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Abstract. We prove that achieving adaptive security from composing
two general non-adaptively secure pseudo-random functions is impossible
if and only if a uniform-transcript key agreement protocol exists.
It is well known that proving the security of a key agreement protocol
(even in a special case where the protocol transcript looks random to
an outside observer) is at least as difficult as proving P ∕= NP . An-
other (seemingly unrelated) statement in cryptography is the existence
of two or more non-adaptively secure pseudo-random functions that do
not become adaptively secure under sequential or parallel composition.
In 2006, Pietrzak showed that at least one of these two seemingly unre-
lated statements is true. Pietrzak’s result was significant since it showed
a surprising connection between the worlds of public-key (i.e., “crypto-
mania”) and private-key cryptography (i.e., “minicrypt”). In this paper
we show that this duality is far stronger: we show that at least one of
these two statements must also be false. In other words, we show their
equivalence.
More specifically, Pietrzak’s paper shows that if sequential composition
of two non-adaptively secure pseudo-random functions is not adaptively
secure, then there exists a key agreement protocol. However, Pietrzak’s
construction implies a slightly stronger fact: If sequential composition
does not imply adaptive security (in the above sense), then a uniform-
transcript key agreement protocol exists, where by uniform-transcript
we mean a key agreement protocol where the transcript of the proto-
col execution is indistinguishable from uniform to eavesdroppers. In this
paper, we complete the picture, and show the reverse direction as well
as a strong equivalence between these two notions. More specifically, as
our main result, we show that if there exists any uniform-transcript key
agreement protocol, then composition does not imply adaptive security.
Our result holds for both parallel and sequential composition. Our impli-
cation holds based on virtually all known key agreement protocols, and
can also be based on general complexity assumptions of the existence of
dense trapdoor permutations.
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1 Introduction

One of the central questions in cryptography is the question of composition,
which very broadly is the study of various ways to compose several basic primi-
tives in a way that amplifies the hardness of the composed object. Naturally, this
central question has received a lot of attention in various settings and we con-
tinue the study of this question here. More specifically, we investigate a question
of whether a composition of pseudo-random functions, to be defined shortly, con-
stitutes stronger security by utilizing the security of the component functions.
We consider two very natural types of conventional compositions: a parallel
composition with respect to Exclusive-Or (XOR) operation denoted by ⊕ and a
sequential composition. Briefly, on input x in the domain of F and G, the par-
allel XOR-composition of two functions F and G is defined as F(x)⊕ G(x). The
sequential composition of F and G is defined as G(F(x)) (or F(G(x))).

Seemingly unrelated to the notion of security amplification via composition,
there is the question of designing Key Agreement protocol. Recall that Key
Agreement (KA) is a protocol that enables two parties to generate a secret string
(also called key) by communicating with each other over an insecure channel in
the presence of a eavesdropping adversary. Uniform-transcript key agreement
(UTKA) is a strengthened version of key agreement in which messages between
two parties are indistinguishable from uniform distribution by all probabilis-
tic polynomial-time (PPT) adversaries. The reason why key agreement seems
unrelated to the security of composition is that key agreement belongs to the
world of public-key cryptography (also known as “cryptomania”) whereas the
security of composed pseudo-random functions rather belongs to the world of
private-key cryptography (also known as “minicrypt”). For further discussion
on cryptomania and minicrypt, see [4].

Now, let us recall briefly recall the definition of Pseudo-Random Functions
(PRF) [2]. There are two notions of security of PRF: adaptive security and
non-adaptive security. Intuitively, a (pseudo-random) function is said to be non-
adaptively secure if the function is indistinguishable from a random function
against all PPT adversaries that evaluate the function on inputs chosen inde-
pendently of the function outputs, that is, chosen prior to PPT adversary learn-
ing any of the outputs. Adaptive security is a far stronger notion of security
than non-adaptive security: a PRF is said to be adaptively secure if the func-
tion remains indistinguishable from random function against all PPT adversaries
preparing the current query based on the outputs of the function on all previous
queries. Clearly, adaptive security implies non-adaptive security.

We show that the equivalence between the impossibility of achieving adaptive
security by composing general non-adaptively secure pseudo-random functions
and the existence of uniform transcript key-agreement protocol. We note that our
impossibility result holds not only for the case in which the non-adaptively-secure
component functions are drawn from the different function families (also known
as the general composition) but also for the case where the component functions
are drawn from the same function family (also known as self-composition).



1.1 Related Work

There has been extensive research on relationship between the security of compo-
nent functions and the security of their parallel or sequential composition. In the
information theoretic context, Vaudenay [11] proved that if F is a pseudo-random
permutation with security ² against any distinguisher making q (non-)adaptive
queries, then the sequential composition of k F’s has improved security 2k−1²k

against a (non-)adaptive distinguisher. F only needs to be a function instead of
a permutation for the same security in parallel composition. Luby and Rackoff
[5] show the similar security amplification result in the computational context.

In the information theoretic setting, Maurer and Pietrzak [6] proved that
composition of non-adaptive secure functions amplifies its security ² to security
2²(1+ln(²−1)) against an adaptive distinguisher. In 2007, Maurer et al. improved
this bound to 2² [7].

Myers [8] showed that the existence of oracles relative to which there are
non-adaptively secure permutations, but where the composition of such permu-
tations fails to achieve adaptive security. Recently, Pietrzak [9] showed that the
composition of non-adaptively secure functions does not imply adaptive security
under the Decisional Diffie-Hellman (DDH) assumption. Pietrzak’s more recent
work [Pie06] showed that if sequential composition does not imply adaptive se-
curity, then there exists a key agreement protocol. Moreover, it turns out that
Pietrzak’s construction in [10] implies a slightly stronger result: that his key
agreement protocol satisfies the property of uniform-transcript. Thus, we can
restate the Pietrazak’s result as follows:

Theorem 1. [10] If sequential composition of pseudo-random functions is not
adaptively secure, then there exists a UTKA.

1.2 Our Results

Pietrzak’s work left open the question of establishing the precise connection be-
tween the impossibility of adaptively secure composition and key agreement. Our
main contribution is to establish sufficient and necessary conditions. In particu-
lar, we prove that the existence of UTKA implies the impossibility of obtaining
an adaptively secure function from composing general non-adaptively secure
functions. The main technique is the fully black-box construction of counter-
example functions from UTKA. Therefore, our result holds with respect to any
UTKA without relying on the actual code of the UTKA. We prove our result in
both parallel and sequential compositions.

Theorem 2. If there exists a UTKA, then parallel composition of non-adaptively
secure pseudo-random functions does not imply a pseudo-random function with
adaptive security.

Theorem 3. If there exists a UTKA, then sequential composition of non-adaptively
secure pseudo-random functions does not imply a pseudo-random function with
adaptive security.



We also prove the analog of Pietrzak’s Theorem 1 for parallel composition:

Theorem 4. If a parallel composition of speudo-random functions is not adap-
tively secure, then there exists a UTKA.

Putting all our results together with Theorem 1, we conclude the equivalence
between the impossibility of adaptively secure composition and the existence of
a uniform transcript key-agreement (both for parallel and sequential composi-
tions). This is informally stated as follows.

Theorem 5. (MAIN) The composition of two non-adaptively secure pseudo-
random functions does not imply an adaptively secure pseudo-random function
if and only if a UTKA exists.

We emphasize that our main theorem holds regardless of whether PRFs being
composed are taken from a single function family (called self-composition) or
from two distinct function families (called general-composition). In particular,
we show that the impossibility of secure general-compositions further implies
the impossibility of secure self-compositions. The precise connection between
the impossibility of adaptively secure composition and a UTKA protocol were
not known prior to our work. We summarize these previously known results and
our contributions in Fig. 1.DDHParallel Composition Insecurity

Dense Trapdoor permutationUniform Key AgreementSequential Composition Insecurity Known resultsOur                      contribution
Fig. 1. Relationship between composition insecurity and other assumptions

Organization of the rest of the paper

In Section 2, we review all basic cryptographic notions and definitions. To build
the intuition of our main construction, we first show in section 3 a high level
outline of somewhat weaker result. In particular, we outline the analogue of The-
orem 2 and Theorem 3 not assuming UTKA, but rather assuming the existence
of a family of enhanced trapdoor permutations. We note that even this weaker
variant of our main result is a generalization from the result by [9], which relies
on a specific assumption (i.e., DDH assumption). In section 4 we proceed to
give the intuition of our main result assuming UTKA. In section 5, we extend



our main results to the one in the context of self-composition. We provide the
complete constructions of our functions and full proofs of all theorems in [1].

2 Preliminaries

We let n ∈ IN be a security parameter. An algorithm is considered efficient if
its computation can be carried out by a PPT machine whose running time is
expected polynomial in the input length. We use the notation x Ã$ {0, 1}n
when string x is uniformly drawn from {0, 1}n. We omitted the rest of standard
notations and (well-known) formal definitions. For those definitions, we refer the
readers to [1].

3 Building intuition: Composition Insecurity vs. Dense
Trapdoor Permutation

For gentle introduction to our main result, we first present a special case of our
main result as an example – The existence of dense trapdoor permutation (DTP)
implies the impossibility of achieving the adaptive security by composing (in a
black-box way) non-adaptively secure pseudo-random functions. The main idea
behind showing this, is that a family of DTPs is well-known to provide a 2-pass
(uniform-transcript) key agreement.

3.1 Parallel Composition Insecurity from Dense Trapdoor
Permutation

We construct two counter-example pseudo-random functions F and G which are
secure against any PPT adversary non-adaptively. Then, we prove that their
parallel composition is not secure against a particular sequence of four adaptive
queries.

Intuitions of Parallel Composition of F and G We provide the high-level
overview and intuition of our construction of pseudo-random functions F and
G based on DTP, and show how to break the adaptive security of their par-
allel composition. The main technique of our constructions of counter-example
functions is to design the functions to detect the adaptive query throughout the
input and output behavior. In particular, F and G emulate a 2-pass key agree-
ment protocol via adaptive inputs and outputs. Once F and G internally obtain
a shared key, they generate outputs which hide a special relation with respect
to the shared key. As we input these specially generated outputs to the parallel
composition again, F and G retrieve the previously shared key and verify the
special relation with respect to the shared key. Hence, function F and G are con-
vinced that the queries must be indeed adaptively generated, and reveal their
private keys through their outputs, which break their security.



Our counter-example functions F and G are both defined over ({0, 1}n)2n+3.
F and G hide the secret keys kF and kG respectively. P denotes an adaptively
secure pseudo-random permutation. Let (Gen(⋅), f, f−1) be a family of DTPs.
rij and sij denote the ith pseudo-random string generated by F and G using
their secret keys on jth input respectively. In addition, Enck(x) is defined to be
a pseudo-random private-key encryption of x with respect to key k. Hence, we
have x = Deck(Enck(x)).

We first define F and G on the first fixed adaptive query Q1 = (0n, 0n, ⋅ ⋅ ⋅ , 0n):
– F generates 2n+3 pseudo-random strings r∗, r21, r31, ⋅ ⋅ ⋅ , r(2n+3)1 computed

by PkF
(Q1).

– G on input Q1 uses its secret key to first compute sufficiently long pseudo-
random string which is then used to compute DTP pair (k, tk): a pair of a
DTP key k and its private trapdoor tk by Gen(1n) of DTP. G generates 2n+
2 pseudo-random strings s21, s31, ⋅ ⋅ ⋅ , s(2n+3)1 by PkG

(Q1), then it outputs
(k, s21, ⋅ ⋅ ⋅ , s(2n+3)1).

We describe the outputs of F and G, and their parallel composition outputs
below:

Q1 →
[
F → (r∗, r21, ⋅ ⋅ ⋅ , r(2n+3)1)
G → (k, s21, ⋅ ⋅ ⋅ , s(2n+3)1)

]
→ (r∗ ⊕ k, r21 ⊕ s21, ⋅ ⋅ ⋅ , r(2n+3)1 ⊕ s(2n+3)1)

The second adaptive query is of the form Q2 = (u, 0n, 0n, ⋅ ⋅ ⋅ , 0n) where u =
r∗ ⊕ k. We define F and G on Q2 as follows.

– F first simulates the first-round of computation (by internally executing PkF

on the fixed query Q1) to obtain r∗, then computes u ⊕ r∗ which is equal
to k; Now, F computes 2n + 3 pseudo-random strings x1, x2, ⋅ ⋅ ⋅ , xn and
r(n+1)2, r(n+2)2, ⋅ ⋅ ⋅ , r(2n+3)2 by PkF

(Q2). F computes yi by fk(xi) for 1 ≤
i ≤ n, then outputs (y1, ⋅ ⋅ ⋅ , yn, r(n+1)2, ⋅ ⋅ ⋅ , r(2n+3)2).

– G generates fresh pseudo-random strings (s12, s22, ⋅ ⋅ ⋅ , s(2n+3)2) computed
by PkG

(Q2).

We describe what both F and G output individually and the output of their
parallel composition:

Q2 →
[
F → (y1, ⋅ ⋅ ⋅ , yn, r(n+1)2, ⋅ ⋅ ⋅ , r(2n+3)2)
G → (s12, ⋅ ⋅ ⋅ , sn2, s(n+1)2 ⋅ ⋅ ⋅ , s(2n+3)2)

]

→ (y1 ⊕ s12, ⋅ ⋅ ⋅ , yn ⊕ sn2, r(n+1)2 ⊕ s(n+1)2, ⋅ ⋅ ⋅ , r(2n+3)2 ⊕ s(2n+3)2)

We define the third adaptive query Q3 to consist of the selected coordinates
in the previous outputs such that Q3 = (y1 ⊕ s12, ⋅ ⋅ ⋅ , yn ⊕ sn2, r(n+1)2 ⊕
s(n+1)2, ⋅ ⋅ ⋅ , r(2n)2 ⊕ s(2n)2, k ⊕ r∗, 0n, 0n). On Q3, we defined F and G as fol-
lows.

– F regenerates all the pseudo-random strings in the second round, x1, ⋅ ⋅ ⋅ , xn,
r(n+1)2, ⋅ ⋅ ⋅ , r(2n+3)2 by PkF

(Q2). Notice that Q2 is (k⊕r∗, 0n, ⋅ ⋅ ⋅ , 0n) where



F can obtain k⊕r∗ fromQ3. F can compute bi =< xi, r(n+i)2 > for all 1 ≤ i ≤
n and retrieve a shared key sk by letting sk = b1b2 ⋅ ⋅ ⋅ bn. Now, F generates
pseudo-random strings r13, r23, ⋅ ⋅ ⋅ , r(2n+3)3 by PkF

(Q3) and encrypts r13
with the shared key as Encsk(r13). Finally, F outputs (Encsk(r13), r13, r23,
⋅ ⋅ ⋅ , r(2n+2)3).

– G regenerates s12, s22, ⋅ ⋅ ⋅ , s(2n)2 by PkG
(Q2). G can obtain y1, ⋅ ⋅ ⋅ , yn, r(n+1)2,

⋅ ⋅ ⋅ , r(2n)2 as it cancels s12, s22, ⋅ ⋅ ⋅ , s(2n)2 out of the first 2n coordinates in

Q3. By using the inverse permutation f−1
tk

with respect to the trapdoor

tk, G can obtain xi by computing f−1
tk

(yi) for all i. Hence, G can compute
bi =< xi, ri > for all i and retrieve the shared key sk by letting sk =
b1b2 ⋅ ⋅ ⋅ bn. Then, G generates pseudo-random strings s13, s23, ⋅ ⋅ ⋅ , s(2n+3)3 by
PkG

(Q3) and creates an encryption Encsk(s13). Finally, G outputs (Encsk(s13),
s13, s23, ⋅ ⋅ ⋅ , s(2n+2)3).

Below we depict the individual outputs of F and G and the output of their
parallel composition:

Q3 →
[
F → (Encsk(r13), r13, r23, ⋅ ⋅ ⋅ , r(2n+2)3)
G → (Encsk(s13), s13, s23, ⋅ ⋅ ⋅ , s(2n+2)3)

]

→ (Encsk(r13)⊕ Encsk(s13), r13 ⊕ s13, r23 ⊕ s23, ⋅ ⋅ ⋅ , r(2n+2)3 ⊕ s(2n+2)3)

Our fourth query Q4 is a selective collection of the outputs in the previous
round such that Q4 = (y1 ⊕ s12, ⋅ ⋅ ⋅ , yn ⊕ sn2, r(n+1)2 ⊕ s(n+1)2, ⋅ ⋅ ⋅ , r(2n)2 ⊕
s(2n)2, k ⊕ r∗,Encsk(r) ⊕ Encsk(s), r ⊕ s). Notice that F and G can simulate all
the computations of previous rounds uponQ4. Hence, F and G can retrieve shared
key sk. F computes Encsk(r13) and r13 by the simulation of computations on Q3.
Then, F checks to see if equality Decsk(Encsk(r13) ⊕ (Encsk(r13)⊕ Encsk(s13)))
= r13 ⊕ (r13 ⊕ s13) holds where (Encsk(r13) ⊕ Encsk(s13)) and (r13 ⊕ s13) are
obtained from Q4. Since the equality holds, F deduces that the input query is
indeed an adaptive query. Hence, F outputs (kF, 0

n, 0n, ⋅ ⋅ ⋅ , 0n) containing its
secret key kF. G does the same and outputs (0n, kG, 0

n, ⋅ ⋅ ⋅ , 0n). The individual
outputs of F and G and the output of the parallel composition are described
below.

Q4 →
[
F → (kF, 0

n, 0n, ⋅ ⋅ ⋅ , 0n)
G → (0n, kG, 0

n, ⋅ ⋅ ⋅ , 0n)
]
→ (kF, kG, 0

n, ⋅ ⋅ ⋅ , 0n)

Now, it remains to prove that the above described functions are non-adaptively
secure and their parallel composition is adaptively insecure. We prove the fol-
lowing claims that immediately substantiate Lemma 1. In this paper, a pseudo-
random function is said to be breakable by q adaptive queries if there is a PPT ad-
versary A such that A distinguishes the pseudo-random function from a uniform
random function by asking q adaptive queries to the pseudo-random function.

Claim. The function F and G described above are secure against any non-
adaptive PPT adversary.

Claim. The parallel composition function F ⊕ G is breakable by four adaptive
queries.



Lemma 6. Suppose that a dense trapdoor permutation exists. Then, there exist
non-adaptively secure pseudo-random functions F and G such that the parallel
composition over XOR of F and G is breakable by four adaptive queries.

3.2 Sequential Composition Insecurity from Dense Trapdoor
Permutation

We now present a somewhat more interesting construction: namely a sequential
composition of non-adaptively secure functions does not imply even minimal
adaptive security.That is, we show that there exist non-adaptively secure pseudo-
random functions F and G whose sequential composition is breakable by only two
adaptive queries and yet it remains only non-adaptively secure.

Intuitions of Sequential Composition of F and G We provide the high-
level overview of their formal constructions of counter-example PRFs F and G.
The standard notions and specifications of the underlying primitives are identical
to the ones in the previous section. F (resp. G) contains two secret keys kF and
k

′
F (resp. kG and k

′
G).

We define the first adaptive query Q1 to be a fixed query, (0n, 0n, ⋅ ⋅ ⋅ , 0n).
Then, F and G are defined on Q1 as follows.

– F computes (k, tk) by Gen(1n), a pair of a public key defining a one-way
permutation and its corresponding trapdoor for the inverse permutation.
F also computes pseudo-random strings r21, r31, ⋅ ⋅ ⋅ , r(2n+3)1 by PkF

(Q1). F
outputs (k, r21, ⋅ ⋅ ⋅ , r(2n+3)1).

– On (k, r21, ⋅ ⋅ ⋅ , r(2n+3)1), function G is defined to generate 2n + 3 pseudo-
random strings x1, . . . , xn, s(n+1)1, ⋅ ⋅ ⋅ , s(2n+3)1 by PkG

(k, r21, ⋅ ⋅ ⋅ , r(2n+3)1)
and computes the shared key sk = b1b2 . . . bi, where bi =< xi, s(n+i)1 >
for all 1 ≤ i ≤ n. In addition, G creates an encryption of s(2n+1)1 with
respect to the shared key, denoted by Encsk(s(2n+1)1). Also, G encrypts one

of its own secrets k
′
G with respect to the shared key, resulting in Encsk(k

′
G).

Finally, G encrypts xis to yi by a one-way permutation defined by k (i.e., yi =
fk(xi) for all 1 ≤ i ≤ n). Hence, G outputs (y1, ⋅ ⋅ ⋅ , yn, s(n+1)1, ⋅ ⋅ ⋅ , s(2n)1,
Encsk(s(2n+1)1), s(2n+1)1, Encsk(k

′
G)).

The computation of the sequential composition of F and G on Q1 is described
below:

Q1
F−→ (k, r21, ⋅ ⋅ ⋅ , r(2n+3)1)

G−→ (y1, ⋅ ⋅ ⋅ , yn, s(n+1)1, ⋅ ⋅ ⋅ , s(2n)1,Encsk(s(2n+1)1), s(2n+1)1,Encsk(k
′
G))

We define our second adaptive query Q2 to be the output of the sequential com-
position on Q1 such that Q2 = (y1, ⋅ ⋅ ⋅ , yn, s(n+1)1, ⋅ ⋅ ⋅ , s(2n)1, Encsk(s(2n+1)1),

s(2n+1)1,Encsk(k
′
G)). On Q2, we define F and G as follows.



– F obtains all xis by inverting yis with its private trapdoor information tk as
f−1
tk

(yi) for all 1 ≤ i ≤ n. Now F can retrieve the shared key sk by letting sk =
b1b2 ⋅ ⋅ ⋅ bn where bi =< xi, s(n+i)1 > for all 1 ≤ i ≤ n. F takes Encsk(s(2n+1)1)
from Q2 and decrypts it to s(2n+1)1 by Decsk(Encsk(s(2n+1)1)). Finding the
decrypted string equivalent to the (2n+2)th coordinate in Q2 (i.e., s(2n+1)1),
F is convinced that Q2 is an adaptive query. Then, F inverts the final coor-
dinate of Q2 with the shared key sk, so F obtains k

′
G = Decsk(Encsk(k

′
G)).

Finally, F outputs a vector (k
′
G, kF, k

′
F, 0

n, ⋅ ⋅ ⋅ , 0n) containing all the secrets
of F.

– Upon the input (k
′
G, kF, tk, 0

n, ⋅ ⋅ ⋅ , 0n) from F, function G checks to see if

the first coordinate of the input vector equals its own secret k
′
G. Since the

equality holds, G reveals all the secret keys of F and G by outputting (kG,
k

′
G, kF, k

′
F, 0

n, ⋅ ⋅ ⋅ , 0n).
All the individual outputs of F and G as a part of sequential composition is
described as follows.

Q2
F−→ (kG, kF, k

′
F, 0

n, ⋅ ⋅ ⋅ , 0n) G−→ (kG, k
k′
G , kF, k

′
F, 0

n, ⋅ ⋅ ⋅ , 0n)

We prove the following claims that constitute Lemma 7 below. Hence, by Lemma
6 and Lemma 7, we immediately obtain Theorem 8.

Claim. The functions F and G described above are secure against any non-
adaptive PPT adversary.

Claim. The sequential composition G(F(⋅)) is breakable by two adaptive queries.

Lemma 7. Suppose that a dense trapdoor permutation exists. Then, there exist
non-adaptively secure functions F and G whose sequential composition G(F(⋅)) is
breakable by two adaptive queries.

Theorem 8. If a dense trapdoor permutation exists, then the composition of
non-adaptively secure functions does not imply the adaptive security.

4 Composition Insecurity vs. Uniform Transcript Key
Agreement

In this section, we prove our main result: the existence of UTKA protocol implies
the impossibility of obtaining adaptive security by the general composition of
non-adaptively secure functions. Moreover, Pietrzak showed that the insecurity
of sequential composition implies the existence of key agreement protocol. In
fact, the key agreement protocol satisfies the property of uniform-transcript even
though Pietrzak did not mention it in [10]. For the whole equality between the
impossibility of general adaptively secure composition and UTKA, we prove that
the parallel composition insecurity also achieves a UTKA by employing a small
trick to the technique given in [10].



4.1 Parallel Composition Insecurity vs. Uniform Transcript Key
Agreement

Constructing UTKA from the Adaptive Insecurity of F⊕G We present
the parallel version of the result by using the technique originally presented by
[10]. That is, if the parallel composition of two k− 1 adaptively secure functions
is not k-adaptively secure, then a (2k−1)-pass key agreement exists. For clarity,
we rather present a special case where k = 2. Following the technique of [10],
we construct a (2k − 1)-pass bit agreement with ²-correlation and ±-security
where ² is non-negligible and ± is overwhelming. It is known that n parallel
repetitions of bit agreement with ²-correlation and ±-security achieves a n-bit
key agreement without increasing the round complexity when ² is noticeable and
± is overwhelming [3]. With non-negligible ², a bit agreement still realizes a key
agreement which achieves correctness for (infinitely many) n such that for any
c, ² ≥ 1/nc.

We present the pictorial description of a (2k−1)-pass UTKA from two adap-
tively pseudo-random functions whose parallel composition is not k-adaptively
secure when k = 2 in Protocol 1. The 3-pass uniform-transcript bit agreement

Protocol Bit-Agreement(1n)
Alice Transcript Bob

bA Ã$ {0, 1}
kA Ã GenF(1

n) kB Ã GenG(1
n)

x1 Ã D(1n) x1 Ã D(1n)
If bA = 0,

then z1 Ã FkA(x1)

else z1 Ã$ {0, 1}n z1−→
y1Ã− y1 Ã z1 ⊕ GkB(x1)

x2 Ã D(y1) x2 Ã D(y1)
If bA = 0,

then z2 Ã FkA(x2)

else z2 Ã$ {0, 1}n z2−→ y2 Ã z2 ⊕ GkB(x2)
bB Ã D(y1, y2)

Protocol 1: 3-pass uniform-transcript bit agreement based on 2-adaptive distin-
guisher D

in Protocol 1 may be easily extended to the (2k − 1)-pass bit agreement for
arbitrary k.

Theorem 9. Let F and G be k-adaptively secure pseudo-random functions. If
the parallel composition F⊕ G is NOT k-adaptively secure, then a (2k − 1)-pass
UTKA exists.



Insecurity of Parallel Composition from UTKA A °-round uniform-
transcript key agreement protocol (°-UTKA), denoted by Φ°

u = (A,B), is a
uniform-transcript key agreement protocol consisting of two sub-protocols A and
B, in which Alice (using A) and Bob (using B) exchange 2° messages to each
other (° messages from each party) in order to share a secret key sk.

In this section, we use the parallel version of °-UTKA to construct counter-
example functions. The parallel °-UTKA is a °-UTKA where Alice and Bob
are symmetric to each other in Protocol. In particular, Bob’s first message is
completely independent of Alice’s first message and is only dependent on his
own private randomness. That is, ®1 Ã A1(rA) while ¯1 Ã B1(rB) where
rA and rB are independent randomness of Alice and Bob. For 2 ≤ i ≤ °,
®i Ã Ai(rA, ¯1, ⋅ ⋅ ⋅ , ¯i−1) and ¯i Ã Bi(rB, ®1, ⋅ ⋅ ⋅ , ®i−1). Finally, sk Ã A°+1(rA,
¯1,⋅ ⋅ ⋅ , ¯°) and sk Ã B°+1(rB, ®1, ⋅ ⋅ ⋅ , ®°) where sk is the shared key.3

Now, we provide a high-level overview of our pseudo-random functions F
and G from °-UTKA and describe how to break the adaptive security of their
parallel composition. For underlying primitives, we have a black-box access to
©u = (A, B), parallel °-UTKA described above. ®i and ¯i denote the ith message
computed by A and B respectively. We are given a pseudo-random private-key
encryption scheme (Enc,Dec) such that Deck(Enck(x)) = x. Finally, let P be any
given adaptively secure PRP.

Intuitively, F utilizes A as its subroutine as well as G utilizes B as its subrou-
tine in order for them to share a secret key via input and outputs. Then, F and G
create pseudo-random strings specially related with respect to the shared secret
key. As we input the specially related pseudo-random strings to the composition,
the functions retrieve the shared key, verify the special relation hidden in the
input query, and reveal their secret keys in their outputs. F and G internally
contain secret keys kF and kG. F and G are defined over ({0, 1}n)°+2.

First, we define F and G upon the first adaptive (fixed) queryQ1 = (0n, ⋅ ⋅ ⋅ , 0n)
as:

– F generates ° + 2 pseudo-random strings rF, r21, ⋅ ⋅ ⋅ , r(°+2)1 by PkF
(Q1).

F creates Alice’s first message ®1 by A1(rF) and then outputs (®1, r21, ⋅ ⋅ ⋅ ,
r(°+2)1).

– G does the same as it generates sG, s21, ⋅ ⋅ ⋅ , s(°+2)1 by PkF
(Q1), and then

computes Bob’s first message ¯1 by B1(sG), and outputs (¯1, s21, ⋅ ⋅ ⋅ ,
s(°+2)1).

3 We emphasize that we can construct the same counter-example functions to show
the same impossibility of adaptively secure composition by using a (sequential) ° −
UTKA in which Bob’s first message is dependent on Alice’s first message. However, it
requires more adaptive queries to break the parallel composition of such functions.
The main reason for using this parallel version of °-UTKA is that it is simpler
to emulate the key agreement protocol in the context of parallel composition of
our proposed counter-example pseudo-random functions F and G. Also, it provides
us with a tighter bound on the number of adaptive queries required to break the
adaptive security of the parallel composition.



Below we depict the individual outputs of F and G on Q1 and their parallel
composition:

Q1 →
[
F → (®1, r21, ⋅ ⋅ ⋅ , r(°+2)1)
G → (¯1, s21, ⋅ ⋅ ⋅ , s(°+2)1)

]
→ (®1 ⊕ ¯1, r21 ⊕ s21, ⋅ ⋅ ⋅ , r(°+2)1 ⊕ s(°+2)1)

Inductively, for 2 ≤ i ≤ °, we define F and G to process the i-th adaptive
query Qi = (®1 ⊕ ¯1, ®2 ⊕ ¯2, ⋅ ⋅ ⋅ , ®i−1 ⊕ ¯i−1, 0

n, ⋅ ⋅ ⋅ , 0n) as follows.
– F first regenerates rF and ®1 by simulating the first-round computation. That

is, F first computes PkF
(Q1) to obtain rF and then executes A(rF). Then, F

processes the following chain of computations in the direction of left-to-right
and top-to-bottom with rF, ®1 and Qi,

¯1 Ã (®1 ⊕ u1) ®2 Ã A2(rF, ¯1)

...
...

¯i−1 Ã (®i−1 ⊕ ui−1) ®i Ã Ai(rF, ¯1, ¯2, . . . , ¯i−1)

Finally, F outputs (®i, r2i, ⋅ ⋅ ⋅ , r(°+2)i) where r2i, ⋅ ⋅ ⋅ , r(°+2)i are fresh
pseudo-random strings generated by PkF

(Qi).
– G is symmetrically defined. Hence, G outputs (¯i, s2i, ⋅ ⋅ ⋅ , s(°+2)i) where

s2i, ⋅ ⋅ ⋅ , s(°+2)i are pseudo-random strings generated by PkG
(Qi).

On Qi for 2 ≤ i ≤ °, we demonstrate the individual outputs of F and G
and the output of their parallel composition below. Note that we obtain ®° ⊕¯°

by feeding the parallel composition of F and G with Q° to be (®1 ⊕ ¯1, ®2 ⊕
¯2, ⋅ ⋅ ⋅ , ®°−1 ⊕ ¯°−1, 0

n, 0n).

Qi →
[
F → (®i, r2i, ⋅ ⋅ ⋅ , r(°+2)i)
G → (¯i, s2i, ⋅ ⋅ ⋅ , s(°+2)i)

]
→ (®i ⊕ ¯i, r2i ⊕ s2i, ⋅ ⋅ ⋅ , r(°+2)i ⊕ s(°+2)i)

The (° + 1)th adaptive query is defined to be Q°+1 = (®1 ⊕ ¯1, ®2 ⊕
¯2, ⋅ ⋅ ⋅ , ®° ⊕ ¯° , 0

n, 0n). Then, we define our functions F and G on Q°+1 as
follows.

– F first regenerates rF and ®1 by simulating the first-round computation
as before. Then, F performs the chain of computations described above,
and so obtains ¯1, ¯2, ⋅ ⋅ ⋅ , ¯° . Hence, F can generate a shared key sk by
A°+1(rF, ¯1, ¯2, . . . , ¯°). F generates pseudo-random strings r1(°+1), r2(°+1),
⋅ ⋅ ⋅ , r(°+2)(°+1) by PkF

(Q°+1). F creates an (pseudo-random) encryption
Encsk(r1(°+1)). F outputs (Encsk(r1(°+1)), r1(°+1), r3(°+1), ⋅ ⋅ ⋅ , r(°+2)(°+1)).

– G is symmetrically defined. So, G outputs (Encsk(s1(°+1)), s1(°+1), s3(°+1),
⋅ ⋅ ⋅ , s(°+2)(°+1)).

The following describes the each output of F and G, and that of parallel compo-
sition on Q°+1.

Q°+1 →
[
F → (Encsk(r1(°+1)), r1(°+1), r3(°+1), ⋅ ⋅ ⋅ , r(°+2)(°+1))
G → (Encsk(s1(°+1)), s1(°+1), s3(°+1), ⋅ ⋅ ⋅ , s(°+2)(°+1))

]

→ (Encsk(r1(°+1))⊕ Encsk(s1(°+1)), r1(°+1) ⊕ s1(°+1),

r3(°+1) ⊕ s3(°+1), ⋅ ⋅ ⋅ , r(°+2)(°+1) ⊕ s(°+2)(°+1))



The final (°+2)th adaptive query is defined to be Q°+2 = (®1⊕¯1, ⋅ ⋅ ⋅ , ®°⊕
¯° ,Encsk(r1(°+1)) ⊕ Encsk(s1(°+1)), r1(°+1) ⊕ s1(°+1)) which is the combination
of all the outputs of the parallel composition on the previous adaptive queries.
Then, F and G are defined on Q°+2 as follows.

– F executes the chain of computations to retrieve ¯1, ¯2, ⋅ ⋅ ⋅ , ¯° , then com-
putes a shared key sk by A°+1(rF, ¯1, ¯2, . . . , ¯°). Since Q°+1 = (®1 ⊕
¯1, ®2 ⊕ ¯2, ⋅ ⋅ ⋅ , ®° ⊕ ¯° , 0

n, 0n), F can obtain Encsk(r1(°+1)) and r1(°+1)

generated by the internal simulation of F(Q°+1). F checks to see if equal-
ity Decsk(Encsk(r1(°+1)) ⊕ (Encsk(r1(°+1)) ⊕ Encsk(s1(°+1)))) = r1(°+1) ⊕
(r1(°+1)⊕s1(°+1)) holds where (Encsk(r1(°+1))⊕Encsk(s1(°+1))) and (r1(°+1)⊕
s1(°+1)) are obtained from Q°+2. As the equality holds, F is convinced that
Q°+2 is indeed an adaptively generated query. Hence, F outputs (kF, 0

n, 0n,
⋅ ⋅ ⋅ , 0n).

– G is symmetrically defined. Hence, G similarly outputs (0n, kG, 0
n, ⋅ ⋅ ⋅ , 0n).

Below we provide the overall picture of the individual computations of F and G
and the output of their parallel composition.

Q°+2 →
[
F → (kF, 0

n, 0n, ⋅ ⋅ ⋅ , 0n)
G → (0n, kG, 0

n, ⋅ ⋅ ⋅ , 0n)
]
→ (kF, kG, 0

n, ⋅ ⋅ ⋅ , 0n)

We prove the following claims that substantiate Theorem 10. Therefore, we im-
mediately obtains Theorem 11 by Theorem 9 and 10.

Claim. The functions F and G described above are secure against any non-
adaptive PPT adversary.

Claim. The parallel composition F⊕ G is breakable by °+2 adaptive queries.

Theorem 10. If °-UTKA ©u = (A,B) exists, then there exist non-adaptively
secure pseudo-random functions F and G such that their parallel composition
over XOR is (°+2)-adaptive query breakable.

Theorem 11. The parallel composition of two pseudo-random functions does
not imply adaptive security if and only if the uniform-transcript key agreement
exists.

4.2 Sequential Composition Insecurity vs. Uniform Transcript Key
Agreement

We examine the equivalence between the insecurity of sequential composition and
the existence of UTKA protocol. Pietrzak already showed that a key agreement
protocol can be achieved from two functions whose sequential composition is not
adaptively secure. His key agreement protocol satisfies the property of uniform-
transcript. We prove this as a separate claim in [1] and formally restate Pietrzak’s
theorem below.

Theorem 12 ([10]). Let F and G be k-adaptively secure pseudo-random func-
tions. If the sequential composition G(F(⋅)) is NOT k-adaptively secure, then a
(2k-1)-pass UTKA exists.



Insecurity of Sequential Composition from UTKA In this section, we
use the sequential version of °-UTKA in which Bob’s first message is dependent
on Alice’s first message to construct the counter-example PRFs. That is, ¯1 Ã
B1(rB, ®1) where ®1 Ã A1(rA) for rA and rB, independent randomness of Alice
and Bob. For 2 ≤ i ≤ °, ®i Ã Ai(rA, ¯1, ⋅ ⋅ ⋅ , ¯i−1) and ¯i Ã Bi(rB, ®1, ⋅ ⋅ ⋅ , ®i).
Consequently, sk Ã A°+1(rA, ¯1, ⋅ ⋅ ⋅ , ¯°) and sk Ã B°+1(rB, ®1, ⋅ ⋅ ⋅ , ®°) where
sk is the shared key. Notice that in this scenario Bob must wait for the first
message ®1 from Alice in order to compute his first message ¯1.

In the following, we present the high-level overview on our constructions of
counter-example functions F and G based on °-UTKA described above. For the
building blocks, we are given a sequential version of °-UTKA, ©u = (A,B) and
all the other primitives remain identical to the ones in Section 4.1. F (resp. G)
is defined over ({0, 1}n)°+3 and internally possesses a secret key kF (resp. kG).

Our first adaptive query is an arbitrary vector in ({0, 1}n)°+3 asQ1 = (u1, u2,
⋅ ⋅ ⋅ , u°+2, u

∗) for u1, u2, ⋅ ⋅ ⋅ , u°+2, u
∗ Ã$ {0, 1}n. On Q1, we define F and G as

follows.

– F computes a pseudo-random string rF by PkF
(u∗). Then, F generates the first

message ®1 by executing A1(rF). F continues to compute r21, ⋅ ⋅ ⋅ , r°1 by ex-
ecuting A2(rF, u1), ⋅ ⋅ ⋅ , A°(rF, u1, ⋅ ⋅ ⋅ , u°−1). Notice that Q1 is an arbitrarily
chosen input so that running A (Alice) on Q1 produces only pseudo-random
strings except for the first message ®1. F computes its first n-bit shared key
sk1F from A°+1(rF, u1, ⋅ ⋅ ⋅ , u°). F tests if Decsk1

F
(u°+1) = u°+2. The equality

is satisfied only negligible probability since u°+1 and u°+2 are arbitrary cho-
sen. Hence, with overwhelming probability, F concludes its computation by
outputting (®1, r21, r31, ⋅ ⋅ ⋅ ,Encsk1

F
(r(°+1)1), r(°+1)1, r(°+3)1) where r(°+1)1,

r(°+2)1 and r(°+3)1 are generated from PkF
(u°+1, u°+2, u°+3).

– On F(Q1), G is defined to compute ¯1 by B1(sG, ®1) where sG is generated
by PkG

(u1) and ®1 is the first message validly generated by F. G continues to
compute s21, ⋅ ⋅ ⋅ , s°1 by executing B2(sG, ®1, r21), ⋅ ⋅ ⋅ , B°(sG, ®1, r21, ⋅ ⋅ ⋅ ,
r°1). Since r21, ⋅ ⋅ ⋅ , r°1 are pseudo-random strings computed by F upon non-
adaptive query Q1, s21, ⋅ ⋅ ⋅ , s°1 are pseudo-random strings. G computes sk1G
from B°+1(rG, u1, ⋅ ⋅ ⋅ , u°) and then tests if Decsk1

G
(u°+1) = u°+2 holds. This

equality holds with only negligible probability. G computes pseudo-random
strings s(°+1)1, s(°+2)1 and s(°+3)1 from PkG

(¼sk1
F
(r(°+1)1), r(°+1)1, r(°+3)1).

G outputs (¯1, s21, s31, ⋅ ⋅ ⋅ , Encsk1
G
(s(°+1)1), s(°+1)1, s(°+3)1).

We describe the outputs of F and G in the computation of their sequential
composition on Q1:

Q1
F→ (®1, r21, r31, ⋅ ⋅ ⋅ ,Encsk1

F
(r(°+1)1), r(°+1)1, r(°+3)1)

G→ (¯1, s21, s31, ⋅ ⋅ ⋅ ,Encsk1
G
(s(°+1)1), s(°+1)1, s(°+3)1).

Inductively, for 2 ≤ i ≤ ° − 1, the ith adaptive query Qi is in the form of
(¯1, ⋅ ⋅ ⋅ , ¯i−1, si(i−1), ⋅ ⋅ ⋅ , s°(i−1), Encski−1

G
(s(°+1)(i−1)), s(°+1)(i−1), u

∗) where

u∗ is the final coordinate of Q1 and the rest of coordinates are the first 2° +



2 coordinates in the output of G(F(Qi−1)). Then, F computes all the mes-
sages ®1 to ®° and shared key skiF based on Qi as described above. F tests
if Decski

F
(Encski−1

G
(s(°+1)(i−1))) = s(°+1)(i−1). Obviously, skiF ∕= ski−1

G with over-

whelming probability since the keys are computed based on insufficient number of
valid messages. Hence, F outputs (®1, ⋅ ⋅ ⋅ , ®i, r(i+1)i, ⋅ ⋅ ⋅ , r(°)i, Encski

F
(r(°+1)i),

r(°+1)i, r(°+3)i). Similarly, G undertakes the same course of computations: G
computes messages and shared key, tests the equality and finally outputs (¯1,
⋅ ⋅ ⋅ , ¯i, s(i+1)i, ⋅ ⋅ ⋅ , s(°)i,Encski

G
(s(°+1)i), s(°+1)i, s(°+3)i). The individual output

of F and the output of G in their sequential composition on Qi are described as
follows:

Qi
F→ (®1, ⋅ ⋅ ⋅ , ®i, r(i+1)i, ⋅ ⋅ ⋅ , r(°)i,Encski

F
(r(°+1)i), r(°+1)i, r(°+3)i)

G→ (¯1, ⋅ ⋅ ⋅ , ¯i, s(i+1)i, ⋅ ⋅ ⋅ , s(°)i,Encski
G
(s(°+1)i), s(°+1)i, s(°+3)i).

Hence, after the (° − 1)th adaptive query, our °th adaptive query Q° is (¯1,
¯2, ⋅ ⋅ ⋅ , ¯°−1, s°(°−1), Encsk°−1

G
(s(°+1)(°−1)), s(°+1)(°−1), u

∗). On Q° , we define

F and G as follows.

– F computes rF from PkF
(u∗). Then, F internally regenerates all ®i by Ai(rF,

¯1, ⋅ ⋅ ⋅ , ¯i−1) for 1 ≤ i ≤ ° and shared key sk°F by Ai(rF, ¯1, ⋅ ⋅ ⋅ , ¯i−1, s°(°−1)).
sk°F is still a merely pseudo-random string since s°(°−1) is not a proper mes-
sage. F performs the equality test Decsk°

F
(Encsk°−1

G
(s(°+1)(°−1))) = s(°+1)(°−1)

which fails with overwhelming probability. Hence, F outputs (®1, ⋅ ⋅ ⋅ , ®° ,
Encsk°

F
(r(°+1)°), r(°+1)° , r(°+3)°) as (r(°+1)° , r(°+2)° , r(°+3)°) is generated

by PkF
(Encsk°−1

G
(s(°+1)(°−1)), s(°+1)(°−1), u

∗).
– G obtains rG by PkG

(®1). Then, since G obtains its complete set of ° mes-
sages ®i’s from F, function G correctly generates all the messages ¯i’s by
executing Bi(rG, ®1, ⋅ ⋅ ⋅ , ®i) for all 1 ≤ i ≤ °. In addition, G computes
the shared key sk°G from executing B°+1(rG, ®1, ⋅ ⋅ ⋅ , ®°). Finally, G outputs
(¯1, ⋅ ⋅ ⋅ , ¯° ,Encsk°

G
(s(°+1)°), s(°+1)° , s(°+3)°) since Decsk°

G
(Encsk°

F
(r(°+1)(°)))

∕= r(°+1)(°) with overwhelming probability, where (s(°+1)° , s(°+2)° , s(°+3)°)
is generated by PkG

(Encsk°
F
(r(°+1)°), r(°+1)° , r(°+3)°).

We describe the overall picture of F and G in their sequential composition on
input Q° below:

Q°
F→ (®1, ⋅ ⋅ ⋅ , ®° ,Encsk°

F
(r(°+1)°), r(°+1)° , r(°+3)°)

G→ (¯1, ⋅ ⋅ ⋅ , ¯° ,Encsk°
G
(s(°+1)°), s(°+1)° , s(°+3)°).

The (final) (°+1)th adaptive queryQ°+1 is defined to be (¯1, ⋅ ⋅ ⋅ , ¯° , Encsk°
G
(s(°+1)°),

s(°+1)° , u
∗). On Q°+1, we define functions F and G on Q°+1 as:

– F now obtains all the messages ¯i’s from Q°+1 so that it can compute all the

messages ®1, ⋅ ⋅ ⋅ , ®° and the shared key sk°+1
F by executing A°+1(rF, ¯1, ⋅ ⋅ ⋅ , ¯°).

F tests if the following equality is satisfied: Decsk°+1
F

(Encsk°
G
(s(°+1)(°))) =



s(°+1)(°). Notice that sk°+1
F = sk°G since both keys are computed on each

complete set of messages. Hence, F verifies that the equality holds and is
convinced that Q°+1 is adaptively generated. Finally, F outputs (®1, ⋅ ⋅ ⋅ ,
®° , ¼sk°+1

F
(r(°+1)(°+1)), r(°+1)(°+1), kF) where r(°+1)(°+1), r(°+2)(°+1) and

r(°+3)(°+1) are generated from PkF
(Encsk°

G
(s(°+1)°), s(°+1)° , u

∗).
– On (®1, ⋅ ⋅ ⋅ , ®° , ¼sk°+1

F
(r(°+1)(°+1)), r(°+1)(°+1), kF), G also computes all of

the messages and shared key sk°+1
G . Clearly, sk°+1

F = sk°+1
G since both keys

are computed based on the same set of messages ®1 ⋅ ⋅ ⋅®° . Then G tests if

Decsk°+1
G

(Encsk°+1
F

(r(°+1)(°+1))) = r(°+1)(°+1). Since both sk°+1
F and sk°+1

G

are computed from the complete sets of messages, they must be equal. G
is convinced that the query from F is adaptively generated. Therefore, G
outputs (kG, kF, 0

n, ⋅ ⋅ ⋅ , 0n) where kF can be obtained from the input (i.e.,
the final coordinate of the input vector).

The overall description of outputs of F and G on the final adaptive query is
provided below:

Q°+1
F→ (®1, ⋅ ⋅ ⋅ , ®° ,Encsk°+1

F
(r(°+1)(°+1)), r(°+1)(°+1), kF)

G→ (kG, kF, 0
n, ⋅ ⋅ ⋅ , 0n).

We prove the following claims which substantiate Theorem 13. Putting Theorem
12 and 13 together, we immediately obtains Theorem 14.

Claim. The functions F and G described above are secure against any non-
adaptive PPT adversary.

Claim. The sequential composition of functions F and G, defined by S(⋅) =
G(F(⋅)), is breakable by ° + 1 adaptive queries.

Theorem 13. If °-UTKA ©u = (A,B) exists, then there exist non-adaptively
secure functions F and G such that the sequential composition G(F(⋅)) is (°+1)-
adaptive query breakable.

Theorem 14. The sequential composition of two pseudo-random functions does
not imply adaptive security if and only if the uniform-transcript key agreement
exists.

5 Impossibility of Adaptively Secure Self-Composition

Self-composition is a composition of two or more copies of a single function. For
instance, we call F(F(⋅)) the sequential self-composition of function F, and F⊕ F
the parallel self-composition of function F. Note that several copies of identical
F’s must contain independent secret seeds. That is, each copy of F’s must be
allowed to be independently drawn from its function family.

So far, we proved the equivalence relation between the insecurity of compo-
sition and UTKA protocols. In fact, when we mention the insecurity of com-
position in previous sections, the main argument is rather that, given a non-
adaptively secure function, there might be another non-adaptively secure func-
tion such that their composition is adaptively insecure. We call this type of



composition general-composition. Hence, we still have a lingering unanswered
question of whether the self-composition of a non-adaptively secure function im-
plies the unconditional adaptive security. We answered the question negatively
as follows.

Suppose that we are given non-adaptively secure pseudo-random functions
Fk and Gk′ , without loss of generality, both defined over {0, 1}n such that their
parallel (general-)composition (F⊕G)(⋅) is adaptively insecure. Note that k and
k′ are independently chosen secret seeds for pseudo-random functions. That is,
there exists a PPT adversary A with an adaptive adversarial strategy which
succeeds in breaking the security of (F⊕G)(⋅) with non-negligible probability ±.
Now, we define a function family ℱ(b,s) : {0, 1}n → {0, 1}n on input string u by

ℱ(b,s)(u) =

{
Fs(u) if b = 0
Gs(u) if b = 1

(∗)

where b and s are private seeds.
It is easy to see that function ℱ(⋅) is also non-adaptively secure due to the

non-adaptive security of functions F and G. This trivially leads to

Advℱ
A ≤ AdvF

A +AdvG
A.

To break the adaptive security of (ℱ ⊕ ℱ)(⋅), it suffices to draw two copies
of functions from the family at random and then use the same adaptively ad-
versarial strategy of A as follows: the first bit of seeds of F and G differ in their
first bit with probability 1/2. Therefore, if we draw two independent ℱ ’s, then
ℱ ⊕ ℱ is equivalent to F⊕ G with probability 1/4 which is adaptively insecure.

Informally, by the above construction of ℱ from any two non-adaptively
secure functions F and G such that their parallel composition is not adaptively
secure, we actually show that the adaptive insecurity of the parallel general-
composition implies the adaptive insecurity of the parallel self-composition. We
formally state this as follows.

Theorem 15. Suppose there are two non-adaptively secure functions F and G
such that the parallel composition (F⊕ G)(⋅) is adaptively insecure. Then, there
exists a non-adaptively secure function ℱ such that the parallel self-composition
is adaptively insecure.

Combining the above theorem with the previous results of this paper in
Sections 3.1 and 4.1 related to parallel composition insecurity from DTP and
°-UTKA, we obtain the following theorems.

Theorem 16. If a family of dense trapdoor permutations or a UTKA exists,
then the parallel self-composition of a non-adaptively secure function does not
imply adaptive security.

Furthermore, the above constructions of ℱ defined in (∗) and its analysis of
adaptive security can be easily extended to the context of sequential composition.



In particular, ℱ is also non-adaptively secure while ℱ(ℱ(⋅)) is equal to G(F(⋅))
with probability 1/4 when we draw two independent ℱ ’s from its function family.
Thus, ℱ(ℱ(⋅)) is also adaptively insecure. Consequently, we obtain the following
theorem.

Theorem 17. Suppose there are two non-adaptively secure functions F and G
such that the sequential composition G(F(⋅)) is adaptively insecure. Then, there
exists a non-adaptively secure function ℱ such that the self-composition is adap-
tively insecure.

Again, combining the above theorem with the previous results of this paper
in Sections 3.2 and 4.2 relevant to sequential composition insecurity from DTP
and °-UTKA, we derive the following theorem.

Theorem 18. If a family of dense trapdoor permutations or a UTKA exists,
then the sequential self-composition of a non-adaptively secure function does not
imply adaptive security.
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