
Edge Fault Tolerance on Sparse Networks�

Nishanth Chandran1,��, Juan Garay2, and Rafail Ostrovsky3,���

1 Microsoft Research, Redmond
nish@microsoft.com

2 AT&T Labs – Research
garay@research.att.com

3 Departments of Computer Science and Mathematics, UCLA
rafail@cs.ucla.edu

Abstract. Byzantine agreement, which requires n processors (nodes)
in a completely connected network to agree on a value dependent on
their initial values and despite the arbitrary, possible malicious behav-
ior of some of them, is perhaps the most popular paradigm in fault-
tolerant distributed systems. However, partially connected networks are
far more realistic than fully connected networks, which led Dwork, Pe-
leg, Pippenger and Upfal [STOC’86] to formulate the notion of almost-
everywhere (a.e.) agreement which shares the same aim with the original
problem, except that now not all pairs of nodes are connected by reli-
able and authenticated channels. In such a setting, agreement amongst
all correct nodes cannot be guaranteed due to possible poor connectivity
with other correct nodes, and some of them must be given up. The num-
ber of such nodes is a function of the underlying communication graph
and the adversarial set of nodes.

In this work we introduce the notion of almost-everywhere agreement
with edge corruptions which is exactly the same problem as described
above, except that we additionally allow the adversary to completely
control some of the communication channels between two correct nodes—
i.e., to “corrupt” edges in the network. While it is easy to see that an
a.e. agreement protocol for the original node-corruption model is also
an a.e. agreement protocol tolerating edge corruptions (albeit for a re-
duced fraction of edge corruptions with respect to the bound for node
corruptions), no polynomial-time protocol is known in the case where a
constant fraction of the edges can be corrupted and the degree of the
network is sub-linear.

� A full version of this paper, entitled “Almost-Everywhere Secure Computation
with Edge Corruptions,” is available at http://eprint.iacr.org/2012/221.

�� Part of this work was done at UCLA.
��� Supported in part by NSF grants 0830803, 09165174, 1065276, 1118126 and

1136174, US-Israel BSF grant 2008411, OKAWA Foundation Research Award,
IBM Faculty Research Award, Xerox Faculty Research Award, B. John Garrick
Foundation Award, Teradata Research Award, and Lockheed-Martin Corporation
Research Award. This material is based upon work supported by the Defense Ad-
vanced Research Projects Agency through the U.S. Office of Naval Research under
Contract N00014-11-1-0392. The views expressed are those of the author and do
not reflect the official policy or position of the Department of Defense or the U.S.
Government.

A. Czumaj et al. (Eds.): ICALP 2012, Part II, LNCS 7392, pp. 452–463, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Edge Fault Tolerance on Sparse Networks 453

We make progress on this front, by constructing graphs of degree
O(nε) (for arbitrary constant 0 < ε < 1) on which we can run a.e. agree-
ment protocols tolerating a constant fraction of adversarial edges. The
number of given-up nodes in our construction is μn (for some constant
0 < μ < 1 that depends on the fraction of corrupted edges), which is
asymptotically optimal. We remark that allowing an adversary to cor-
rupt edges in the network can be seen as taking a step closer towards
guaranteeing a.e. agreement amongst honest nodes even on adversarially
chosen communication networks, as opposed to earlier results where the
communication graph is specially constructed.

In addition, building upon the work of Garay and Ostrovsky [Euro-
crypt’08], we obtain a protocol for a.e. secure computation tolerating
edge corruptions on the above graphs.

Keywords: Fault tolerance, almost-everywhere agreement, bounded-
degree network, secure multiparty computation.

1 Introduction

Byzantine agreement [12,10] is perhaps the most popular paradigm in fault-
tolerant distributed systems. It requires n parties (processors) to agree upon
a common value that is dependent on their inputs, even when some of them
may behave arbitrarily. More specifically, n parties P1, · · · , Pn, each holding in-
put vi, must run a protocol such that at the end of the protocol, all “honest”
(i.e., not misbehaving) parties output the same value and if vi = v for all the
honest parties, then the honest parties output v. Traditionally, protocols for
Byzantine agreement assume that any two of the n parties share a reliable and
authenticated channel which they use for communication. However, for protocols
executed over large networks such as the Internet, in which nodes are typically
connected by a communication graph of small degree, this assumption is unrea-
sonable.

In light of this, the seminal work of Dwork, Peleg, Pippenger, and Upfal [5]
considered the problem of reaching agreement over networks that are not fully
connected, and even of low degree, where every party shares a reliable and au-
thenticated channel only with a few of the other n− 1 parties. More formally,
in the Dwork et al. formulation, the n parties (or nodes) are connected by a
communication network G. Nodes that are connected by an edge in G share a
reliable and authentic channel, but other nodes must communicate via paths in
the graphs that may not be available to them (due to the adversarial “corrup-
tion” of some of the nodes). Naturally, in such a setting, one may not be able to
guarantee agreement amongst all honest parties; for example, one cannot hope
to be able to communicate at all with an honest party whose neighbors are all
adversarial. Given this fact—and ubiquitously—Dwork et al. termed the new
problem almost-everywhere (a.e.) agreement, wherein the number of such aban-
doned nodes (which henceforth will be called “doomed”) introduces another

454 N. Chandran, J. Garay, and R. Ostrovsky

parameter of interest, in addition to the degree of the communication graph
(which we wish to minimize), and the number of adversarial nodes that can be
tolerated (which we wish to maximize) in reaching agreement.

Indeed, in [5], Dwork et al. provide a.e. agreement protocols for various classes
of low-degree graphs and bounds on the number of adversarial nodes as well as
doomed nodes. For example, they construct a graph of constant degree and show
an agreement protocol on this graph tolerating a α

logn fraction of corrupted nodes

(for constant 0 < α < 1), guaranteeing agreement amongst (1 − α − μ)n of the
honest nodes (for constant 0 < μ < 1). In another construction, they give a graph
of degree O(nε) (for constant 0 < ε < 1) and show an agreement protocol on
this graph tolerating a constant α (0 < α < 1) fraction of corrupted nodes, and
again guaranteeing agreement amongst (1 − α − μ)n nodes. In a subsequent and
remarkable result, Upfal [13] constructed a constant-degree graph and showed the
existence of an a.e. agreement protocol on this graph tolerating a constant frac-
tion of corrupted nodes, while giving up a constant fraction of the honest nodes.
Unfortunately, the protocol of [13] runs in exponential time (in n). More recently,
Chandran, Garay, and Ostrovsky [3] constructed a graph of degreeO(logk n) (for
constant k > 1) and show an agreement protocol on this graph tolerating a con-
stant fraction of corrupted nodes, while giving up only O(n

log n) honest nodes.

Edge corruptions. All existing work on a.e. agreement considers the case where
only nodes may be corrupted and misbehave, while communication on all edges
is assumed to be perfectly reliable and authentic. In many settings, however,
such a guarantee might again be unrealistic and a bit optimistic. Think for ex-
ample, of the communication subsystem of a networked computer (e.g., network
interface controller card) being infected by malicious software designed to dis-
rupt or alter operation. This would affect the communication between honest
parties. Or worse, of a scenario where the secret keys shared by two parties in
the system is compromised, yet the parties themselves are honest.

In this work, we address this situation and endow the adversary with addi-
tional powers which allow him, in addition to corrupting nodes, to corrupt some
of the edges in the network—i.e., we consider a.e. agreement with edge corrup-
tions. When he does (corrupt an edge), he is able to completely control the
communication channel between the two honest nodes, from simply preventing
them to communicate, to injecting arbitrary messages that the receiving end
will accept as valid. As in the node-only corruption case, in this case also some
of the honest nodes in the network must be abandoned. As further motivation
towards considering edge corruptions, we remark that allowing an adversary to
corrupt edges in the network moves us a step closer towards guaranteeing a.e.
agreement on adversarially chosen communication networks. In an ideal scenario,
we would like to construct a.e. computation protocols on arbitrary adversarially
chosen communication networks. Unfortunately, this is impossible in general1.

1 The adversary could simply design networks where several nodes have extremely
poor connectivity and hence corrupting a few edges could create several disconnected
components in the network of small size.

Edge Fault Tolerance on Sparse Networks 455

Table 1. Agreement against edge corruptions from agreement against node corrup-
tions. (Expl., Det., and Rand. denote Explicit, Deterministic and Randomized, resp.)

Reference Graph degree Frac. of corrupt edges Graph/Protocol Running time

[5] O(nε) α
nε ; adaptive Expl./Det. Polynomial

[5] O(1) α
log n

; adaptive Expl./Det. Polynomial

[13] O(1) α; adaptive Expl./Det. Exponential
[9] O(logk n) α

logk n
; static Expl./Rand. Polynomial

[3] O(logk n) α
logk n

; adaptive Expl./Det. Polynomial

[This work] O(nε) α; adaptive Rand./Det. Polynomial

However, we can take a step in this direction by allowing the adversary to corrupt
edges in the network that we design, thereby “modifying” the network.

Observe that an a.e. agreement protocol for node corruptions can be readily
transformed into an a.e. agreement protocol for edge corruptions, albeit for a
reduced fraction of edge corruptions. More specifically, let d be the maximum
degree of any node in a graph G on n nodes that admits an a.e. agreement
protocol Π amongst p < n nodes, in the presence of x corrupt nodes. Then, it
is easy to see that G admits an a.e. agreement protocol Π′ amongst p nodes in
the presence of x corrupt edges2. However, this means that the graph will only
admit an agreement protocol for an x

nd fraction of corrupted edges, as opposed
to an x

n fraction of corrupted nodes in the former case. Therefore, the result
that we get for the case of edge corruptions using this method is asymptotically
weaker than in the case of node corruptions (except when d is a constant).
Unfortunately, by applying this method, none of the existing protocols for a.e.
agreement against node corruptions give us an a.e. agreement protocol tolerating
a constant fraction of edge corruptions. This is depicted in Table 1, where we
outline the results obtained via this approach using the results on a.e. agreement
for node corruptions from the works of [5,13,9,3], and compare them with the
results we obtain in this work. In all the results listed in the table, 0 < α < 1 is
a constant, 0 < ε < 1 can be any arbitrary constant, and k > 1 is a constant.

Note that all the previous results (except for the result obtained as a corollary
to [13], in which the protocol’s running time is exponential) cannot handle the
case where we have a constant fraction of corrupted edges. In this work, we are
precisely interested in this case. Specifically, we construct the first a.e. agreement
protocol on graphs with sub-linear degree that can tolerate a constant fraction of
edge corruptions. We remark here that while the above graph constructions are
deterministic, we construct our graph (upon which we obtain an a.e. agreement
protocol tolerating constant fraction of corrupted edges) probabilistically, and
our result holds with high probability. However, a graph satisfying the conditions
required for our a.e. agreement protocol to be successful can be sampled with
probability 1 − neg(n), where neg(n) denotes a function that is negligible in n,
and furthermore, one can also efficiently check if the graph thus sampled satisfies
the necessary conditions for our protocol.

2 To simulate an adversary corrupting edge (u, v), simply corrupt either node u or v.

456 N. Chandran, J. Garay, and R. Ostrovsky

Our results and techniques. In this work, we show that for every constant ε,
0 < ε < 1, there exists a graph, call it Gmain, on n nodes, with maximum degree
dm = O(nε), and such that it admits an a.e. agreement protocol that guarantees
agreement amongst a γmn fraction of honest nodes (for some constant 0 < γm <
1), even in the presence of an αm fraction of corrupted edges (i.e., at most αmndm

2
corrupted edges), for some constant 0 < αm < 1. Our protocol works against an
adversary that is adaptive (i.e., the adversary can decide which edges to corrupt
on the fly during the protocol after observing messages of honest parties) and
rushing (i.e., in every round, the adversary can decide on its messages after
seeing the messages from the honest parties). We now outline the high-level
ideas behind our construction:

1. The first step in our construction is to build a graph with higher degree,
O(
√
n logn), on which we can have an a.e. agreement protocol tolerating a

constant fraction of corrupted edges.

To do this, we first observe a property of a graph that is sufficient
for such a construction (besides, obviously, every node having degree
O(
√
n logn)), namely, that any two nodes in the graph have O(log2 n)

number of paths of length 2 between them.

Second, we observe that the Erdős-Renyi random graph G(n, logn√
n
) sat-

isfies the above two properties with high probability. That is, graph G
on n nodes satisfying the above two properties can be easily sampled by
putting an edge (u, v) in G, independently, with probability p = logn√

n
.

Once we have a graph satisfying these properties, the construction is
fairly straightforward: to obtain reliable communication between any
two nodes, say, u and v, u simply sends the message to all nodes in
the network via all the paths of length 2, and all the nodes then send
the message to v, again via all their paths of length 2. One can then
show that if v takes a simple majority of the received values, then a
constant fraction of the nodes can communicate reliably even in the
presence of a constant fraction of corrupted edges. (As shown in [5],
reliable pairwise communication is sufficient to obtain an a.e. agreement
protocol amongst those nodes.)

2. Next, we show how to construct a graph, G′, recursively from G← G(n, logn√
n
)

above such that the new graph is of size n2 and its degree at most twice
that of G, and yet we can have an agreement protocol on G′ tolerating a
constant fraction of corrupted edges.

We construct G′ by taking n “copies” of G to form n “clouds,” and then
connecting the clouds using another copy of G. We connect two clouds
by connecting the ith node in one with the ith node in the other.

Now our hope is to be able to simulate the communication between
two nodes u and v in the following way: u will send the message to all
nodes in its cloud (call this cloud Cu). Cloud Cu will then send the
message to cloud Cv (the cloud which v is a part of). Finally, v will
somehow receive the message from cloud Cv.

Edge Fault Tolerance on Sparse Networks 457

The problem with this approach is that we need to have a protocol that
will allow two clouds to communicate reliably. But clouds themselves
are comprised of nodes, some of which might be corrupted or doomed;
hence, the transmission from cloud Cu to cloud Cv might end up being
unreliable. To get over this problem, we make use of a specific type of
agreement protocol known as differential agreement [6], which, infor-
mally and whenever possible, allows parties to agree on the majority
value of the honest parties’ inputs. Careful application of this protocol
allows us to perform a type of “error-correction” of the message when
it is being transferred from one cloud to another.

Combining the above techniques leads us to our main result, an a.e.
agreement protocol on graphs of degree O(nε) (for all constants 0 <
ε < 1), tolerating a constant fraction of corrupted edges, while giving
up μn honest nodes (for a constant 0 < μ < 1).

In [8], Garay and Ostrovsky considered the problem of (unconditional, or inform-
ation-theoretic) secure multi-party computation (MPC) [1,4] in the context of
partially connected networks with adversarial nodes. By applying our new a.e.
agreement protocol to the construction in [8], we obtain an a.e. MPC protocol
tolerating both node and edge corruptions for graphs of degree O(nε) and same
parameters as above.

Due to lack of space, a more detailed overview of related work, as well as
supplementary material and proofs, are presented in the full version [2].

2 Model, Definitions and Building Blocks

Let G = (V , E) denote a graph with n nodes (i.e., |V| = n). The nodes of the
graph represent the processors (parties, “players”) participating in the protocol,
while the edges represent the communication links connecting them. We assume
a synchronous network and that the protocol communication is divided into
rounds. In every round, all parties can send a message on all of their communi-
cation links (i.e., on all edges incident on the node representing the party); these
messages are delivered before the next round.

An adversary A can “corrupt” a set of nodes (as in taking over them and
completely control their behavior), Tnodes ⊂ V , as well as a set of edges, Tedges ⊂
E , in the network such that |Tnodes| ≤ tn and |Tedges| ≤ te. A has unbounded
computational power and can corrupt both nodes and edges adaptively (that is,
the adversary can decide which nodes and edges to corrupt on the fly during
the course of the protocol, after observing the messages from honest parties).
Furthermore, A is rushing, meaning that it can decide the messages to be sent by
adversarial parties (or on adversarial edges) in a particular round after observing
the messages sent by honest parties in the same round.

Almost-everywhere agreement. The problem of almost-everywhere agreement
(“a.e. agreement” for short) was introduced by Dwork, Peleg, Pippenger and
Upfal [5] in the (traditional) context of node corruptions. A.e. agreement “gives
up” some of the non-faulty nodes in the network from reaching agreement, which

458 N. Chandran, J. Garay, and R. Ostrovsky

is unavoidable due to their poor connectivity with other non-faulty nodes. We
refer to the given-up nodes as doomed nodes; the honest nodes for which we
guarantee agreement are referred to as privileged nodes. Let the set of doomed
nodes be denoted by X and the set of privileged nodes by P ; note that the sets
P and X are a function of the set of corrupted nodes (Tnodes) and the underlying
graph. Let |X | = x and |P| = p. Clearly, we have p+ x+ t = n. We present the
formal definition of a.e. agreement, and state the relevant results from Dwork et
al. [5], in the full version.

Differential agreement. We now present a tool that will be used in our recursive
construction in Section 3.2. Fitzi and Garay [6] introduced the problem of δ-
differential agreement (also, “consensus”) developing on the so-called “strong
consensus” problem [11], in which every party begins with an input v from a
domain D.3 We describe the problem below and state the results from [6]. In
the standard Byzantine agreement problem [12,10], n parties attempt to reach
agreement on some value v (for simplicity, we assume v ∈ {0, 1}). Let cv denote
the number of honest parties whose initial value is v, and δ be a non-negative
integer. δ-differential agreement is defined as follows:

Definition 1. A protocol for parties {P1, P2, · · · , Pn}, each holding initial value
vi, is a δ-differential agreement protocol if the following conditions hold for any
adversary A that corrupts a set Tnodes of parties with |Tnodes| ≤ tn:

Agreement: All honest parties output the same value.

δ-Differential Validity: If the honest parties output v, then cv+δ ≥ cv̄.

Theorem 1. [6] In a synchronous, fully connected network, δ-differential agree-
ment is impossible if n ≤ 3tn or δ < tn. On the other hand, there exists an
efficient (i.e., polynomial-time) protocol that achieves tn-differential agreement
for n > 3tn in tn + 1 rounds.

We will use DA(n, tn, δ) to denote a δ-differential agreement protocol for a fully
connected network tolerating up to tn faulty processors.

The edge corruption model. In this work we additionally allow the adversary to
corrupt edges on the network graph—the set Tedges ⊂ E , |Tedges| ≤ te. We will
bound this quantity, as well as the total number of nodes that the adversary
can corrupt, and attempt to construct a network graph G of small (sublinear)
degree on which a significant number of honest nodes can still reach agreement.
We now give some definitions and make some remarks about a.e. agreement and
a.e. secure computation for this setting.

We first observe that since we are working with (asymptotically) regular
graphs, obtaining an a.e. (agreement, MPC) protocol in the presence of a con-
stant fraction of corrupted edges will also imply a protocol in the presence of a

3 In contrast to standard Byzantine agreement, the validity condition in the strong
consensus problem states that the output value v must have been the input of some
honest party Pi (which is implicit in the case of binary Byzantine agreement).

Edge Fault Tolerance on Sparse Networks 459

constant fraction of corrupted edges and a constant fraction of corrupted nodes
nodes, as every corrupted node can be “simulated” by corrupting all the edges
incident on this node. Thus, we will henceforth consider only adversarial edges
and assume that all the nodes are honest.

As in the case of a.e. agreement on sparse networks in the presence of adver-
sarial nodes, a.e. agreement in the presence of adversarial edges also “gives up”
certain honest nodes in the network, which, as argued before, is unavoidable due
to their poor connectivity with other honest nodes. Let the set of such doomed
nodes be denoted by X and the set of privileged nodes by P . Note that the
sets P and X are a function of both the set of corrupted edges (Tedges) and the
underlying graph. Let |X | = x and |P| = p; we let the fraction of corrupt edges
be αe. The definition of a.e. agreement with corrupted edges, in particular, now
readily follows in the same manner.

Next, we remark that the problem of a.e. agreement for edge corruptions also
reduces to that of constructing a reliable message transmission protocol between
any two nodes u, v ∈ P , in particular those which are not directly connected
by an edge in E . Furthermore, Garay and Ostrovsky showed that, given such
a channel between two nodes u and v ∈ P , plus some additional paths, most
of which (i.e., all but one) might be corrupted, it is possible to construct a
(unidirectional) secure (i.e., private and reliable) channel between them. The
construction is via a protocol known as secure message transmission by public
discussion (SMT-PD) [8,7]. In turn, from the protocol for a secure channel, an
a.e. MPC protocol amongst the nodes in P , satisfying the same notion of security
as in [8], readily follows We refer the reader to the full version for details on the
definitions of these primitives in the presence of edge corruptions and a.e. MPC
(for node-corruptions).

Finally, we remark that one can define the notion of a.e. differential agree-
ment (for edge corruptions) in the same manner as a.e. agreement by replacing
the set of honest parties with the set of privileged parties in Definition 1 (i.e.,
by treating doomed parties also as adversarial). Furthermore, note that one can
also obtain an a.e. differential agreement protocol (for edge corruptions) from
the construction of a reliable message transmission protocol between any two
nodes u, v ∈ P : simply, execute a standard differential agreement protocol and
replace every communication between nodes with an execution of the message
transmission protocol. We will use AE-DA(n, tn, δ) to denote an a.e. δ-differential
agreement protocol for a partially connected network where the number of priv-
ileged parties is n− tn.

3 A.E. Agreement on Low-Degree Networks

In this section we construct a graph in which the maximum degree of any node
is low, and yet, there exists a set of nodes (of size a constant times the total
number of nodes), such that all nodes in this set can reach agreement even when
a constant fraction of the edges in the graph are corrupted. First, our goal will
be to construct a graph G = (V , E) on n nodes with maximum degree d, and a
protocol for reliable message transmission scheme, TSGu,v(m), with the following

460 N. Chandran, J. Garay, and R. Ostrovsky

properties. Let the set of edges that are corrupted by an adversary be denoted
by Tedges ⊂ E , |Tedges| ≤ αnd. We shall show that there exists a set of nodes
P ⊆ V , such that |P| ≥ γn, and any two nodes u, v ∈ P can communicate using
TSGu,v(m). This will then be sufficient to obtain a protocol for a.e. agreement
(as in the work of Dwork et al. [5]), as well as a.e. secure computation (using
the techniques from Garay and Ostrovsky [8]). Our graph will have maximum
degree O(nε), for arbitrary constants 0 < ε < 1, such that |P| ≥ γn, for constant
0 < γ < 1.

We begin this section by constructing such a message transmission scheme on a
graph of larger degree, O(

√
n logn), and then show how to use that construction

to obtain a scheme on a graph of maximum degree O(nε) .

3.1 A.e. Agreement on O(
√
n logn)-Degree Graphs

We now show how to construct a graph of maximum degree O(√n logn), and
then present a protocol for a remote message transmission protocol between
any two nodes u, v ∈ P , tolerating a constant fraction of corrupted edges. For
simplicity, we will assume that all messages in our protocols are binary. We
remark that this restriction can be easily removed.

Let G = (V , E) denote a graph on n nodes, dv the degree of vertex v ∈ V ,
and Paths2(u, v) the set of all paths between any two vertices u, v ∈ V of length
exactly 2. Let G satisfy the following two properties:

1.
√
n logn
2 ≤ dv ≤ 2

√
n logn for all v ∈ V ; and

2. |Paths2(u, v)| ≥ log2 n
2 for all u, v ∈ V .

We will construct our transmission scheme on any graph G satisfying the above
properties. We first observe that such a graph is easy to construct probabilisti-
cally. Consider the Erdős-Renyi random graph G(n, p), with p = logn√

n
; that is,

construct the graph G such that there is an edge between every pair of nodes
u and v, independently with probability p = log n√

n
(for simplicity, we allow self-

edges). Then, except with negligible (in n) probability, G(n, p) satisfies the con-
ditions that we require of graph G. (For completeness, we provide the proof of
this in the full version.) We sometimes denote this process by G ← G(n, p). We
now present two lemmas for graph G satisfying the two properties above.

Lemma 1. In graph G, no edge participates in more than 4
√
n logn paths of

length exactly 2 (Paths2(u, v)) between any two vertices u, v ∈ V.

Let 0 < αe, αn < 1 be constants denoting the fraction of corrupt edges and corrupt
nodes in the graph, respectively. Note that if we are able to design a protocol that
can tolerate αe

√
n(n − 1) logn + 2αn

√
n(n − 1) logn edge corruptions, then we

will automatically get a protocol that can tolerate an αe fraction of corrupt edges
and an αn fraction of corrupt nodes. Hence, let α = αe + 2αn; we will construct a
protocol that can tolerate an α fraction of corrupt edges (and no corrupt nodes).
The next lemma bounds the number of nodes in G with poor connectivity.

Edge Fault Tolerance on Sparse Networks 461

Lemma 2. Let Yu denote the set of nodes v such that the fraction of paths in
Paths2(u, v) with no corrupt edges is ≤ 1

2 . We say that a node u ∈ V is doomed
if |Yu| ≥ n

4 . Then, in graph G, at most 64αn nodes are doomed.

The set of privileged nodes P in G will simply be the nodes that are not doomed.
By Lemma 2 above, we have that |P| ≥ (1 − 64α)n = γn (for some constant
0 < γ < 1). We now present the construction of a message transmission protocol
between any two nodes u, v ∈ P :
TSGu,v(m)

1. For every node w ∈ V , u sends m over all paths in Paths2(u,w).

2. Every node w ∈ V , upon receiving m over the different paths, takes the
majority of the values received, and sends this value to v over all paths in
Paths2(w, v).

3. For every w, v takes the majority value of all messages received over
Paths2(w, v) as the message received from w. Then, v takes the majority
(over all w) of the received values as the value sent by u.

We now show that if nodes u and v are not doomed, then the protocol described
above is a reliable message transmission protocol.

Lemma 3. Let u, v ∈ P (i.e., any two nodes in G that are not doomed), Then,
after an execution of TSGu,v(m), v outputs m with probability 1.

3.2 A.e. Agreement on O(nε)-Degree Graphs

In this section we present our main technical result: we show how to recursively
increase the number of nodes in graph G from the previous section, while not
increasing its degree (asymptotically), and show how to implement a reliable
message transmission on such graphs (this will in turn lead to a.e. agreement
protocols on such graphs with the same parameters). We will do this in two
steps. Let γ = (1 − 64α). We will first show the following:

Lemma 4. Let G be a graph on n nodes with maximum degree d. Furthermore,
let G be such that it admits a reliable message transmission protocol, TSGu,v(·),
between any two nodes u and v from a set of size at least γn nodes even in
the presence of αnd corrupt edges. Then, there exists a graph G′ on n2 nodes of
maximum degree 2d, such that G′ admits a reliable message transmission protocol
between any two nodes u and v from a set of size at least γ2n2 nodes even in the
presence of α2n2d corrupt edges.

In the full version [2], we show how to apply the G′ construction from G recur-
sively to obtain the desired result on graphs of degree O(nε).

Construction of G′. We construct G′ as follows. Take n copies of graph G; we
will call each copy a cloud, and denote them C1, · · · , Cn. Connect the n clouds
using another copy of graph G. We do this by connecting the ith node in cloud
Cj to the ith node in cloud Ck by an edge, whenever there is an edge between j
and k in G. We will call such a collection of edges between clouds Cj and Ck as
a cloud-edge. Note that the maximum degree of any node in G′ is 2d.

462 N. Chandran, J. Garay, and R. Ostrovsky

We now describe how a node u in cloud Cj will communicate with a node v in

cloud Ck—call this protocol TSG
′

u,v(m). To do this, we will first describe how two
clouds that share a cloud-edge will communicate. Let every node i ∈ Cj hold a
value mi as input (note that every node need not hold the same value mi) and
assume cloud Cj wishes to communicate with cloud Ck. We describe a protocol
such that, assuming a large-enough fraction of nodes in Cj hold the same input
value, say m, then at the end of this protocol’s execution a large-enough fraction
of nodes in cloud Ck will outputm. We call this protocol CloudTransmitCj ,Ck

(mi).
Let δ be such that 64αn < δ < (γ − 130α)n.

CloudTransmitCj ,Ck
(mi)

1. For every node 1 ≤ i ≤ n, the ith node in Cj sends m to the ith node in
Ck through the edge connecting these two nodes.

2. The nodes in Ck execute a.e. differential agreement protocol AE-DA(n, 64αn
, δ) using the value they received from their counterpart node in Cj as input.

(Recall that the existence of protocol TSGu,v(m) between privileged nodes
in G guarantees that one can construct an a.e. differential agreement proto-
col; see the full version for more details on constructing an a.e. agreement
protocol on G.)

3. Each node takes the output of protocol AE-DA(n, 64αn, δ) as its output in
this protocol.

We are now ready to describe TSG
′

u,v(m):

TSG
′

u,v(m)

1. u sends m to i for all nodes i in cloud Cj using TSGu,i(m) from Section 3.1.

The ith node in Cj receives message mi.

2. Clouds Cj and Ck now execute protocol TSGCj ,Ck
(mi) over the graph G

connecting the n clouds4. Whenever cloud Cw is supposed to send a message
to Cz according to the protocol, they use protocol CloudTransmitCw,Cz(·)
over the cloud-edge connecting Cw and Cz .

3. Node v ∈ Ck takes its output in the protocol TSGCj ,Ck
(mi) as the value sent

by u.

We prove the correctness of the transmission scheme above through a series of
lemmas. At a high level, our proof goes as follows. We will call a cloud Cj as
good if it does not have too many corrupt edges within it (that is, corrupt edges
of the form (u, v) with both u and v in Cj); otherwise we will call the cloud,
bad. We first show that an adversary cannot create too many bad clouds. Next,
we define what it means for a cloud-edge between two clouds Cj and Ck to
be good (informally, the cloud-edge is good if both Cj and Ck are good clouds
and there are sufficient number of edges connecting privileged nodes in Cj and
Ck). We then show that the adversary cannot create too many bad cloud-edges.

4 We again use mi as the input argument, since the input values to nodes in Cj might
be different.

Edge Fault Tolerance on Sparse Networks 463

Next, we show that two good clouds can communicate reliably across a good
cloud-edge. Finally, we show that there exists a large set of clouds such that any
two privileged nodes in any two clouds from this set, can communicate reliably.
From this, the proof of Lemma 4 readily follows. We refer to the full version [2]
of the paper for the complete proof of correctness of the transmission scheme.

We now arrive at our main result by applying the construction of G′ from G re-
cursively, a constant number of times, beginning with graph G ← G(n,

√
n logn).

That is, we obtain a transmission scheme on O(nε) degree graphs and then show
obtain our a.e. agreement protocol as well as the a.e. MPC protocol on the same
graph. That is, we show:

Theorem 2. For all sufficiently large n and all constant 0 < ε < 1, there exists
a graph Gmain = (V , E) with maximum degree O(nε), and a set of nodes P ⊆ V,
with |P| ≥ μn (for constant 0 < μ < 1) such that the nodes in P can execute an
a.e. agreement protocol and a secure multi-party computation protocol (satisfying
the security definition of [8]), even in the presence of of an α fraction of edge
corruptions in Gmain (for some constant 0 < α < 1).

References

1. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC 1988 (1988)

2. Chandran, N., Garay, J., Ostrovsky, R.: Almost-everywhere secure compu-
tation with edge corruptions. Cryptology ePrint Archive, Report 2012/221,
http://eprint.iacr.org/

3. Chandran, N., Garay, J., Ostrovsky, R.: Improved Fault Tolerance and Secure Com-
putation on Sparse Networks. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer
auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part II. LNCS, vol. 6199, pp.
249–260. Springer, Heidelberg (2010)

4. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(abstract). In: STOC 1988 (1988)

5. Dwork, C., Peleg, D., Pippenger, N., Upfal, E.: Fault tolerance in networks of
bounded degree (preliminary version). In: STOC 1986 (1986)

6. Fitzi, M., Garay, J.: Efficient player-optimal protocols for strong and differential
consensus. In: PODC 2003 (2003)

7. Garay, J., Givens, C., Ostrovsky, R.: Secure Message Transmission by Public Dis-
cussion: A Brief Survey. In: Chee, Y.M., Guo, Z., Ling, S., Shao, F., Tang, Y.,
Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp. 126–141. Springer,
Heidelberg (2011)

8. Garay, J.A.,Ostrovsky,R.:Almost-Everywhere SecureComputation. In: Smart,N.P.
(ed.) EUROCRYPT2008. LNCS, vol. 4965, pp. 307–323. Springer, Heidelberg (2008)

9. King, V., Saia, J., Sanwalani, V., Vee, E.: Towards secure and scalable computation
in peer-to-peer networks. In: FOCS 2006 (2006)

10. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans-
actions on Programming Languages and Systems 4(3) (1982)

11. Neiger, G.: Distributed consensus revisited. Information Processing Letters 49(4),
195–201 (1994)

12. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
Journal of the ACM (1980)

13. Upfal, E.: Tolerating linear number of faults in networks of bounded degree. In:
PODC 1992 (1992)

http://eprint.iacr.org/

	Edge Fault Tolerance on Sparse Networks
	Introduction
	Model, Definitions and Building Blocks
	A.E. Agreement on Low-Degree Networks
	A.e. Agreement on O(√n log n)-Degree Graphs
	A.e. Agreement on O(n)-Degree Graphs
	A.e. Agreement on O(n^{\epsilon
})-Degree Graphs

	References

