
Constant-Rate Oblivious Transfer
from Noisy Channels

Yuval Ishai1?, Eyal Kushilevitz1??, Rafail Ostrovsky2? ? ?, Manoj
Prabhakaran3†, Amit Sahai2‡, and Jürg Wullschleger4§

1 Technion, Haifa, Israel
2 University of California, Los Angeles

3 University of Illinois, Urbana-Champaign
4 Université of Montréal and McGill University

Abstract. A binary symmetric channel (BSC) is a noisy communication
channel that flips each bit independently with some fixed error probabil-
ity 0 < p < 1/2. Crépeau and Kilian (FOCS 1988) showed that oblivious
transfer, and hence general secure two-party computation, can be un-
conditionally realized by communicating over a BSC. There has been a
long line of works on improving the efficiency and generality of this con-
struction. However, all known constructions that achieve security against
malicious parties require the parties to communicate poly(k) bits over
the channel for each instance of oblivious transfer (more precisely,

(
2
1

)
-

bit-OT) being realized, where k is a statistical security parameter. The
question of achieving a constant (positive) rate was left open, even in
the easier case of realizing a single oblivious transfer of a long string.

We settle this question in the affirmative by showing how to realize n
independent instances of oblivious transfer, with statistical error that
vanishes with n, by communicating just O(n) bits over a BSC. As a
corollary, any boolean circuit of size s can be securely evaluated by two
parties with O(s)+poly(k) bits of communication over a BSC, improving
over the O(s) · poly(k) complexity of previous constructions.

? Work done in part while visiting UCLA. Supported by ERC Starting Grant 259426,
ISF grant 1361/10, and BSF grant 2008411. yuvali@cs.technion.il

?? Work done in part while visiting UCLA. Supported by ISF grant 1361/10 and BSF
grant 2008411. eyalk@cs.technion.il

? ? ? Research supported in part by DARPA, IBM Faculty Award, Xerox Innovation
Group Award, the Okawa Foundation Award, Intel, Teradata, NSF grants 0830803,
0916574, BSF grant 2008411 and U.C. MICRO grant. rafail@cs.ucla.edu

† Supported by NSF grant CNS 07-47027. mmp@cs.uiuc.edu
‡ Research supported in part from a DARPA/ONR PROCEED award, NSF grants

0916574 and 0830803, a Xerox Foundation Award, a Google Faculty Research
Award, an equipment grant from Intel, and an Okawa Foundation Research Grant.
sahai@cs.ucla.edu

§ Research supported by the Canada-France NSERC-ANR project FREQUENCY.
juerg@wulli.com



1 Introduction

One of the attractive features of modern cryptography is its ability to “turn
lemons into lemonade.” Indeed, traditional complexity-based cryptography turns
computational intractability, a major obstacle tackled by Computer Science, into
a blessing. The present work is concerned with a similar phenomenon in the
context of information-theoretic cryptography: the ability to turn noise, a major
obstacle tackled by Information Theory, into a blessing.

Originating from the seminal work of Wyner [38] on the usefulness of noise for
secure communication, there has been a large body of work on basing various
cryptographic primitives on different types of noisy communication channels.
The most fundamental type of a noisy channel in information theory is the
binary symmetric channel (BSC). A BSC with crossover probability p, where
0 < p < 1

2 , flips each communicated bit independently with probability p.

In 1988, Crépeau and Kilian [10] showed that two parties can make use of a
BSC to realize oblivious transfer (OT) [32, 15] with unconditional security. By
OT we refer by default to

(
2
1

)
-bit-OT, a protocol which allows a receiver to select

exactly one of two bits held by a sender without revealing the identity of the
received bit to the sender. We require by default that security hold even against
malicious parties. It is known that OT on a pair of m-bit strings reduces to
O(m) instances of bit-OT [4]. Much more broadly, OT can be used as a basis
for general secure two-party computation [39, 19, 26, 24]. This settles the main
feasibility question concerning the cryptographic power of a BSC.

In contrast to the basic feasibility question, the corresponding efficiency ques-
tions are far less understood. To explain the main relevant issues, it is instructive
to draw an analogy with classical information theory. A naive approach to send
n bits of information over a noisy channel is to do it bit-wise, by repeating every
bit k times. A major breakthrough in information theory was the seminal result
of Shannon [33] that by sending bits in blocks and by using the right encod-
ing, one can achieve a constant transmission rate, namely use only a constant
number of channel transmissions per information bit with error that vanishes
with n. One can analogously define the notion of a constant-rate protocol for
OT from BSC (or a constant-rate reduction of OT to BSC) as a protocol which
realizes n independent instances of OT with negligible (in n) statistical error5

by exchanging O(n) bits over the channel.6 In such a protocol, the amortized
communication complexity for each instance of OT tends to a constant which is
independent of the desired level of security.

The existence of a constant-rate protocol for OT from BSC has been a long-
standing open question. The original protocol from [10] required O(k11) bits of
communication over a BSC to realize each instance of OT with error 2−k. This

5 By the error of OT or other secure computation protocol we refer to the statistical
simulation error under standard simulation-based definitions [5, 6, 18].

6 This is the best one can hope for up to the exact constant. Indeed, it is known
that Ω(n) bits over the BSC are necessary even if one additionally allows unlimited
communication over a noiseless channel [35].



communication overhead was subsequently improved by Crépeau [9] to O(k3).
A major progress was made by Harnik et al. [20], who showed that constant rate
can be achieved in the semi-honest model, in which parties do not deviate from
the protocol except for trying to infer additional information from their view.

Constant-rate protocols for string OT, realizing a single selection between
two n-bit strings by communicating O(n) bits over the channel, are considerably
easier to obtain. (Indeed, known reductions [4] can be used to get constant-rate
string-OT from constant-rate bit-OT, but not the other way around.) Constant-
rate string-OT protocols from an erasure channel, which erases every bit with
probability 0 < p < 1 and informs the receiver of the erasures, were presented
in [30, 22].

To summarize the prior state of the art, constant-rate protocols for bit-
OT from BSC were only known in the semi-honest model, and constant-rate
string-OT protocols could only be based on an erasure channel. The existence
of constant-rate bit-OT protocols from a BSC (or even from an erasure channel)
as well as the existence of constant-rate string-OT protocols from a BSC were
left open.

1.1 Our Results

We settle the above questions in the affirmative by presenting a statistically
secure protocol which realizes n independent instances of OT, with 2−k error,
in which the parties communicate only O(n) + poly(k) bits over a BSC.7 This
should be compared to the n · poly(k) bits required by previous constructions.

Combining the above main result with known results for secure two-party
computation based on OT [24] we get the following corollaries:

– Any boolean circuit of size s can be securely evaluated by two parties with
O(s) + poly(k) bits of communication over a BSC, improving over the O(s) ·
poly(k) complexity of previous constructions.

– Applying the previous corollary, any discrete memoryless channel (described
by rational crossover probabilities) can be faithfully emulated by a BSC at
a constant rate.

Our techniques can be used to get similar results based on any “non-trivial”
channel rather than just a BSC. We defer this generalization to the full version
of this paper.

1.2 Overview of Techniques

Our construction uses a novel combination of previous results on OT from
BSC [10, 20], recent techniques from the area of secure computation [8, 24], and
some new tools that may be of independent interest.

7 The protocol also involves a similar amount of communication over a noiseless chan-
nel. This additional communication can be implemented using the BSC with a con-
stant rate.



Among the new general-interest tools is a so-called “Statistical-to-Perfect
Lemma,” showing roughly the following. Given a 2-party functionality Ff for

securely evaluating a function f and 0 ≤ δ ≤ 1, we define F̃ (δ)
f to be an “δ-faulty”

version of Ff that with probability δ allows the adversary to learn the inputs and
have full control over the outputs but otherwise behaves normally. The lemma
says that any ε-secure protocol for F in a G-hybrid model (i.e., using oracle

access to G) perfectly realizes the functionality F̃ (δ)
f in the G-hybrid model, where

δ tends to 0 with ε (but inherently grows with the size of the input domain). The
above lemma allows one to take an arbitrary (and possibly inefficient) protocol for
OT from a noisy channel, such as the one from [10], and use it with a sufficiently

large security parameter to get a perfectly secure implementation of F̃ (δ)
OT , for an

arbitrarily small constant δ > 0, while communicating just a constant number
of bits (depending on δ) over the channel.

This calls for the use of OT combiners [21, 20, 31], which combine n OT
implementation candidates of which some small fraction may be faulty into m <
n good instances of OT. A similar high level approach was used in [20] to solve our
main question in the semi-honest model. While in the semi-honest model there
are constant-rate combiners (tolerating a constant fraction of faulty candidates
with m = Ω(n)) that make only a single use of each OT candidate [20], known
constant-rate OT combiners in the malicious model require a large number of
calls to each candidate, making them insufficient for our purposes. Instead, we
take the following alternative approach.

1. We give a direct construction of a constant-rate protocol for string-OT from
a BSC. (As discussed above, such a result was only known for the easier
cases of an erasure channel or in the semi-honest model.) The protocol em-
ploys previous protocols for OT from BSC [10], the completeness of OT
for secure two-party computation [26, 24], techniques from secure multiparty
computation (including the use of algebraic-geometric multiplicative secret
sharing [8, 25]), and privacy amplification techniques [3, 2]. Its analysis relies
on the Statistical-to-Perfect lemma discussed above.

2. We extend the IPS protocol compiler [24] to apply also when the so-called
“inner protocol” can employ a BSC channel. The main difficulty is that even
when being forced to reveal their secrets, parties can use the uncertainty
of the channel to lie without taking the risk of being caught. We address
this difficulty in a natural way by employing statistical tests to ensure that
significant deviations are being caught with high probability. The extended
protocol compiler requires the inner protocol to satisfy an intermediate no-
tion of security, referred to as “error-tolerance,” that is stronger than security
in the semi-honest model and weaker than security in the malicious model.

3. We instantiate the ingredients required by the extended compiler from Step 2
as follows. The so-called “watchlists” are implemented using string-OTs ob-
tained via the protocol described in Step 1 above. The outer protocol is an
efficient honest-majority MPC protocol for n instances of OT (see [23], build-
ing on [13, 8]). The error-tolerant inner protocol is based on an error-tolerant
constant-rate OT combiner from [20].



1.3 Related Work

There is a very large body of related work on cryptography from noisy channels
that was not accounted for in the above survey, and even here we can only give
a very partial account. For the question of basing other cryptographic primitives
(such as key agreement and commitment) on noisy channels see [2, 3, 28, 14, 36,
37] and references therein. The question of characterizing the types of channels
on which OT can be based was studied in [27, 11, 14, 12, 37]. A general approach
for converting feasibility results for OT from noisy channels into constant-rate
protocols in the semi-honest model was given in [25]. Our work introduces a
similar conversion technique that can be applied in the malicious model.

2 Preliminaries

Some of our results and analysis (in particular Theorem 1) apply to general
2-party secure function evaluation (SFE) functionalities. Such a functionality
is characterized by a pair of functions f = (fA, fB), fA : X × Y → ZA and
fB : X × Y → ZB for (often finite) domains X , Y and ranges ZA,ZB . We will
refer to such an f as a 2-pary function. We associate a functionality Ff with
a 2-party function f , which behaves as follows: Ff waits for inputs from both
parties, and computes the respective outputs. Then if either party is corrupted,
it sends the corresponding output to that party. Then it waits for an instruction
from the adversary to release the output(s) to the uncorrupted party (or parties).
We shall refer to such a functionality Ff as a 2-party SFE functionality.

The two main functionalities in this work are FBSC and FOT. The FBSC

functionality (BSC stands for Binary Symmetric Channel) takes as input a bit x
from one of the parties (Alice), and outputs a single bit z to the other party (Bob)
such that Pr[x 6= z] = p for some fixed constant probability strictly less than
half. (Note that this is a randomized functionality.) FOT is an SFE functionality,
associated with a function defined by fB(x0, x1; b) = xb where x0, x1, b are single
bits each; for FOT fA is a constant function. The functionality Fstring-OT is similar
to FOT, but the inputs from Alice x0, x1 are longer strings.

For every 2-party SFE functionality Ff , we define a weakened variant F̃ (p)
f

where 0 ≤ p ≤ 1 is a constant error probability in the following sense. When

invoked, an instance of F̃ (p)
f would first generate a random bit which is 1 with

probability p. Note that the bit is sampled before receiving inputs from any
party. If the bit is 0, then the functionality behaves exactly as Ff . Otherwise,
if the bit is 1, then the functionality yields itself to adversarial control: i.e., the
input(s) it receives are passed on to the adversary, and the adversary specifies the
outputs to be sent (and when they should be sent) to the honest party (parties).
In this case, even if neither party interacting with the functionality is corrupt,
the functionality will allow the adversary to control it.

The main security definition we use is of statistical Universally Composable
(UC) security [6]. The level of security – called statistical error – is indicated
by the maximum distinguishing advantage between the real execution of the



protocol and a simulated execution involving the ideal functionality that any
environment can get (the distinguishing advantage being the difference in prob-
abilities of the environment outputting 1 when interacting with the two systems).
We require that the statistical error goes down as 2−Ω(k), where k is the security
parameter. The computational complexity of the protocols should be polynomial
in k and the input size. For intermediate constructions (and in Theorem 1) we
consider perfect security as well.

We say that a protocol Π is in the G-hybrid model if the parties can initiate
and interact with (any number of) instances of the ideal functionality G. Our
goal is to give a “constant-rate” protocol for FOT in the FBSC-hybrid model.
A protocol Π in the G-hybrid model is said to be a constant-rate protocol for
a functionality F , if the total communication in Π (including communication
with instances of G) is O(`) + poly(k), where ` is the total communication with
F . We will be interested in realizing parallel instances of a target functionality,
given the number of instances as a parameter (during run-time). More formally
we can define a functionality F∗ which takes ` as an initial input from one of the
parties, and then implements ` parallel copies of F . Note that when F and G are
finite functionalities (i.e., with the total communication with a single instance
upperbounded by a constant, as is the case for FOT and FBSC), to securely realize
F∗, a constant-rate protocol Π will instantiate only O(`) + poly(k) instances of
G. (For simplicity, we shall refer to Π as a protocol for F , rather than F∗.)

An arithmetic encoding scheme. Our protocol (particularly, the sub-protocol in
Section 4.1) relies on an efficient secret-sharing scheme that supports entrywise
addition and multiplication of shared vectors. Following the terminology of [7],
we refer to such a scheme as an arithmetic encoding scheme. Our abstraction
captures the useful features of algebraic-geometric secret-sharing, introduced in
[8] (see [25, 7] for related abstractions).

Our notion of arithmetic encoding is parameterized by a tuple (F, ρ, δ, δ′) and
is defined by three efficient algorithms (Encode, Encode′,Decode′). Here F is a
constant-size finite field, ρ, δ, δ′ are positive constants less than 1, and the three
algorithms satisfy the following properties.

– Encode and Encode′ define constant-rate, probabilistic encodings of vectors
over F. More precisely, for every integer m > 0, there is an n, with m >
ρn, such that Encode and Encode′ probabilistically map vectors in Fm to
Fn. Further, Encode and Encode′ are linear: i.e., each entry of Encode(x)
(respectively, Encode′(x)) is a linear function of the entries of x and a set of
independent random elements.

– The joint distribution of any bδnc entries of the output of Encode(x) is
independent of the input x.

– Decode′ is an efficient δ-error-correcting decoder for Encode′. More precisely,
we require that if y has Hamming distance at most δn from a vector in the
support of Encode′(x), then Decode′(y) = x.

– We require the following “homomorphic” properties. For any X,Y,X ′, Y ′ in
the support of Encode(x),Encode(y),Encode′(x′),Encode′(y′), respectively:



• X ∗ Y is in the support of Encode′(x ∗ y)
• X ′ + Y ′ is in the support of Encode′(x′ + y′)

where ∗ and + denote entrywise multiplication and addition over F respec-
tively.

– We require Encode′ to be sufficiently randomizing. Note that Encode′(x) is
uniform over an affine subspace of Fn whose dimension is at most n−m. We
require that this dimension be at least n−m(1 + δ′).

An arithmetic encoding scheme with the above properties can be obtained
from the classes of algebraic geometric codes used in [8]. See Appendix A for
details.

3 Statistical Security to Perfect Security

A crucial ingredient in our constructions and analysis is the ability to consider
a weakly secure protocol to be a perfectly secure protocol for a weaker variant
of the functionality. More precisely, we show the following.

Theorem 1. Let f : X ×Y → ZA×ZB be a 2-party function, and Ff the secure
function evaluation functionality for f . Suppose G is a 2-party functionality and
Π is a D-round protocol such that Π UC securely realizes Ff in the G-hybrid

model, with a statistical security error of ε. Then Π UC securely realizes F̃ (p)
f

in the G-hybrid model with perfect security, where p = D|X ||Y|ε.
Above, if Π is only standalone-secure for Ff , then the same conclusion holds

for standalone security of Π for F̃ (p)
f .

This result gives a powerful composition theorem when multiple instances
of the protocol Π are used together. Note that by UC security, it is indeed the
case that if k copies of Π are run, one could instead consider k copies of F ,
with a statistical security error bounded by kε. However, if ε is not negligible,
say ε > 1/k, then this bound gives us no useful security guarantee. What the
above result does is to give a strong security guarantee for the case when ε is
non-negligible, or even when it is a constant. It says that when k copies of Π are
run, it roughly yields (1 − p)k copies of F (mixed with about pk copies under
adversarial control). In fact, it is further guaranteed that which copies will be
corrupted is not under adversarial control.

In the full version we show that it is unavoidable that p is bigger than ε by
a factor that grows linearly with the domain size of the function.

We give a high-level idea of how we prove the above theorem. Given the
systems corresponding to real and ideal executions, the overall approach is to
decompose each of the real and ideal systems into two parts – real0,real1
and ideal0, ideal1 – so that real0 and ideal0 are identical and carry much of
the “mass” of the systems; then we construct a new ideal system by combining
ideal0 and real1, to get a system that is identical to the real system. Here, a
combination of two systems means that with a fixed probability one of the two



systems is chosen (corresponding to whether F̃ (p)
f lets the adversary control it or

not, corresponding to choosing ideal1 and ideal0 respectively): in particular,
the simulator in the new system is not allowed to influence this choice. Further –
and this is the main difficulty in the proof – we need to ensure that ideal0 can
be implemented by a simulator interacting with Ff (without access to an honest
party’s inputs or outputs); to implement real1 the simulator may control the
functionality as well.

Note that Theorem 1 is related to Lemma 5 in [29]. The main difference are
the abovementioned restrictions on the system ideal0 which require extra care
in our proof.

Splitting the systems in this manner needs to be carefully defined, see full
version for details. Here we illustrate this by a toy example, to give a sense of
how the simulator for perfect security is derived from the simulator for statistical
security. The protocol we consider is for a degenerate 2-party function f which
provides a constant output to both parties. Further, it takes a fixed input from
Alice (|X | = 1) and takes a bit from Bob (Y = {0, 1}). The protocol Π for our
example consists of a single message z from Bob to Alice, which is equal to y with
probability 1

2 and ⊥ otherwise. We shall consider the case when Alice is corrupt
and Bob is honest. Further we need to consider only a “dummy adversary” who
simply allows the environment to play the role of Alice in the (real) protocol. The
simulator simulates a message from Bob, which is equal to ⊥ with probability
1
2 , and a uniformly chosen bit otherwise. It is easy to see that this simulation is
good up to a statistical distance of 1

4 .

10

0

10

Env receives
z from Adv

y to Bob
Env sends

01⊥ ⊥ 1

0.5 0.5 0.5 0.50 0

00

ideal1ideal0

00 0.50.5

1⊥⊥ 1 00

0.50.5

1⊥⊥ 1 00

0 01⊥ ⊥ 1

0.5 0.50 0

0 1

0 1

real ideal

0.25 0.25 0.25 0.25

0 0

Fig. 1. An example to illustrate Theorem 1. The protocol used in the example (in which
Bob sends a single message to Alice — please see text) is depicted as the interaction
of a system real with the environment. The original simulated system is ideal. The
modified simulation (for a functionality that yields to the adversary with probability
0.5) is obtained as the combination ideal0 + ideal1 which is exactly the same as the
real system.



In Figure 3 we illustrate this example using what we call interaction trees,
which capture an execution involving a system (real or ideal) and an environ-
ment. The edges from the top node in these trees correspond to the two possible
inputs that the environment can give to Bob (y = 0 and y = 1). The edges
out of the black nodes correspond to corrupt Alice reporting the (only) message
it receives from Bob in the protocol: this can be one of 0, 1, or ⊥. The leaves
correspond to complete transcripts. The probabilities of the system reaching a
leaf, provided the environment sends the messages (in our case, just y) that lead
to that leaf is considered the “weight” assigned to that leaf by the system.

The top-left figure corresponds to the real execution of the protocol, and
the top-right corresponds to the ideal execution. Note that in the simulation,
the behavior of the simulator is independent of the input y. Then we obtain a
“partial system” (with total weight only 0.5, for each value of y), ideal0 by
comparing the real and ideal systems. In this example, ideal0 is obtained by
retaining in each leaf the minimum of the weights assigned by the two systems,

on that leaf, but for any choice of y. We will use the ideal functionality F̃ (p)
f ,

with p = 1
2 , since that is the weight not retained by ideal0.

ideal1 is obtained by “subtracting” ideal0 from real, so that the combi-
nation of ideal0 and ideal1 is indeed real. In doing this we needed to ensure
that weights induced by ideal0 are no more than what real assigns (so that
the system real − ideal0 does not have negative weights). Also we needed to
ensure that ideal0 can be implemented by a simulator which does not have
access to y. Note that to implement ideal1, the simulator will need to know y.

In going from this toy example to the general case poses several issues. Here
the simulator for ideal0 was determined without considering the interaction
between the simulator and the functionality. (Indeed, there was little interaction
between the two.) In general we cannot afford to do this. To properly take into
account how the simulator’s behavior depends on what it learns from the func-
tionality, we consider a separate interaction which the simulator is the system
and it interacts with an “enhanced environment” consisting of the original en-
vironment and the functionality. But the original statistical security guarantee
is only against normal environments (and indeed, does not make sense against
enhanced environments, since in the real execution there is no ideal functionality
present). This requires us to relate the behavior of the enhanced environment to
the behavior of the environment in the ideal world.

The final proof uses several carefully defined quantities for the three systems
(the real and ideal executions, and the simulator system), and shows how one
can define ideal0 which can be implemented without using y, ensures that it can
be extended to a perfect simulation (i.e., that the remainder of the simulation
is a non-negative system), while retaining as much weight as possible (to keep p
low as promised in Theorem 1).



4 A Constant-Rate OT Protocol

In this section we present our constant-rate protocol for FOT in the FBSC-hybrid
model. The construction follows the paradigm of the IPS compiler [24] of com-
bining an outer protocol secure in the honest-majority setting, with an inner pro-
tocol secure in the passive corruption (semi-honest) setting, using “watchlists”
implemented using string-OTs. For this we need to instantiate these components
in the FBSC-hybrid model, and also extend the IPS compiler so that it admits
an inner protocol in the FBSC-hybrid model. We outline these steps below, and
present the details in the subsequent sections.

– In order to construct the inner protocol, we will need a constant-rate OT pro-
tocol using FBSC, that is secure against adaptive passive corruption. However,
since monitoring the use of a FBSC functionality (which inherently allows er-
rors) is harder than monitoring the use of the FOT functionality we will need a
somewhat stronger security guarantee from this protocol (namely, passive se-
curity should hold even when a small constant fraction of the FBSC instances
can be corrupted). We shall formalize this notion of “error-tolerance” and ob-
serve that a protocol in [20] already has the requisite properties (Lemma 2).

– The next step is to construct a constant-rate string-OT protocol from FBSC,
with security against active corruption (Lemma 1). The protocol implements
a single instance of string-OT (i.e., takes only one choice bit as input from
the receiver), and the rate refers to the ratio of the length of the string to
the number of instances of FBSC used. This crucially relies on Theorem 1
which states that a weakly secure protocol for a functionality is a perfectly
secure protocol for a weak version of the same functionality.

– The final step involves an extension of the IPS compiler [24] wherein the
“inner-protocol” is in the FBSC-hybrid model (rather than in the FOT-hybrid
model) and enjoys error-tolerance (Lemma 3).

The extended IPS compiler from above is used to combine an appropriate
constant-rate8 outer protocol for FOT (based on [13, 8], as used in [24]) with
an error-tolerant inner protocol obtained from the first step, using watchlists
implemented using string-OTs from the second step.

To implement n instances of FOT, the resulting compiled protocol will invoke
the string-OT protocols O(k) times with O(n/k) long strings. Since these string-
OTs are implemented using the constant-rate protocol from the second step, the
compiled protocol uses a total of O(n) instances of FBSC for the watchlists.

Similarly the compiled protocol invokes k instances of the inner-protocol
(for a functionality defined by the outer protocol). Originally, each instance of

8 Here the constant-rate refers to the total communication in the protocol, and the
total computation of all the servers per instance of FOT produced. More precisely,
regarding the computational complexity of the servers, we are interested in the com-
plexity of a passive-secure protocol for implementing the server computations, and
it is only the so-called “type II” computations of the servers that contribute to this.
See [24] for details.



this inner-protocol can be implemented using O(n/k) instances of FOT, and
is passive-secure in the FOT-hybrid model. We shall replace the FOT instances
used by the inner protocol with the constant-rate error-tolerant protocol from
the first step. This results in an error-tolerant inner protocol in the FBSC-hybrid
model (for the same functionality as the original inner-protocol), which uses
O(n/k) instances of FBSC. Thus overall, for the inner-protocol instances too, the
compiled protocol uses O(n) instances of FBSC.

In the following sub-sections we describe how the above three steps are carried
out, and what precise security guarantees they provide. Then, by following the
above sketched construction we obtain our main result.

Theorem 2. There exists a UC-secure constant-rate protocol for FOT in the
FBSC-hybrid model. That is, there is a protocol that securely realizes n parallel,
independent instances of FOT with statistical error 2−k, with O(n)+poly(k) bits
of communication (including communication over FBSC).

An important corollary of implementing oblivious transfer is that it can be
used to implement arbitrary function evaluation, quite efficiently [24]. Thus com-
bined with the main result of [24] we have the following.

Corollary 1. For any two party function f that can be computed using a boolean
circuit of size s, there is a UC-secure protocol for Ff in the FBSC-hybrid model,
with O(s) + poly(k) bits of communication.

4.1 A Constant-Rate String-OT Protocol

We denote by Fstring-OT[`] a string-OT functionality for which the sender’s inputs

are two strings from {0, 1}`. In this section we prove the following.

Lemma 1. There exists a protocol which securely realizes a single instance of
Fstring-OT[`] in the FBSC-hybrid model, with total communication of O(`)+poly(k)
bits.

This constant-rate protocol for Fstring-OT in the FBSC-hybrid model is con-
structed in three steps. The construction relies on an intermediate functionality,
namely FOLE (or more precisely, F̃OLE). The FOLE functionality (OLE stands for
Oblivious Linear function Evaluation) over the field F evaluates the following
function: it takes p, r ∈ F from Alice and q ∈ F from Bob and outputs pq + r to
Bob (and sends an empty output to Alice). F̃OLE is the error-prone version of
FOLE as defined in Section 2. For simplicity we omit here the error parameter,
which will be chosen as a sufficiently small constant.

Our protocol for Fstring-OT in the FBSC-hybrid model is constructed by com-
posing the following protocols:

1. Fstring-OT protocol in the F̃OLE-hybrid model, using a constant-rate protocol
that relies on a constant-rate arithmetic encoding scheme as defined in Sec-
tion 2.

2. F̃OLE protocol in the F̃OT-hybrid model, and



3. F̃OT protocol in the FBSC-hybrid model.

The second step is obtained by applying Theorem 1 to any OT-based protocol
for FOLE (e.g., [26, 24]), where the latter is invoked with a sufficiently large (but
constant) security parameter. The third step is obtained by similarly applying
Theorem 1 to any protocol for FOT from FBSC (e.g., [10]). See full version for
further details on the last two steps. In the rest of this section we focus on the
first step.

Reducing Fstring-OT to F̃OLE. This construction uses an arithmetic encoding
scheme as defined in Section 2, with parameters 0 < ρ, δ, δ′ < 1 and a constant-
size F. We point out that a given arithmetic encoding scheme can be consid-
ered to be a scheme with any smaller (positive) value of δ than originally spec-
ified. Hence, to suit the requirements of our protocol, we shall assume that

δ < (1− δ′)ρ/6. The protocol is in the F̃ (φ)
OLE-hybrid where φ ≤ δ/2.

We shall also use a strong randomness extractor Ext in our construction – a
family of pairwise independent hash functions suffices.

Suppose Alice’s inputs are two strings s0 and s1 and Bob’s input is a choice
bit b. Then the Fstring-OT protocol for `-bit strings proceeds as follows, where
Encode and Encode′ map strings in Fm to strings in Fn and d = bδnc. The
parameter m (and the parameters of the extractor Ext) will be chosen such that
for a string x distributed uniformly over any set of size |F|m(1−δ′)/2 or more,
then Ext(x;h) ∈ {0, 1}` (where ` = Ω(m) is the length of Alice’s strings), and
(h,Ext(x;h)) (for a randomly chosen h) is almost uniformly random (up to a
statistical distance of 2−Ω(k)) over its range, even given up to 3d log |F| + `
additional bits of information about x.

– Alice’s input is (s0, s1) where s0, s1 ∈ {0, 1}`, and Bob’s input is b ∈ {0, 1}.
– Alice lets X0 = Encode(x0), and X1 = Encode(x1), where x0, x1 are ran-

domly drawn from Fm. She also sets Z = Encode′(0m).
– Bob lets B = Encode(bm) (the bit b is identified with 0 or 1 in F).

– They invoke n instances of the F̃ (φ)
OLE functionality, as follows. For each i ∈ [n],

Alice inputs (pi, ri) = (X
(i)
1 −X

(i)
0 , X

(i)
0 +Z(i)) and Bob inputs qi = B(i) to

an instance of F̃ (φ)
OLE, and Bob gets the output yi = piqi + ri. (X(i) stands

for the ith bit of the vector X.) The vector y ∈ Fn that Bob gets from this
is a (possibly) noisy version of X0 ∗ (1−B) +X1 ∗B + Z, which in turn is
in the support of Encode′(xb). Bob sets xb = Decode′(y).

– Alice picks two seeds h0, h1 for Ext and lets w0 = s0 ⊕ Ext(x0;h0) and
w1 = s1 ⊕ Ext(x1;h1). (The parameters of Ext are chosen as mentioned
above.) She sends (h0, h1, w0, w1) to Bob.

– Bob obtains sb = wb ⊕ Ext(xb;hb).

It is easy to see that the above protocol has a constant rate (since ` = Ω(m)).
To prove the UC security of the protocol, we need to consider the case where
both parties are honest, as well as when one of the parties is corrupt. In all cases,

note that at most 2φn < d out of n instances of F̃ (φ)
OLE will let the adversary



control them, except with negligible probability. In the simulation for all three
cases, the simulator starts off by faithfully simulating whether each instance

of F̃ (φ)
OLE lets the adversary control it or not. If more than d instances yield to

adversarial control, the simulation aborts; as in the real execution, this happens
with negligible probability. In the rest of the analysis, we condition on this not
happening in the real execution as well as in the simulation.

When neither party is corrupted, security follows from the error-correcting
property of Decode′. See full version for details.

Security when neither party is corrupt. In the simulation (i.e., ideal execution
of Fstring-OT), Bob’s output is always sb when Alice’s inputs are (s0, s1) and
Bob’s input is b. In the real execution of the protocol (conditioned on less than

d instances of F̃ (φ)
OLE being under adversarial control) the vector y received by

Bob has a Hamming distance of less than d from a vector in the support of
Encode′(xb). So, by the error-correcting guarantee of Decode′ Bob recovers xb,
and hence outputs sb correctly.

Security against corrupt Alice. Here the simulation proceeds in two steps. First,
Alice’s view is completely straight-line simulated (if well-formed messages are
not received from Alice in any round, then Bob aborting the protocol can be
simulated). Next Bob’s view is sampled for the two cases b = 0 and b = 1,
conditioned on Alice’s view, from which Bob’s outputs for each case, denoted
s0 and s1, respectively, are obtained. To complete the simulation the simulator
sends (s0, s1) as the input to the ideal Fstring-OT functionality. Details of the two
steps follow.

Conditioned on F̃ (φ)
OLE yielding to the adversary at most d times, Alice sees

at most d entries of the encoding of B and this can be perfectly simulated since
they are independent of Bob’s input. So first the simulator will sample the (at
most) d entries for B and hands them over to the Alice as the message from

the instances of F̃ (φ)
OLE controlled by her. Then it receives from Alice the output

for Bob from these instances. Further, the simulator receives all but d entries

of (X0, X1, Z) from Alice as inputs to the instances of F̃ (φ)
OLE not controlled by

her. In the next round, the simulator receives (h0, h1, w0, w1) from Alice. This
completes the first part of the simulation.

For the next part, the simulator picksB0 = Encode(0m) andB1 = Encode(1m)
randomly, conditioned to match the d coordinates of B that were already simu-
lated. Then, it computes s0 as what Bob would compute in the protocol if it uses
B = B0 and receives the messages implied by what Alice sent to the simulator in
the first part. Similarly, it computes s1 if Bob used B = B1. Then the simulator
will send (s0, s1) to the functionality.

Given our conditioning the real and simulated executions on there being

no more than d instances of F̃ (φ)
OLE under adversarial control, this is a perfect

simulation. Thus over all, this gives a statistically good simulation.

Security against corrupt Bob. If Bob is corrupt, then he may not input a valid
B in the range of Encode(0m) or Encode(1m). Nevertheless, we shall see that by



using appropriate encodings and the extractor, there is a string sb such that Bob
learns a negligible amount of information about s1−b.

Note that what Bob learns by Step 2 of the protocol is given by a system of
n linear equations (defined by his input B to F̃OLE) over x0, x1 and the random
elements used by Alice in forming the encodings X0, X1 and the entries of Z,
and the values of X0, X1 and Z at no more than d randomly chosen entries.
Alice’s secrets at this point are two vectors x0, x1 of length only m, so it is
non-trivial to ensure that the information that Bob learns (which is more than
n field elements, and typically n > 2m) does not contain both x0 and x1. This is
ensured by the blinding: intuitively, Z encodes at least t′ := n−m(1+δ′) random
field elements, and so effectively Bob learns at most as much information about
(x0, x1) as from n− t′ = m(1 + δ′) < 2m linear equations.

More formally, let U denote the output vector in Fn obtained by Bob from
F̃OLE, and let Ũ denote the (at most 3d) field elements learned by Bob from

corrupted instances of F̃OLE. It can be shown (see full version) that for any

possible value of Bob’s F̃OLE input B there is c ∈ {0, 1} such that the distribution
of xc conditioned on B and any possible U is uniform in an affine space whose

dimension is at least m(1−δ′)
2 .

Note that c as above can be efficiently computed by solving for x0 and x1
from the equations defined by B and Encode′, and checking the dimension of
their solution spaces. The simulator first perfectly simulates B, Ũ , then uses
B to compute c, and then sends b = 1 − c to the functionality to obtain sb. To
complete the simulation, the simulator sets sc = 0 and generates Alice’s messages
(to both Bob and F̃OLE) at random conditioned on the values of B, Ũ that were
already simulated. The correctness of the simulator follows from the fact that in
the real protocol, conditioned on the choice of B, the string Ext(xc;hc) masking
sc is almost uniformly random even when further conditioned on the remaining
view of Bob. This follows from the fact that Ũ and (hb,Ext(xb;hb)) leak at most
3d log |F| and ` additional bits of information, respectively, which our choice of
parameters for Ext tolerates. See full version for further details.

4.2 Error-Tolerant Protocol for FOT over FBSC

Error-tolerance. We say that a protocol π is an error-tolerant protocol for F
in the G-hybrid model if it is secure against adaptive passive corruption, and in
addition tolerates active corruption of a small constant fraction of G instances
that it invokes. More formally, we can define a modified functionality G′, which
behaves exactly as G until a new command corrupt is received as input from
the adversary; if this command is received, then this instance of G will yield
to adversarial control – i.e., send its current view to the adversary, forward
immediately any subsequent message that it receives, and send messages to other
parties in the protocol as instructed by the adversary. π is called a ε0-error-
tolerant protocol for F in the G-hybrid model if π is a secure protocol for F
in the G′-hybrid model against adaptive passive corruption, against the class of
adversaries who send out the corrupt command to at most ε0T of G′ instances,



where T is (an upperbound on) the total number of G instances invoked by π.
We will call π simply an error-tolerant protocol if it is ε0-error-tolerant for any
constant ε0 > 0.

As described above in the inner protocol in our construction, we will require
a constant-rate error-tolerant protocol for FOT in the FBSC-hybrid model.

We observe that such a protocol is implicit in a result in [20]. They present
a constant-rate OT protocol in the FBSC-hybrid model which is secure against
adaptive passive adversaries. This construction starts with a simple passive-
secure constant-rate protocol Φ for FOT in the FBSC-hybrid model, with a small
but constant probability of error, and then uses a constant-rate combiner to
reduce the error to negligible. This combiner uses each candidate FOT instance
once, and (passive-securely) realizes a constant fraction of FOT instances. As
mentioned in [20], the “error-tolerant” version of their combiner allows a small
fraction of the candidate FOT instances to be actively and adaptively corrupted,
though requires the parties themselves to follow the combiner’s protocol honestly.
The combiner corresponds to a constant-rate protocol for FOT in the FOT-hybrid
model with error tolerance as we have defined above. By composing this proto-
col with Φ, we get a constant-rate protocol for FOT in the FBSC-hybrid model,
with the property that if a small constant fraction of the instances of FBSC are
corrupted (resulting in the corruption of a small fraction of FOT instances used
by the combiner protocol), security remains intact.

Lemma 2. [20] There is a constant-rate, error-tolerant protocol for FOT in the
FBSC-hybrid model.

4.3 An Extension to the IPS Compiler

IPS compiler requires a semi-honest inner protocol over FOT. We need to extend
this compiler to work with inner protocols over FBSC. The IPS compiler depends
on being able to monitor the use of FOT channels with a good probability of
catching errors; however, one cannot monitor the FBSC functionality at the same
level. Hence we shall depend on the slightly stronger error-tolerance guarantee
of the inner protocol. Here we shall limit ourselves to the 2-party setting (since
we are interested in a 2-party functionality, namely FOT).

Below we state the extension of the IPS compiler (with the new elements
underlined). See full version for a proof.

Lemma 3. Suppose Π is a protocol among n = Θ(k) servers and 2 clients, for
a 2-party functionality F between the clients, with UC-security against adaptive,
active corruption of Ω(n) servers and adaptive, active corruption of (any number
of) clients. Suppose ρFBSC is a 2-party protocol in the FBSC-hybrid model, that
realizes the functionality of each server in the protocol Π, with error tolerance.
Then there is a 2-party protocol (compiled protocol) for the functionality F in
the (FBSC,Fstring-OT)-hybrid model, with UC-security against adaptive, active ad-

versaries. Further, if the (insecure) protocol obtained by directly implementing
each server of Π using ρFBSC has constant rate, then the compiled protocol has
constant rate too.



Putting things together. The final protocol is obtained from Lemma 3 by using
the following outer and inner protocols. The outer protocol is the one used in
Section 5.1 of [24] (based on [13, 8]) applied to the functionality which realizes n
instances of OT. The inner protocol is the standard OT-based implementation
of the GMW protocol in the semi-honest OT-hybrid model [18], except that
the OT instances consumed by this protocol are implemented using the error-
tolerant protocol of Lemma 2. The watchlists are implemented using the protocol
of Lemma 1.

References

1. R. Ahlswede and I. Csiszar. On Oblivious Transfer Capacity. In ISIT ’07, pages
2061-2064.

2. C. H. Bennett, G. Brassard, C. Crépeau, and U. Maurer. Generalized privacy
amplification. IEEE Transactions on Information Theory, 41:1915-1923, 1995.

3. C. H. Bennett, G. Brassard, and J.-M. Robert. Privacy Amplification by Public
Discussion. SIAM J. Comput. 17(2): 210-229, 1988.

4. G. Brassard, C. Crépeau, and J.-M. Robert. All-or-nothing disclosure of secrets.
In Crypto ’86, pages 234-238, 1987.

5. R. Canetti. Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology, 13(1):143–202, 2000.

6. R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In FOCS ’01, pages 136-145.

7. I. Cascudo, R. Cramer, and C. Xing. The Torsion-Limit for Algebraic Function
Fields and Its Application to Arithmetic Secret Sharing. In Crypto ’11.

8. H. Chen and R. Cramer. Algebraic geometric secret sharing schemes and secure
multi-party computations over small fields. In CRYPTO ’06, pages 521–536.

9. C. Crépeau. Efficient cryptographic protocols based on noisy channels. In EURO-
CRYPT ’97, pages 306–317.

10. C. Crépeau and J. Kilian. Achieving oblivious transfer using weakened security
assumptions. In FOCS ’88, pages 42–52.

11. C. Crépeau, K. Morozov, and S. Wolf. Efficient Unconditional Oblivious Transfer
from Almost Any Noisy Channel. In SCN ’04, pages 47-59.

12. I. Damg̊ard, S. Fehr, K. Morozov, and L. Salvail. Unfair Noisy Channels and
Oblivious Transfer. In TCC ’04, pages 355-373.

13. I. Damg̊ard and Y. Ishai. Scalable Secure Multiparty Computation. In Crypto ’06,
pages 501-520.

14. I. Damg̊ard, J. Kilian, and L. Salvail. On the (Im)possibility of Basing Oblivious
Transfer and Bit Commitment on Weakened Security Assumptions. In EURO-
CRYPT ’99, pages 56-73.

15. S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts.
Communications of the ACM, 28(6):637–647, 1985.

16. A. Garcia and H. Stichtenoth. On the asymptotic behavior of some towers of
function fields over finite fields. Journal of Number Theory, 61(2):248-273, 1996.

17. P. Gemmell and M. Sudan. Highly Resilient Correctors for Polynomials. Informa-
tion Processing Letters, 43(4):169-174, 1992.

18. O. Goldreich. Foundations of Cryptography - Volume 2. Cambridge University
Press, 2004.



19. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In
STOC ’87, pages 218–229.

20. D. Harnik, Y. Ishai, E. Kushilevitz, and J. B. Nielsen. OT-Combiners via Secure
Computation. In TCC ’08, pages 393-411.

21. D. Harnik, J. Kilian, M. Naor, O. Reingold, and A. Rosen. On tolerant combiners
for oblivious transfer and other primitives. In EUROCRYPT 2005, pages 96-113.

22. H. Imai, K. Morozov, and A. Nascimento. Efficient Oblivious Transfer Protocols
Achieving a Non-Zero Rate from Any Non-Trivial Noisy Correlation. In ICITS
’07.

23. Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Zero-knowledge from secure
multiparty computation. In STOC ’07, pages 21–30.

24. Y. Ishai, M. Prabhakaran, and A. Sahai. Founding Cryptography on Oblivious
Transfer - Efficiently. In CRYPTO ’08, pages 572-591.

25. Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Extracting Correlations. In
FOCS ’09, pages 261-270.

26. J. Kilian. Founding cryptography on oblivious transfer. In STOC ’88, pages 20–31.
27. J. Kilian. More general completeness theorems for secure two-party computation.

In STOC ’00, pages 316-324.
28. U. Maurer. Perfect Cryptographic Security from Partially Independent Channels.

In STOC ’91, pages 561-571.
29. U. M. Maurer, K. Pietrzak, and R. Renner. Indistinguishability Amplification. In

CRYPTO ’07, pages 130-149.
30. A. Nascimento and A. Winter. On the Oblivious Transfer Capacity of Noisy Cor-

relations. ISIT 06, pages 1871-1875.
31. B. Przydatek and J. Wullschleger. Error-Tolerant Combiners for Oblivious Primi-

tives. In ICALP ’08, pages 461-472.
32. M.O. Rabin. How to exchange secrets by oblivious transfer. TR-81, Harvard, 1981.
33. C. E. Shannon. A mathematical theory of communication. Bell System Technical

Journal, vol. 27, pp. 379-423 and 623-656, July and October, 1948.
34. S. Wiesner. Conjugate coding. SIGACT News, 15(1):78–88, 1983.
35. S. Winkler and J. Wullschleger. On the Efficiency of Classical and Quantum Obliv-

ious Transfer Reductions. In CRYPTO ’10, pages 707-723.
36. A. Winter, A. C. A. Nascimento, and H. Imai. Commitment Capacity of Discrete

Memoryless Channels. In IMA Int. Conf. 2003, pages 35-51.
37. J. Wullschleger. Oblivious Transfer from Weak Noisy Channels. In TCC ’09, pages

332-349.
38. A. D. Wyner. The wire-tap channel. Bell Cyst. Tech. J., vol. 54, pp. 1355-1387,

1975.
39. A. C. Yao. How to generate and exchange secrets. In FOCS ’86, pages 162–167.

A Arithmetic Encoding from MPC-Friendly Codes

In this section, we briefly sketch how an implementation of our notion of an
arithmetic encoding scheme (Encode,Encode′,Decode′) (as defined in Section 2)
follows from the literature.

Below we recall (verbatim) the notion of MPC-friendly codes from [25], which
almost have all the properties we need. (The parameter k in this section should
not be confused with the use of k as a security parameter in the rest of the
paper.)



Claim ([25], implicit in [8]). There exists a finite field F and an efficiently con-
structible family of linear error-correcting codes Ck : Fk → Fnk with the follow-
ing properties: (1) nk = O(k); (2) The dual distance of Ck is δk = Ω(k); (3) The
linear code C ′k spanned by all entrywise-products of pairs of codewords in Ck
supports efficient decoding of up to µk = Ω(k) errors. (The entrywise product
of (c1, . . . , cn) and (c′1, . . . , c

′
n) is (c1c

′
1, . . . , cnc

′
n).)

A family of codes Ck as above can be obtained from the construction of
Garcia and Stichtenoth [16]. An efficient decoder for C ′k can be obtained via
the Gemmel-Sudan generalization of the Welch-Berlekamp decoder for Reed-
Solomon codes [17].

The one stronger property that we need here (beyond what was needed
in [25]), in order to guarantee that Encode′ generates the amount of entropy
that we need, is a “near-MDS” property of the code C ′k. Specifically, it suffices
to ensure that, for a small enough constant δ0 > 0, we have:

(nk − dim(C ′k)−∆k) < δ0k.

Indeed, this follows immediately from the construction of [16], which in fact
allows us to obtain δ0 = o(1).

The code Ck corresponds to the Encode algorithm, and the code C ′k cor-
responds to the Encode′ algorithm. In both cases, not just the message, but
additional randomness would also be encoded (in the standard method for se-
cret sharing). More specifically, it will suffice to have Encode(x) (respectively,
Encode′(x)) sample a random codeword y in the range of Ck (respectively, C ′k)
such that y has x as a prefix, and set the encoding to be y modified by dropping
this prefix. This can be done efficiently since the codes are linear (by solving a
system of linear equations over x and randomly chosen field elements). In particu-
lar, if Ck and C ′k are systematic codes, then Encode(x) (respectively, Encode′(x))
will pick a random vector r of the appropriate dimension, let y = Ck(x||r) (re-
spectively, y = C ′k(x||r)), and output the last n−m entries of y.

It is instructive to note that Reed-Solomon codes satisfy all the properties
we need, except that Reed-Solomon codes would require the size of the field F
to grow linearly with k. One could use Reed-Solomon codes in our constructions
(instead of algebraic geometric codes) at the cost of a polylogarithmic deterio-
ration of the parameters.


