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Abstract. Searching and modifying public-key encrypted data has re-
ceived a lot of attention in recent literature. In this paper we re-visit
this important topic and achieve improved amortized bounds including
resolving a prominent open question posed by Boneh et al. [3].
First, we consider the following much simpler to state problem: A server
holds a copy of Alice’s database that has been encrypted under Alice’s
public key. Alice would like to allow other users in the system to re-
place a bit of their choice in the server’s database by communicating
directly with the server, despite other users not having Alice’s private
key. However, Alice requires that the server should not know which bit
was modified. Additionally, she requires that the modification proto-
col should have “small” communication complexity (sub-linear in the
database size). This task is referred to as private database modification,
and is a central tool in building a more general protocol for modifying
and searching over public-key encrypted data. Boneh et al. [3] first con-
sidered the problem and gave a protocol to modify 1 bit of an N -bit
database with communication complexity O(

√
N). Naturally, one can

ask if we can improve upon this. Indeed, the recent work of Gentry [9]
shows that under lattice assumptions, better asymptotic communication
complexity is possible. However, current algebraic techniques based on
any singly homomorphic encryption, or bilinear maps (which includes
for example, all known cryptosystems based on factoring and discrete
logs) cannot achieve communication better than O(

√
N) (see [17]). In

this paper we study the problem of improving the communication com-
plexity for modifying L bits of an N -bit database. Our main result is
a black-box construction of a private database modification protocol to
modify L bits of an N -bit database, using a protocol for modifying 1 bit.
Our protocol has communication complexity Õ(NβL(1+α)(1−β)), where
0 < α < 1 can be an arbitrary constant and Nβ , 0 < β < 1 (for constant
β) is the communication complexity of a protocol for modifying 1 bit of
an N -bit database. We stress that our amortized protocol improves the
communication complexity in all cases when the single bit modification
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protocol uses any known cryptosystem based on factoring or discrete
logs.
In addition to our general reduction, we show how to realize an implemen-
tation of our amortized protocol under the subgroup decision problem
[2]. (We remark that in contrast with recent work of Lipmaa [16] on the
same topic, our database size does not grow with every update, and stays
exactly the same size.)
As sample corollaries to our main result, we obtain the following:
– First, we apply our private database modification protocol to an-

swer the main open question of [3]. More specifically, we construct a
public-key encryption scheme supporting PIR queries that allows ev-
ery message to have a non-constant number of keywords associated
with it, which is secure under the subgroup decision problem.

– Second, we show that one can apply our techniques to obtain more
efficient communication complexity when parties wish to increment
or decrement multiple cryptographic counters (formalized by Katz
et al. [15]).

We believe that “public-key encrypted” amortized database modification
is an important cryptographic primitive in its own right and will be useful
in other applications.

1 Introduction

The problem of private database modification was first studied in the context
of public-key encryption supporting private information retrieval (PIR) queries
by Boneh et al. [3]. The private database modification protocol of [3] requires
communication complexity O(

√
N) to modify (i.e., change a 0 bit into a 1 and

vice-versa) one bit of an N -bit database. Furthermore Ostrovsky and Skeith
showed in [17] that using currently known algebraic techniques (which will not
increase the database size after an update) with singly homomorphic encryption
or bilinear maps, one cannot obtain better communication complexity to modify
a single bit. Hence, we turn to the question of modifying multiple bits of the
database. Using repeated application of the protocol from [3], one can obtain
a private database modification protocol to modify L bits with communication
complexity O(L

√
N).

Lipmaa, in [16], also considered the question of amortizing the communica-
tion complexity of private database modification. However, his protocol has a
significant drawback. In [16], the size of the database increases with every update
made and after only O(

4√
N

log4 N
) bits have been updated in the database, Alice (the

owner of the database) needs to download the entire database and re-send a new
encrypted database, for the protocol to have efficient communication complexity
thereafter. We shall see a little later that in applications of the private database
modification protocol, this drawback is significant.

1.1 Main Result

Let Nβ (for constant 0 < β < 1) be the communication complexity of a private
database modification protocol for modifying 1 bit of an N -bit database. Our



main contribution in this paper is a black-box construction of an amortized
protocol (from a protocol that modifies 1 bit) with communication complexity
Õ(NβL(1+α)(1−β)) when modifying L bits of the database (where 0 < α < 1 is an
arbitrary constant), without ever increasing the size of the database, regardless of
the number of updates. Although we believe the amortized protocol for database
modification to be of independent interest, we also describe two results that we
obtain as corollaries of our main result.

1.2 Applications

Our first application is an answer to the main open question of [3] (resolving the
main drawback of their solution.) Recall that in [3], a private database modifica-
tion protocol was used to construct a public-key encryption scheme supporting
PIR queries. An illustrative example of this concept is that of web-based email.
Suppose that Alice stores her email on the server of a storage provider Bob (as is
the case for a Yahoo! or Hotmail email account, for example). Bob must provide
Alice with the ability to collect, retrieve, search and delete emails but at the same
time learn nothing about the contents of the email nor the search criteria used
by Alice. For example, a user might send an encrypted email to Alice (via Bob)
that is marked with the keyword “Urgent”. Bob should store this email without
knowing that a user sent an email marked as urgent. Later, Alice should have
the ability to retrieve all email messages marked with “Urgent” without Bob
knowing what search criteria Alice used. The goal was to obtain communication
efficient protocols for this task. This goal was accomplished by making use of a
protocol for private database modification in order to mark emails as contain-
ing certain keywords. However, in order to keep the communication complexity
of the protocol sub-linear, the authors of [3] put constraints on the number of
keywords that could be attached to a single message. In particular, this number
was forced to be a constant. We can directly apply our batch update protocol
to remove this constraint, allowing for non-constant numbers of keywords to be
associated to a single message (which may often be the case for large messages).
Note, that if we were to use a modification protocol in which the size of the
database increased with every update (such as the one in [16]), then Alice needs
to frequently download her entire email and send an updated database back to
Bob, so that further executions of the modification protocol can have efficient
communication complexity. This means that if for example, Alice does not check
her mail for a period of time, then users will no longer be able to mark messages
with keywords with efficient communication complexity. This defeats the entire
purpose of having an email system supporting oblivious collect, retrieve, search
and delete queries. Alice could simply achieve all these queries in an oblivious
manner when she downloads the entire database. Furthermore, [16] requires that
message senders be aware of a certain aspect of the state of the email database
(in particular, the number of layers of encryption) before they send a message
and perform updates to the database to mark the message with keywords. This
would appear to force an interactive protocol for message sending (even for the



case of updating a bit with a semi-honest server), which seems undesirable and
need not be the case (as shown in [3]).

A second use of our main result is a protocol for amortized updates of cryp-
tographic counters. Cryptographic counters, formalized by [15], allow a group of
participants to increment and decrement a public-key encrypted cryptographic
representation of a hidden numeric value, stored on a server, in such a way that
the server can not observe the value of the counter. The value of the counter can
then be determined only by someone with a private key. Cryptographic coun-
ters can be used in several electronic voting protocols [5, 1, 6, 7, 18, 8]. One can
imagine a situation in which parties would like to modify not one cryptographic
counter but several such counters. For example, there could be a total of N
counters and every party could wish to modify at most L of them. This could be
seen in situations where every voter must vote for at most L out of N candidates
and possibly also specify a ranking of the L selected candidates. We show how
to obtain a communication efficient protocol for batch cryptographic counters
(better than the batch protocol that is obtained through the trivial repetition
of existing protocols). Once again, we cannot use a modification protocol in
which the size of the database increases with every update. This is because of
the following reason. After every party updates the counters (or casts his or her
votes), the party holding the private key, must obtain the value of the counter
and send a new “updated” (re-encrypted) value to the server. Clearly, privacy
of the protocol would be lost here.

1.3 Our Techniques and High-Level Outline of Our Constructions

Our starting point are the techniques from Ishai, Kushilevitz, Ostrovsky and
Sahai [13] on batch codes. Before we explain the main ideas of our construction
(and in particular why batch codes do not apply directly) we need to give short
background on batch codes.

Recall that batch codes of [13] are used for encoding an N -bit database on
M different servers such that a user could read L bits of the N -bit database,
by reading at most t bits from every server. The goal is to minimize both the
total storage of the M servers as well as minimize t. At a high level, Ishai et al.,
make D copies of every bit and store each copy on a different server. To decide
the server on which the rth copy of a bit should be stored, they use an expander
graph for the encoding.

We note that we cannot apply the construction of Ishai et al., in our setting:
in the setting of Ishai et al., the problem is to read a bit of the (static) database,
and reading any of the D copies of the bit gives the correct value. However, while
writing a bit of the database, modifying one copy out of D copies does not yield
a correct solution and modifying all eliminates all the efficiency savings.

The setting in our main construction is as follows. Users wish to change
L 0-bits of the database on the server, into 1-bits without the server knowing
which L bits were changed to 1. Additionally, Alice (the owner of the database)
wishes to change L 1-bits of the database on the server, into 0-bits without the
server knowing which L bits were changed to 0. We wish to obtain an amortized



communication complexity for both these tasks. For solving this, we consider
other encodings of a bit of the database. One fruitful approach is to encode
every bit of the database through D bits such that the majority of the D bits
decodes to the bit in the database. The D bits that encode a bit will again be on
M different “virtual” databases. However, now in order to modify a bit in the
database, one needs to modify a majority of the copies of the bit. Unfortunately,
using a generic expander (as in [13]) the encoding does not allow us to enjoy the
property that a user reads the same number of bits from every virtual database.
However, it turns out that the careful use of lossless expanders for our encoding
achieves the desired savings. This requires us to prove that for every set of L
bits, one can modify a majority of each of the bits in the encoding by modi-
fying the same (small) number of bits on each virtual database. The solution
that we then obtain gives us an amortization on the communication complexity
when we modify a 0 bit into a 1 as well as vice-versa. Finally, we remark that
the recent work of Gentry on fully homomorphic encryption [9] could indeed be
used to achieve better asymptotic communication complexity under lattice as-
sumptions. However, as shown in [17], current algebraic techniques based on any
singly homomorphic encryption, or bilinear maps (which includes for example,
all known cryptosystems based on factoring and discrete logs) cannot achieve
communication better than O(

√
N). Furthermore, we note that the techniques

for amortizing communication given here are abstract and apply to any protocol
which privately updates single bits of a database. We stress that our amortized
protocol improves the communication complexity in all cases when the single
bit modification protocol uses any known cryptosystem based on factoring or
discrete logs.

Organization of the paper. We begin with a brief description of the private
database modification protocol of [3] in Section 2. In Section 3, we describe
our main result, the private database modification protocol for modifying L
bits with amortized communication complexity. In Section 4, we show how to
use the amortized private database modification protocol to obtain a public-
key encryption scheme supporting PIR queries with non-constant numbers of
keywords associated with each message. In Appendix B, we show how to apply
the amortized modification protocol to get an amortization of cryptographic
counters.

2 Background: Private Database Modification with
Sub-linear Communication

Consider the following problem. A server is holding a database of Alice’s, which
has been encrypted under her public key. Alice would like to allow her friends to
use her public key to update a bit (of their choice) in the database by commu-
nicating directly with the server. For concreteness, typically what will be meant
by “update” or “modify” is translation by a non-identity element in a group (as
in the [3] implementation). In some instances where the updates are made by



Alice herself (who has knowledge of pieces of the database contents) the updates
can be designed to explicitly write any values of her choice. However all that
is required in most cases (where the parties know nothing of the database con-
tents) is that the new value be different than the previous (which is always the
case for non-identity element translation in a group). Alice requires the following
conditions:

1. The details of each modification are hidden from the server. That is, without
the private key, each transaction for an update is computationally indistin-
guishable from any another.

2. Her friends need only a “small” amount of communication (sub-linear in the
database size) in order to perform an update of a single bit.

For a database of size N , we’ll call a protocol for privately updating subsets of
L bits by Update(N,L), and protocols for updating a single bit will accordingly
be denoted by Update(N, 1). The first construction of an Update(N, 1) protocol
which satisfied the above requirements was developed in [3]. The [3] protocol
made use of a homomorphic cryptosystem that allows computation of polyno-
mials of total degree 2 on ciphertexts (due to Boneh et al. [2]). That protocol
has communication complexity O(

√
N) for updating a single bit.

Given only an Update(N, 1) protocol, an Update(N, L) protocol can be con-
structed simply by running Update(N, 1) L times sequentially, which will of
course come at a O(L

√
N) cost in communication complexity. Hence, if Ω(

√
N)

updates are to be made at once, the total communication becomes Ω(N), making
the scheme no better than various trivial privacy-preserving solutions4.

In this work, we present an oblivious database modification protocol that
amortizes the communication complexity of modifying L bits of the database.
Our Update(N, L) protocol is obtained using any protocol to modify a single bit,
in a black-box manner (for example the Update(N, 1) protocol from [3]).

3 Private Database Modification with Batches

In this section, we describe how one can amortize the communication complex-
ity when running a private database modification protocol to modify L bits. In
other words, let Update(N, 1) denote any protocol for private database modifi-
cation to modify 1 bit of an N -bit database and let the communication com-
plexity of Update(N, 1) be denoted by CN,1 = Nβ , for constant 0 < β < 1. Let
Update(N,L) denote a private database modification protocol to modify L bits
of an N -bit database and let the communication complexity of Update(N, L)
be denoted by CN,L. We construct a protocol for Update(N, L), such that

4 E.g., the database could be encrypted under any homomorphic scheme and then
Alice’s friend could simply request the entire encrypted database, make the updates
using homomorphic encryption, re-randomize by translating with encryptions of the
identity, and send the resulting database back. A non-interactive version may also
be obtained just by communicating an Ω(N)-length vector of ciphertext in a homo-
morphic scheme.



CN,L = Õ(NβL(1+α)(1−β)), where 0 < α < 1 can be an arbitrary constant.
We note that, we can pick α such that (1 + α)(1− β) < 1 and this ensures that
the communication complexity of our protocol < LCN,1 for sufficiently large
values of L.

We first begin with the description of our security game for privacy. We
assume a semi-honest adversary A that runs in probabilistic polynomial time
(PPT). Informally, a semi-honest adversarial server should not have any knowl-
edge about which L bits a user modified in the database (changed from 0 to 1).
The security game when Alice modifies L 1-bits in the database to 0-bits is ex-
actly the same (except that the protocol requires Alice to know the secret key of
the encryption scheme being used). The interface for Update(N, L) is described
in Section 2. The security game for privacy is defined through the two experi-
ments (0 and 1) below. Let Wb denote the probability with which A outputs 1
in Experiment b for b = 0, 1.

1. In both experiments,
(a) The challenger picks the public key of the encryption scheme pk and

sends it to A.
(b) A sends an N -bit string denoting the database to the challenger.
(c) The challenger encrypts these N bits using pk and sends it to A.
(d) A picks 2 sets S0 and S1 ⊆ [N ], such that |S0| = |S1| = L, where at

every index in S0 and S1, the database contains a 0. Also, for every index
in S0 and S1, A specifies if the bit at that index must be changed to a
1 or not. Note that A can also choose to not change any bit to a 1; this
corresponds to the case when A does not change any bit in the database.

2. In Experiment b, the challenger runs Update(N, L) with A using Sb as input.
3. A outputs a bit 0 or 1.

Definition 1 We say that Update(N, L) is L-private, if for all semi-honest PPT
adversaries A, we have |W0 −W1| is negligible.

Let Update∗(N, 1) denote a private database modification protocol in which
a user runs the modification protocol but does not modify any bit of the
database. For example, Update∗(N, 1) could be defined just as Update(N, 1)
of [3], but replacing the encryptions of characteristic vectors with encryptions
of 0-vectors.

We first begin with some background on expanders in §3.1. In §3.2, we
describe our main construction.

3.1 Expander Graphs

Expanders are graphs that are sparse but highly connected. Expanders have had
several applications in computer science (see for example the survey of [12]). We
define expanders and lossless expanders below and refer the reader to [4, 12, 20,
11] for further details.



Definition 2 A bipartite multi-graph with N = 2n left vertices and M = 2m

right vertices, where every left vertex has degree D = 2d, can be specified by a
function Γ : [N ] × [D] → [M ], where Γ (u, r) denotes the rth neighbor of vertex
u ∈ [N ]. For a set S ⊆ [N ], Γ (S) denotes the set of neighbors of S. That is,
Γ (S) = {Γ (x, y) : x ∈ S, y ∈ [D]}. Let |Γ (S)| denote the size of the set Γ (S).

Definition 3 A bipartite graph Γ : [N ] × [D] → [M ] is a (L,A) expander,
if for every set S ⊆ [N ], with |S| = L, we have |Γ (S)| ≥ A · L. Γ is a (≤
Lmax, A) expander if it is a (L,A) expander for every L ≤ Lmax. An expander
is unbalanced if M << N .

Definition 4 A (≤ Lmax, A) expander Γ : [N ] × [D] → [M ] is a (Lmax, ε)
lossless expander if A = (1− ε)D.

3.2 Main Construction

Our solution, uses techniques from the work of Ishai et al. [13] on batch codes
and their applications. Ishai et al. considered the problem of encoding an N -bit
database on M different servers such that a user could read L bits of the N -bit
database, by reading at most t bits from every server. The goal is to minimize
the total storage of the M servers as well as minimize t.

The idea in Ishai et al. is as follows. Make D copies of every bit in the N -bit
database. The parameters D and M are picked such that Γ : [N ] × [D] → [M ]
is a (≤ Lmax, A) expander for some A > 1. Now, the ND bits are distributed
among the M servers according to the expander graph. In other words, the rth

copy of bit i ∈ [N ] of the database is stored in database Γ (i, r). Now one can
show that to read any L bits of the N -bit database (with L ≤ Lmax), one only
needs to read at most 1 bit from each of the M servers. So, by reading 1 bit
from each of the M servers, t is minimized. The bound on the total storage of
the M servers is obtained through the expansion property of Γ , thus satisfying
the other required property.

Note that [13], do not consider the problem of modifying bits of a database.
The encoding in [13] works because in order to read a bit from the N -bit
database, one only needs to read any copy of that bit. The encoding does not
directly apply in our setting as modifying 1 bit out of the D bits that encode a
bit does not result in a correct modification.

At a high level, our protocol for private database modification to modify
Lmax bits of an N -bit database is as follows. We encode every bit of the database
through D bits. The majority value of these D bits decodes to the original bit in
the database. The resulting ND bits from the encoding are distributed into M
“virtual” databases according to a (Lmax, ε) lossless expander graph Γ . Let the
number of bits in each of the M virtual databases be denoted by a1, a2, · · · , aM .

We will then show that to modify a majority of each of the bits in any set
of Lmax bits of the N -bit database, one only needs to modify at most 1 bit
from each of the M virtual databases. One can modify 1 bit from each of the
M virtual databases using Update(ai, 1) for all 1 ≤ i ≤ M . The bound on the



communication complexity of the protocol will be obtained through the lossless
expansion property of Γ .

While reading a bit from the N -bit database, one reads all D bits that encode
this bit from the M virtual databases and takes the majority value. We first
describe how to create the virtual databases.

Creating Virtual Databases. Consider a (Lmax, ε) lossless expander Γ : [N ]×
[D] → [M ] as defined in §3.1. Let L = 2l and Lmax = 2lmax .

Every node u ∈ [N ] represents a bit in the database and the D = 2d neighbors
of the node u are the encoded bits of u. For bit u ∈ [N ], the rth bit of the encoding
of u is present in database Γ (u, r). To read the value of bit u ∈ [N ], one reads all
D bits of the encoding of u and takes the majority of these values as the value
of u. Hence, note that to modify bit u, one has to modify a majority of the bits
that encode u. Below, we show that this can be done by modifying at most 1 bit
in every virtual database.

By the lossless expansion property, first note that for all sets S ⊆ [N ] with
|S| = L ≤ Lmax, we have |Γ (S)| ≥ (1 − ε)LD. To modify bits from a set S, we
show that there is a strategy to modify at least (1− 2ε)D bits of the encodings
of all the bits in S by modifying at most 1 bit in each of the virtual databases.

Lemma 1 Let Γ be a lossless expander as above. Then for every subset S ⊆ [N ]
where |S| = L ≤ Lmax, the number of nodes v ∈ [M ] that have exactly one
neighbor in S (v is then called a unique neighbor node with respect to S) is at
least (1− 2ε)LD.

Proof. Let S ⊆ [N ] where |S| = L ≤ Lmax. Let x1 be the number of nodes
v ∈ [M ] that have exactly one neighbor in S and let x2 be the number of nodes
v ∈ [M ] that have at least 2 neighbors in S. Now, |Γ (S)| = x1 +x2 ≥ (1− ε)LD
(from the property of lossless expansion). Assume for contradiction that x1 <
(1− 2ε)LD. That is, let x1 = (1− 2ε− δ)LD for some δ > 0. This means, that
x2 = |Γ (S)| − x1 ≥ (ε + δ)LD. From counting the edges that originate out of S,
we have LD ≥ x1 + 2x2 ≥ (1 + δ)LD which cannot be true for δ > 0 and is a
contradiction. Hence, the lemma. ut

Lemma 2 Fix any set S ⊆ [N ] where |S| = L ≤ Lmax. Let gS(v) for all
v ∈ [M ], be a function such that gS(v) = NIL or gS(v) = u such that u ∈ S
and there exists r ∈ [D] such that Γ (u, r) = v. In other words, gS(v) is either
NIL or a neighbor of v in S. Let hS(u) = |g−1

S (u)| for all u ∈ S. That is, hS(u)
is the number of v ∈ [M ] such that gS(v) = u. There exists a polynomial time
computable function gS(·), such that hS(u) ≥ (1 − 2ε)D for all u ∈ S, and
furthermore the function gS(·) can be constructed in polynomial time for any
S ⊆ [N ].

Proof. We shall construct gS(·) as follows:

1. Let S′ = S. A node u ∈ S′ is satisfied if hS(u) ≥ (1− 2ε)D.



2. For every node v ∈ [M ], let gS(v) = u if u is the only neighbor of v in S′.
Let H denote the set of nodes in S′ that are satisfied.

3. Set S′ = S − H. If S′ is not empty, repeat Step 2, otherwise halt, setting
gS(v), for all unassigned nodes v, to NIL.

We will prove that at every iteration of the algorithm, at least one node in S′

is satisfied. This means the algorithm will halt in time O(L). In this case, every
node u ∈ S is satisfied and hence hS(u) ≥ (1− 2ε)D for all u ∈ S. Let |S′| = L′.
We will show that |H| > 0. Let |H| = h. Let l be the number of unique neighbor
nodes with respect to S′ in [M ]. We have that l ≥ (1− 2ε)L′D (By Lemma 1).

Now, consider a satisfied node u ∈ S′. The number of unique neighbor nodes
with respect to S′ in [M ] that have their unique neighbor as u can be at most
D, as the degree of every node in [N ] is at most D.

Consider a node u ∈ S′ that is not satisfied. The number of unique neighbor
nodes with respect to S′ in [M ] that have their unique neighbor as u is strictly
less than (1−2ε)D. Otherwise, u would be satisfied. (This is because at no stage
of the algorithm did we assign gS(v) to be u when v was also a neighbor of a
node u′ ∈ S that was not already satisfied.)

Hence we have l < hD + (L′ − h)(1− 2ε)D. Since l ≥ (1− 2ε)L′D, we have
that hD + (L′ − h)(1− 2ε)D > (1− 2ε)L′D, which means h > 0. ut

We note that the above proof is similar in flavor to the proof of error correc-
tion in linear time encodable/decodable expander codes (Refer [19, 4] for further
details.). Our protocol uses the specific lossless expander explicit construction
from [11]. We pick ε, such that 1− 2ε > 1

2 . In other words, ε < 1
4 . We state the

theorem below.

Theorem 1 [11] For all constants α > 0, every N ∈ N, Lmax ≤ N , and ε > 0,
there is an explicit (Lmax, ε) lossless expander Γ : [N ]× [D] → [M ] with degree
D = O((log N)(log Lmax)/ε)1+1/α and M ≤ D2 ·L1+α

max. Moreover D is a power
of 2.

Protocol Description. Let Update(N, 1) denote any private database mod-
ification protocol for modifying 1 bit of an N -bit database. We now de-
scribe our black-box construction of private database modification protocol
Update(N,Lmax) from Update(N, 1).

1. Create M smaller databases according to lossless expander Γ from Theorem
1 and encode the bits of the database into the M smaller databases as
described earlier. Let size of database v ∈ [M ] be denoted by av.

2. To modify a set S ⊆ [N ] of bits of the database with |S| = Lmax, create
gS(v) as described in Lemma 2.

3. Run Update(av, 1) to modify bit gS(v) in database v for all databases v ∈
[M ]. If gS(v) = NIL, then run Update∗(av, 1) with database v.



Protocol Correctness and Security. Let Update(N, 1) denote a protocol for
privately modifying 1 bit of an N -bit database. The correctness of the protocol
Update(N,Lmax) follows trivially from Lemma 2 and from the correctness of the
Update(N, 1) protocol. The security is proven below.

Theorem 2 If Update(N, 1) is 1-private, then Update(N,Lmax) is Lmax-private.

Proof. Lemma 2 shows that the number of bits we modify in each of the M
virtual databases is independent of the subset of Lmax bits we wished to mod-
ify in the original database. In particular, in each virtual database, we either
modify 1 bit by running Update(av, 1) or do not modify any bits by running
Update∗(av, 1). Now, since Update(av, 1) is 1-private, no adversary can distin-
guish between the case when we run Update(av, 1) and modify a bit and when
we run Update∗(av, 1). Hence, it follows by a simple hybrid argument that
Update(N,Lmax) is Lmax-private. ut

Communication Complexity. We now analyze the communication com-
plexity of protocol Update(N,Lmax). Let the communication complexity of
Update(N, 1) be CN,1 = Nβ for some constant 0 < β < 1. Note that if av is the
number of bits in the vth smaller database, then the communication complexity
of Update(N, Lmax) is CN,Lmax =

∑M
i=1 Cai,1. We have Cai,1 = aβ

i . We also have∑M
i=1 ai = ND. Now, Hölder’s inequality, states the following:

Let 1 ≤ p, q ≤ ∞ with 1
p + 1

q = 1. Let n be a positive integer. Then,

n∑

i=1

|xiyi| ≤ (
n∑

i=1

|xi|p)
1
p
( n∑

i=1

|yi|q)
1
q

for all (x1, x2, · · · , xn), (y1, y2, · · · , yn) ∈ Rn. In this inequality, let n = M , xi =
aβ

i for all 1 ≤ i ≤ M , yi = 1 for all 1 ≤ i ≤ M , p = 1
β and q = 1

1−β . Now, by
Hölder’s inequality, we get

M∑

i=1

|aβ
i | ≤ (

M∑

i=1

|ai|)β(
M∑

i=1

1)1−β

Now, since
∑M

i=1 ai = ND, it follows that CN,Lmax ≤ (ND)βM1−β . Next,
setting the parameters according to Theorem 1, we get the communication com-
plexity to be O(NβL

(1+α)(1−β)
max ( log N log Lmax

ε )(2−β)(1+ 1
α )), where 0 < α < 1 is an

arbitrary constant. Now, we can pick α < β
1−β , giving us (1 + α)(1 − β) < 1.

Hence, we get CN,Lmax = Õ(NβL
(1+α)(1−β)
max ). We note that if we use the proto-

col of [3] for Update(N, 1), we have β = 1
2 and the communication complexity of

Update(N,Lmax) is Õ(
√

NL1+α
max).



Maintaining Consistencies over Different Values of Lmax. Note that if
we run Update(N, Lmax) when we wish to modify L bits in the database with
L < Lmax, then the communication complexity is not optimal as the commu-
nication complexity depends only on Lmax and not on L. For example, if we
have Lmax = O(

√
N) and CN,1 =

√
N , then running Update(N, Lmax) when

we want to modify L = O( 4
√

N) bits, will not be optimal. Update(N, Lmax) will
then have communication complexity O(D3/2 4

√
N3+α), which is more than the

communication complexity when running Update(N, 1), O( 4
√

N) times.
Now, if we use different lossless expanders for the encoding depending on the

number of bits we wish to modify, then the encoding of each bit of the original
database will not be consistent. More specifically, since the degree of the graphs
are not uniform, we may not modify “enough” copies of a particular bit.

To overcome this difficulty, we pick W = O((log N)2/ε)1+1/α bits to encode
every bit and store them. Now, for all values of Lmax ≤ N , the corresponding
value of D is≤ W . When we wish to modify Lmax bits of the original database, we
use the corresponding lossless expander with degree D. We repeat this protocol
dW

D e times using a different (disjoint) set of D bits of the encoding of every bit
in each iteration. Now, since in each execution we modify at least (1− 2ε)D bits
of the encoding of a bit, in total we will modify at least (1 − 2ε)W bits of the
encoding of every bit that we modify and hence the decoding of majority still
works. Furthermore, note that we do not increase the communication complexity
of the protocol.

We note that our protocols for modifying L < Lmax bits of the N -bit
database, do not attempt to hide the value of Lmax. Note that any protocol
for modifying bits of a database, will reveal an upper bound on the number of
bits that are modified. This is because, if we wish to hide the value of Lmax,
then such a protocol must be indistinguishable from a protocol where a user
modifies all bits of the N -bit database and this protocol, by an information the-
oretic argument, must have communication complexity Ω(N). We assume that
the bound, Lmax, on the number of bits that we wish to modify in the database
is public. Note that for optimal communication complexity L must equal Lmax.

An Important Remark. In the context of the remote mail storage example, con-
sider a scenario in which Alice, the holder of the secret key wishes to update
some part of her own database (perhaps she would like to delete a recently read
message). In such a situation, the contents of the portion of the database to be
modified are known. Say, Alice wishes to modify L bits which maybe either 0 or
1. Alice will know the contents of the database, including that of the encoding
(she can learn this through an efficient PIR protocol). Now, the protocol de-
scribed above gives us an amortization on the communication complexity both
while marking messages with keywords as well as when removing marked key-
words (when deleting a message). This is because, each bit is encoded through
D bits and the majority of the D bits decode to the bit in the N -bit database.
Now, irrespective of whether we are changing a 0 bit into a 1, or vice-versa, it
will always suffice to modify at most a majority of the D copies of the bit.



Other Encodings. In addition to the majority encoding, other encodings can
also prove useful in this context. Rather than using a lossless expander and an
encoding where D bits encode a 0 or a 1 through the majority, one could encode
every bit through D bits where the sum (modulo 2) of the D bits determines
the encoded bit. Now, in order to modify a bit (either from 0 to 1 or vice-versa),
one only needs to modify any single bit out of the D bits and can then apply the
results of [13] on batch codes more directly. This approach may be of particular
use when it is desirable for a party without the secret key to modify 1-bits back
to 0-bits (although this is not of utility in the main application of remote mail
storage).

4 Applications of Batch Protocols for Database
Modification to [3]

The protocol of [3] applies to a scenario that models a somewhat ideal internet-
based email service: all email messages are encrypted under the user’s public key,
yet the user can still perform the common tasks of searching for and retrieving
messages via keywords, erasing messages, etc., without revealing any information
to the service provider about the messages nor the keywords being searched for.
Furthermore, this can be done with “small” (i.e. sub-linear) communication.

The protocols will typically involve a message sender, receiver, and a storage
provider. We’ll use the following notational conventions to represent the various
parties: X will refer to a message sending party; Y will refer to the message
receiving party (owner of the private key); S will refer to the server/storage
provider.

The protocol of [3] accomplished the basic task outlined above, but in order
to maintain sub-linear communication complexity as well as to preserve the cor-
rectness of the protocol, several limitations were enforced. The most prominent
conditions needed were as follows:

1. The number of messages associated to a single keyword must be bounded by a
constant.

2. The number of keywords in use must be proportional to the number of messages.

3. The number of keywords associated to a particular message must be bounded by
a constant.

We still enforce conditions 1 and 2 (which apply for the same technical rea-
sons regarding correctness) however using batch protocols for private database
modification, we show how to relax the third condition and allow non-constant
numbers of keywords to be associated with a single message. Clearly the protocol
of [3] cannot have this capability for a keyword set of size Ω(

√
N): The expected

number of bits one is required to update would similarly be Ω(
√

N), and
√

N ex-
ecutions of Update(N, 1) from [3] will yield Ω(N) communication complexity for
sending this single message, violating the requirement of maintaining sub-linear
communication.



Protocol Description

The details of the protocol are fairly straightforward. Let K, E ,D represent the
key generation, encryption and decryption algorithms, respectively, of a public
key cryptosystem that allows for the evaluation of polynomials of total degree
2 on ciphertext (e.g., [2]). Adopting the notation of [3], we’ll denote the maxi-
mum number of keywords that can be associated to a single message by θ. The
protocol of [3] requires that this value in fact be constant. We will make no such
assumption on θ and demonstrate a protocol that satisfies the same definitions
of correctness and of privacy.

For brevity, we direct the reader to [3] for formal definitions of correctness
and privacy for such a protocol, and instead provide an intuitive summary here.
Roughly speaking, for integers λ, θ and a message database of N messages, a
public-key storage with keyword search is said to be (N, λ, θ)-correct if the pro-
tocol for retrieval of messages by keywords yields the appropriate results after
any sequence of executions of the message sending protocol, given that not more
than θ keywords are associated to a single message. The work of [3] presents a
public-key storage with keyword search that is (N, λ, θ)-correct where θ is a con-
stant, independent of N , and independent of the message size. Below, we extend
this protocol to maintain communication efficiency in the case of non-constant θ.
In order to simplify the description, we will present the protocol at a high level
and refer the reader to the work of [3] for details when needed. The protocol
consists of the following three algorithms.

KeyGen(s) — Run the key generation algorithm K of the underlying cryptosys-
tem to produce a public and private pair of keys.

SendX ,S(M, W ) — Sender X wants to send message M marked with the set of
keywords W to Y via S. X encrypts M and the keywords and then pro-
ceeds as in [3] in order to update the keyword-message association struc-
ture. However, rather than repeatedly applying Update(N, 1), X will use the
Update(N, θ) protocol described in §3.2 to efficiently perform the updates as
a batch. Note that in order to mark a message as having a only single key-
word, X is required to update Ω(log2 N) bits of the Bloom filter structure
that holds the keyword-message associations.

RetrieveY,S(w) — Y wishes to retrieve all messages associated with the keyword
w and optionally erase them from the server. This protocol consists of steps
similar to [3] in order to decrypt the locations of matching messages and
subsequently download and decrypt. However in the case where message
erasure is also performed, we will have Y execute Update(N, θ) from §3.2
with S, as opposed to repeated usage of Update(N, 1) (as found in [3]) which
allows us to handle non-constant numbers of keywords to be associated with
a single message.

Theorem 3 The Public-Key Storage with Keyword Search from the preceding
construction is (N,λ, θ)-correct according to the definition of [3].

Remark: The proof of the above theorem follows in much the same way as that
of [3]. However, there is a need for one remark on this subject. Recall that in [3]



it was required that only a constant number of messages were associated to a
particular keyword, since fixed-length buffers were needed to represent sets. As
mentioned, we have adopted this same requirement for much the same reason.
However, we would like to note that in a practical implementation of our pro-
tocol this may be harder to achieve since the increased number of keywords per
message will naturally lead to more messages being associated with a particular
keyword. That is, if θ is large, it will generally not be possible to have every
message associated to θ keywords without exceeding λ messages associated to
some particular keyword. None the less, we emphasize that our protocol con-
forms to the very same definitions for correctness as that of [3]; it is just that
the antecedent will perhaps not come as easily.

We again leave the formal definitions of privacy for the sender and receiver
to [3] for the purposes of brevity. Roughly, they state that the sending and
receiving protocols do not reveal any information about the messages nor the
keyword associations to a computationally bounded adversary. This is phrased
via a standard indistinguishability condition.

Theorem 4 Assuming CPA-security of the underlying cryptosystem, the
Public-Key Storage with Keyword Search from the above construction is sender-
private as well as receiver-private, according to the definitions of [3].

Proof. This follows almost immediately from the privacy of the Update(N, 1)
protocol, Theorem 2 and the analogous theorem from [3]. ut
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A Appendix

A.1 Privacy Game for Batch Cryptographic Counters

The privacy for batch cryptographic counters with respect to server T (modified
from [15]) is given through the following two experiments 0 and 1. Let the batch
cryptographic counter protocol with N counters, where every party modifies at
most L counters, be denoted by Counter(N, L). Let Wb denote the probability
with which A outputs 1 in Experiment b for b = 0, 1.

1. In both experiments,

(a) The challenger picks the public key of the encryption scheme pk and sends it
to A. A plays the role of the server T here.

(b) A sends N values denoting the initial values of the N cryptographic counters
to the challenger.

(c) The challenger encrypts these N values using pk and sends it to A.
(d) A picks 2 sets S0 and S1 ⊆ [N ], such that |S0| = |S1| = L. Also, for every

index in S0 and S1, A denotes the value by which the counter in the index
must be incremented or decremented (A may also specify that this counter
not be changed).



2. In Experiment b, the challenger runs Counter(N, L) with A using Sb as input.
3. A outputs a bit 0 or 1.

Definition 5 We say that Counter(N, L) is L-private with respect to server T
(run by A), if for all semi-honest PPT adversaries A, we have |W0 − W1| is
negligible.

The privacy of Transfer(x, y) with respect to party P and server T is defined
via standard definitions of two-party computation which guarantees that P does
not learn anything other than the final value of the counter and that T does not
learn anything.

B Application of Batch Protocols for Database
Modification to Cryptographic Counters

Cryptographic counters, formalized by Katz et al. [15], allow a group of partic-
ipants to increment and decrement a cryptographic representation of a hidden
numeric value privately. The value of the counter can then be determined by a
specific party only. More formally, there are a set of R parties, {P1, P2, · · · , PR}.
These parties wish to increment and decrement the value of a specific counter
C which is stored by a party T , assumed to be semi-honest. After they have
incremented/decremented the counter C, T must reveal the value of the counter
to a specific party denoted by P . T is semi-honest and is trusted not to collude
with P . At the same time, parties wish only the output of the counter to be
revealed to P . One can implement this protocol in the following way. Let P pick
a public/private key pair (pkP , skP ) of an additively homomorphic encryption
scheme over Zn with n larger than the maximum value of the counter. Let Pi

hold input xi. Let E(pk, m) denote the encryption of message m with public key
pk. Now, Pi sends E(pkP , xi) to T . Using the additive homomorphic property,
T computes E(pkP , ΣR

i=1xi) and sends the result to P who can then compute
ΣR

i=1xi.
Now, suppose there are N such counters C1, C2, · · · , CN that the parties

wish to update. Furthermore, assume that each user updates no more than L of
these N counters. No user Pi wishes to reveal to anyone, which of the counters
he/she modified. An example of this situation would be a voting protocol which
has several candidates (N candidates). Voters have to select L out of these N
candidates and rank them. Candidates are then selected according to a weighted
sum of their votes.

Now, let xi[1], · · · , xi[N ] denote the inputs (or weighted votes) held by Pi

(only at most L out of these values are non-zero). Using the solution described
above, Pi can send E(pkP , xi[1]), · · · , E(pkP , xi[N ]) to T . Using the additive ho-
momorphic property, T can compute E(pkP , ΣR

i=1xi[1]), · · · , E(pkP , ΣR
i=1xi[N ])

and send the result to P . However, this protocol has communication complexity
O(N) for every user Pi.

Let a cryptographic counter protocol between a user and server T , where
there are N counters and every party modifies at most L out of the N coun-
ters, be denoted by Counter(N,L). Let the protocol to transfer an encrypted



value of the final counter value from the server T and user P be denoted by
Transfer(x, y), where x and y are inputs of T and P respectively. The pri-
vacy game for Counter(N,L) with respect to server T and the privacy game
for Transfer(x, y) with respect to party P and server T is given in Appendix A.1.
We do not focus on the other security requirements such as universal verifiabil-
ity and robustness ([15]). Universal verifiability informally means that any party
(including third parties) can be convinced that all votes were cast correctly and
that the tally was made correctly. Robustness informally means that the final
output can be computed even in the presence of a few faulty parties.

We now describe below two solutions for Counter(N, L) that have communi-
cation complexity O(

√
L1+αN poly-log N).

B.1 Protocol Using Lossless Unbalanced Expanders

This protocol, uses the private database modification protocol for modifying
L bits of an N -bit database from §3.2. We first note that the additively ho-
momorphic encryption scheme of [2] can be used to encrypt messages from a
polynomially large message space (of size n). Choose n such that n is greater
than the maximum value of the counter. Now, since the encryption scheme of [2]
is additively homomorphic, we can use this scheme in order to encrypt the value
of the counter. Every user Pi can update the counter by sending an encryption
of their input xi to T .

Now, we describe below how we can amortize the communication complexity
of this protocol. We use the (Lmax, ε) lossless expander Γ from Theorem 1.
The protocol requires the number of parties R to be less than 1

4ε . The protocol
Counter(N, L) is described below.

1. Encode every counter through D different counters. To decode, the simple majority
value of all values held in these D counters is the value of the counter. Initially
these D counters all hold an encryption of 0 under P ’s public key according to the
encryption scheme of [2].

2. Now, using the protocol from §3.2, each party Pi modifies (1 − 2ε) copies of each
of the L counters that he/she wishes to update.

Transfer(x, y): For each counter, T runs an efficient two-party computation [21,
10, 14] with P to compute the simple majority value present in these counters
and returns the value to P . T ’s input x is all the D encrypted values of a counter
and P ’s input y is the secret key of the homomorphic encryption scheme.

Protocol Correctness, Security and Communication Complexity. We
have R < 1

4ε . We note that since each party modifies at least (1− 2ε)D copies of
every counter, after the first modification to a counter, at least (1− 2ε)D copies
of every counter hold the correct value. Now, after the second modification to
the counter at least (1−4ε)D copies of the counter hold the correct value and so
on. Since R < 1

4ε , after all parties have modified the counters, a majority of the
counters still hold the correct value of the counter and hence when evaluating the
simple majority of the value held in the counter (via the two-party computation
protocol between P and T ), the output obtained will be correct.



Theorem 5 Counter(N, L) is L-private with respect to T according to the defi-
nition given in §A.1.

Proof. This theorem follows from Theorem 2, that guarantees that T cannot tell
which of the L counters were modified. ut
Theorem 6 Transfer(x, y) is private with respect to P and T according to the
definition given in §A.1.

Proof. This theorem follows from the security of the two-party computation
protocol (that guarantees that P learns only the output value of the counter)
and that T does not learn the value of the counter. ut

The communication complexity of Counter(N, L) for every user is the same
as that in §3.2, that is O(

√
NL1+αpoly-log N) for some constant 0 < α <

1. Since, the server can run an efficient two-party computation protocol with
P , with inputs of size O(poly-log N) to compute the majority value of each
counter, the communication complexity of Transfer(x, y) is O(NpolyD) which is
O(Npoly-log N).

B.2 Protocol Using Unbalanced Expanders

We present a protocol for batch counters in which there is no restriction on the
number of parties R. Counter(N, L) is describe below.

1. Encode every counter as D different counters. To decode, compute the sum of all
these counters to obtain the value of the counter. Initially these D counters all
hold an encryption of 0 under P ’s public key according to [2].

2. To modify a counter, each party Pi modifies any 1 copy of each of the L counters
as follows:
(a) Following work from Ishai et al. [13], it follows that one can modify 1 out of

the D bits that encode every bit in a set of Lmax bits of the N -bit database
by modifying at most 1 bit in each of the M virtual databases. Using the
explicit unbalanced expander from Guruswami et al. [11], one can obtain the
same communication complexity as in the protocol described in §3.2. Here, we
note that we do not require the expander to be lossless, but only that it is
unbalanced.

(b) Pi modifies one of the D different counters encoding every counter that Pi

wishes to modify. This modifies the value of the encoding as well (as the
encoding is simply a sum of all the counters).

(c) Again, in order to use the protocol with different values of Lmax, we store more
copies of each bit and use the same solution as described earlier in §3.2.

Transfer(x, y): For each counter, the server (using the additive homomorphism
property of [2]) computes the decoding of the counter and returns the encrypted
value of the counter to P .

Protocol Correctness, Security and Communication Complexity. The
correctness and privacy of the protocol is easy to show. The communication com-
plexity of each user is the same as that in the protocol for database modification.


