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Abstract

In this work, we study position-based cryptography in the quantum setting. The aim is to use the
geographical position of a party as its only credential. On the negative side, we show that if adversaries are
allowed to share an arbitrarily large entangled quantum state, no secure position-verification is possible
at all. That is, we show a generic attack that breaks any position-verification scheme of a very general
form. On the positive side, we show that if adversaries do not share any entangled quantum state but can
compute arbitrary quantum operations, secure position-verification is achievable. Jointly, these results
suggest the interesting question whether secure position-verification is possible in case of a bounded
amount of entanglement. Our positive result can be interpreted as resolving this question in the simplest
case, where the bound is set to zero.

In models where secure positioning is achievable, it has a number of interesting applications. For
example, it enables secure communication over an insecure channel without having any pre-shared key,
with the guarantee that only a party at a specific location can learn the content of the conversation. More
generally, we show that in settings where secure position-verification is achievable, other position-based
cryptographic schemes are possible as well, such as secure position-based authentication and position-
based key agreement.
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1 Introduction

1.1 Background

At CRYPTO 2009, Chandran, Goyal, Moriarty, and Ostrovsky [CGMO09] introduced the notion of position-
based cryptography. The goal of position-based cryptography is to use the geographical position of a party
as its only “credential”. For example, one would like to send a message to a party at a geographical position
pos with the guarantee that the party can decrypt the message only if he or she is physically present at pos.

A central task in position-based cryptography is the problem of position-verification. We have a prover
P at position pos, wishing to convince a set of verifiers V0, . . . , Vk (at different points in geographical space)
that he (i.e. the prover) is indeed at that position pos. The prover can run an interactive protocol with the
verifiers in order to do this. The main technique for such a protocol is known as distance bounding [BC94].
In this technique, a verifier sends a random nonce to P and measures the time taken for P to reply back
with this value. Assuming that communication is bounded by the speed of light, this technique gives an
upper bound on the distance of P from the verifier.

The problem of secure positioning has been studied before in the field of wireless security, and there
have been several proposals for this task ([BC94, SSW03, VN04, Bus04, CH05, SP05, ZLFW06, CCS06]).
However, [CGMO09] shows that there exists no protocol for secure positioning that offers security in the
presence of multiple colluding adversaries. In other words, the set of verifiers cannot distinguish between the
case when they are interacting with an honest prover at pos and the case when they are interacting with
multiple colluding dishonest provers, none of whom are at position pos. Their impossibility result holds even
if we make computational hardness assumptions, and it also rules out most other interesting position-based
cryptographic tasks.

In light of the strong impossibility result, [CGMO09] considers a model in which verifiers can broadcast
large bursts of information and there is a bound on the amount of information that the set of adversaries
can retrieve (this model is known as the Bounded Retrieval Model (BRM) and has been used widely in
cryptography). In this model, [CGMO09] constructs information-theoretically secure protocols for the task
of position-verification as well as position-based key exchange (wherein the verifiers, in addition to verifying
the position claim of a prover, also exchange a secret key with the prover). While these protocols give us a
way to realize position-based cryptography, the BRM has its drawbacks. Firstly, it requires the verifiers to
be able to broadcast large bursts of information and this might be difficult to do; secondly, and perhaps more
importantly, the bound on the amount of information that an adversary retrieves might be hard to impose.
This leaves us with the following question—is there any other assumption or setting in which position-based
cryptography is realizable?

1.2 Our Approach And Our Results

In this work, we study position-based cryptography in the quantum setting. To start with, let us briefly
explain why moving to the quantum setting might be useful. The impossibility result of [CGMO09] relies
heavily on the fact that an adversary can locally store all information he receives and at the same time
share this information with other colluding adversaries, located elsewhere. Recall that the positive result
of [CGMO09] in the BRM circumvents the impossibility result by assuming that an adversary cannot store
all information he receives. By going to the quantum setting, one may be able to circumvent the impossibility
result thanks to the following observation. If some information is encoded into a quantum state, then the
above attack fails due to the no-cloning principle: the adversary can either store the quantum state or send
it to a colluding adversary (or do something in-between, like store part of it), but not both.

However, this intuition turns out to be not completely accurate. Once the adversaries pre-share entangled
states, they can make use of quantum teleportation [BBC+93]. Although teleportation on its own does not
appear to immediate conflict with the above intuition, we show that, based on techniques by Vaidman [Vai03],
adversaries holding a large amount of entangled quantum states can successfully attack any position-based
quantum scheme. We analyze our generic attack against an arbitrary 1-round position-verification scheme
(as given in Fig. 1), but the attack works similarly against multi-round schemes.
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Interestingly, pre-sharing entangled quantum systems is vital for attacking the position-verification
scheme, because we show that otherwise, there exist schemes that are secure in the information-theoretic
sense. If the adersary is not allowed any pre-shared entanglement, we show how to construct secure protocols
for several position-based cryptographic tasks: position-verification, authentication, and key exchange.

This leads to an interesting open question regarding the amount of pre-shared entanglement required to
break the positioning scheme: the case of a large amount of pre-shared states yields a complete break of any
scheme while having no pre-shared states leads to information-theoretically secure schemes. The threshold
of pre-shared quantum systems that keeps the system secure is yet unknown.

1.3 Related Work

Chandran et al. [CGMO09] show that even under cryptographic hardness assumptions, position-verification
using classical protocols is impossible against colluding malicious provers.

To the best of our knowledge, quantum schemes for position-based cryptography have first been consid-
ered by Kent in 2002 under the name of “quantum tagging”. Together with Munro, Spiller and Beausoleil, a
patent for an (insecure) scheme was filed for HP Labs in 2004 and granted in 2006 [KMSB06]. Their results
have not appeared in the academic literature until 2010 [KMS10]. In that paper, they describe several basic
schemes and describe how to break them using teleportation-based attacks. They propose other variations
(Schemes IV–VI in [KMS10]) not suspect to their teleportation attack and conjecture their security. Our
general attack presented here shows that these schemes are insecure as well.

Concurrent and independent of our work reported here and the work on quantum tagging described above,
the approach of using quantum techniques for secure position-verification was proposed by Malaney [Mal10a,
Mal10b]. However, the proposed scheme is merely claimed secure, and no rigorous security analysis is
provided. As pointed out in [KMS10], Malaney’s schemes can also be broken by a teleportation-based
attack.

To complete the historic picture, we note that a previous version of the present paper has been made
public in May 2010 by a subset of the authors [CFG+10]. After the appearance of [KMS10] we have realized
that our schemes are merely secure against adversaries without pre-shared entnaglement.

In a recent note [Ken10], Kent considers a different model for position-based cryptography where the
prover is assumed to share with the verifiers a classical key unknown to the adversary. In this case, quantum
key distribution can be used to expand that key ad infinitum. This classical key stream is then used as
authentication resource.

In [GLM02], Giovannetti et al. show how to measure the distance between two parties by quantum
cryptographic means so that only trusted people have access to the result. This is a different kind of
problem than what we consider here, and the techniques used there are not applicable in our setting.

1.4 Our Attack and our Schemes in More Detail

Position-Verification - A Simple Approach. Let us briefly discuss here the 1-dimensional case in
which we have two verifiers V0 and V1, and a prover P at position pos that lies on the straight line between
V0 and V1. Now, to verify P ’s position, V0 sends a BB84 qubit Hθ|x〉 to P , and V1 sends the corresponding
basis θ to P . The sending of these messages is timed in such a way that Hθ|x〉 and θ arrive at position pos
at the same time. P then has to measure the qubit in the given basis to obtain x, and immediately send x
to V0 and V1, who verify the correctness of x and if it has arrived “in time”.

The intuition for this scheme is the following. Consider a dishonest prover P̂0 between V0 and P , and a
dishonest prover P̂1 between V1 and P . (It is not too hard to see that additional dishonest provers do not
help.) When P̂0 receives the BB84 qubit, she does not know yet the corresponding basis θ. Thus, if she
measures it immediately when she receives it, then she is likely to measure it in the wrong basis and P̂0 and
P̂1 will not be able to provide the correct x. However, if she waits until he knows the basis θ, then P̂0 and
P̂1 will be too late in sending x to V1 in time. Similarly, if she forwards the BB84 qubit to P̂1, who receives
θ before P̂0 does, then P̂0 and P̂1 will be too late in sending x to V0. It seems that in order to break the
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scheme P̂0 needs to store the qubit until she receives the basis θ and at the same time send a copy of it to
P̂1. But this is impossible by no-cloning.

The Attack. The above intuition turns out to be wrong. Using pre-shared entanglement, P̂0 and P̂1

can perform quantum teleportation which enables them (in some sense) to act coherently on the complete
state immediately upon reception. Together with the observation by Kent et al. [KMS10] that the Pauli-
corrections resulting from the teleportation commute with the actions of the honest prover in the above
protocol proves the intuition wrong.

Based on ideas by Vaidman [Vai03], we give a general attack which breaks any (1-round) position-
verification scheme. In the attack, P̂0 and P̂1 teleport states back and forth many times in a clever way,
without awaiting the classical measurement outcomes from the other party’s teleportations.

Position-Verification in the No Pre-shared Entanglement (No-PE) Model. On the other hand,
the above intuition is correct in the No-PE model, where the adversaries are not allowed to have pre-shared
entangled quantum states. However, rigorously proving the security of the scheme in the No-PE model is
non-trivial. Our proof is based on the strong complementary information tradeoff (CIT) due to Renes and
Boileau [RB09] (see also [BCC+10]), and it guarantees that for any strategy, the success probability of P̂0

and P̂1 is bounded by approximately 0.89. By repeating the above simple scheme sequentially, we obtain a
secure multi-round positioning scheme with exponentially small soundness error. The scheme can easily be
extended to arbitrary dimension d. The idea is to involve additional verifiers V2, . . . , Vd and have the basis
θ secret-shared among V1, V2, . . . , Vd.

Position-based authentication and key-exchange in the No-PE Model. Our position-based au-
thentication scheme is based on our position-verification scheme. The idea is to start with a “weak” authen-
tication scheme for a 1-bit message m: the verifiers and P execute the secure position-verification scheme; if
P wishes to authenticate m = 1, then P correctly finishes the scheme by sending x back, but if P wishes to
authenticate m = 0, then P sends back an “erasure” ⊥ instead of the correct reply x with some probability
q (which needs to be carefully chosen). This authentication scheme is weak in the sense that turning 1 into
0 is easy for the adversary, but turning a 0 into a 1 fails with constant probability.

The idea is now to use a suitable balanced encoding of the actual message to be authenticated, so that
for any two messages, the adversary needs to turn many 0’s into 1’s. Unfortunately, an arbitrary balanced
encoding is not good enough. The reason for this is that we do not assume the verifiers and the honest P
to be synchronized. This allows the adversary to make use of honest P who is authenticating one index of
the encoded message, in order to authenticate another index of the modified encoded message towards the
verifiers.

Nevertheless, we show that the above approach does work for carefully chosen codes. We show that, for
instance, the bit-wise encoding which maps 0 into 00...0 11...1 and 1 into 11...1 00...0 is such a code.

Our solution borrows some ideas from [RW03, KR09, CKOR10] on authentication based on weak secrets.
However, since in our setting we cannot do liveness tests (to check that the verifier is alive in the protocol),
the techniques from [RW03, KR09, CKOR10] do not help us directly.

Given a position-based authentication scheme, one can immediately obtain a position-based key exchange
scheme simply by (essentially) executing an arbitrary quantum-key-distribution scheme (e.g. [BB84]), which
assumes an authenticated classical communication channel, and authenticate the classical communication
by means of the position-based authentication scheme.

1.5 Organization of the paper

In Section 2, we begin by introducing notation, and presenting the relevant background from quantum
information theory. In Section 3, we describe the problem of position-verification and define our standard
quantum model, as well as the No-PE model in more detail. In Section 4, we show that there does not exist
any protocol for position-verification (and hence, any protocol for position-based cryptographic tasks) in the
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standard quantum model. We present our position-verification protocol in the No-PE model in Section 5.
Section 6 is devoted to our position-based authentication protocol and showing how to combine the above
tools to obtain position-based key exchange.

2 Preliminaries

2.1 Notation and Terminology

We assume the reader to be familiar with the basic concepts of quantum information theory and refer
to [NC00] for an excellent introduction; we merely fix some notation here.

Qubits. A qubit is a quantum system A with state space HA = C2. The computational basis {|0〉, |1〉} (for
a qubit) is given by |0〉 =

(1
0

)
and |1〉 =

(0
1

)
, and the Hadamard basis by H {|0〉, |1〉} = {H|0〉, H|1〉}, where

H denotes the 2-dimensional Hadamard matrix, which maps |0〉 to (|0〉+ |1〉)/
√

2 and |1〉 to (|0〉 − |1〉)/
√

2.
The state space of an n-qubit system A = A1 · · ·An is given by HA = (C2)⊗n = C2 ⊗ · · · ⊗ C2.

Since we mainly use the above two bases, we can simplify terminology and notation by identifying the
computational basis {|0〉, |1〉} with the bit 0 and the Hadamard basis H {|0〉, |1〉} with the bit 1. Hence, when
we say that an n-qubit state |ψ〉 ∈ (C2)⊗n is measured in basis θ ∈ {0, 1}n, we mean that the state is measured
qubit-wise where basis Hθi {|0〉, |1〉} is used for the i-th qubit. As a result of the measurement, the string
x ∈ {0, 1}n is observed with probability |〈ψ|Hθ|x〉|2, where Hθ = Hθ1⊗· · ·⊗Hθn and |x〉 = |x1〉⊗ · · ·⊗ |xn〉.

An important example 2-qubit state is the EPR pair |ΦAB〉 = (|0〉|0〉+ |1〉|1〉)/
√

2 ∈ HA⊗HB = C2⊗C2,
which has the following properties: if qubit A is measured in the computational basis, then a uniformly
random bit x ∈ {0, 1} is observed and qubit B collapses to |x〉. Similarly, if qubit A is measured in the
Hadamard basis, then a uniformly random bit x ∈ {0, 1} is observed and qubit B collapses to H|x〉.

Density Matrices and Trace Distance. For any complex Hilbert space H, we write D(H) for the set
of all density matrices acting on H. We measure closeness of two density matrices ρ and σ in D(H) by their
trace distance: δ(ρ, σ) := 1

2tr|ρ− σ|. One can show that for any physical processing of two quantum states
described by ρ and σ, respectively, the two states behave in an indistinguishable way except with probability
at most δ(ρ, σ). Thus, informally, if δ(ρ, σ) is very small, then without making a significant error, the two
quantum states can be considered equal.

Classical and Hybrid Systems (and States). Subsystem X of a bipartite quantum system XE is
called classical, if the state of XE is given by a density matrix of the form ρXE =

∑
x∈X PX(x)|x〉〈x| ⊗ ρxE ,

where X is a finite set of cardinality |X | = dim(HX), PX : X → [0, 1] is a probability distribution, {|x〉}x∈X
is some fixed orthonormal basis of HX , and ρxE is a density matrix on HE for every x ∈ X . Such a state,
called hybrid state (also known as cq-state, for classical and quantum), can equivalently be understood as
consisting of a random variable X with distribution PX and range X , and a system E that is in state ρxE
exactly when X takes on the value x. This formalism naturally extends to two (or more) classical systems
X, Y etc. as well as to two (or more) quantum systems.

Teleportation. The goal of teleportation is to transport a quantum state from one location to another by
only communicating classical information. Teleportation requires pre-shared entanglement among the two
locations. Specifically, to teleport a qubit Q in an arbitrary (and typically unknown) state |ψ〉 from Alice to
Bob, Alice performs a Bell-measurement on Q and her half of an EPR-pair, yielding a classical measurement
outcome k ∈ {0, 1, 2, 3}. This classical information is communicated to Bob, indicating which of the four
Pauli-corrections {I, X, Z,XZ} he has to apply on the other half of the corresponding EPR pair, which is
held by Bob, to recover the state |ψ〉.
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2.2 Some Quantum Information Theory

The von Neumann entropy of a quantum state ρ ∈ D(H) is given by H(ρ) := −tr
(
ρ log(ρ)

)
, where here and

throughout the article, log denotes the binary logarithm. H(ρ) is non-negative and at most log(dim(H)).
For a bi-partite quantum state ρAB ∈ D(HA ⊗HB), the conditional von Neumann entropy of A given B is
defined as H(ρAB|B) := H(ρAB) − H(ρB). In cases where the state ρAB is clear from the context, we may
write H(A|B) instead of H(ρAB|B). If X and Y are both classical, then H(X|Y ) coincides with the classical
conditional Shannon entropy. Furthermore, in case of conditioning (partly) on a classical state, the following
holds.

Lemma 1. For any tri-partite state ρABY with classical Y : H(A|BY ) =
∑
y PY (y) H(ρyAB|B).

Lemma 1 along with the concavity of H and Jensen’s inequality implies that for classical Y : H(A) ≥
H(A|Y ) ≥ 0. The proof of Lemma 1 is given in Appendix A.

The following theorem, known as Holevo bound [Hol73] (see also [NC00]), plays an important role in
many applications of quantum information theory. Informally, it says that measuring only reduces your
information. Formally, and tailored to the notation used here, it ensures the following.

Theorem 1 (Holevo bound). Let ρAB ∈ D(HA ⊗ HB) be an arbitrary bi-partite state, and let ρAY be
obtained by measuring B in some basis to observe (classical) Y . Then H(A|Y ) ≥ H(A|B).

For classical X and Y , the Fano inequality [Fan61] (see also [CT91]) allows to bound the probability
of correctly guessing X when having access to Y . In the statement below and throughout the article,
h : [0, 1] → [0, 1] denotes the binary entropy function defined as h(p) = −p log(p) − (1 − p) log(1 − p) for
0 < p < 1 and as h(p) = 0 for p = 0 or 1, and h−1 : [0, 1]→ [0, 1

2 ] denotes its inverse on the branch 0 ≤ p ≤ 1
2 .

Theorem 2 (Fano inequality). Let X and Y be random variables with ranges X and Y, respectively, and
let X̂ be a guess for X computed solely from Y . Then q := P [X̂ 6=X] satisfies

h(q) + q log(|X | − 1) ≥ H(X|Y ) .

In particular, for binary X: q ≥ h−1(H(X|Y )).

2.3 Strong Complementary Information Tradeoff

The following entropic uncertainty principle, called strong complementary information tradeoff (CIT) in [RB09]
and generalized in [BCC+10], is at the heart of our security proofs. It relates the uncertainty of the measure-
ment outcome of a system A with the uncertainty of the measurement outcome when the complementary
basis is used instead, and it guarantees that there can coexist at most one system E that has full information
on both possible outcomes. Note that by the complementary basis θ̄ of a basis θ = (θ1, . . . , θn) ∈ {0, 1}n, we
mean the n-bit string θ̄ = (θ̄1, . . . , θ̄n) ∈ {0, 1}n with θ̄i 6= θi for all i.

Theorem 3 (CIT). Let |ψAEF 〉 ∈ HA ⊗ HE ⊗ HF be an arbitrary tri-partite state, where HA = (C2)⊗n.
Let the hybrid state ρXEF be obtained by measuring A in basis θ ∈ {0, 1}n, and let the hybrid state σXEF be
obtained by measuring A (of the original state |ψAEF 〉) in the complementary basis θ̄. Then

H(ρXE |E) + H(σXF |F ) ≥ n . (1)

CIT in particular implies the following:

Corollary 1. Let |ψAEF 〉 ∈ HA ⊗HE ⊗HF be an arbitrary tri-partite state, where HA = (C2)⊗n. Let Θ be
uniformly distributed in {0, 1}n and let X be the result of measuring A in basis Θ. Then

H(X|ΘE) + H(X|ΘF ) ≥ n . (2)
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Proof. By Lemma 1, we can write

H(X|ΘE) + H(X|ΘF ) =
1
2n
∑
θ

H(ρθXE |E) +
1
2n
∑
θ

H(ρθXF |F )

=
1
2n
∑
θ

(
H(ρθXE |E) + H(ρθ̄XF |F )

)
. (3)

Note that ρθXE is obtained by measuring A of |ψAEF 〉 in basis θ (and ignoring F ), and ρθ̄XF is obtained by
measuring A of |ψAEF 〉 in the complementary basis θ̄ (and ignoring E). Hence, Theorem 3 applies and we
can conclude that H(ρθXE |E) + H(ρθ̄XF |F ) ≥ n and thus H(X|ΘE) + H(X|ΘF ) ≥ n.

3 Setup and Position-Verification

3.1 The Model

We informally describe the model we use for the upcoming sections, which is a quantum version of the
Vanilla (standard) model introduced in [CGMO09] (see there for a full description). We also describe our
restricted model used for our security proof, that we call the no pre-shared entanglement (No-PE) model. We
consider entities V0, . . . , Vk called verifiers and an entity P , the (honest) prover. Additionally, we consider
a coalition P̂ of dishonest provers (or adversaries) P̂0, . . . , P̂`. All entities can perform arbitrary quantum
(and classical) operations and can communicate quantum (and classical) messages among them. For our
positive results, we consider a restricted model, in which the amount of entanglement pre-shared between
the dishonest provers is bounded. We define the No-PE model to be such that the coalition of provers P̂
do not pre-share any entangled states. That is, a dishonest prover can send quantum communication only
after it receives the verifiers message.

For simplicity, we assume that quantum operations and communication is noise-free; however, our results
generalize to the more realistic noisy case, assuming that the noise is low enough. We require that the
verifiers have a private and authentic channel among themselves, which allows them to coordinate their
actions by communicating before, during or after protocol execution. We stress however, that this does not
hold for the communication between the verifiers and P : P̂ has full control over the destination of messages
communicated between the verifiers and P (both ways). This in particular means that the verifiers do not
know per-se if they are communicating with the honest or a dishonest prover (or a coalition of dishonest
provers).

The above model is now extended by incorporating the notion of time and space. Each entity is assigned
an arbitrary but fixed position pos in the d-dimensional space Rd, and we assume that messages to be
communicated travel at fixed velocity v (e.g. with the speed of light) , and hence the time needed for a
message to travel from one entity to another equals the Euclidean distance between the two (assuming that
v is normalized to 1). This holds for honest and dishonest entities. We assume on the other hand that local
computations take no time.

Finally, we assume that the verifiers have precise and synchronized clocks, so that they can coordinate
exact times for sending off messages and can measure the exact time of a message arrival. We do not require
P ’s clock to be precise or in sync with the verifiers. However, we do assume that P cannot be reset.

This model allows to perform reasonings of the following kind. Consider a verifier V0 that is at position
pos0 and who sends a challenge ch0 to the (supposedly honest) prover claiming to be at position pos. If
V0 receives a reply within time 2d(pos0, pos), where d(·, ·) is the Euclidean distance measure in Rd and
thus also measures the time a message takes from one point to the other, then V0 can conclude that he is
communicating with a prover that is within distance d(pos0, pos).

Throughout the article, we require that the honest prover P is enclosed by the verifiers V0, . . . , Vk in that
the prover’s position pos ∈ Rd lies within the tetrahedron, i.e., convex hull, Hull(pos0, . . . , posk) ⊂ Rd formed
by the respective positions of the verifiers. Note that in this work we consider only stand-alone security,
i.e., there exists only a single execution with a single honest prover, and we do not guarantee concurrent
security.
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3.2 Secure Position-Verification

A position-verification scheme should allow a prover P at position pos ∈ Rd (in d-dimensional space) to
convince a set of k+1 verifiers V0, . . . , Vk, which are located at respective positions pos0, . . . , posk ∈ Rd, that
he is indeed at position pos. We assume that P is enclosed by V0, . . . , Vk. We require that the verifiers jointly
accept if an honest prover P is at position pos, and we require that the verifiers reject with “high” probability
in case of a dishonest prover that is not at position pos. The latter should hold even if the dishonest prover
consist of a coalition of collaborating dishonest provers P̂0, . . . , P̂` at arbitrary positions apos0, . . . , apos` ∈ Rd

with aposi 6= pos for all i. We refer to [CGMO09] for the general formal definition of the completeness and
security of a position-verification scheme. In this article, we focus on position-verification schemes of the
following form:

Definition 1. A 1-round position-verification scheme PV consists of a challenge generator Chlg, which
outputs a list of challenges (ch0, . . . , chk) and auxiliary information x, a response algorithm Resp, which on
input a list of challenges outputs a list of responses (x′0, . . . , x

′
k), and a verification algorithm Ver with

Ver(x′1, . . . , x
′
k, x) ∈ {0, 1}. PV is said to have perfect completeness if Ver(x′1, . . . , x

′
k, x) = 1 with proba-

bility 1 for (ch0, . . . , chk) and x generated by Chlg and (x′0, . . . , x
′
k) by Resp on input (ch0, . . . , chk).

The algorithms Chlg, Resp and Ver are used as described in Fig. 1 to verify the claimed position of a
prover P . We clarify that in order to have all the challenges arrive at P ’s (claimed) location pos at the
same time, the verifiers agree on a time T and each Vi sends off his challenge chi at time T − d(posi, pos).
As a result, all chi’s arrive at P ’s position pos at time T . In step 3, Vi receives x′i in time if x′i arrives
at Vi’s position posi at time T + d(posi, pos). Throughout the article, we use this simplified terminology.
Furthermore, we are sometimes a bit sloppy in distinguishing a party, like P , from its location pos.

Common input to the verifiers: their respective positions pos0, . . . , posk, and P ’s (claimed) position pos.

0. V0 generates (ch0, . . . , chk) and x using Chlg, and sends chi to Vi for i = 1, . . . , k.

1. Every Vi sends chi to P in such a way that all chi’s arrive at the same time at P ’s position pos.

2. P computes (x′0, . . . , x
′
k) := Resp(ch0, . . . , chk) as soon as all the chi’s arrive, and he sends x′i to Vi

for every i.

3. The Vi’s jointly accept if and only if all Vi’s receive x′i in time and Ver(x′1, . . . , x
′
k, x) = 1.

Figure 1: Generic 1-round position-verification scheme.

We stress that we allow Chlg, Resp and Ver to be quantum algorithms and chi, x and x′i to be quantum
information. In our constructions, only ch0 will actually be quantum; thus, we will only require quantum
communication from V0 to P , all other communication is classical. Also, in our constructions, x′1 = . . . = x′k,
and Ver(x′1, . . . , x

′
k, x) = 1 exactly if x′i = x for all i.

Definition 2. A 1-round position-verification scheme PV = (Chlg,Resp,Ver) is called ε-sound if for any
position pos ∈ Hull(pos0, . . . , posk), and any coalition of dishonest provers P̂0, . . . , P̂` at arbitrary positions
apos0, . . . , apos`, all 6= pos, when executing the scheme from Fig. 1 the verifiers accept with probability at
most ε. We then write PVε for such a protocol.

In order to be more realistic, we must take into consideration physical limitations of the equipment
used, such as measurement errors, computation durations, etc. Those allow a dishonest prover which resides
arbitrarily close to P to appear as if she resides at pos. Thus, we assume that all the adversaries are at
least ∆-distanced from pos, where ∆ is determined by those imperfections. For sake of simplicity, this ∆ is
implicit in the continuation of the paper.
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A position-verification scheme can also be understood as a (position-based) identification scheme, where
the identification is not done by means of a cryptographic key or a password, but by means of the geographical
location.

4 Impossibility of Position-Verification with Unlimited Adversary

4.1 Setting and Notation

For simplicity, we consider the one-dimensional case, with two verifiers V0 and V1, but the attack can be
generalized to higher dimensions and more verifiers.

We consider an arbitrary 1-round position-verification scheme as specified in Fig. 1. We let Ai be the
quantum system used to communicate the challenge chi from Vi to P . For simplicity, we assume that the
output system to communicate the replay x′i back to Vi is of the same size and also denote it by Ai. We let
B be the quantum system that stores the auxiliary information x. Specifically, Chlg produces a quantum
state ρA0A1B, and the systems A0 and A1 are sent to P by V0 and V1, respectively. Resp instructs P to apply
some unitary transformation U to A0 and A1, resulting in state σA0A1B = (U ⊗ I)ρA0A1B(U † ⊗ I). Then, P
has to send A0 and A1 immediately back to V0 and V1, respectively. For simplicity, let us further assume
that both systems A0 and A1 consist of n qubits.

We would like to point out that assuming Resp to be a unitary transformation and restricting both input-
and output-systems to be of equal size is without loss of generality; a general quantum operation can be
taken care of simply by adding some ancilla to, say, A0.

We show below that any pair of dishonest provers, P̂0 and P̂1, with pos0 < apos0 < pos < apos1 < pos1,
can transform ρA0A1B into σA0A1B and provide V0 and V1 in time with the systems A0 and A1. Our attack is
based on a scheme for “instantaneous measurement of non-local variables” by Vaidman [Vai03]. Similarly to
the teleportation attacks presented by Kent, Munro and Spiller [KMS10], it uses the entanglement between
the dishonest provers to teleport states back and forth.

4.2 Attack

Our attack makes use of teleportation, as described in Section 2.1. However, it is used in a somewhat unusual
and suprising way: the receiver of a teleported quantum state acts on the received state, e.g. by applying
a unitary transformation and/or teleporting it back, before receiving the measurement outcome k and thus
without applying the Pauli-correction. All the teleportation steps in our attack and the subsequent actions
on the received state should be understood in this sense.

The steps of the attack are the following (see Fig. 2). For ease of notation, we do not write the B system
holding the verifier’s auxiliary information.

1. When ρA0 reaches P̂0, she uses her first n EPR-halves to teleport the state to P̂1. Let us denote the
measurement outcome by k ∈ {0, 1, 2, 3}n. In this and all following teleportation steps, all classical
measurement outcomes are sent immediately to P̂1 (and vice versa).

2. Let us denote by ρ1
A0A1

the state consisting of the first n EPR-halves held by P̂1 joined with the
state ρA1 she received from V1. P̂1 acts as if no error occurred in the teleportation step and applies
the unitary transform U on ρ1

A0A1
to obtain the state σ1

A0A1
= Uρ1

A0A1
U †. She then teleports all 2n

qubits of σ1
A0A1

back to P̂0 using the next 2n EPR-halves shared with P̂0. Let us denote the classical
outcome of the teleportation measurement by ` ∈ {0, 1, 2, 3}2n. As above, she immediately forwards
these classical measurement outcomes to P̂0.

3. Let us denote by σ̂1
A0A1

the (uncorrected) state P̂0 receives when P̂1 teleports σ1
A0A1

to her. If the
outcome of the initial teleportation was the string k = 0 . . . 0 consisting of n zeros (indicating that no
correction needs to be applied), we have that ρ1

A0A1
= ρA0A1 and thus σ1

A0A1
= σA0A1 . In this case,

P̂0 sends the second system σ̂1
A1

of the received (uncorrected) state to P̂1. When ` arrives at P̂0, she

9



Figure 2: Schematic of the attack steps (described in the main text) with two levels of recursion. P̂0’s
measurement outcomes in the first two teleportation steps are different from the all-zero string, k, k′ 6= 0 . . . 0,
only the third step succeeds in k′′ = 0 . . . 0. Dot-arrows with measurement signs are used to denote the
teleportation of a state using the EPR pair on the same level, resulting in a classical outcome k ∈ [4] where
[4] is the abbreviation for the set {0, 1, 2, 3}.
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holds enough information to correct her n EPR-halves σ̂1
A0

to the state σ1
A0

= σA0 which she sends to
V0. Similarly, when P̂1 receives (together with k = 0 . . . 0) the uncorrected system σ̂1

A1
from P̂0, she

uses ` to correct it to σ1
A1

= σA1 and sends it to V1. It is clear that the attack succeeds in this case.
However, what happens if k 6= 0 . . . 0?

4. In that case, P̂0 uses her next 2n(4n−1) EPR-halves to teleport σ̂1
A0A1

back to P̂1. At the same time, P̂0

“informs” P̂1 by the use of the channel what error k occurred in the first teleportation step. Concretely,
let us divide the next 4n(4n − 1) shared EPR-pairs into 4n − 1 clusters of 4n EPR-pairs each. Every
cluster is labelled with one of the 4n−1 non-zero measurement outcomes for k ∈ {0, 1, 2, 3}n \{0 . . . 0}.
P̂0 uses the first 2n qubits of the cluster with label k to teleport σ̂1

A0A1
back to P̂1. This yields classical

outcome k′ ∈ {0, 1, 2, 3}2n. The other clusters with labels i 6= k are not used by P̂0.

5. For every cluster-label i, P̂1 treats the first 2n qubits of cluster i as follows: Pretending that k′ = 0 . . . 0,
i.e., no error occurred in the last teleportation step from P̂0 to P̂1, she first corrects the Pauli-errors
that occurred in the previous teleportation of σ1

A0A1
from P̂1 to P̂0 according to her outcome `, resulting

in state σ2,i
A0A1

. She undoes the unitary operation yielding

ρ2,i
A0A1

= U †σ2,i
A0A1

U .

P̂1 applies the Pauli-correction corresponding to error i to ρ2,i
A0

and joins it with ρ2,i
A1

to get the state
ρ3,i
A0A1

. Note that if k′ indeed happens to be 0 . . . 0 and for i = k, the resulting state ρ3,i
A0A1

equals the
original state ρA0A1 . She re-applies the unitary transformation to obtain

σ3,i
A0A1

= Uρ3,i
A0A1

U † .

The 2n qubits of state σ3,i
A0A1

are then teleported back to P̂0 using the second 2n qubits in cluster i
resulting in classical outcomes `′i ∈ {0, 1, 2, 3}

2n.

6. If the outcome of the teleportation of σ̂1
A0A1

was k′ = 0 . . . 0, P̂0 sends the second system A1 of
the received state σ̂3,k

A0A1
to P̂1. In this case, P̂1 indeed corrected the Pauli-error k from the first

teleportation and we have that σ3,k
A0A1

= σA0A1 . When `′k arrives at P̂0, she holds enough information
to correct her n EPR-halves σ̂3,k

A0
of cluster k to the state σ3,k

A0
= σA0 which she sends to V0. Similarly,

when P̂1 receives k and k′ = 0 . . . 0, P̂1 corrects σ̂3,k
A1

to σ3,k
A1

= σA1 using `′k and sends it to V1 to
successfully complete the attack. If k′ 6= 0 . . . 0, the players enter the next layer of recursion:1

Let us divide the following 4n(4n − 1)(42n − 1) shared EPR-pairs in 4n − 1 clusters of 4n(4n − 1)
EPR-pairs each (the red blocks in Step 6 of Fig. 2). Each cluster is further divided into sub-clusters of
4n EPR-pairs each. Every cluster is labelled with one of the 4n − 1 non-zero measurement outcomes
for k. Sub-clusters of cluster i are labelled with one of the 42n − 1 non-zero measurement outcomes
for k′i. P̂0 uses the first 2n qubits of subcluster labelled k′ of cluster labelled k to teleport σ̂3,k

A0A1
back

to P̂1. This yields classical outcome k′′ ∈ {0, 1, 2, 3}2n. The other (sub-)clusters are not used by P̂0.

7. For every subcluster-label j of every cluster-label i, P̂1 treats the first 2n qubits of subcluster j of
cluster i as follows: Assuming that k′′ = 0 . . . 0, i.e., no error occurred in the last teleportation step
from P̂0 to P̂1, P̂1 knows that errors k = i and k′ = j have occurred in the previous teleportation steps.
Together with the knowledge of her own outcomes ` and `i, she undoes her previous actions, performs
the right corrections according to i and j and applies the unitary resulting in the state σ4,i,j

A0A1
. These

2n qubits are then teleported back to P̂0 using the second 2n qubits in subcluster j of cluster i yielding
classical outcomes `′′i,j ∈ {0, 1, 2, 3}

2n.

1We note that only P̂0 actually learns “when” the attack has succeeded. In a concrete instantiation, the dishonest provers
agree beforehand on a fixed number of recursion layers. As the non-signalling principle prevents P̂1 from instantaneously learning
P̂0’s measurement outcomes, she simply continues the attack for all pre-agreed levels of recursions. Only when P̂0’s classical
communication reaches P̂1, she learns at which level the attack has succeeded.
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8. If the outcome of the teleportation of σ̂3,k
A0A1

was k′′ = 0 . . . 0, P̂0 sends the second system A1 of

the received state σ̂4,k,k′

A0A1
to P̂1. In this case, P̂1 indeed corrected the Pauli-errors k and k′ from

the first and second teleportations and we have that σ4,k,k′

A0A1
= σA0A1 . When `′′k,k′ arrives at P̂0, she

holds enough information to correct her n EPR-halves σ̂4,k,k′

A0
of subcluster k′ of cluster k to the state

σ4,k,k′

A0
= σA0 which she sends to V0. Similarly, when P̂1 receives k, k′ and k′′ = 0 . . . 0, P̂1 corrects

σ̂4,k,k′

A1
to σ4,k,k′

A1
= σA1 using `′′k,k′ and sends it to V1 to successfully complete the attack. Otherwise,

the next layer of recursion is entered, etc.

4.3 Analysis

The attack succeeds if P̂0’s measurement outcome equals the all-zero string at some layer of the recursion.
The chance that the first teleportation outcome k is the all-zero string is 1

4n . For the following layers of
recursion, the probability of success is the same, namely 1

42n . Therefore, the probability that the attack
fails in each of r layers of recursion is at most (1 − 1

4n )(1 − 1
42n )r−1. Thus, with an unbounded amount

of entanglement between the dishonest provers, this attack can be performed with a success probability
arbitrarily close to 1.

The amount of EPR pairs used by the dishonest provers increases exponentially with the number of
recursion layers. It is an interesting open question whether such a large amount of entanglement is necessary
to perform this general attack.

5 Secure Position-Verification in the No-PE model

We show the possibility of secure position-verification in the No-PE model. We consider the following basic
1-round position-verification scheme in the No-PE model, given in Fig. 3. It is based on the BB84 encoding.
In all our protocols all parties abort if they receive any message which is inconsistent with the protocol, for
instance (classical) message with a wrong length, or different number of received qubits than expected, etc.

0. V0 chooses two random bits x, θ ∈ {0, 1} and sends them privately to V1.

1. V0 prepares the qubit Hθ|x〉 and sends it to P , and V1 sends the bit θ to P , so that Hθ|x〉 and
θ arrive at the same time at P .

2. When Hθ|x〉 and θ arrive, P measures Hθ|x〉 in basis θ to observe x′ ∈ {0, 1}, and sends x′ to
V0 and V1.

3. V0 and V1 accept if on both sides x′ arrives in time and x′ = x.

Figure 3: Position-verification scheme PVεBB84 based on the BB84 encoding.

Theorem 4. In the No-PE model, the 1-round position-verification scheme PVεBB84 from Fig. 3 is ε-sound
with ε = 1− h−1(1

2).

A numerical calculation shows that h−1(1
2) ≥ 0.11 and thus ε ≤ 0.89. A particular attack for a dishonest

prover P̂ , sitting in-between V0 and P , is to measure the qubit Hθ|x〉 in the Breidbart basis, resulting in an
acceptance probability of cos(π/8)2 ≈ 0.85. This shows that our analysis is pretty tight.

Proof. In order to analyze the position-verification scheme it is convenient to consider an equivalent purified
version, given in Fig. 4. The only difference between the original and the purified scheme is the point in
time when V0 measures A (indeed, preparing |ΦAB〉 and measuring A in basis θ is just one possible way to
prepare Hθ|x〉) and the point in time when V1 learns x. This, however, has no influence on the view of the
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0. V0 and V1 privately agree on a random bit θ ∈ {0, 1}.
1. V0 prepares an EPR pair |ΦAB〉 ∈ HA ⊗ HB, keeps qubit A and sends qubit B to P , and V1

sends the bit θ to P , so that B and θ arrive at the same time at P .

2. When B and θ arrive, P measures B in basis θ to observe x′ ∈ {0, 1}, and sends x′ to V0 and V1.

3. Only now, when x′ arrives, V0 measures qubit A in basis θ to observe x, and privately sends x
to V1. V0 and V1 accept if on both sides x′ arrives in time and x′ = x.

Figure 4: EPR version of PVεBB84.

(dishonest or honest) prover, nor on the joint distribution of θ, x and x′, and thus neither on the probability
that V0 and V1 accept. It therefore suffices to analyze the purified version.

We first consider security against two dishonest provers P̂0 and P̂1, where P̂0 is between V0 and P and P̂1

is between V1 and P . In the end we will argue that a similar argument holds for multiple dishonest provers
on either side.

Since V0 and V1 do not accept if x′ does not arrive in time and dishonest provers do not use pre-shared
entanglement in the No-PE-model, any potentially successful strategy of P̂0 and P̂1 must look as follows.
As soon as P̂1 receives the bit θ from V1, she forwards (a copy of) it to P̂0. Also, as soon as P̂0 receives the
qubit A, she applies an arbitrary quantum operation to the received qubit A (and maybe some ancillary
system she possesses) that maps it into a bipartite state E0E1 (with arbitrary state space HE0 ⊗HE1), and
P̂0 keeps E0 and sends E1 to P̂1. Then, as soon as P̂0 receives θ, she applies some measurement (which may
depend on θ) to E0 to obtain x̂0, and as soon as P̂1 receives E1, she applies some measurement (which may
depend on θ) to E1 to obtain x̂1, and both send x̂0 and x̂1 immediately to V0 and V1, respectively. We will
now argue that the probability that x̂0 = x and x̂1 = x is upper bounded by ε as claimed.

Let |ψAE0E1〉 ∈ HA ⊗ HE0 ⊗ HE1 be the state of the tri-partite system AE0E1 after P̂0 has applied
the quantum operation to the qubit B. Note that in the No-PE model, the quantum operation and thus
|ψAE0E1〉 does not depend on θ.2 Recall that x is obtained by measuring A in either the computational
(if θ = 0) or the Hadamard (if θ = 1) basis. Writing x, θ, etc. as random variables X, Θ, etc., it follows
from CIT (specifically Corollary 1) that H(X|ΘE0) + H(X|ΘE1) ≥ 1 . Let Y0 and Y1 denote the classical
information obtained by P̂0 and P̂1 as a result of measuring E0 and E1, respectively, with bases that may
depend on Θ. By the Holevo bound (Theorem 1), it follows from the above that

H(X|ΘY0) + H(X|ΘY1) ≥ 1 ,

therefore H(X|ΘYi) ≥ 1
2 for at least one i ∈ {0, 1}. By Fano’s inequality (Theorem 2), we can conclude

that the corresponding error probability qi = P [X̂i 6=X] satisfies h(qi) ≥ 1
2 . It thus follows that the failure

probability

q = P [X̂0 6=X ∨ X̂1 6=X] ≥ max {q0, q1} ≥ h−1(
1
2

) ,

and the probability of V0 and V1 accepting, P [X̂0 =X ∧ X̂1 =X] = 1− q, is indeed upper bounded by ε as
claimed.

It remains to argue that more than two dishonest provers in the No-PE model cannot do any better.
The reasoning is the same as above. Namely, in order to respond in time, the dishonest provers that are
closer to V0 than P must map the qubit A—possibly jointly—into a bipartite state E0E1 without knowing
θ, and jointly keep E0 and send E1 to the dishonest provers that are “on the other side” of P (i.e., closer to
V1). Then, the reply for V0 needs to be computed from E0 and θ (possibly jointly by the dishonest provers
that are closer to V0), and the response for V1 from E1 and θ. Thus, it can be argued as above that the
success probability is bounded by ε as claimed.

2We point out that once the adversaries pre-share entangled states, more general attacks (such as the one described in
Section 4) are possible and this reasoning no longer holds.
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5.1 Reducing the Soundness Error

In order to obtain a position-verification scheme with a negligible soundness error, we can simply repeat the
1-round scheme PVεBB84 from Fig. 3. Repeating the scheme n times in sequence, where the verifiers launch
the next execution only after the previous one is finished, reduces the soundness error to εn. This follows
immediately from the security of the 1-round scheme.

Corollary 2. In the No-PE model, the n-fold sequential repetition of PVεBB84 from Fig. 3 is εn-sound with
ε = 1− h−1(1

2).

In terms of round complexity, a more efficient way of repeating PVεBB84 is by repeating it in parallel: V0

sends n BB84 qubits Hθ1 |x1〉, . . . ,Hθn |xn〉 and V1 sends the corresponding bases θ1, . . . , θn to P so that they
all arrive at the same time at P ’s position, and P needs to reply with the correct list x1, . . . , xn in time. This
is obviously more efficient in terms of round complexity and appears to be the preferred solution. However,
we do not have a proof for the security of the parallel repetition of PVεBB84.

5.2 Position-Verification in Higher Dimensions

The scheme PVεBB84 can easily be extended into higher dimensions. The scheme for d dimensions is a
generalization of the scheme PVεBB84 in Fig. 3, where now the challenges of the verifiers V1, V2, . . ., Vd form a
sum sharing of the basis θ, i.e., are random θ1, θ2, . . . , θd ∈ {0, 1} such that their modulo-2 sum equals θ. As
specified in Fig. 1, the state Hθ|x〉 and the shares θi are sent by the verifiers to P such that they arrive at
P ’s (claimed) position at the same time. P can then reconstruct θ and measure Hθ|x〉 in the correct basis
to obtain x′ = x, which he sends to all the verifiers who check if x′ arrives in time and equals x.

We can argue security by a reduction to the scheme in 1 dimension. For the sake of concreteness, we
consider here 3 dimensions. For 3 dimensions, we need at set of (at least) 4 non-coplanar verifiers V0, . . . , V3,
and the prover P needs to be located inside the tetrahedron defined by the positions of the 4 verifiers.
We consider a coalition of dishonest provers P̂0, . . . , P̂` at arbitrary positions but different to P . We may
assume that P̂0 is closest to V0. It is easy to see that there exists a verifier Vj such that d(P̂0, Vj) > d(P, Vj).
Furthermore, we may assume that Vj is not V0 and thus we assume for concreteness that it is V1. We now
strengthen the dishonest provers by giving them θ2 and θ3 for free from the beginning. Since, when θ2 and
θ3 are given, θ can be computed from θ1 and vice versa, we may assume that V1 actually sends θ as challenge
rather than θ1. But now, θ2 and θ3 are now just two random bits, independent of θ and x, and are thus of
no help to the dishonest provers and we can safely ignore them.

As P̂0 is further away from V1 than P is, P̂0 cannot afford to store Hθ|x〉 until he has learned θ. Indeed,
otherwise V1 will not get a reply in time. Therefore, before she learns θ, P̂0 needs to apply a quantum
transformation to Hθ|x〉 with a bi-partite output and keep one part of the output, E0, and send the other
part, E1 in direction of V1. Note that this quantum transformation is independent of θ, as long as P̂0 does
not share an entangled state with the other dishonest provers (who might know θ by now). Then, x̂0 and
x̂1, the replies that are sent to V0 and V1, respectively, need then to be computed from θ and E0 alone and
from θ and E1 alone. It now follows from the analysis of the scheme in 1 dimension that the probability
that both x̂0 and x̂1 coincide with x is at most ε = 1− h−1(1

2).

Corollary 3. The above generalization of PVεBB84 to d dimensions is ε-sound in the No-PE model with
ε = 1− h−1(1

2).

6 Position-Based Authentication and Key-Exchange

In this section we consider a new primitive: position-based authentication. In contrast to position-verification,
where the goal of the verifiers is to make sure that entity P is at the claimed location pos, here the verifiers
want to make sure that a given message m originates from an entity P that is at the claimed location pos.
We stress that it is not sufficient to first execute a position-verification scheme with P to ensure that P
is at position pos and then have P send or confirm m, because a coalition of dishonest provers may do a
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man-in-the-middle attack and stay passive during the execution of the positioning scheme but then modify
the communicated message m.

Formally, in a position-based authentication scheme the prover takes as input a message m and the
verifiers V0, . . . , Vk take as input a message m′ and the claimed position pos of P , and we require the
following security properties.

• εc-Completeness: If m = m′, P is honest and at the claimed position pos, and if there is no (coalition
of) dishonest prover(s), then the verifiers jointly accept except with probability εc.

• εs-Soundness: For any pos ∈ Hull(pos0, . . . , posk) and for any coalition of dishonest provers P̂0, . . . , P̂`
at locations all different to pos, if m 6= m′ then the verifiers jointly reject except with probability εs.

We build a position-based authentication scheme based on our position-verification scheme. The idea
is to incorporate the message to be authenticated into the replies of the position-verification scheme. Our
construction is very generic and may also be useful for turning other kinds of identification schemes (not
necessarily position-based schemes) into corresponding authentication schemes. Our aim is merely to show
the existence of such a scheme; we do not strive for optimization. We begin by proposing a weak position-
based authentication scheme for a 1-bit message m.

6.1 Weak 1-bit authentication scheme

Let PVε be a 1-round position-verification scheme between k + 1 verifiers V0, . . . , Vk and a prover P . For
simplicity, we assume that, like for the scheme PVεBB84 from Section 5, x and x′0, . . . , x

′
k are classical, and Ver

accepts if x′i = x for all i, and thus we understand the output of Resp(ch0, . . . , chk) as a single element x′

(supposed to be x). We require PVε to have perfect completeness and soundness ε < 1. We let ⊥ be some
special symbol. We consider the weak authentication scheme given in Fig. 5 for a 1-bit message m ∈ {0, 1}.
We assume that m has already been communicated to the verifiers and thus there is agreement among
the verifiers on the message to be authenticated. The weak authentication scheme works by executing the
1-round position-verification scheme PVε, but letting P replace his response x′ by ⊥ with probability q, to
be specified later.

0. V0 generates (ch0, . . . , chk) and x using Chlg and sends chi and x to Vi for i = 1, . . . , k.

1. Every verifier Vi sends chi to P in such a way that all chis arrive at the same time at P .

2. When the chis arrive, P computes the authentication tag t as follows and sends it back to all
the verifiers. If m = 1 then t := Resp(ch0, . . . , chk), and if m = 0 then t := ⊥ with probability q
and t := Resp(ch0, . . . , chk) otherwise.

3. If different verifiers have received different values for t, or it didn’t arrive in time, the verifiers
abort. Otherwise, they jointly accept if t = x or both m = 0 and t = ⊥.

Figure 5: A generic position-based weak authentication scheme wAUTHε for a 1-bit message m.

We now analyze the success probability of an adversary authenticating a bit m′ ∈ {0, 1}. We consider
the case where there is no honest prover present (we call this an impersonation attack), and the case where
an honest prover is active and authenticates the bit m 6= m′ (we call this a substitution attack).

The following properties are easy to verify and follow from the security property of PVε.

Lemma 2. Let P̂ be a coalition of dishonest provers not at the claimed position and trying to authenticate
message m′ = 1. In case of an impersonation attack, the verifiers accept with probability at most ε, and in
case of a substitution attack (with m = 0), the verifiers accept with probability at most δ = (1 − q) + qε =
1− q(1− ε) < 1.
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On the other hand, P̂ can obviously authenticate m′ = 0 by means of a substitution attack with success
probability 1; however, informally, P̂ has bounded success probability in authenticating message m′ = 0 by
means of an impersonation attack unless he uses the tag ⊥. (This fact is used latter to obtain a strong
authentication scheme.)

Let us try to extend the above in order to get a strong authentication scheme. Based on the observation
that by performing a substitution attack on wAUTHε, it is easy to substitute the message bit m = 1 by
m′ = 0 but non-trivial to substitute m = 0 by m′ = 1, a first approach to obtain an authentication scheme
with good security might be to apply wAUTHε bitwise to a balanced encoding of the message. Such an
encoding should ensure that for any distinct messages m and m′, there are many positions in which the
encoding of m′ is 1 but the encoding of m is 0. Unfortunately, this is not good enough. The reason is
that P and the verifiers are not necessarily synchronized. For instance, assume we encode m = 0 into
c = 010101...01 and m′ = 1 into c′ = 101010...10, and authentication works by doing wAUTHε bit-wise on
all the bits of the encoded message. If P̂ wants to substitute m = 0 by m′ = 1 then he can simply do the
following. He tries to authenticate the first bit 1 of c′ towards the verifiers by means of an impersonation
attack. If he succeeds, which he can with constant probability, then he simply authenticates the remaining
bits 01010...10 of c′ by using P , who is happy to authenticate all of the bits of c = 010101...01. Because of
this issue of P̂ bringing P and the verifiers out of sync, we need to be more careful about the exact encoding
we use.

6.2 Secure Position-Based Authentication Scheme

We specify a special class of codes, which is strong enough for our purpose.

Definition 3. Let c ∈ {0, 1}N . A vector e ∈ {−1, 0, 1}2N is called an embedding of c if by removing all
the −1 entries in e we obtain c. Furthermore, for two strings c, c′ ∈ {0, 1}N we say that c′ λ-dominates c
if for all embeddings e and e′ of c and c′ (at least) one of the following holds: (a) the number of positions
i ∈ {1, . . . , 2N} for which e′i = 1 and ei < 1 is at least λ, or (b) there exist a consecutive sequence of indices
I such that the set J = {i ∈ I : e′i > −1} has size |J | ≥ 4λ and it contains at least λ indices i ∈ J with
ei = −1.

For instance, let c = 00...0 11...1 and c′ = 11...1 00...0, where the blocks of 0’s and 1’s are of length N/2.
It is not hard to see that the two codewords N/4-dominate each other. However, c̃′ = 0101...01 does not
dominate c̃ = 1010...10, since c̃′ can be embedded into ‡0101...01‡‡...‡ and c̃ into 1010...10‡‡...‡, where here
and later we use ‡ to represent −1.

Definition 4. A code C is λ-dominating, if any two codewords in C λ-dominate each other.

We note that the requirement for λ-dominating codes can be relaxed in various ways to allow a greater
range of codes.

Let wAUTHε be the above weak authentication scheme satisfying Lemma 2. In order to authenticate a
message m ∈ {0, 1}µ in a strong way (with λ a security parameter), an encoding c of m using a λ-dominating
code C is bit-wise authenticated by means of wAUTHε, and the verifiers perform statistics over the number
of ⊥s received. The resulting authentication scheme is given in Fig. 6; as for the weak scheme, we assume
that the message m has already been communicated.

Theorem 5. The generic position-based authentication scheme AUTH (Fig. 6) is Ne−2qλ-complete.

Proof. An honest prover which follows the above scheme can fail only if for some round r, n⊥ > 8qλ. Using
Chernoff bound [Che52], the probability of having n⊥ > 8qλ at a specific round r, is upper bounded by
e−2qλ. Using the union bound for every possible round j, we bound the failure probability with Ne−2qλ.

Before we analyze the security of the authentication scheme, let us discuss the possible attacks on it.
Here we treat P̂ as a single identity, however P̂ represents a collaboration of adversaries. Similarly, we
refer the k + 1 verifiers as a single entity, V . We point out that we do not assume that honest P and V
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0. P and the verifiers encode m into a codeword c = (c1, . . . , cN ) ∈ C, for a λ-dominating code C.

1. For j = 1, . . . , N , the following is repeated in sequence.

1.1 P authenticates cj by means of wAUTHε. Let ti be the corresponding tag received.
1.2 If j > 4λ then the verifiers compute n⊥(j) = | {i ∈ {j − 4λ, . . . , j} : ci = 0 ∧ ti = ⊥} |.

2. If any of the wAUTHε executions fails, or if n⊥(j) > 8qλ for some round j > 4λ then the verifiers
jointly reject. Otherwise, m is accepted.

Figure 6: A generic position-based authentication scheme AUTH.

have synchronized clocks. Therefore, we allow P̂ to arbitrarily schedule and interleave the N executions of
wAUTHε that V performs with the N executions that P performs. The only restriction on the scheduling is
that P and V perform their executions of wAUTHε in the specified order.

This means that at any point in time during the attack when P has executed wAUTHε for the bits
c1, . . . , cj−1 and V has executed wAUTHε for the bits c′1, . . . , c

′
j′−1 and both are momentarily inactive (at

the beginning of the attack: j = j′ = 1), P̂ can perform one of the following three actions. (1) Activate
V to run wAUTHε on c′j′ but not activate P ; this corresponds to an impersonation attack. (2) Activate V
to run wAUTHε on c′j′ and activate P to run wAUTHε on cj ; this corresponds to a substitution attack if
cj 6= c′j′ . (3) Activate P to run wAUTHε on cj but not activate V ; this corresponds to “fast-forwarding” P .
We note that P̂ ’s choice on which action to perform may be adaptive and depend on what he has seen so far.
However, since V and P execute wAUTHε for each position within c independently, information gathered
from previous executions of wAUTHε does not improve P̂ ’s success probability to break the next execution.

It is now easy to see that any attack with its (adaptive) choices of (1), (2) or (3) leads to embeddings
e and e′ of c and c′, respectively. Indeed, start with empty strings e = e′ = ∅ and update them as follows.
For each of P̂ ’s rounds, update e by e‡ and e′ by e′c′j′ if P̂ chooses (1), update e by ecj and e′ by e′c′j′ if he
chooses (2), and update e by ecj and e′ by e′‡ if he chooses (3). In the end, complete e and e′ by padding
them with sufficiently many ‡s to have them of length 2N . It is clear that the obtained e and e′ are indeed
valid embeddings of c and c′, respectively.

Theorem 6. For any ε > 0 and 0 < q < (1− ε)/8, the generic position-based authentication scheme AUTH
(Fig. 6) is 2−Ω(λ)-sound in the No-PE model.

Proof. Let m and m′ 6= m be the messages input by P and the verifiers, respectively, and let c and c′ be
their encodings. Furthermore, let e and e′ be their embeddings, determined (as explained above) by P̂ ’s
attack. By the condition on the λ-dominating code C we know that one of the two properties (a) or (b)
of Definition 3 holds. If (a) holds, then the number of positions i ∈ {1, . . . , 2N} for which e′i = 1 and
ei ∈ {−1, 0} is λ. In this case, by construction of the embeddings, in his attack P̂ needs to authenticate
(using wAUTHε) the bit 1 at least λ times (by means of an impersonation or a substitution attack). By
Lemma 2, the success probability of P̂ is thus at most δλ, which is 2−Ω(λ). In the case where property
(b) holds, there exists a consecutive sequence of indices I such that the set J = {i ∈ I : e′i > −1} has size
|J | ≥ 4λ and contains at least λ indices i ∈ J with ei = −1. For any such index i ∈ J with ei = −1, P̂
needs to authenticate (using wAUTHε) the bit e′i by means of an impersonation attack, while he may use ⊥
for (at most) a 8q-fraction of those i’s.

However, by the ε-soundness of PVε, if we require ε < 1 − 8q, then the probability of P̂ succeeding in
this is exponentially small in λ.

A possible choice for a dominating code for µ-bit messages is the balanced repetition code Cµ`-BR, obtained
by applying the code C`-BR = {00..011..1, 11..100..0} ⊂ {0, 1}2` bit-wise.

Lemma 3. For any ` and µ, the balanced repetition code Cµ`-BR is `/4-dominating.
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Proof. Let c, c′ ∈ {0, 1}2`µ be two distinct code words from Cµ`-BR, and let e and e′ be their respective
embeddings. Note that c is made up of blocks of 0’s and 1’s of length `. Correspondingly, e is made up
of blocks of 0’s and 1’s of length `, with ‡’s inserted at various positions. Let I1, . . . , I2µ be the index sets
that describe these 0 and 1-blocks of e. In other words, they satisfy: Ij < Ij+1 element-wise, |Ij | = `, and
{ei : i ∈ Ij} equals {0} or {1}. Furthermore, the sequence of ei’s with i ∈ I1 ∪ . . . ∪ I2µ equals c, and as
such, for any odd j, one of Ij and Ij+1 is a 0-block and one a 1-block. Let φ : {1, . . . , µ} → {1, . . . , 2µ} be
the function such that Iφ(k) is the k-th 1-block in I1, . . . , I2µ. The corresponding we can do with c′ and e′,
resulting in blocks I ′1, . . . , I

′
2µ and function φ′. For any j, we define cl(I ′j) to be the smallest ”interval” in

{1, . . . , 4µ`} that contains I ′j .
For 1-blocks Ij and I ′j′ , we say that Ij overlaps with I ′j′ if |Ij ∩ cl(I ′j′)| ≥ 3`/4. We make the following

case distinction.
Case 1: Iφ(k′) does not overlap with I ′φ′(k′) for some k′. If all the indices in Iφ(k′) \ cl(I ′φ′(k′)) are larger

than those in cl(I ′φ′(k′)), then e′i = 1 for all i ∈ I ′φ′(1) ∪ . . . ∪ I
′
φ′(k′) but ei < 1 for at least `/4 of these i’s. A

similar argument can be used when all these indices are smaller than those in cl(I ′φ′(k′)). If neither of the
above holds, then e′i = 1 for all i ∈ I ′φ′(k′) but ei < 1 for at least `/4 of these i’s. Hence, property (a) of
Definition 3 is satisfied (with parameter `/4).

Case 2: Iφ(k) overlaps with I ′φ′(k) for every k. Since c and c′ are distinct, and by the structure of the
code, there must exist two subsequent 1-blocks Iφ(k) and Iφ(k+1) such that the number of 0-blocks between
Iφ(k) and Iφ(k+1) is strictly smaller than the number of 0-blocks between the corresponding 1-blocks I ′φ′(k)

and I ′φ′(k+1). If there is no 0-block between Iφ(k) and Iφ(k+1) and (at least) one 0-block between I ′φ′(k) and
I ′φ′(k+1) then by the assumption on the overlap, at least half of the indices i in the 0-block I ′φ′(k)+1 satisfy
ei = ‡. If there is one 0-block between Iφ(k) and Iφ(k+1) and two 0-blocks between I ′φ′(k) and I ′φ′(k+1) then
at least a quarter of the indices i ∈ I ′φ′(k)+1 ∪ I

′
φ′(k)+2 satisfy ei = ‡. In both (sub)cases, property (b) of

Definition 3 is satisfied (with λ = `/4).

Plugging in the concrete secure positioning scheme from Section 5.2, we obtain a secure realization of
position-based authentication scheme in Rd, in the No-PE model.

6.3 Position-Based Key Exchange

The goal of a position-based key exchange scheme is to have the verifiers agree with honest prover P at
location pos on a key K ∈ {0, 1}L, in such a way that no dishonest prover has any (non-negligible amount
of) information on K beyond its bit-length L, as long as he is not located at pos.3 Formally, we require the
following security properties.

• εc-Completeness: If P is honest and at the claimed position pos, and if there is no (coalition of)
dishonest prover(s), then P and V0, . . . , Vk output the same key K of positive length, except with
probability εc.

• εs-Security: For any position pos ∈ Hull(pos0, . . . , posk) and for any coalition P̂ of dishonest provers
at locations all different to pos, the hybrid state ρKE , consisting of the key K output by the verifiers
and the collective quantum system of P̂ at the end of the scheme, satisfies δ(ρKE , ρK̃E) ≤ εs, where
K̃ is chosen independently and at random of the same bit-length as K.

Note that the security properties only ensure that the verifiers can be convinced that P̂ has no information
on the key they obtain; no such security is guaranteed for P . Indeed, P̂ can always honestly execute the
scheme with P , acting as verifiers. Also note that the security properties do not provide any guarantee to
the verifiers that P has obtained the same key in case of an active attack by P̂ , but this can always be
achieved e.g. with the help of a position-based authentication scheme by having P send an authenticated
hash of his key.

3The length L of the key may depend on the course of the scheme. In particular, an adversary may enforce it to be 0.
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A position-based key exchange scheme can easily be obtained by taking any quantum key-distribution
(QKD) scheme that requires authenticated communication, and do the authentication by means of a position-
based authentication scheme, like the scheme from the previous section. One subtlety to take care of is that
QKD schemes usually require two-way authentication, whereas position-based authentication only provides
authentication from the prover to the verifiers. However, this can easily be resolved as follows. Whenever
the QKD scheme instructs V0 (acting as Alice in the QKD scheme) to send a message m in an authenticated
way to P (acting as Bob), V0 sends m without authentication to P , but then in the next step P authenticates
the message m′ he has received (supposedly m′ = m) toward the verifiers, who abort and output an empty
key K in case the authentication fails.

Using standard BB84 QKD, we obtain a concrete position-based key exchange scheme. The security of
that scheme follows from the security of the BB84 protocol [LC99, BBB+00, SP00, May01, BOHL+05, Ren05]
and of the position-based authentication scheme.

7 Conclusion and Open Questions

Continuing a very recent line of research [Mal10a, Mal10b, CFG+10, KMS10, Ken10], we have given a general
proof that information-theoretic position-verification quantum schemes are impossible, thereby answering
an open question about the security of schemes proposed in [KMS10] to the negative. On the positive
side, we have provided schemes secure under the assumption that dishonest provers do not use pre-shared
entanglement. Our results naturally lead to the question: How much entanglement is needed in order to break
position-verification protocols? Can we show security in the bounded-quantum-storage model [DFSS05]
where adversaries are limited to store, say, a linear fraction of the communicated qubits?
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A Proof of Lemma 1

In this section we prove the following lemma (Lemma 1): For any tri-partite state ρABY with classical Y ,

H(A|BY ) =
∑
y

PY (y) H(ρyAB|B).

We first consider the case of an “empty” B. Y being classical means that ρAY is of the form ρAY =∑
y PY (y)ρyA⊗ |y〉〈y|. Let us write λy1, . . . , λ

y
n for the eigenvalues of ρyA. Note that the eigenvalues of ρAY are

then given by PY (y)λyi with y ∈ Y and i ∈ {1, . . . , n}. It follows that

H(ρAY |Y ) = H(ρAY )−H(ρY ) = −tr
(
ρAY log(ρAY )

)
+ tr

(
ρY log(ρY )

)
= −

(∑
y,i

PY (y)λyi log
(
PY (y)λyi

)
−
∑
y

PY (y) log
(
PY (y)

))
= −

∑
y

PY (y)
∑
i

λyi log
(
λyi
)

=
∑
y

PY (y) H(ρyA) .

In general, we can no conclude that

H(ρABY |BY ) = H(ρABY )−H(ρBY ) =
∑
y

PY (y) H(ρyAB)−
∑
y

PY (y) H(ρyB)

=
∑
y

PY (y)
(

H(ρyAB)−H(ρyB)
)

=
∑
y

PY (y) H(ρyAB|B) ,

21



which proves the claim.
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