adversary A2.
This contradicts (2) from the theorem.

3.3 Example: The Case of Bit OT

In this section we give an impossibility result for the bit OT functionality. Roughly speaking, bit OT is
a two-party functionality between a sender S, with input bits (m0,m1) and a receiver R with input b
which allows R to learn mb without learning anything about m1−b. At the same time the sender S learns
nothing about b. More formally bit OT functionality is defined as FBit-OT : ({0, 1}×{0, 1})× → {0, 1} where
FBit-OT((m0,m1), b) = mb and only R gets the output. We stress that we are in the setting of static inputs
and fixed roles.
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Lemma 1. (impossibility of static input concurrency - bit OT) Let π be any protocol which implements the
FBit-OT functionality. Then, (assuming one-way functions) there exists a polynomial ℓ(k) and a distribution
D over ℓ(k)-tuple of inputs and an adversarial strategy A such that for every probabilistic polynomial-time
simulation strategy S, definition (Definition 1) of concurrent security cannot be satisfied when the inputs of
the parties are drawn from D.

Proof (Informal). Lemma 1 follows by a direct application of Theorem 2 and the ideas developed in
Theorem 1. Observe that Theorem 2 requires us to prove two properties, namely, key transmission and chosen
protocol attack. Key transmission property requires us to construct an adversary A1 and a distribution D1

that generates inputs for the honest party S and auxiliary input z for the adversary A1. Note that our
adversary will run only one execution of π. In particular this means that ν(k) = 1. We first specify our
distribution D1. Distribution D1 on input X0, X1 outputs X0, X1 for the honest party S and it outputs an
empty string z for A1. Observe that A1 on input b can easily obtain Xb in one execution of the protocol π
playing as the receiver.

Next note that the chosen protocol attack for the case of the bit OT functionality is the same as the
string OT functionality. Note that our goal here is to just give intuition for Theorem 2 and since we prove
general theorems for all functionalities (in Section 4) we skip further details.

4 The Case of General Functionalities

In this section we give impossibility results for general functionalities. We first consider symmetric func-
tionalities in which both parties get the same output and then we consider functionalities in which the two
parties get different outputs. We stress that all our results are in the setting of static inputs and fixed roles.
Surprisingly, completeness theorems (and constructions) for secure computation of such functions are known
in the stand-alone two-party setting [Kil00,Kil88,BMM99,GMW87].

4.1 The Case of Symmetric General Functionalities

Consider a two-party functionality Fsym between a sender S with input x and a receiver R with input y
which allows both S and R to learn f(x, y) (and nothing else). More formally, let f : X×Y → Z be any finite
function11 then a symmetric functionality Fsym : X×Y → Z×Z is defined as, Fsym(x, y) = (f(x, y), f(x, y))
where both S and R get f(x, y). For any complete symmetric function f ,12 as defined below, we show that
there does not exist a protocol π that concurrently securely realizes the Fsym functionality.

Loosely speaking, a symmetric functionality that contains an embedded-OR is complete. We know that
Fsym is complete [Kil91] (both in the setting of semi-honest and malicious adversaries) in the stand-alone
setting of information-theoretically secure computation 13 iff ∃a0, a1, b0, b1 such that f(a0, b0) = f(a0, b1) =
f(a1, b0) ̸= f(a1, b1).

Theorem 3 (impossibility of static input concurrent security for symmetric complete functionalities) Let
Fsym be a functionality that is complete in the stand-alone setting and π be any protocol which implements
Fsym. Then, (assuming one-way functions) there exists a polynomial ℓ(k) and a distribution D over ℓ(k)-
tuple of inputs and an adversarial strategy A such that definition (Definition 1) of concurrent security can
not be satisfied when the inputs of the parties are drawn from D.

Our argument in the proof of the theorem above specifically relies on the fact that the output distribution
of the honest party between a real-world and an ideal-world execution can not change. The impossibility
of secure computation for complete, symmetric functionalities in the unbounded concurrent setting has
natural implications in the bounded setting as well. In particular, the number of sessions, or the “extent”
of concurrency used by the adversary in the proof of theorem above in order to arrive at a contradiction is
polynomially related to the communication complexity of the protocol. This yields the following corollary:

11 A function is said to be finite if both the domain and the range are of finite size.
12 Recall that a functionality is said to be complete if it can be used to securely realize any other functionality.
13 Note that the setting of stand-alone and information-theoretic security is used only to define the class of functions.

We deal with the concurrent and computational security of this class of functions in this work.
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Corollary 2 Let Fsym be a functionality that is complete in the stand-alone setting and π be any protocol
which implements Fsym. Let π be any protocol that securely realizes Fsym functionality under m-bounded
concurrent self-composition for any polynomial m. Then (assuming one-way functions) there exists a constant
c ≥ 0 such that for sufficiently large k, the communication complexity of (a single session of) π is at least
m
kc -bits.

Proof of Theorem 3 Since Fsym is complete, therefore ∃a0, a1, b0, b1 such that f(a0, b0) = f(a0, b1) =
f(a1, b0) ̸= f(a1, b1). For the purposes of simplifying the rest of the proof, without loss of generality, we
denote a0 as 0, a1 as 1, b0 as 0, b1 as 1, f(a0, b0) = f(a0, b1) = f(a1, b0) as 0 and f(a1, b1) as 1.

Theorem 3 follows by an application of Theorem 2. Observe that Theorem 2 requires us to prove two
properties, namely, Key Transmission and Chosen Protocol Attack. Next we prove both of them.

Key Transmission. Key Transmission property requires us to construct an adversary A1 and a distribution
D1 that generates inputs for the honest party S and auxiliary input z for the adversary A1. We start by
giving the distribution D1 that on input X0, X1 generates (u1, u2, u3, u4) (as input for the honest party
S for 4 sessions) and auxiliary input z for the adversary A1. In this case z is going to be the empty
string. Sample u1 and u3 randomly in {0, 1}. Let u2 = X0 ⊕ u1 and u4 = X1 ⊕ u3.
Our adversary A1 on input b proceeds by executing π, 4 times with inputs (1 − b, 1 − b, b, b). Let the
outputs be o1, o2, o3, o4. Finally it outputs o1⊕ o2 if b = 0 and o3⊕ o4 if b = 1. Observe that A1 on input
b (playing the role of the receiver in four executions of π) will always output Xb.
Now we need to argue that every ideal-world adversary S1 given b, z can be simulated by querying (for
only one of the values) an oracle O that holds X0 and X1 except with negligible probability given that

EXECF,S1(k, x̄, z)
c≡ EXECπ,A1(k, x̄, z). (1)

Clearly the view of ideal-world adversary S1 can always be simulated by just one query to the oracle O
unless S1 queries with the input 1 for all four sessions. In fact, even if S1 decides to use any other input
apart from b0, b1, he would learn only as much information about a0, a1 as using b1 (i.e., 1). However
we next argue that if this is the case, then the ideal-world view of S1 and the real-world view of A1 can
clearly be distinguished.
Consider an ideal-world adversary that queries with inputs 1 in all sessions with a non-negligible proba-
bility. Then the honest sender A obtains the output 1 both in session 1 and in session 3 with a probability
of 1

4 (over the random choices of u1, u3). In particular this happens when both u1 and u3 are chosen to
be 1. On the other hand in the interaction with the real adversary A1 the output of the honest party is
always 0 either in session 1 or in session 3.

Chosen Protocol Attack. Let a sender A with input bit x and receiver B with input bit y be two parties
interacting via π to evaluate the functionality Fsym. For the sake of contradiction let us assume that π
securely realizes Fsym in the concurrent setting. Let π′ be the following protocol between C and D with
inputs x′ and (y′, m̃, w) respectively. First C,D execute the same protocol as π with C as sender and D
as receiver with inputs x′ and y′ respectively. Upon the completion of the protocol π, D checks if the
output m he received is equal to the input m̃ and sends w to C if this is the case. He sends ⊥ otherwise.
The chosen protocol attack in the symmetric case proceeds as follows. Consider an adversary A2 who
corrupts the two players B,C. We will now describe a concurrent scheduling of executions of π and π′

and static input distribution D2 for A and D such that an ideal-execution of π, π′ is distinguishable from
a real execution of π, π′. Let the distribution D2 be such that it generates a random bit x for an honest
sender A of π and a random bit y for an honest receiver D of π′. Also m̃ = f(x, y) and w ← {0, 1}k is
given to D. Note that C and D execute π′ using the identities of A,B respectively.

Message Scheduling by A2. The adversary A2 schedules messages as follows. It forwards messages that
it receives from A to D (note that D acts the receiver of π in π′) and the messages it receives from D
to A. Observe that A2 will be successful in completing the protocol π between A and D. Finally, since
the output that D obtains will be f(x, y), A2 will obtain w from D. Recall also that the honest party
A, also receives an output and outputs that value. Consider any simulator S2 that interacts in a hybrid
execution with A via Fsym instead of π and also executes π′ with D. Let y′ be the input that S sends
to Fsym. Let x and y, m̃, w be the inputs of the parties A and D respectively as described above. Now
observe that the real-world adversary A2 always outputs w. There are two cases:
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1. If y ̸= y′ with a non-negligible probability then the output of the honest party A in the real world
will be non-negligibly far from the output in the ideal world (over the choices of x).

2. On the other hand if y is always (except with negligible probability) equal to y′ then this means
that the adversary extracts the input y and also outputs w. Recall that w is generated only when
D obtains an output f(x, y) that is equal to m̃. Now note that this output is 0 with a constant
probability (over choice of x, y). Finally conditioned on the fact that D outputs 0, S2’s ability to
extract D’s input contradicts the stand-alone security of π for the honest receiver D.

Now by invoking Theorem 2, we see that no concurrent secure protocol exists for the function Fsym.

4.2 The Case of Asymmetric General Functionalities

Consider a two-party functionality Fasym between a sender S, with input x and a receiver R with input
y which allows R to learn f(x, y) and at the same time S should not learn anything. More formally, let
f : X×Y → Z be any finite function14 then an asymmetric functionality Fasym is defined as, Fasym(x, y) =
(⊥, f(x, y)) where S gets no output and R gets f(x, y). We show that there does not exist a protocol π that
concurrently securely realizes any complete Fasym functionality as defined below.

We know that Fasym is complete [Kil00]15 in the setting of stand-alone two-party computation in the
presence of malicious adversaries iff ∀b0,∃b1, a0, a1 such that

f(a0, b0) = f(a1, b0) ∧ f(a0, b1) ̸= f(a1, b1).

Theorem 4 (impossibility of static input concurrent security for asymmetric complete functionalities) Let π
be any protocol which implements any Fasym functionality that is complete in the stand-alone setting. Then,
(assuming one-way functions exist) there exists a polynomial ℓ(k) and a distribution D over ℓ(k)-tuple of
inputs and an adversarial strategy A such that definition (Definition 1) of concurrent security, can not be
satisfied when the inputs of the parties are drawn from D.

The key difference when considering asymmetric functionalities as opposed to the case of symmetric func-
tionalities is that for asymmetric functionalities only one party gets the output. Observe that our arguments
in Theorem 3 specifically relied on the fact that the output distribution of either of the parties between a
real-world and ideal-world execution (note that this output contains the outputs of both the honest party
and the adversarial party) can not change. However, complete asymmetric functionalities possess a larger
structure than what is available in complete symmetric functionalities. We crucially use this additional struc-
ture in our proof. We also note that a direct analogue of Corollary 2 holds in the asymmetric setting as well.
We use the protocol of [AGJ+12] and adapt it to our setting. Our analysis also follows the spirit of the
analysis of [AGJ+12].16

Proof of Theorem 4 Since Fasym is complete, ∀b0, ∃b1, a0, a1 such that f(a0, b0) = f(a1, b0) & f(a0, b1) ̸=
f(a1, b1). This in particular implies 17 that there exists a0, a1, a2 and b0, b1 (b0, b1 are chosen to be such that
that ∀i ∈ {0, 1}, ∀y ∈ Y, y ̸= bi, ∃yx0 , yx1 such that f(yx0 , y) = f(yx1 , y)&f(yx0 , bi) ̸= f(yx1 , bi))

18 such that
the truth table of Fasym look as follows:

b0 b1
a0 A C
a1 D B
a2 A B

where A ̸= D and C ̸= B.
Theorem 4 follows by an application of Theorem 2. Observe that Theorem 2 requires us to prove two

properties, namely, Key Transmission and Chosen Protocol Attack. Next we prove both of them:

14 Recall that a function is said to be finite if both the domain and the range are of finite size.
15 Recall that a functionality is said to be complete if it can be used to securely realize any other functionality.
16 We thank Vipul Goyal and Amit Sahai for pointing us to an issue in the proof of our Theorem 4 (in an earlier

draft of the paper) and a fix to it.
17 We refer the reader to Figure 5 of [KMQ11] for more details.
18 It can be observed that such b0, b1 can always be found if Fasym is complete.
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Key Transmission. Key Transmission property requires us to construct an adversary A1 and a distribution
D1 that generates inputs for the honest party S and auxiliary input z for the adversary A1. We start by
giving the distribution D1 that on input X0, X1 ∈ {0, 1} generates (u1, u2 . . . u2k) (a sequence of inputs
for the honest party S) and auxiliary input (z0, z1) for the adversary A1.

Description of D1. For each i ∈ [2k] sample ui randomly in X (recall that X is the domain of f). Then
(u1, u2 . . . u2k) will serve as the sequence of inputs for the honest party S for 2k session.
Next we describe how the auxiliary input for the adversary A1 is defined but in order to do that we
need to define some notation. Fix any prime p ≥ |Z|. Define two injective functions N0, N1 : Z → Zp as
follows. Set N0(A) = 0, N0(D) = 1, N1(C) = 1, N1(B) = 0 and extend them to be any arbitrary injective
functions: Z → Zp. Observe that this can always be done since p ≥ |Z|. Additionally observe that by
design N0 is such that N0(f(a0, b0)) and N0(f(a1, b0)) are 0 and 1 respectively. On the other hand N1

is such that N1(f(a0, b1)) and N1(f(a1, b1)) are 1 and 0 respectively. Now define masks m0
i and m1

i as
follows:

m0
i = N0(f(ui, b0)) ·N0(f(ui+k, b0))

and
m1

i = N1(f(ui, b1)) ·N1(f(ui+k, b1)).

Finally set the auxiliary inputs for the adversary as (z0, z1) where z0 = X0 +
∑
m0

i mod p and z1 =
X1 +

∑
m1

i mod p.

Description of A1. Our adversary A1, on input c and auxiliary input (z0, z1) proceeds as follows. It
proceeds by executing π, ℓ(k) = 2k times with the input bc in all the sessions and obtains f(ui, bc) for
every i ∈ [2k]. It then computes mc

i for each i ∈ [k] as defined above. Finally it outputs zc −
∑
mc

i

mod p. Observe that A1 playing the role of R on input c will always be able to output Xc.

Simulating the idea world simulator S1 for A1. Now we need to argue that every ideal-world adversary
S1 (simulating A1), given c and (z0, z1) as inputs learns only one of the two values X0, X1 regardless of
its inputs in the 2k sessions for which it queries the ideal functionality. That is, S1 can be simulated by
a machine M19 that queries (for only one of the values) an oracle O that holds X0 and X1 except with
negligible probability given that

EXECF,S1(k, x̄, z)
c≡ EXECπ,A1(k, x̄, z)

Notation used in description of M . We start by setting up some conventions and defining some notation.
Note that S1 can make arbitrary queries to the ideal functionality for input values (v∗1 , v

∗
2 , . . . v

∗
2k) of its

choice in any arbitrary order and M must simulate that. Without loss of generality we restrict ourselves
to simulators S1 such that ∀i ∈ [k], S1 queries the ideal functionality with input v∗i before it queries the
ideal functionality with v∗i+k. Secondly we require that when S1 makes the query v∗i (for i ∈ [k]) it should
have already made the queries v∗j for all j ∈ [i − 1]. Note that any general simulator can be reduced to
a simulator that satisfies the above constraints by renaming the indices of the queries made.
We will refer to the point where the simulator makes the query v∗µk as the threshold point where 0 < µ < 1
is a specific constant (determined by |Z| – recall that |Z| is finite – and to be determined later). Looking
ahead M behaves in one way before the threshold point is reached and in another way after that.
Additionally, note that when the threshold point is reached there are at least 2k−2µk sessions for which
S1 has not queried yet. Intuitively speaking this will give M the flexibility in simulation.

Hidden Bit and its security properties. We will use the notion of hidden bit in our description ofM . Now
we describe this notion. We will then argue some properties about this notion which will be used in the
proof of indistinguishability that follows. Corresponding to each pair of masks m0

i and m1
i where i ∈ [k],

we define a bit c(i) called the hidden bit as follows. Very roughly, c(i) defines the mask among m0
i and m1

i

that is hidden from the adversary. More specifically, m0
i is hidden if c(i) = 0 and on the other hand m1

i

19 Note that here our machine M is simulating the ideal-world adversary (or the simulator) itself. In particular it
simulates the queries the simulator makes to the ideal functionality with the auxiliary input of S1 being (z0, z1).
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is hidden if c(i) = 1. Now we make this notion formal. Recall that by the completeness of f , for v = b1
there exists two inputs vx0 , vx1 such that f(vx0 , b0) ̸= f(vx1 , b0) but f(vx0 , v) = f(vx1 , v). Secondly
∀v ∈ Y \{b1} there exists two inputs vx0 , vx1 such that f(vx0 , b1) ̸= f(vx1 , b1) but f(v

x0 , v) = f(vx1 , v).
Then we let,

c(i) =


0 if v∗i = b1 and ui ∈ {v∗i

x0 , v∗i
x1} and uk+i = a1

1 if v∗i ̸= b1 and ui ∈ {v∗i
x0 , v∗i

x1} and uk+i = a0

⊥ otherwise.

(2)

The reader should keep in mind that the hidden bit (as defined above) does not depend on the choice
of the value v∗k+i that the adversary makes. Now we give some intuition behind this function. We give
intuition for the case when v∗i = b1. The other case is analogous. Observe that in this case whenever uk+i

is such that uk+i = a1, we have that N1(f(uk+i, b1)) = 0 and N0(f(uk+i, b0)) ̸= 0. This ensures that
m1

i = 0. Furthermore whenever ui ∈ {b1x0 , b1
x1}, we can expect to have some “uncertainty” (defined

precisely in the sequel) in m0
i . Next we state and prove properties about the hidden bit that we use in

our proof more formally.

Lemma 2. ∀i ∈ [k], v∗i ∈ Y , the hidden bit c(i) ∈ {0, 1} (over the random choices of ui, uk+i) with
probability at least 2

|X|2 .

Proof. ui is chosen randomly in X, therefore ui ∈ {v∗i
x0 , v∗i

x1} with probability 2
|X| . Secondly, in the

case when v∗i = b1 we have that uk+i = a1 with probability 1
|X| . Similarly in the case when v∗i ̸= b1, we

have that uk+i = a0 with probability 1
|X| . Since, ui and uk+i are sampled independently we obtain the

desired probability as 1
|X| ·

2
|X| which evaluates to 2

|X|2 .

Lemma 3. ∀i ∈ [k], v∗i ∈ Y , ∃ a constant τ > 0, such that ∀z ∈ Zp,Pr[m
c(i)
i = z|c(i) ∈ {0, 1}] < 1− τ ,

where the probability is taken over the random choices of ui, uk+i.

Proof. Consider the case when v∗i is such that that v∗i = b1 (the other case when v∗i ̸= b1 is symmetric).
Since we are given that c(i) ∈ {0, 1} and because we are in the case that v∗i = b1, by observation, it
follows that c(i) = 0. This in particular implies that uk+i = a1. This implies that N1(f(uk+i, b1)) = 0,
m1

i = 0 and N0(f(uk+i, b0)) ̸= 0. Then we have that g = N0(f(v
∗
i
x0 , b0)) and h = N0(f(v

∗
i
x1 , b0)) are

such that g ̸= h. Additionally we have that Pr[m
c(i)
i = g|(c(i) ∈ {0, 1}) ∧ (v∗i = b1)] =

1
2 and similarly

Pr[m
c(i)
i = h|(c(i) ∈ {0, 1}) ∧ (v∗i = b1)] =

1
2 . Since m

c(i)
i could take two different values in Zp, we have

that with τ set to 1
4 the lemma holds. Note that the proof in the other case in which v∗i ̸= b1 follows in

an analogous manner.

Description of M . M proceeds as follows:

1. M starts by setting (z0, z1) to random values in Zp and executing S1 on this input.

2. Before Threshold Point is reached : M responds to every query v∗i for i ∈ [2k] of S1 (for the ideal
functionality Fasym) by first sampling ui randomly in |X| and responding with f(ui, v

∗
i ).

3. When Threshold Point is reached : Now M proceeds by computing c = majority{c(1), c(2), . . . c(µk)}
(breaking ties arbitrarily and ignoring the ⊥ values). M obtains Xc̄ from O and randomly samples

all the values of ui, that have not been sampled so far, subject to the condition
∑k

i=1m
c̄
i = zc̄ −Xc̄.

This sampling is performed via rejection sampling. More specifically,M simply chooses the remaining
values of ui at random as long as they are suitable and if the constraint is not satisfied it rejects20

and re-samples.

4. M simply responds to any remaining queries from S1 by using the values of ui sampled in the previous
step.

20 Observe that the M runs in expected polynomial time as a randomly sampled values of ui will be suitable with
probability at least 1

|X| .
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Indistinguishability. Next we will argue by a sequence of hybrids that the view of S1 when interacting with
the ideal functionality in the real experiment is indistinguishable from the view of S1 when interacting
with M that has access to O. Informally, our main tool is going to be the presence of sufficient entropy
in the masks mb

i , b ∈ {0, 1}, i ∈ [k]. We start by stating a lemma about independent random variables in
Zp. Roughly speaking, suppose we have k independent random variables over Zp such that each variable
has some uncertainty, i.e., each variable does not take any fixed value. Then, the sum of sufficiently many
such random variables is close to uniform. Formally,

Lemma 4. Let α1, α2, . . . , αk be k independent random variables such that ∃τ > 0 such that, for all i,
for all z ∈ Zp, Pr[αi = z] < 1 − τ . Then α =

∑k
i=1 αi mod p is a uniformly distributed in Zp except

with negligible probability (in k).

Proof. The proof of the lemma, a generalization of the XOR lemma (see Lemma 1.1 from Goldreich
[Gol11]) may be obtained by an application of Lemma 4.2 in Page 10 of [Rao07]. A full proof may be
found in Appendix D.

Now we give our hybrids.

- Hybrid0 : This hybrid corresponds to the honest simulation of S1. This involves generating honest
sender inputs values u1, . . . u2k and the auxiliary information for S1, z0, z1 according to the distri-
bution D1(X0, X1). At this point S1 can make arbitrary queries to the ideal functionality for input
values (v∗1 , v

∗
2 , . . . v

∗
2k) of its choice in any arbitrary order and we answer these queries using honest

sender inputs values previously generated. Recall that without loss of generality we restricted our-
selves to S1 such that ∀i ∈ [k], S1 queries the ideal functionality with input v∗i before it queries the
ideal functionality with v∗i+k. Secondly we require that when S1 makes the query v∗i (for i ∈ [k]) it
should have already made the queries v∗j for all j ∈ [i− 1].

- Hybrid1 : In this hybrid we change how the sampling operations are performed.
1. M starts by setting (z0, z1) to random values in Zp and executing S1 on this input.
2. Before Threshold Point is reached : We respond to every query v∗i for i ∈ [2k] of S1 (for the ideal

functionality Fasym) by first sampling ui randomly in |X| and responding with f(ui, v
∗
i ).

3. When Threshold Point is reached : Randomly sample uis, that have not been sampled so far,
subject to the condition

∑k
i=1m

0
i = z0−X0 and

∑k
i=1m

1
i = z1−X1. This sampling is performed

via rejection sampling. More specifically, M simply chooses the remaining uis at random as long
as they are suitable and if the constraints are not satisfied it rejects and re-samples.

4. M simply responds to any remaining queries from S1 by using the values of ui sampled in the
previous step.

Indistinguishability of Hybrid0 and Hybrid1. It suffices to prove that joint distribution of
∑k

i=µk+1m
0
i

and
∑k

i=µk+1m
1
i is close to uniform.

We start by observing that over the random choice of ui, uk+i for i ∈ {µk + 1, . . . , k},
∑k

i=µk+1m
1
i

is distributed uniformly. Now we need to argue given
∑k

i=µk+1m
1
i ,

∑k
i=µk+1m

0
i is still uniform.

For each i ∈ {µk + 1, . . . , k}, invoking Lemma 2 for v∗i = b1 we have that Pr[c(i) = 0] ≥ 2
|X|2 .

Therefore we have that sufficiently many (i.e. close to 2k
|X|2 ) choices of i such that c(i) = 0. Let the

set of these values of i be I.
Now for each i ∈ I, invoking Lemma 3 for v∗i = b1 it can be argued that, ∃ a constant τ > 0 such
that ∀z ∈ Zp Pr[m

0
i = z] < 1 − τ). Hence, we have that m0

i is an uncertain random variable in Zp

(i.e. a random variable which satisfies the constrains of Lemma 4). The sum of such independent
random variables is close to uniform by Lemma 4.

- Hybrid2 : This hybrid is same as Hybrid1 except in the way sampling is done when the threshold
point is reached. When the threshold point is reached we evaluate c = majority{c(1), c(2), . . . c(µk)}
(breaking ties arbitrarily and ignoring the ⊥ values). We then obtain X1−c from O and randomly

sample all the values of ui, that have not been sampled so far, subject to the condition
∑k

i=1m
1−c
i =

z1−c −X1−c. In other words we drop the additional constraint that
∑k

i=1m
c
i = zc −Xc. Just like in

the previous hybrid, this sampling is also performed via rejection sampling.
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Indistinguishability of Hybrid1 and Hybrid2. It suffices to prove that
∑µk

i=1m
c
i is close to uniform.

For each i ∈ [µk], invoking Lemma 2 for the adversary’s query v∗i we have that Pr[c(i) ∈ {0, 1}] ≥ 2
|X|2 .

Therefore we have that sufficiently many (i.e. close to 2k
|X|2 ) choices of i we have that c(i) ∈ {0, 1}.

Additionally we know that c is the majority of c(i) for i ∈ [µk]. We consider the case when c = 0.
The other case when c = 1 follows in an analogous manner. Let the set of these values of i for which
c(i) = 0 be I.
Now for each i ∈ I, invoking Lemma 3 (not that v∗i = b1 for i ∈ I) it can be argued that, ∃ a
constant τ > 0 such that ∀z ∈ Zp Pr[m

0
i = z] < 1 − τ). Hence, we have that m0

i is an uncertain
random variable in Zp (i.e. a random variable which satisfies the constrains of Lemma 4). The sum
of such independent random variables is close to uniform by Lemma 4.

Chosen Protocol Attack. Let a sender A with input bit x and receiver B with input bit y be two parties
interacting via π to evaluate the functionality Fasym. For the sake of contradiction let us assume that
π securely realizes Fasym in the concurrent setting. Let π′ be the following protocol between C and D
with inputs x′ and (y′, m̃, w) respectively. First C,D execute the same protocol as π with C as sender
and D as receiver with inputs x′ and y′ respectively. Upon the completion of the protocol π, D checks if
the output m he received is equal to the input m̃ and sends w to C in this case. He sends ⊥ otherwise.
The chosen protocol attack in the asymmetric case proceeds as follows. Consider an adversary A2 who
corrupts the two players B,C. We will now describe a concurrent scheduling of executions of π and π′

and static input distribution D2 for A and D such that an ideal-execution of π, π′ is distinguishable from
a real execution of π, π′. Let the distribution D2 be such that it generates a random value x in {0, 1, 2}
for an honest sender A of π and a random bit y for an honest receiver D of π′. Also m̃ = f(x, y) and
w ← {0, 1}k is given to D. Note that C and D execute π′ using the identities of A,B respectively.

Message Scheduling by A2. The adversary A2 schedules messages as follows. It forwards messages that
it receives from A to D (note that D acts the receiver of π in π′) and the messages it receives from D
to A. Observe that A2 will be successful in completing the protocol π between A and D. Finally, since
the output that D obtains will be f(x, y), A2 will obtain w from D. Recall that the honest party A does
not get any output. Consider any simulator S2 that interacts in a hybrid execution with A via Fasym

instead of π and also executes π′ with D. Let y′ be the input that S sends to Fasym. Let x and y, m̃, w
be the inputs of the parties A and D respectively as described above. Now observe that the real-world
adversary A2 always outputs w. There are two cases:

1. If y ̸= y′ with a non-negligible probability then with a probability of at least 1
3 S2 will not be able

to provide the correct output to A2 and hence will not be able to output w.
2. On the other hand if y is always (except with negligible probability) equal to y′ then this means

that the adversary extracts the input y and also outputs w. Recall that w is generated only when
D obtains an output f(x, y) equal to m̃. Now note that this output is 0 with a constant probability
(over the choice of x, y). Finally conditioned on the fact that D outputs 0, S2’s ability to extract D’s
input contradicts the stand-alone security of π for the honest receiver D.

Now by invoking Theorem 2, we see that no concurrent secure protocol exists for the function Fasym.

5 Impossibility of Stateless Two-Party Computation

In this section, we show the existence of a deterministic two-party functionality for which there does not
exist any stateless secure protocol. We start by giving some intuition about our impossibility result. The
key observation behind our impossibility result is that even a deterministic adversary in interaction with an
honest party can come up with honest looking messages on behalf of an adversarial party by obtaining them
from other honest interactions. However, loosely speaking, since these messages are obtained from other
honest parties, the simulator only has black-box access to the source of these messages. The simulator does
have non-black box access to the adversary itself, however, it is essentially useless because the adversary acts
just like a “message forwarding machine.” Therefore simulator essentially only has black-box access to the
adversary which alone of course does not help the simulator because a real-world adversary can also reset
honest parties.
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We refer the reader to Appendix A.3 for the definition of stateless two-party computation that we
use in our paper. This is a simplified version of the definition of Goyal and Maji [GM11b]. We note that
this definition is slightly stronger than the definition used in the full version [GM11a]. We stress that our
impossibility result is only for the original variant [GM11b]. In particular the original notion considers
computation among stateless parties in a concurrent setting. Finally we note that our impossibility result
crucially relies on the fact that we are in the concurrent setting.

Functionalities considered. Before we move on to a formal claim, we introduce description of some notation
that will be useful in this work. Let us start by describing a general functionality. Let Funiversal : ({0, 1}p1(k)×
{0, 1}q1(k))× ({0, 1}p2(k)×{0, 1}q2(k))→ ({0, 1}r(k)×{0, 1}r(k)) be the following two-party (between P1 and
P2) functionality, Funiversal((C, x), (C

′, y)), where Funiversal obtains the input (C, x) from P1 and (C ′, y)
from P2. The functionality outputs ⊥ to both P1 and P2 if C ̸= C ′ and it outputs C(x, y) to both P1 and
P2 otherwise, where p1(·), q1(·), p2(·), q2(·), r(·) are (not necessarily fixed) polynomials. We stress that we
consider a functionality which outputs the same value to both parties. This is consistent with the definition
of [GM11a]. Let π be a protocol that resettably securely realizes the functionality Funiversal. Next we describe
two circuits that will be useful in our context.

Equality testing: Let Ceq(x, y) be a circuit that outputs 1 if x = y and 0, otherwise. In an execution of
the ideal functionality Funiversal, in which the parties P1 and P2 input (Ceq, x) and (Ceq, y) respectively
corresponds to the equality testing functionality.

Next message function of P2: Let Cπ be the next message function of P2 in the protocol π. In other
words, Cπ is a non-interactive algorithm that gets as an input, the input and random tape of P2 and the
history of messages sent by P1, and outputs the next message that P2 would send in a real execution
of π in which it sees this message history. More formally, Cπ takes as input a sequence of messages
(h1, h2 . . . ht) and P2’s input (C, y) and random coins r and generates the next message of P2, i.e. the
message that P2 sends in the execution with the history h1, h2 . . . ht.

Theorem 5 (impossibility of static input resettability) There does not exist any stateless secure protocol (as
per Definition 3) for the Funiversal functionality. (unconditionally)

For the sake of contradiction, assume that there exists a protocol π, with round complexity r, that resettably
securely realizes the functionality Funiversal. We give an outline of the proof before giving all the details.
1. We consider the “first scenario” of two parties P1 and P2 executing π. In this setting we consider an

adversary that corrupts P2 and interacts honestly with P1, in the first incarnation. However, it does not
generate the honest responses on its own. In fact it obtains these responses from P1 itself (via different
incarnations of P1). In this setting, as per the definition of resettability there must exist a simulator
(plausibly non-black box in this adversary), which can “extract” the input used by the adversary, on
behalf of P2, in interaction with the first incarnation of P1.

2. Next we consider the “second scenario” of two parties P1 and P2 executing π. In this setting we construct
a real-world adversary that corrupts P1 and interacts with an honest P2. This adversary internally uses
the ideal-world adversary constructed in the “first scenario” to extract the input of P2. Finally, we
observe that no ideal-world adversary in this “second scenario” can achieve the same, thereby reaching
a contradiction.

Construction of the ideal-world adversary in the first scenario: First, we consider a setting of two parties
P1 and P2. In this setting we will consider two incarnations of each P1 and P2. Since we are in the setting
of static inputs we need to specify the inputs for all incarnations of both parties. Let the input of P1 in
the first incarnation be (Ceq, x) and the input in the second incarnation be (Cπ, ((Ceq, x), r)). On the other
hand, the input of P2 in the first incarnation be (Ceq, y) and the input in the second incarnation be (Cπ,⊥).
For notational convenience, we denote the first incarnation of P1 with input (Ceq, x) by A and the second
incarnation of P1 with input (Cπ, ((Ceq, x), r)) by B. Also note that the inputs of A and B are correlated in
the fact that they use the same x which is a k bit random string.

In this setting, we start by describing a specific deterministic real-world adversary M that corrupts P2.
In both executions of π, with A and B,M ignores its inputs and plays the role of P2. Note that the execution
with A implements the “equality checking” circuit while the execution with B implements the “next-message
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function for P2” circuit. In this setting our adversary M interacts honestly with A (without ever resetting
it). However, it does not generate the honest responses on its own. In fact it obtains these responses from
B. Note that M needs to execute a complete execution of π (with B) for each message that it needs to send
to A. Our adversary M can achieve this by resetting B. Next we describe this more formally.

Recall that π is an r round protocol. For every i ∈ {1, 2, . . . , r}, on receiving hi from A, M proceeds as
follows:

- Let h1, h2, . . . , hi be the messages received from A, so far. M resets B and starts a new execution of π
with inputs (Cπ, (h1, h2, . . . , hi)). Recall the input of B is (Cπ, (Ceq, (x, r))). The output M obtains in
the execution corresponds to the message Cπ((h1, h2, . . . , hi), (Ceq, x), r). M sends this message to A.

From the above description it is clear that for each i ∈ [r] the message sent by M to A is same as the
message an honest P2 with input (Ceq, x) and random coins r would have sent. Observe that at the end of
this interaction in the real world A outputs 1 (by correctness of the protocol) which would be included in
the output of the real-world experiment.

By assumption, the protocol π is resettably secure, and therefore, there exists an ideal-world adversary
SM 21 such that the output distributions of the real-world experiment and the ideal-world experiment are
computationally indistinguishable. Recall that the ideal-world adversary SM interacts with ideal functional-
ities implementing Funiversal. We will denote the functionality corresponding to the interaction with A by
F1 and the functionality corresponding to the interaction with B by F2.
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As already pointed out, the output of A in the real world is always 1. Additionally, for A to output the
value 1 in the ideal world, the simulator SM must present the “correct value” x to the F1. Furthermore F1

responds by sending 1 to SM , when the “correct value” of x is sent to F1. It is easy to see we can modify
SM to construct another ideal-world adversary S ′M (that is also non-black box in M) that interacts in the
same setting and always (except with negligible probability) outputs the value x.

Construction of the real-world adversary in the second scenario: Now we consider a new setting. In this
setting we consider a single execution of π between two parties P1 and P2. Recall that we are in the setting
of static inputs and we need to specify the inputs for P1 and P2. We will only consider a single incarnation for
both P1 and P2. Let the inputs for P1 and P2 be (Ceq, y) and (Ceq, x), respectively. In this setting we consider
a real-world adversary A that corrupts P1 and internally uses the ideal-world adversary S ′M constructed in
the first scenario and outputs x (with a noticeable probability). Let the expected running time of S ′M be τ .
Recall that S ′M expects to interact with two ideal functionalities - F1 and F2. Furthermore, S ′M can query
these functionalities multiple times (with different query inputs). Our adversary A deals with communication
in the following manner.

Communication with F2: On receiving a query of the form (h1, h2, . . . ht) sent by S ′M to F2, A resets the
honest party P2 (to the initial state) and feeds it with the inputs h1, h2, . . . ht. Let α be the response of
P2 when these inputs are sent to P2. A forwards α to S ′M . We stress that we crucially use the fact that
a real-world adversary can reset the honest party P2 in simulating the view of S ′M .

Communication with F1: Our adversary A samples a random number i ∈ [2 · τ ]. Let the i-th query sent
by the adversary to the ideal functionality F1 be qi. On receiving a query qj (such that j < i) sent by
S ′M to F1, A responds with 0. Finally, on receiving i-th query, qi, A aborts everything and outputs qi.

Observe that S ′M make less than 2τ queries with a probability of at least 1
2 . Furthermore, it always (except

with negligible probability) queries F1 for the “correct” x such that all the queries made before this query
do not match x. And the ideal functionality will continue to answer with 0 in this case. So, we can conclude
that A outputs the “correct” x with probability at least 1

4τ . Finally it is not hard to see that no ideal-world
adversary can output x (for large enough x) in the ideal world. This concludes the proof.

21 We use the sub-script M to stress that the simulator S could potentially make non-black box use of the adversary
M .

22 Note that the two functionalities represent the same ideal functionality. This separation is done just for the sake
of simplicity of exposition. A and B represent the two incarnation of P1. Furthermore, F1 and F2 represent the
separations of Funiversal allowing for SM to interact with A to B.
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A Preliminaries

In this section we define two-party concurrent computation (both in the unbounded and bounded setting)
and resettable two-party computation more formally.

A.1 Concurrent Self Composition

Towards the goal of defining concurrent composition, we first describe the ideal world model process; next
we describe the real process; and finally present the definition.

Concurrent execution in the ideal world. We now consider an ideal execution with an adversary S who has
auxiliary input z and controls one of the parties. We will describe the execution in the setting in which the
adversary controls P2. The execution in the setting in which the adversary controls P1 proceeds in a similar
manner. Execution in the setting in which P2 is corrupted proceeds as follows:

Inputs: Party P1 receives an input vector x̄ and party P2 receives an input vector ȳ. Let |x| = |y| = ℓ
denote the number of concurrent sessions of the protocol.

Session initiation: The adversary initiates a new session by sending a start-session message to the trusted
party. The trusted party then sends (start-session, i) to the honest party, where i) is the index of the
session (i.e., this is the i-th session to be started).

Honest party sends input to trusted party: Upon receiving (start-session, i) from the trusted party,
the honest party P1 sends its i-th input xi to the trusted party as a message (i, xi).

Adversary sends input to the trusted party and receives output: Whenever the adversary wishes,
it may send a message (i, yi) to the trusted party, for any yi of its choice. Upon sending this pair, it
receives back (i, f2(xi, yi)). (If the i start-session message has not yet been sent to the trusted party, then
(i, yi) message from the adversary is ignored. In addition, once an output indexed by i has already been
sent to the adversary, all further input messages for i are ignored by the trusted party.)

Adversary instructs trusted party to answer honest party: When the adversary sends a message of
the type (send-output, i) to the trusted party, the trusted party sends (i, f1(xi, yi)) to the honest party
P1. (If (i, xi) and (i, yi) have not yet been received by the trusted party, then this (send-output, i) message
is ignored.)

Outputs: The honest party P1 always outputs the vector (f1(xi1 , yi1), f1(xi2 , yi2), · · · ) of outputs that it
received from the trusted party. Formally, whenever it receives an output, it writes it to its output-tape.
Thus, the outputs do not appear in ascending order according to the session numbers, but rather in
the order that they are received. The adversary may output an arbitrary (probabilistic polynomial-time
computable) function of its auxiliary input z, the initial input y, and the outputs obtained from the
trusted party.
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Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ be a functionality, and let S be a non-uniform probabilistic
polynomial-time machine (representing the ideal-world adversary). Then the ideal execution of f (with secu-
rity parameter k, initial inputs (x̄, ȳ) and auxiliary input z to S), denoted by EXECf,S(k, x̄, ȳ, z) is denoted
as the output pair of the honest party and the adversary S from the above execution.

Execution in the real world. We next consider the real world in which a real two-party protocol is executed
(and there exists no trusted third party). Formally, a two-party protocol ρ = (ρ1, ρ2) is defined by two
sets of instructions ρ1 and ρ2 (overloading notation) for parties P1 and P2, respectively. A protocol is said
to be polynomial-time if the running-time of both ρ1 and ρ2 in a single execution is bounded by a fixed
polynomial in the security parameter k, irrespective of the total number of sessions executed. Let f be as
above and let ρ be a probabilistic polynomial-time two-party protocol for computing f . In addition, let A
be a nonuniform probabilistic polynomial-time adversary (with non-uniform input z) that controls either P1

or P2. We describe the case in which the party P2 is corrupted. The setting in which party P1 is corrupted
proceeds in a similar manner. The adversary A starts i-th session by sending a start-session message to the
honest party, who uses his input xi and follows the protocol instructions ρ1 while the adversary A follows
any arbitrary polynomial time strategy. Upon the conclusion of this execution the honest party writes its
output from the execution on its output-tape while the adversary A may output any arbitrary polynomial
time function of all the values it receives in the execution and its random coins. The parties run concurrent
executions of the protocol and the scheduling of all messages throughout the executions is controlled by the
adversary. That is, the execution proceeds as follows. The adversary sends a message of the form (i, α) to
the honest party. The honest party then adds the message α to the view of its i-th execution of ρ and replies
according to the instructions of ρ and this view. The adversary continues by sending another message (j, β),
and so on.

Then, the real-world concurrent execution of ρ (with security parameter k, initial inputs (x̄, ȳ), and
auxiliary input z to the adversary A), denoted EXECρ,A(k, x̄, ȳ, z), is defined as the output pair of the
honest party and A, resulting from the above process.

Security as emulation of a real-world execution in the ideal world. Having defined the ideal and real worlds, we
can now define security of protocols. Loosely speaking, a protocol is secure if for every real-world adversary A,
there exists an ideal-world adversary S such that for all initial inputs x̄, ȳ, the outcome of an ideal execution
with S is computationally indistinguishable from the outcome of a real protocol execution with A. Notice
that S does not know the initial input of the honest party. We now present a formal definition.

Definition 1 (security under concurrent self composition): Let f and ρ be as above. Protocol ρ is said
to securely compute f under concurrent self composition if for every real-world non-uniform probabilistic
polynomial-time adversary A controlling party Pi (i ∈ {1, 2}) there exists an ideal-world non-uniform prob-
abilistic polynomial-time adversary S controlling Pi such that{

EXECf,S(k, x̄, ȳ, z)

}
k∈N;z∈{0,1}∗;x̄,ȳ∈({0,1}∗)k

c≡
{
EXECρ,A(k, x̄, ȳ, z)

}
k∈N;z∈{0,1}∗;x̄,ȳ∈({0,1}∗)k

A.2 Bounded Concurrency

Just like unbounded concurrent self composition, m-bounded concurrent self composition can be defined by
comparing what an adversary can do in the real-world execution of the protocol to what it could have done
in an ideal scenario. We will now elaborate on the differences.

We note that the definitions of the ideal world is the same for unbounded and m-bounded concurrency.
However, in the real world in the setting of m-bounded concurrency, we restrict how the the adversary can
schedule its messages. More specifically, the adversary must fulfill the following condition: for every execution
i, from the time that the i-th execution begins until the time that it ends, messages from at most m other
executions can be sent. (Formally, view the schedule as the ordered series of messages of the form (index,
message) that are sent by the adversary. Then, in the interval between the beginning and termination of
any given execution, the number of different indices can be at most m.) We note that this definition of
concurrency covers the case that m executions are run simultaneously. However, it also includes a more
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general case where many more than m executions take place, but each execution overlaps with at most m
other executions. In this setting, the value of m is fixed ahead of time, and the protocol design may depend
on the choice of m. We denote the output of the adversary and honest party in the setting of m-bounded
concurrency by REALmρ,A(k, x̄, ȳ, z).

Definition 2 (security under m-bounded concurrent self composition): Let f and ρ be as above. Also, let
m = m(k) be a fixed polynomial. Protocol ρ is said to securely compute f under m-bounded concurrent self
composition if for every real-world non-uniform probabilistic polynomial-time adversary A controlling party
Pi (i ∈ {1, 2}) there exists an ideal-world non-uniform probabilistic polynomial-time adversary S controlling
Pi such that{

EXECf,S(k, x̄, ȳ, z)

}
k∈N;z∈{0,1}∗;x̄,ȳ∈({0,1}∗)k

c≡
{
EXECm

ρ,A(k, x̄, ȳ, z)

}
k∈N;z∈{0,1}∗;x̄,ȳ∈({0,1}∗)k

A.3 Stateless Two-Party Computation

Just like unbounded concurrent self composition, stateless two-party computation can be defined by com-
paring what an adversary can do in the real-world execution of the protocol to what it could have done in an
ideal scenario except that the capabilities of the adversary in the two cases vary significantly. We will now
elaborate on this. We consider without loss of generality a simplified version of the definition of Goyal and
Maji [GM11b]. Since in this model the ideal adversary can reset the functionality, we will often refer to the
model as resettably secure computation.

We consider 2-parties P1 and P2 trying to compute a function of heir local inputs using an interactive
protocol. The l-th incarnation of a party P1 is defined by its input xl and random tape ψl. Similarly the l-th
incarnation of a party P2 is defined by its input yl and random tape ωl. Let X̄ be the vector of input and
random tape pairs for party P1; for all incarnations. Similarly, Ȳ be the vector of input and random tape
pairs for party P2. We assume the setting of static inputs. More specifically the inputs for all the incarnations
used in the protocol are fixed before the protocol begins. Every incarnation of a party has a random tape
independently chosen but when an adversary resets an incarnation, it reuses the same random tape. An
adversary controls either P1 or P2, which is statically corrupted.

Execution in the ideal world. We now consider an ideal execution with an adversary S who has auxiliary
input z and controls one of the parties. We will describe the execution in the setting in which the adversary
controls P2. The execution in the setting in which the adversary controls P1 proceeds in a similar manner.
Execution in the setting in which P2 is corrupted proceeds as follows.

Inputs: Party P1 receives an input a random tape and vector X̄ and party P2 receives an input vector Ȳ .
Select Incarnation: The adversary S initiates a new session by selecting the incarnation23 for P1 and

sending it to the ideal functionality. The trusted party then sends (start-session, l) to the honest party,
where l is the index of the incarnation (i.e., this is the l-th incarnation to be started).

Computation: Upon receiving (start-session, l) from the trusted party, the honest party P1 sends the input
corresponding to its l-th incarnation xl to the trusted party as a message (l, xl). The adversary may send
any input (l, yl) to the trusted party for any yl of its choice. The trusted party computes the function f
on the inputs of the two parties and sends f2(xl, yl) to P2.

Adversary instructs trusted party to answer honest party: When the adversary sends a message of
the type (send-output, l) to the trusted party, the trusted party sends (l, f1(xl, yl)) to the honest party
P1. (If (l, xl) and (l, yl) have not yet been received by the trusted party, then this (send-output, l) message
is ignored.)

Reset: The adversary can reset the ideal party P1 at point of time. When the adversary sends the (reset,
P1) messages to the ideal functionality in the ideal world, then the trusted party forwards this to P1. At
this point P1 returns to its first stage where the adversary can select any incarnation for it.

Outputs: The honest party P1 always outputs the output that it received from the trusted party. The
adversary may output an arbitrary (probabilistic polynomial-time computable) function of its auxiliary
input z, the initial input y, and the outputs obtained from the trusted party.

23 An incarnation is a stateless device implementing P1.
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Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ be a functionality, and let S be a non-uniform probabilistic
polynomial time machine (representing the ideal-world adversary). Then the ideal execution of f (with security
parameter k, initial inputs (X̄, Ȳ ) and auxiliary input z to S), denoted by Reset-IDEALf,S(k, X̄, Ȳ , z) is
denoted as the output pair of the honest party and the adversary S from the above execution.

Execution in the real world. We next consider the real world in which a real two-party protocol is executed
(and there exists no trusted third party). Let A be a nonuniform probabilistic polynomial-time adversary
A (with non-uniform input z) that controls either P1 or P2. We describe the case in which the party P2

is corrupted. The setting in which party P1 is corrupted proceeds in a similar manner. The adversary A
interacts with the the honest party, who uses his input xl and randomness rl in the l-th incarnation. The
adversary can choose the incarnation of the P1 it interacts with. In this interaction P1 follows the protocol
specifications honestly while the adversary A follows any arbitrary polynomial time strategy. Furthermore,
the adversary can reset P1 and execute the protocol again with a (possibly new) incarnation of its choice.
Upon the conclusion of this execution the honest party writes its output from the execution on its output-
tape while the adversary A may output any arbitrary polynomial time function of all the values it receives
in the execution and its random coins.

Then, the real-world execution of ρ (with security parameter k, initial inputs (x̄, ȳ), and auxiliary input
z to the adversary A), denoted Reset-REALρ,A(k, x̄, ȳ, z), is defined as the output pair of the honest party
and A, resulting from the above process.

Security as emulation of a real-world execution in the ideal world. Having defined the ideal and real worlds,
we can now define security of protocols. Loosely speaking, a protocol is secure if for every real-world adversary
A, there exists an ideal model adversary S such that for all initial inputs X̄, Ȳ , the outcome of an ideal
execution with S is computationally indistinguishable from the outcome of a real protocol execution with
A. Notice that S does not know the initial input of the honest party. We now present the definition.

Definition 3 (security under reset attacks): Let f and ρ be as above. Protocol ρ is said to resettably securely
compute f if for every real-world non-uniform probabilistic polynomial-time adversary A controlling party
Pi (i ∈ {1, 2}) there exists an ideal-world non-uniform probabilistic polynomial-time adversary S controlling
Pi such that{
Reset-IDEALf,S(k, x̄, ȳ, z)

}
k∈N;z∈{0,1}∗;x̄,ȳ∈({0,1}∗)k

c≡
{
Reset-REALρ,A(k, x̄, ȳ, z)

}
k∈N;z∈{0,1}∗;x̄,ȳ∈({0,1}∗)k

B Garbled Circuits

In this section we briefly recall the notion and constructions for garbled circuits that we need in this paper.
Garbled circuits were first constructed by Yao[Yao86] and have since then found numerous uses in secure
multi-party computation and elsewhere. A vast body of literature explaining this notion exists. However since
our construction relies heavily on garbled circuits in order to clarify the notation that we use in this paper
we present an informal overview. We assume that the reader is familiar with the notion and constructions.
We first start by considering the semi-honest (or, honest-but-curious) case and then extend the construction
to the malicious case.

B.1 Garbled Circuits for Semi-Honest Adversaries

A formal simulation based security definition for garbled circuit construction in the case of an honest but
curious adversary is presented in [HK07,KO04]. Some parts of the following text have been taken verbatim
from [HK07,KO04].

Let Fk : {0, 1}k → {0, 1}k denote any polynomial-time computable function24. Note that a garbled circuit
only hide the nature of a gate used in a circuit and does not hide the number of gates used etc. However this
can be achieved by using some form of canonicalization. This is fairly standard when using garbled circuits
and we refer the reader to Section 4 of [GHV10] for more discussion. Formally,

24 The garbled circuit technique also extends to functions whose input and output are polynomial in k. However for
simplicity of exposition we limit ourselves to functions with input and output lengths exactly k.
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Definition 4 (garbled circuits) Let Fk : {0, 1}k → {0, 1}k be the description of any function as above. Yao
[Yao86]’s garbled circuit technique is a pair of algorithms (Yao1, Yao2) such that,

– Yao1 is a randomized algorithm which takes as input Fk and outputs a tuple (GC,Z) where GC is a
garbled circuit and Z = {Zi,σ}i∈{1,...,k},σ∈{0,1} are keys corresponding to input wires.

– Yao2 is a deterministic algorithm which takes as input a garbled circuit, GC and keys corresponding to
an input x. More specifically it takes as input a set {Zi,xi}i∈{1,...,k} (denoted by Zx) of keys where xi is

the ith bit of x. It outputs an invalid symbol ⊥ or a value v ∈ {0, 1}k.
– Correctness: For any function Fk, let (GC,Z)← Yao1(Fk), and for any input x, let v = Yao2(GC,Zx).

Then we require that v = Fk(x).
– Privacy (honest-but-curious case): ∃ a PPT simulator YaoSim such that for all PPT adversaries A

with auxiliary input z,{
(GC,Z)← Yao1(Fk) : A(k, z, x, (GC,Zx))

}
k∈N,z∈{0,1}∗,x∈{0,1}k

c≡
{
v = Fk(x) : A(k, z, x, YaoSim(k, x, v))

}
k∈N,z∈{0,1}∗,x∈{0,1}k

B.2 Garbled Circuit, Malicious Adversaries

Although garbled circuits were designed for the honest-but-curious case, since [GMR89], they have been
used in the presence of malicious adversaries in the interactive setting via compilations with zero-knowledge
proofs. [GKR08,BPS06] consider garbled circuit constructions secure against a malicious adversary. In the
following for the sake of completeness we provide a formal definition of security of garbled circuits in the
malicious, adaptive setting and provide a construction for the same. The construction follows from the work
of [GKR08]. In our construction we sill assume a garbled circuit constructions secure in the semi-honest
setting (according to Definition 4). Some of the following text has been taken verbatim from [GKR08].

Before we get into details we highlight the main concern. A malicious adversary evaluating the garbled
circuits can be adaptive in its choice of the input x. In particular, a malicious adversary may choose the input
(and thus the keys it obtains) adaptively based on the actual circuit (and also the keys so far). Therefore
our simulator needs to “hold off” on embedding the output at the time of the generation of the garbled
circuit. Goldwasser et. al. [GKR08] consider such a setting. They deal with this problem by providing the
adversary with a garbled circuit that computes masked functions. The unmasking values are provided along
with the keys. More specifically, a simulator can be constructed which “waits” until all the input keys have
been queried (or specified). Finally when all the input bits have been specified the simulator can manipulate
the output masks based on the output that it needs to world.

Next we formalize the notion of garbled circuits in the setting of malicious adversaries below by using
the simulation based definition for the functionality F (that can be invoked n times) to evaluate functions
F1, F2 . . . Fn.

Reactive functionality F . A reactive functionality F consists of a sequence of functions F1, F2, . . . , Fn :
{0, 1}k → {0, 1}k.25 On the ith invocation of the functionality F function Fi is evaluated and the output of
Fi can potentially depend on the inputs provided to functions Fi’s for all 1 ≤ j < i. We remark that in our
setting we will use the next message function of a party (in an execution of an n round protocol) and model
it as a functionality F = (F1, F2, . . . , Fn).

Towards the goal of defining security, we first describe the ideal world process; next we describe the real
process; and finally present the definition.

Ideal execution of a reactive functionality F . Consider an ideal execution of an adversary S on input x̄ and
auxiliary input z interacting with the ideal functionality F . Let F = (F1, F2, . . . , Fn). Execution proceeds as
follows,

– Input: S receives an input x̄ = (x1, . . . , xn). It is also provided with an auxiliary input z.

25 As in the case of semi-honest setting technique extends to functions whose input and output are polynomial in k.
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– Evaluation: For each i ∈ [n], S sends as input x′i and obtains a response Fi(x
′
i), where as mentioned

before, Fi can additionally depend on all of the inputs x′j , ∀1 ≤ j < i.
– Output: S outputs any arbitrary probabilistic polynomial-time function of its view. LetEXECF,S(k, x̄, z)

denote the output distribution of the ideal-world adversary S in interaction with the ideal functionality
F .

Real-world execution of garbled circuits by an adversary. Let F = (F1, . . . , Fn) be a reactive functionality
as above and let (Yao1, Yao2) be as above. A real-world evaluation of F using garbled circuits uses a pair
algorithms (Yao1, Yao2) such that,

– Yao1: Yao1 on input a description of a reactive functionality F = (F1, . . . , Fn) outputs a tuple (GC,Z)
denoting the garbled circuit and the keys for input wires.

– Yao2: Yao2 is a deterministic algorithm which on input a garbled circuitGC and keys (Z1,b1 , Z2,b2 , . . . , Zt,bt)
where t = i · k (where b (of length t) is the concatenation of the inputs x1, . . . , xi) outputs an evaluation
of Fi.

Let A be any polynomial-time algorithm. Then the real-world execution proceeds as follows:

– Input: Let x̄ = (x1, . . . , xn) be the input of the adversary A. It is also provided with an auxiliary input
z. Furthermore, it is provided GC as an input from the following setup algorithm.

– Setup: Let (GC,Z)← Yao1(F). Let g (n · k in this case) be the number of keys.
– Key Queries: Let K be a key oracle. At any point A sends a message of the form (i, b), i ∈ [g], b ∈ {0, 1}

to K to which K responds by Zi,b.
– Output:A outputs any arbitrary probabilistic polynomial-time function of its view. LetEXECK,A(k, x̄, z)

denote the output distribution of A.

Security: The definition of security, following the ideal-real model is as follows. 26

Definition 5 (garbled circuits - malicious case) Let F be any reactive functionality as above. Then ∃ a PPT
ideal-world adversary (i.e., a black-box simulator) YaoSim such that for every PPT real-world adversary A,{

EXECF,YaoSimA(k, x̄, z)

}
k∈N,z∈{0,1}∗,x̄∈({0,1}k)n

c≡
{
EXECK,A(k, x̄, z)

}
k∈N,z∈{0,1}∗,x̄∈({0,1}k)n

Next using a construction for garbled circuits (Ŷao1, Ŷao2) secure in the semi-honest setting (Definition
4) we give a construction (Yao1, Yao2) that offers security against malicious adversaries (Definition 5). A
formal construction is provided in Construction 1.

Lemma 5. (garbled circuits secure against malicious adversaries) Assuming garbled circuit secure against
honest-but-curious adversaries exist, there exists a garbled circuit construction that is secure against malicious
adversaries (Definition 5).

Proof (Informal). In order to argue the above lemma we need to argue that for every adversary A (that
obtains its keys adaptively from the oracle K) there exists a simulator YaoSim that can simulate its view
interacting directly with the functionality F . Note that the adversary A expects to receive as input a
garbled circuit. Our simulator YaoSim starts by generating a garbled circuit that just outputs random values
m1,m2 . . .mn. Now our simulator YaoSim needs to simulate the key oracle K for the adversary A in a way
such that A obtains the correct output values from the evaluation when unmasked with the sub-masks. We
will describe our strategy in ensuring that the correct output Fi is obtained. Every i ∈ [n] can be handled
in an analogous manner. For the adversary A to be able to evaluate Fi, the adversary A needs to obtain
all the keys {Zj,bj}j∈[ik] where b is the concatenation of x1, x2 . . . xi. Furthermore each key Zj,bj contains a
sub-mask si,j that is needed to evaluate Fi. All these masks are set randomly until the last key is queried.
Let Zt,bt be the last key among {Zj,bj}j∈[ik] that the adversary A queries to K. Note that the entire input
(i.e., x1, . . . xi) of the adversary gets specified once it has made all these queries. Our simulator YaoSim, when
queried with the last key Zt,bt obtains the appropriate output for Fi from the ideal functionality F . It sets
sets the sub-mask si,t = ⊕ik

j=1,j ̸=tsi,j ⊕mi. This allows our simulator to force the output obtained from the
ideal functionality F .
26 We provide a stronger black-box definition of security. Known constructions satisfy this definition of security.
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Let F = (F1, . . . Fn) where each Fi is such that Fi : {0, 1}k → {0, 1}k. Let (Ŷao1, Ŷao2) be a pair of algorithms that
satisfy Definition 4. Then let algorithms (Yao1, Yao2) be as follows.

Yao1:
1. For each i ∈ {1, . . . n}, choose masks mi ← {0, 1}k.
2. Let F ′ = (F1(x1)⊕m1, F2(x2)⊕m2, . . . Fn(xn)⊕mn). Let (ĜC, Ẑ) = Ŷao1(F ′). Note that Ẑ consists of key

pairs for kn input wires and one key from the first ki pairs of keys is needed to evaluate Fi. The specific keys
needed depend on the inputs x1, x2 . . . xi.

3. For each i ∈ [n], for each j ∈ [ik], choose a sub-mask si,j ← {0, 1}k subject to ⊕ik
j=1si,j = mi. Append

sub-mask si,j to the keys Ẑj,0 and Ẑj,1

4. Output: (GC,Z) = (ĜC, Ẑ) after the transformations above.
Yao2:

On input GC, and xi (where b is the concatenation of xi with the previous inputs x1, x2 . . . xi−1) proceed as
follows:
1. Observe that the keys Zj,bj for every j ∈ [(i− 1)k] have already been obtained for evaluations of F1, . . . Fi−1.

Obtain the keys Zj,bj for every j ∈ (i− 1)k + 1, . . . ik.

2. For each j ∈ [ik], extract the values Ẑj,bj and the sub-mask si,j from Zj,bj .

3. Compute the mask mi = ⊕ik
j=1si,j and let Oi = Ŷao2(GC, {Ẑj,bj}j∈{1...ik}).

4. Output: Output mi ⊕Oi.

Construction 1: Garbled circuits: malicious case

C Garbled Circuits with Bit OT

In this work we use the techniques introduced by [BCS96] for constructing a string OT protocol denoted, OTk
2

using a bit OT protocol, denoted OT1
2. This is crucial for us in proving our Theorem 2 proved in Section 3.2.

We do not present all the details from their construction. However for the sake of completeness we recall
some basic terminology and give some intuition.

String OT was used in the construction of garbled circuits in order to construct a mechanism that allows
a sender S to send a key (among a pair of keys per input wire) to the receiver in a way that ensures that
the receiver learns only one key (and learns nothing else about the other key). However in order to argue
impossibility for more general functionalities we would like to achieve the same effect given access to bit
OT only. One natural solution to this problem is to allow R to obtain a sequence of bits in bit OT calls
where each time R can choose a bit (on a specific location) from the two keys. In this case R can choose to
obtain one key completely. This would allow R to obtain a key of its choice. However, the problem is that
a malicious receiver could potentially obtain bits from both the keys. This would render the garbled circuit
completely insecure. We deal with this problem using an idea introduced by [BCS96]. The idea is that S
instead of using the keys (which are actually strings) for bit OT directly (as input) uses an “encoding” of the
keys (for each input wire) which ensures that regardless of the choices of bits that malicious R receives, R
can only obtain one key for each input wire. An important feature of the [BCS96] technique is that it allows
us to specify the inputs of the honest sender statically, i.e., before any bit OT protocol is actually executed.

OTk
2 . S has input (w0, w1) and R has input c.

1. S picks x0, x1 ← {0, 1}n such that f(x0) = w0 and f((x1) = w1.
2. Perform n executions of OT1

2 where in the i invocation of OT1
2, S uses the input (xi

0, x
i
1) and R always uses the

input c and S obtains zi.
3. R recovers wc by computing f(z).

Construction 2: Protocol 1.1 in [BCS96] for OTk
2 from OT1

2

Let I = {i1, i2, . . . im} be a set such that 1 ≤ i1 < i2 . . . im ≤ n. We define xI to be the concatenation of
xi1xi2 . . . xim . [BCS96] give explicit constructions of functions f : {0, 1}n → {0, 1}k with the property that
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for any two subsets I, J ⊆ {1, 2, . . . n}, seeing the bits of xI0 and xJ1 releases information on at most one of
f(x0) or f(x1). Observe that this immediately gives us what we are looking for. Plugging this in our garbled
circuits construction (for malicious adversaries) we get a garbled circuit where keys are only one bit long.

Construction 2 is information theoretically secure when the function f is instantiated appropriately as
defined in [BCS96]. Now we will describe the simulation strategy of this OTk

2 protocol at a very intuitive
level. Let R̃ be a malicious receiver. Now we need to simulate its view when it can obtain bits of x0 and x1
given access to an oracle from which we can only obtain either w0 or w1. Let T0, T1 be two sets indicating the
indices for which R̃ queries with input 0 and 1 respectively. Observe that T0 and T1 will always be disjoint.
For every query made by R̃ we need to provide it with a response. Our strategy would be to provide it with
a random bit as long as neither T0 nor T1 “biases” f (Definition 2.1 of [BCS96], i.e., no information about
either w0 or w1 has been revealed by the values of x0, x1 provided to R̃ so far). At the first point when Tb
(for some b ∈ {0, 1}) biases f , we obtain the corresponding value wb. We then sample xb consistently with
wb and the values provided to R̃ so far and continue the simulation. By Definition 2.2 of [BCS96], for the
encoding function f only one among T0 and T1 can bias f . This fact allows us to continue choosing bits in
x1−b at random without querying for w1−b. This allows us to conclude that we will be able to simulate R̃ by
making at most one query for either w0 or w1.

D Proof of the XOR Lemma

Recall that we want to prove the following lemma.
Lemma 4. Let α1, α2, . . . , αk be k independent random variables such that ∃τ > 0 such that, for all i, for all
z ∈ Zp, Pr[αi = z] < 1− τ . Then α =

∑k
i=1 αi mod p is a uniformly distributed in Zp except with negligible

probability (in k).

Proof. To prove this lemma we first recall the following lemma from [Rao07].

Lemma 6. (Lemma 4.2 in page 10 of [Rao07]) X be a distribution on a finite abelian group G such that
|E(ψ(X))| ≤ ϵ for every non-trivial character ψ. Then X is ϵ

√
|G| close to the uniform distribution.

We will obtain our proof by setting G = Zp, X =
∑k

i=1 αi mod p in the above lemma and by showing
that ϵ is negligible for each non-trivial character ψ of X. Then using the above lemma we conclude that the
statistical distance between

∑k
i=1 αi mod p and the uniform distribution is negligible in k.

In order to show that for every non-trivial character ψ, |E(ψ(X))| ≤ ϵ, we first recall that up to isomor-
phisms we may restrict ourselves to considering characters which map G to the unit circle in the complex
plane. Furthermore, since |G| = p, we may restrict ourselves to the multiplicative group of p-th roots of
unity. There are only p − 1 such non-trivial characters and we now proceed by considering the character

ψ : G→ C such that ψ(x) = e
−2πjx

p . The argument is identical for other characters as well.

By independence of αi and X =
∑
αi we have that |E(ψ(X))| = |E(e

−2πjX
p )| =

∏k
i=1 |E(e

−2πjαi
p )|. Next

we show that each individual expectation is bounded away from 1. Based on this we can conclude that the
product of the expectations is negligible.

Denote by t0, t1, . . . , tp−1 the probabilities that αi takes over G. So,
∑

s ts = 1. Observe that

|E(e
−2πjαi

p )| =

∣∣∣∣∣
p−1∑
s=0

tse
−2πjs

p

∣∣∣∣∣ ≤
p−1∑
s=0

∣∣∣tse−2πjs
p

∣∣∣
Note that for all z ∈ Zp Pr[α = z] < 1 − τ , there exist at least two non-zero values among t0, . . . , tp−1.

Also observe that for all s, s′ ∈ {0, 1, . . . , p − 1} such that s ̸= s′, e
−2πjs

p is not a real multiple of e
−2πjs′

p .

Thus we can conclude that |E(e
−2πjαi

p )| = q < 1 and hence we have our result.
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