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Abstract. An important open question in Cryptography concerns the
possibility of achieving secure protocols even in the presence of physical
attacks. Here we focus on the case of proof systems where an adversary
forces the honest player to re-use its randomness in different executions.
In 2009, Deng, Goyal and Sahai [1] constructed a simultaneously re-
settable non-black-box zero-knowledge argument system that is secure
against resetting provers and verifiers.

In this work we study the case of the black-box use of the code of
the adversary and show a nearly simultaneously resettable black-box
zero-knowledge proof systems under standard assumptions. Compared
to [1], our protocol is a proof (rather then just argument) system, but
requires that the resetting prover can reset the verifier up to a bounded
number of times (which is unavoidable for black-box simulation), while
the verifier can reset the prover an arbitrary polynomial number of times.
The main contribution of our construction is that the round complexity
is independent of the above bound. To achieve our result, we construct
a constant-round nearly simultaneously resettable coin-flipping protocol
that we believe is of independent interest.

Keywords: Reset attacks, Black-box simulation.

1 Introduction

In this work, we study the feasibility of achieving efficient zero-knowledge proof
systems in the presence of physical attacks. Specifically, we examine the role
of the black-box use of the code of the adversary with respect to simultane-
ously resettable proof systems. Such proof systems are of interest as examples of
proof systems that are secure under very relaxed constraints on the re-use of the
same randomness in multiple executions. In the case of resettable zero knowledge
(rZK), a malicious verifier may cheat against an honest prover who must use
the same random tape polynomially many times. Further, resettably sound zero
knowledge constrains the randomness used by the verifier: a malicious prover
may try to cheat against an honest verifier who must use the same random tape
polynomially many times. The former property was introduced and instantiated
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by Canetti, Goldreich, Goldwasser and Micali [2]; the later property was in-
troduced by Micali and Reyzin [3] and later instantiated by Barak, Goldreich,
Goldwasser and Lindell [4]. Because rZK is a generalization of concurrent zero
knowledge (cZK) [5,6,7,8,9], every rZK proof system is a cZK proof system. A
question opened by [4] and resolved by [1] is “Does there exist a resettably sound
rZK proof system for all NP?”. [1] answered this question in the affirmative, but
they required a construction with a security proof that required a non-black-box
simulator strategy, which utilize the specific strategy of a cheating verifier in
its specification. Currently, there is no known practical protocol that relies on
a non-black-box1 simulation strategy, while for instance there do exist efficient
constructions for cZK and concurrent non-malleable zero knowledge that rely on
black-box simulation strategies [10,11], which work against any verifier strategy.

It is proved in [4] that resettably sound black-box zero-knowledge arguments
can be constructed for languages in BPP. Instead, we study whether there ex-
ist t-bounded resettably sound rZK proof systems with black-box simulation, and
more in general, with only a black-box use of the code of the adversary (i.e.,
both the simulation and the proof of soundness do not rely on non-black-box
uses of the code of the adverary). Such proof systems are rZK but also allow
a malicious prover to conduct at most t(n) resets against an honest verifier,
where t is any fixed polynomial and n is the security parameter. Such a security
setting has practical applications (indeed, in [12] it has been considered for the
case of e-passports) because real hardware that may be reset to break security,
such as smart cards or stateless devices, have certain wear costs; after enough
resets, the hardware may simply break, a simple counter may run out, or built-in
battery may become depleted. Our black-box construction is also of theoretical
interest, and moreover may lead to more efficient near-simultaneously rZK pro-
tocols. Indeed while all known non-black-box constructions based on standard
assumptions are inefficient, there are in several cases alternative efficient black-
box constructions [10,11]. Further, unlike [4], we obtain unconditional soundness,
a property that is hard to achieve when the simulator is non-black-box.

We remark that constructing t-resettably sound rZK proof systems for any
language L ∈ NP with black-box simulation is quickly accomplished if round
complexity is allowed to be t-dependent. For any t, take any rZK proof system
with black-box simulation and repeat it sequentially with independent random-
ness t + 1 times; a verifier then accepts only if he accepts for each of the t + 1
protocol runs. What we desire is to construct a t-resettably sound rZK proof
system where the round complexity is t-independent.

1.1 Overview of Our Contribution

For all NP and for any polynomial t, we construct a t-resettably sound rZK
proof system with black-box use only of the code of the adversary and round
complexityO(nε) for security parameter n and for any constant ε > 0. We require

1 We ignore controversial non-black-box extraction assumptions.
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standard assumptions as the existence of enhanced trapdoor permutations and
collision-resistant hash functions.

We re-examinine the rZK protocol of [2]. Their protocol involves an adapta-
tion of the cZK construction of [6]. We first give a high-level description of the
protocol of [2]. V commits to a set of nε strings of length n. Then, in the next 2nε

rounds, P first commits to an n-bit string and V subsequently decommits to the
next string, eventually decommitting to the entire set. The protocol concludes
by P giving a rWI proof that either x ∈ L or that at least one of the strings
committed by P is identical to the subsequent decommitment of V . Clearly, such
a protocol is not t-resettably sound (for any t ≥ 1), as a resetting prover can
simply obtain one of V ’s committed strings, rewind a round and then commit to
that string. However, we use this protocol as a basis to construct our protocol.

We think of the initial commitment by V to nε strings of length n as a database.
The idea for our protocol is that V should commit to a database of poly(n, t)
strings of length n; then, in each of the next 2nε rounds, P asks for n entries
of V ’s database, which V then reveals. Finally, P provides a t-resettably sound,
rWI proof that either x ∈ L or that P can commit to a large constant fraction
of V ’s database. The idea is that even if P was able to successfully ask for tnε+1

indices of the database, P would still not know a large constant fraction of the
database; in this way, the protocol will be t-resettably sound.

We overcome several challenges to accomplish such a protocol. First, we re-
quire the simulator to discover significantly more indices of V ’s database than
a t-resetting P ∗ possibly could. We note that we can modify the (black-box)
simulator strategy given in [2]; there, at each prover commitment phase, the
simulator executes an independent look-ahead subprotocol call to t discover the
string that V would decommit to. In fact, these look-ahead subprotocol calls are
independent from one round to the next. We take advantage of this independence
by having our simulator execute polynomially many look-ahead subprotocol calls
for each round and proving that such a strategy produces more than half of V ’s
database. On the other hand, we will show that for suitable parameters, a t-
resetting P ∗ will only be able to discover at most 1/16 of V ’s database except
with negligible probability. Therefore, our protocol starts by V committing to
a large database followed by 2nε rounds where V decommits to the n (distinct)
random indices in each round that P asks for. Finally, P commits to a guess
of the entire database and proves that either x ∈ L or that a large constant
fraction of the guess correctly corresponds to V ’s database.

However to have a meaningful statement for the proof given by P , it seems
that V should reveal the entire database, but this exposes again V to reset
attacks. Therefore, a second challenge is that V will reveal a small fraction of
the database and P will prove that it committed to a large portion of this
fraction. The challenge of such a strategy is that a cheating V ∗ might skew the
distribution of what it reveals to be used for the rWI proof at the conclusion
of our protocol such that the simulator might not discover enough entries of
the database. Therefore, we require a special coin-flipping protocol by which V
reveals n uniformly random elements of its database, at which point P proves,
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using a t-resettably sound rWI proof, that either x ∈ L or that P ’s database
guess, committed to before the final proof, contains a correct guess for at least
1/4 of the n indices that V last decommitted to. Since the n revealed indices
are uniformly distributed over V ’s database, only if P ’s initial database guess
matches at least 1/4 of V ’s database will P be able to give a correct WI proof
without using the witness for x ∈ L (except with negligible probability).

A first attempt for such a coin-flipping protocol between left player PL and
right player PR might be for PL to a apply pseudorandom function family, fPRF∗ ,
with a previously committed seed, s, on input a random string sent by PR. The
string sent by PR would be constructed by applying a (t+ 1)-wise independent
hash function on the transcript thus far (PR cannot use a pseudorandom function
because P ∗

L is unbounded and could distinguish the output). However, a cheating
P ∗
L might commit to a seed in such a way that even on random input, the output

of the pseudorandom function has skewed distribution. Once can also try to
modify the protocol by having PR hash and output the pair (R,R′) and send
it to PL, who then computes fPRF

s (R) ⊕ R′. However, cheating P ∗
R could then

simply rewind, keep R fixed and send whatever R′ he wished. Instead, we solve
our problem as follows: PR hashes to obtain the triple (R,R′, r′), computes a
(statistically hiding) commitment to R′, denoted c, using randomness r′, and
sends (R, c) to PL. Then, using previous committed seed s, PL applies fPRF

s to
the concatenation of R and c, which also binds the output of the pseudorandom
function to R′ before R′ has been revealed. Finally, PR opens the decommitment
of R′ to PL, and both set the random string τ to be the sum of the output of the
pseudorandom function and R′. We remark that an adversary (resetting or not)
may always guess O(log n) bits of the coin-flipping output; however, since the
output length is n, an adversary will have only a negligible chance of correctly
guessing a constant fraction of the coin-flipping output.

A final note is that while P ∗
R may construct R and R′ as he wishes, it is

very important that a cheating P ∗
L formats his pseudorandom function outputs

correctly; otherwise, upon discovering PR’s R and R′ , P ∗
L could simply rewind

and lie about the output of fPRF
s . Therefore, PL must send a rWI proof that

either x ∈ L or the function output was formatted correctly. In this way, only
in the case that P ∗

L is cheating with x /∈ L the correct formatting will need to
be assured; we can bootstrap the witness for x ∈ L to make the rWI proof of
consistency witness hiding.

A third challenge is that our coin-flipping protocol makes the larger protocol
not admissible. In particular, the simulator in [2] was given in the so-called hy-
brid model, where a cheating V ∗ is somewhat constrained. Therefore to prove
rZK for our protocol, we must demonstrate that our protocol is not meaningfully
different enough from the protocol of [2] even though their simulator no longer
applies to our setting. To accomplish this task, we prove a theorem based on
the observation that the only place where the simulators might differ are where
they play identically to the honest prover against the verifier but using a dif-
ferent witness. We therefore construct a variant of our own protocol that more
explicitly models the protocol of [2] but is only rZK (and not bounded resettably
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sound). We then construct the simulator for the intermediate protocol. Finally,
we prove that the existence of a simulator for this intermediate protocol implies
the existence of a simulator for the protocol that we desire. We believe that such
a proof strategy is of independent interest.

We note that our protocol has communication complexity that is dependent of
t; finding a protocol using standard assumptions with communication complexity
independent of t is an interesting open question2, as is improving the round
complexity of our construction.

1.2 Other Related Work

The notion of rZK was first introduced by [2]; later constructions of black-box
rZK protocols have better round complexity. In [7] it is shown a rZK proof
system with black-box simulation and ω(log2 n) rounds. The protocol improved
the round complexity of [6], by examining a static simulator rewind schedule and
showing that such a schedule produced a successful single extraction, except with
negligible probability. It is not clear how to adapt such a scheduling strategy to
the polynomial many successful extractions that we require. The results of [9]
can also be used to construct a black-box rZK proof system. Their protocol
requires Õ(log n) rounds and also build upon the protocol of [6]. The simulator
strategy of [9] relies on a careful analysis of the random tapes used by the
simulator throughout its run together with the oblivious simulator strategy of [7]
to obtain a single successful extraction, while our approach relies on segmenting
the simulator of [2] and running various of its subprotocols in parallel to obtain
polynomially many successful look-aheads. Finding compatibility between the
two approaches is an interesting open question.

The first resettably sound (non-black-box) zero-knowledge argument was con-
structed by [4]. Deng and Lin [13] constructed a zero-knowledge argument se-
cure in a weakened notion of simultaneous resettability: both cheating prover
and verifier can reset the other polynomially many times, but can only reset
a particular party with a fixed random tape (e.g., an incarnation) a bounded
number of times. Their protocol requires only a constant number of rounds and
also required non-black-box simulation in the proof.

The construction of a simultaneously rZK argument was first provided by [1]
and requires polynomial round complexity. Their protocol relies on the prover
initially committing to his challenges for the extraction stage and using the
resettably sound zero-knowledge argument of [4] to prove that either x ∈ L or
that the decommitted challenges are correct. Because the protocol heavily relies
on the non-black-box zero-knowledge argument of [4], the simulator used for the
security proof is non-black-box. Recently, it has been shown in [19] how to obtain
a constant-round resettably sound resettable witness indistinguishable argument
of knowledge.

We note that all the protocols listed here are in the standard model. In par-
ticular, [2,4,13,14,15,16] also provide constructions in the bare public-key model.

2 Using less standard assumptions like complexity leveraging, constructing a protocol
t-independent communication complexity seems to be more easily to accomplish.
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In addition, [17] give a resettable black-box statistical zero-knowledge proof for
several non-trivial languages, but they do not have a construction for all NP .
As such research is incomparable to our work, we do not consider it here.

2 Preliminaries, Definitions and Tools

We denote by n the security parameter throughout our discussion., by [m] the set
{1, ...,m}, by x|y the concatenation of x and y, by Un the uniform distribution
over {0, 1}n and by fPRF

∗ a pseudorandom function family, where fPRF
s (x) is

the evaluation of the function specified by seed s at x.
We will denote by C the PPT committer and by R the PPT receiver. We

use the standard notions of statistically (respectively, computationally) binding
and computationally (respectively, statistically) hiding. When statistical hiding
or binding is discussed for a commitment scheme, the not mentioned property
is assumed to hold with computational security.

We denote by (P1(x), P2(y)) the interactive protocol between party P1 with in-
put x and party P2 with input y; moreover, we denote the sequential composition
of protocols πi = (P i

1 , P
i
2) and πj = (P j

1 , P
j
2 ) by (πi, πj) = ((P i

1 , P
j
1 ), (P

i
2 , P

j
2 )).

We refer the reader to [2] for the definition of rZK (and witness indistinguish-
able) proof systems, and the definition of admissible proof systems as well as the
hybrid model. Our definition of t-bounded resettable soundness follows from the
definition in [4] for resettable soundness, except that a malicious prover P ∗ has
a bound of t(n) many resets he can execute against a verifier V . We omit the
formal definition here due to lack of space.

We will utilize the following construction3 of Dwork and Naor [18].

Theorem 1 (zaps). If enhanced trapdoor permutations exist, then for every
language L there exists a two-round simultaneously resettable WI proof system.

3 Black-Box rZK with t-Resettable Soundness

Before giving the exact protocol specification for our candidate construction
Π = (P, V ), we first outline its crucial steps. We consider our protocol as the
composition of three subprotocols, π0, π1, and π2, for two reasons. The first
reason is that the purpose of each of the subprotocols is distinct and so discussing
them separately is natural. The second reason is that in order to prove rZK of
Π , we will construct another protocol that will rely on the first two subprotocols
but will require a different third subprotocol, π′

2. In what follows, fix a language
L ∈ NP, let n be the security parameter, let ε > 0 be any constant, and let t
be the polynomial resetting bound of the prover.

3 In fact, zaps are not inherently resettable WI, though they are resettably sound, as
noted by [4]. However, when the prover’s zap message is computed using a random
tape that is a pseudorandom function applied to V ’s initial message and P ’s random
tape, as is done here, zaps are rWI. We will therefore refer to zaps here and implicitly
assume that their instantiation in our protocol constructions utilize the appropriate
PRF-random tape construction.
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Table 1. Outline of protocol Π =
(π0, π1, π2). CHCom is statistically
binding, while SHCom is statistically
hiding.

π0 : Setup Phase

1) P sets up SHCom
2) V constructs DB, |DB| = 16tn(nε + 1)
3) V sets up zap, V sends SHCom(DB)

π1 : Extraction Phase
1) nε Iterations:

i) P asks V for n indices of DB
ii) V decommits to the n indices

π2 : rWI Proof Phase

1) P guesses DB as γ; P sends PBCom(γ)
2) P and V jointly generate n random

indices, τ , of DB (coin flipping)
3) V decommits to the indices τ of DB
4) P sends zap for “x ∈ L or γ

agrees with at least 1/4 of the n values
of DB in positions τ”

Table 2. Outline of nearly re-
settable coin-flipping subprotocol
with output τ . fPRF

∗ is a pseu-
dorandom function family. (P exe-
cutes PL and V executes PR.)

Coin Flipping Subprotocol

1) PL sends CHCom(s) to PR

2) a) PR applies (t+ 1)-wise
independent hash function h to
transcript to obtain (R,R′, r′)

b) PR computes c← SHCom(R′)
using randomness r′

c) PR sends R, c to PL

3) PL computes r ← fPRF
s (R|c),

and sends r to PR

4) PL sends zap for “x ∈ L or
r formatted correctly”

5) PR decommits R′

6) PL and PL output τ = r ⊕R′

For subprotocol π0, P and V instantiate the proof system. P sends the setup
message for a 2-round statistically hiding, computationally binding commitment
scheme. V then constructs an ordered database, DB, consisting of 16tn(nε + 1)
random distinct strings of length n, and sends a statistically hiding commitment
of DB to P . V also sends the setup message used by P to execute zap proofs.
At this point, P applies a pseudorandom function (fP,1

∗ with seed chosen using
P ’s initial random tape) to the current transcript and uses the output as his
random tape for the rest of the protocol.

For subprotocol π1, for each of the nε sequential iterations, P asks for a
random sequence of n entries of DB, which V then decommits to. Note that for
this subprotocol, a resetting P can discover at most tn1+ε entries of DB. We
note that this protocol is very similar to the protocol in [2]; where their protocol
requiresO(n)-length (random) P commitments, our protocol requiresO(n log n)-
length random index requests, where both protocols require corresponding V
decommitments.

For subprotocol π2, P guesses V ’s database and commits to the guess (which
we call γ) using a non-interactive perfectly binding commitment scheme. P and
V then attempt to jointly compute an (n log |DB|)-length random string as fol-
lows: P commits to a seed s using a non-interactive perfectly binding commit-
ment scheme. V uses a (t+ 1)-wise independent hash function h with input the
transcript (of π1 and π2 thus far) to output a random triple (R,R′, r′). V then
computes c, a statistically hiding commitment to R′ using randomness r′, and
sends R and c to P . P sends back, using the PRF family fP,2

∗ , r = fP,2
s (R|c).

P proves using a zap that either x ∈ L or that r is properly formed from R,
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c and the commitment of s. Note that P ’s commitment to s earlier in π2 can
now be viewed as a partial commitment to a random string. V then decommits
to R′ and sets τ = R′ ⊕ r as the set of n indices of DB. V decommits to the
n indices of DB corresponding to τ . Therefore, a resetting P ∗ can discover at
most tn(nε + 1) entries, or 1/16 of DB, including protocol π1. P provides a zap
that either x ∈ L or that 1/4 of the entries of P ’s guess γ corresponds to the
final n decommitments from DB (that correspond to τ). We denote this lan-
guage by Λ2. We note that only in the case of x /∈ L we have that the property
that τ is distributed randomly is important; we use this fact to “bootstrap”
well-formedness of τ in the unbounded, cheating P ∗ case.

Theorem 2. Assuming the existence of enhanced trapdoor permutations and
collision-resistant hash functions, protocol Π is a t-bounded resettably sound
rZK proof system for L.

The proof that Π is rZK will follow from proofs that Π is t-resettably sound and
complete (Lemma 3), that (π0, π2) is rWI (Theorem 4) and that there exists a
specific, simpler protocol Π ′ that is also rZK (Theorem 6). We will then prove
that since Π ′ is both rZK and sufficiently similar to Π , in a manner we define
as near compatible, Π is also rZK (Lemma 5).

Lemma 3. Π is t-resettably sound and t-resettably complete for L.

Completeness follows from the completeness of the zap protocols. Resettable
soundness follows from the rWI of zap proofs and the security of the coin-tossing
protocol; since P ∗ cannot discover 1/4 of the databaseDB except with negligible
probability (due to the statistical hiding property of V ’s commitment scheme),
P ∗ cannot find a correct witness for language Λ2 except with negligible proba-
bility due to the distribution of the coin-tossing protocol output.

In what follows, we will need that the sequential composition (π0, π2) is rWI
for languages Λ2 and L.

Theorem 4. Assuming the existence of enhanced trapdoor permutations and
collision-resistant hash functions, protocol (π0, π2) is rWI for Λ2 and for L.

For lack of space, we omit the proof of Theorem 4. The intuition for the proof
is that rWI holds due to the rWI of zap proofs, the security of the respective
commitment schemes, and the security of the coin-flipping protocol.

3.1 From a rZK Proof System to a New rZK Proof System

We now outline how we prove rZK of protocol Π by constructing another pro-
tocol where rZK is easier to prove. We note that this definition may likely be
generalized, but we only detail properties that will apply in our case for simplic-
ity. It is important to note that the “simpler” rZK protocol does not need to
be t-resettably sound; since the purpose here is to prove rZK, resettable sound-
ness is not required. Due to lack of space, we omit here the precise definition of
near-compatible protocols.



96 J. Baron, R. Ostrovsky, and I. Visconti

The idea of our transformation stems from the idea of constructing a rZK proof
system for L from a rWI proof system; see the constructions of [2,7,9]. What
generally occurs is that first the setup of the rWI proof is executed; then a so-
called extraction protocol is executed, where a cheating prover learns nothing,
but a simulator learns some secret s. Finally, a rWI proof is completed for the
language “x ∈ L or the secret s has been learned”; in the specific case of [2],
the “secret” was that the prover had committed to a string before the verifier
had decommitted to that same string, while in our case, the prover commits to
a largely correct guess of the database previously committed to by the verifier.

At a high level, we say that a protocol Π = (π0, π1, π2), which is the protocol
that we wish to prove rZK, is near-compatible to a protocol Π ′ = (π0, π1, π

′
2)

if the following holds. Fix a language L ∈ NP . Then (π0, π1, π
′
2) is rZK for L.

(π0, π1, π2) is an interactive proof for L, and (π0, π2) must be rWI so that it
does not reveal to the verifier whether the transcript is generated by using the
genuine witness of a real prover or by fake witness belonging to a simulator4.
Finally, we wish that the extraction stage, π1, is essential for the simulator to
complete both (π0, π

′
2) and (π0, π2) but extraneous for the honest prover.

Lemma 5. (Informal) Fix a language L. Let (π0, π1, π2) be near-compatible to
(π0, π1, π

′
2). Let (π0, π1, π

′
2) be rZK with a simulator that plays honestly for π0

and π′
2 and such that any witness extracted by the simulator is, except with

negligible probability, a valid witness for (π0, π1, π2) (with the same messages
sent for π0 and π1). Then (π0, π1, π2) is rZK.

For lack of space, the formal version of Lemma 5 in omitted. The intuition for
the proof of Lemma 5 is that by definition of near-compatible protocols and
by the lemma statement, if simulator Sim′ for (π0, π1, π

′
2) is able to extract

a witness to complete the protocol, then so is simulator Sim for (π0, π1, π2)
that acts identically to Sim′ for π1 and honestly for π0 and π2. This is because
both simulators act identically for the rounds where extraction occurs. Further,
(π0, π2) being rWI implies that V ∗ cannot distinguish whether the transcript is
generated by a real prover using a witness for x ∈ L or by a simulator using an
extracted witness.

4 An Admissible, Near-Compatible rZK Proof System

Here we outline an admissible rZK proof system that has the same initialization
phase and extraction phase as protocolΠ but with a simplified end stage in order
to make the proof of rZK easier. In particular, (π0, π1, π

′
2) is not constructed to be

t-resettably sound, and therefore the verifier can eventually reveal the entireDB.

4 Some additional technical properties specified in the precise definition: it is enough
for our purposes that the setup phase, π0, consists of one round of messages sent
by P followed by a round of messages sent by V . In order to prove the lemma, we
will require security reductions that will need limited access to the prover’s random
tape; therefore, P ’s message for π0 must be public coin.
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For lack of space, we will only sketch π′
2. π

′
2 has the same inputs as π2 above. π′

2

also begins like π2: first, prover commits his guess γ using a statistically binding
commitment scheme and sends it to V . Then, however, V decommits the entire
DB. P then executes a zap that either x ∈ L or that γ corresponds to 1/4 of
DB; we denote this new language by Λ3.

Note that by construction, (π0, π1, π
′
2) satisfies the respective properties of

near-compatibility. Further, (π0, π1, π
′
2) is admissible since the verifier, after its

initial message, only sends decommitments.
Since (π0, π1, π

′
2) and (π0, π1, π2) are near-compatible, the only remaining sub-

tlety is to note that the witness extraction property of Lemma 5 holds. But this
is indeed the case because the simulator, will extract a set of entries from V that
correspond to at least 1/2 of V ’s DB except with negligible probability. Since,
for π2, the entries chosen for Λ2 are selected uniformly at random from DB, if
the simulator knows 1/2 of DB, then the simulator will know 1/4 of the entries
selected for Λ2 except with negligible probability.

Theorem 6. Assuming the existence of enhanced trapdoor permutations and
collision-resistant hash functions, protocol (π0, π1, π

′
2) is zero knowledge in the

hybrid model (i.e, hZK) for L.

Since the protocol (π0, π1, π
′
2) is hZK and already in the form needed to trans-

form zero-knowledge proofs secure in the hybrid model to zero-knowledge proofs
secure in the resettably model, Theorem 6 implies the following5.

Corollary 7. (π0, π1, π
′
2) is rZK for L.

We would like to contrast the protocol (π0, π1, π
′
2) with that given in [2]. As

noted in the high-level outline of Π in Section 3, the extraction stage of [2] and
the subprotocol π1 are very similar. Indeed, π′

2 is a natural extension of the
protocol in [2] because in both their protocol and ours, DB is revealed and the
rWI proof incorporates the whole DB. In order to prove Theorem 6, we will
need the fact that (π0, π

′
2) is rWI for Λ3 and for L.

Lemma 8. Assuming the existence of enhanced trapdoor permutations and
collision-resistant hash functions, then protocol (π0, π

′
2) is rWI for Λ3 and

for L.

4.1 High-Level Simulator Strategy in the Proof of Theorem 6

In [2], the high level strategy of the simulator was that it would try to “look
ahead” to try to figure out the verifier’s commitment ahead of time, but otherwise

5 We note that the simulator does not change from Theorem 6 to Corollary 7. The
reason is that the proof in [2] that takes a hZK protocol and proves that it is rZK
does not change the simulator; rather, it proves that for every hybrid adversary there
exists a corresponding adversary that however is still simulatable. In particular, if
the simulator given here in the hybrid model only rewinds during π1 and otherwise
plays honestly, so does the simulator in the full rZK model.
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play honestly for all other (non-extraction stage) rounds. This is also true for the
simulator here: the simulator would like to discover as manyDB decommitments
as possible and otherwise plays honestly. The most important difference between
the rZK simulator here and the simulator in [2] is that their protocol only requires
1 successful look-ahead to proceed, while our protocol requires polynomially
many successful look-aheads to proceed.

To construct our simulator, we will use a nearly identical strategy as the simu-
lator from [2] except that we will execute the individual (main-thread level) look-
aheads |DB| many times in parallel. Namely, the simulator Sim′ in the extraction
stage, π1, attempts to discover half of DB; if this has not occurred at the end
of the extraction stage, then the simulator simply aborts and fails to complete.
One of the main inefficiencies of the [2] simulator is that it computes a distinct
look-ahead subprotocol run (embedded in the subroutine NextProverMsg, which
then unfolds recursively, see details in [2]) at each of the nε round iterations of
the extraction stage. The idea of their simulator is that if the simulator makes
a distinct look-ahead subprotocol run at each round, which in turn consists of
polynomially many look-ahead attempts, then except with negligible probability,
the simulator will be able to extract one “secret”. Since the look-ahead subpro-
tocol success probability is independent from one round to the next, the strategy
of our simulator is that instead of making one independent look-ahead subpro-
tocol run at each round, we make poly(n, t) = |DB| independent calls at each
(main-thread) iteration of the extraction stage6. By a union bound, our simu-
lator will also fail to extract only with negligible probability. A subtlety is that
|DB| successful look-aheads might not reveal as much of |DB| as desired. How-
ever, because the prover messages in π1 consist of n randomly chosen indices,
V ∗ is unable to both complete the protocol with P/Sim′ and sufficiently control
the distribution of the prover messages that V ∗ chooses to proceed with.

We omit the full simulator specification and proof here due to lack of space.
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