
Asynchronous Throughput-Optimal Routing
in Malicious Networks�

Paul Bunn1,�� and Rafail Ostrovsky1,2,���

1 UCLA Department of Mathematics
paulbunn@math.ucla.edu

2 UCLA Department of Computer Science
rafail@cs.ucla.edu

Abstract. We demonstrate the feasibility of throughput-efficient rout-
ing in a highly unreliable network. Modeling a network as a graph with
vertices representing nodes and edges representing the links between
them, we consider two forms of unreliability: unpredictable edge-failures,
and deliberate deviation from protocol specifications by corrupt nodes.
The first form of unpredictability represents networks with dynamic
topology, whose links may be constantly going up and down; while the
second form represents malicious insiders attempting to disrupt commu-
nication by deliberately disobeying routing rules in an arbitrary man-
ner, for example by introducing junk messages or deleting or altering
messages. We present a robust routing protocol for end-to-end commu-
nication that is simultaneously resilient to both forms of unreliability,
achieving provably optimal throughput performance.

Keywords: Network Routing, Fault Localization, Multi-Party Com-
putation in Presence of Dishonest Majority, Communication Complex-
ity, End-to-End Communication, Competitive Analysis, Asynchronous
Protocols.

1 Introduction

With the immense range of applications and the multitude of networks encoun-
tered in practice, there has been an enormous effort to study routing in various
settings. For the purpose of developing network models in which routing pro-
tocols can be developed and formally analyzed, networks are typically modeled
as a graph with vertices representing nodes (processors, routers, etc.) and edges
representing the connections between them. Beyond this basic structure, addi-
tional assumptions and restrictions are then made in attempt to capture various

� Full version of the paper is available on-line [18].
�� Supported in part by Lockheed Martin Corporation and NSF grants 0716835,

0716389, 0830803, 0916574.
��� Supported in part by Lockheed Martin Corporation, IBM Faculty Award, Xerox

Innovation Group Award, the Okawa Foundation Award, Intel, Teradata, NSF
grants 0716835, 0716389, 0830803, 0916574 and U.C. MICRO grant.

S. Abramsky et al. (Eds.): ICALP 2010, Part II, LNCS 6199, pp. 236–248, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Asynchronous Throughput-Optimal Routing in Malicious Networks 237

features that real-world networks may display. In deciding which network model
is best-suited to a particular application, developers must make a choice with
respect to each of the following considerations: 1) Synchronous or Asynchronous;
2) Static or Dynamic Topology; 3) Global Control or Distributed/Local Control;
4) Connectivity/Liveness Assumptions; 5) Existence of Faulty/Malicious Nodes.

Notice that in each option above there is an inherent trade-off between gen-
erality/applicability of the model verses optimal performance within the model.
For instance, a protocol that assumes a fixed network topology will likely out-
perform a protocol designed for a dynamic topology setting, but the former
protocol may not work in networks subject to edge-failures. Similarly, a protocol
that protects against the existence of faulty or deliberately malicious nodes will
likely be out-performed in networks with no faulty behavior by a protocol that
assumes all nodes act honestly.

From both a theoretical and a practical standpoint, it is important to under-
stand how each (combination) of the above listed factors affects routing perfor-
mance. In this paper, we explore the feasibility of end-to-end routing in highly
unreliable networks, i.e. networks that simultaneously consider all of the more
general features: Asynchronous, Dynamic Topology, Local Control, no Connec-
tivity Assumptions, and the presence of Malicious Nodes. In this “worst-case”
model it is unlikely that any protocol will perform well, and stronger assump-
tion(s) must be made to achieve a reasonable level of performance. However,
understanding behavior in the worst case, even with respect to the most basic
task of end-to-end communication, is important to determine how much (if any)
the addition of each assumption improves optimal protocol performance.

1.1 Previous Work

As mentioned above, development and analysis of routing protocols relies heav-
ily on the choices made for the network model. To date, all network models
have guaranteed at least one (and more commonly multiple) “reliability” as-
sumption(s) with respect to the above list of five network characteristics. In this
section, we explore various combinations of assumptions that have been made in
recent work, highlighting positive and negative results with respect to each net-
work model, and emphasizing clearly which assumptions are employed in each
case. Since our work focuses on theoretical results, for space considerations we
do not discuss below the vast amount of research and analysis of routing issues
for specific network systems encountered in practice, e.g. the Internet. Still, the
amount of research regarding network routing and analysis of routing protocols
is extensive, and as such we include only a sketch of the most related work,
indicating how their models differ from ours and providing references that offer
more detailed descriptions.

End-to-End Communication: One of the most relevant research directions to
our paper is the notion of End-to-End communication in distributed networks,
where two nodes (sender and receiver) wish to communicate through a network.
While there is a multitude of problems that involve end-to-end communication

238 P. Bunn and R. Ostrovsky

(e.g. End-to-End Congestion Control, Path-Measurement, and Admission Con-
trol), we discuss here work that consider networks whose only task is to facilitate
communication between sender and receiver. Some of these include a line of work
developing the Slide protocol (the starting point of our protocol) of Afek, Gafni
and Rosén [3] (see also Afek et al. [1].) The Slide protocol (and its variants) have
been studied in a variety of network settings, including multi-commodity flow
(Awerbuch and Leighton [11]), networks controlled by an online bursty adversary
(Aiello et al. [4]), and networks that allow corruption of nodes (Amir et al. [7]).
However, prior to our work there was no version of Slide that considered routing
in the “worst case” network setting: only [7] considers networks with corrupt-
ible nodes, but their network model assumes synchronous communication and
demands minimal connectivity guarantees.

Fault Detection and Localization Protocols: There have been a number
of papers that explore the possibility of corrupt nodes that deliberately disobey
protocol specifications in order to disrupt communication. In particular, there
is a recent line of work that considers a network consisting of a single path
from the sender to the receiver, culminating in the recent work of Barak et al.
[13] (for further background on fault localization see references therein). In this
model, the adversary can corrupt any node (except the sender and receiver) in
a dynamic and malicious manner. Since corrupting any node on the path will
sever the honest connection between sender and receiver, the goal of a protocol
in this model is not to guarantee that all messages sent are received. Instead, the
goal is to detect faults when they occur and localize the fault to a single edge.

Goldberg et al. [19] show that a protocol’s ability to detect faults relies on the
assumption that One-Way Functions (OWF) exist, and Barak et al. [13] show
that the (constant factor) overhead (in terms of communication cost) incurred
for utilizing cryptographic tools (such as MACs or Signature Schemes) is manda-
tory for any fault-localization protocol. Awerbuch et al. [10] also explore routing
in the Byzantine setting, although they do not present a formal treatment of
security, and indeed a counter-example that challenges their protocol’s security
is discussed in the appendix of [13].

Fault Detection and Localization protocols focus on very restrictive network
models (typically synchronous networks with fixed topology and some connectiv-
ity assumptions), and throughput-performance is usually not considered when
analyzing fault detection/localization protocols.

Competitive Analysis: Competitive Analysis was introduced by Sleator and
Tarjan [22] as a mechanism for measuring the worst-case performance of a pro-
tocol, in terms of how badly the given protocol may be out-performed by an off-
line protocol that has access to perfect information. Recall that a given protocol
has competitive ratio 1/λ (or is λ-competitive) if an ideal off-line protocol has ad-
vantage over the given protocol by at most a factor of λ. One place competitive
analysis has been used to evaluate performance is the setting of distributed algo-
rithms in asynchronous shared memory computation, including the work of Ajtai
et al. [6]. This line of work has a different flavor than the problem considered in

Asynchronous Throughput-Optimal Routing in Malicious Networks 239

the present paper due to the nature of the algorithm being analyzed (computa-
tion algorithm verses network routing protocol). In particular, network topology
is not a consideration in this line of work (and malicious deviation of processors
is not considered). Competitive Analysis also plays a role in Adversarial Queuing
Theory, see, for example [15]. (We discuss this aspect in greater detail below.)

Competitive analysis is a useful tool for evaluating protocols in unreliable
networks (e.g. asynchronous networks and/or networks with no connectivity
guarantees), as it provides best-possible standards (since absolute performance
guarantees may be impossible due to the lack of network assumptions). For a
thorough description of competitive analysis, see [14].

Max-Flow and Multi-Commodity Flow: The Max-flow and multi-com-
modity flow models assume synchronous networks with connectivity/liveness
guarantees and have incorruptible nodes (max-flow networks also typically have
fixed topology and are global-control). There has been a tremendous amount
of work in these areas, see e.g. Leighton et al. [21] for a discussion of the two
models and a list of results, as well as Awerbuch and Leighton [11] who show
optimal throughput-competitive ratio for the network model in question.

Admission Control and Route Selection: The admission control/route
selection model differs from the multi-commodity flow model in that the goal of
a protocol is not to meet the demand of all ordered pairs of nodes (s, t), but rather
the protocol must decide which requests it can/should honor, and then designate
a path for honored requests. There are numerous models that are concerned with
questions of admission control and route selection: The Asynchronous Transfer
Model (see e.g. Awerbuch et al. [9]), Queuing Theory (see e.g. Borodin and
Kleinberg [15] and Andrews et al. [8]), Adversarial Queuing Theory (see e.g.
Broder et al. [16] and Aiello et al. [5]).

The admission control/route selection model assumes synchronous commu-
nication and incorruptible nodes and makes connectivity/liveness guarantees.
Among the other options (fixed or dynamic topology, global or local control),
each combination has been considered by various authors, see the above refer-
ences for further details and results within each specific model.

1.2 Our Results

In this paper, we consider the feasibility of end-to-end routing in unreliable net-
works controlled by a malicious adversary with polynomial computing power. In
particular, we present a local-control protocol that achieves optimal throughput
in asynchronous networks with untrustworthy nodes and dynamic topology with
no connectivity guarantees.

The first step in obtaining our result is to first consider networks where nodes
are guaranteed to behave honestly, but otherwise the network demonstrates all
of the unreliability features. In these networks, we have the following matching
upper and lower bounds on throughput performance:

240 P. Bunn and R. Ostrovsky

Theorem 1 (Informal). The best competitive-ratio that any protocol can
achieve in a distributed asynchronous network with dynamic topology (and no
connectivity assumptions) is 1/n (where n is the number of nodes). In particu-
lar, given any protocol P, there exists an alternative protocol P ′, such that P ′

will out-perform P by a factor of at least n.

Theorem 2 (Informal). There exists a protocol that achieves a competitive
ratio of 1/n in a distributed asynchronous network with dynamic topology (and
no connectivity assumptions).

Due to space constraints, we do not prove Theorems 1 and 2 here, but refer the
reader to [17] for full details of the proofs of each of these. In this paper, we focus
on the following result, which extends Theorem 2 to networks in which nodes are
no longer assumed to behave honestly; i.e. they may deviate from the specified
protocol in any desired manner to disrupt communication as much as possible.
Somewhat surprisingly, we show that this increased level of unreliability does
not affect optimal throughput performance; indeed, we demonstrate a protocol
that achieves 1/n competitive ratio, matching the lower-bound of Theorem 1.

Theorem 3 (MAIN THEOREM, Informal). Assuming Public-Key Infras-
tructure, there exists a protocol with competitive ratio 1/n in a distributed asyn-
chronous network with dynamic topology (and no connectivity assumptions), even
if a polynomially bounded adversary can dynamically corrupt an arbitrary set of
nodes.

2 The Model

In this section, we describe formally the model in which we will be analyzing
routing protocols. We begin by modeling the network as a graph G with n vertices
(or nodes). Two of these nodes are designated as the sender and receiver, and
the sender has a stream of messages {m1, m2, . . . } that it wishes to transmit
through the network to the receiver.

Asynchronous communication networks vary from synchronous networks in
that the transmission time across an edge in the network is not fixed (even
along the same edge, from one message transmission to the next). Since there is
no common global clock or mechanism to synchronize events, an asynchronous
network is often said to be “message driven,” in that the actions of the nodes
occur exactly (and only) when they have just sent/received a message.

Asynchronous networks are commonly modeled by introducing a scheduling
adversary that controls the edges of the network as follows. Informally, we focus
on a single edge E(u, v), and then a “round” consists of allowing the edge to
deliver a message in both directions.1 To model unpredictable delivery times
across each edge, we have each node u decide on the next message to send to v

1 An adversary that is allowed to deliver messages in only one direction can be modelled
by defining a round to consist of (at least) one communication in each direction. Since
competitive analysis can be used to show that acknowledgements of some kind are
requisite for a finite competitive-ratio, it is natural to define a round as above.

Asynchronous Throughput-Optimal Routing in Malicious Networks 241

immediately after receiving a message from v, and this message is then sent to
the adversary who stores it until the next time he activates edge E(u, v).

Formally, we define a round to consist of a single edge E(u, v) in the network
chosen by the adversary in which two sequential events occur: 1a) Among the
packets from u to v that the adversary is storing, it will choose one (in any
manner it likes) and deliver it to v; 1b) Similarly, the adversary chooses one of
the packets it is storing from v to u and delivers it to u; 2a) After seeing the
delivered packet, u sends requests of the form (u, v, m) = (sending node, target
node, message) to the adversary, which will be stored by the adversary and may
be delivered the next time E(u, v) is made a round; 2b) Similarly for v.

Modeling asynchronicity in this manner captures the intuition that a node has
no idea how long a message “sent” to an adjacent node will take to arrive, and
this definition also captures the “worst-case” asynchronicity, in that a (potentially
deliberately malicious) adversary controls the scheduling of rounds/edges.

Aside from obeying the above specified rules, we place no restriction on the
scheduling adversary. In other words, it may activate whatever edges it likes (this
models the fact our network makes no connectivity assumptions), wait indefinitely
long between activating the same edge twice (modeling both the dynamic and
asynchronous features of our network), and do anything else it likes (so long as
it respects steps (1) and (2) above each time it activates an edge) in attempt to
hinder the performance of a routing protocol.

Our model also allows a polynomially bounded node-controlling adversary to
corrupt the nodes in the network. The node-controlling adversary is malicious,
meaning that takes complete control over the nodes he corrupts, and can there-
fore force them to deviate from any protocol in whatever manner he likes. We
also allow for a dynamic adversary, which means that he can corrupt nodes at
any stage of the protocol, deciding which nodes to corrupt based on what he has
observed thus far. We do not impose any “access-structure” limitations on the
adversary. That is, the adversary may corrupt any nodes it likes (although if the
sender and/or receiver is corrupt, secure routing between them is impossible).
Because integrity of the messages received by the receiver is now a concern (as
corrupt nodes can delete and/or modify messages), we will say a routing protocol
is secure if the receiver eventually gets all of the messages sent by the sender, in
order and without duplication or modification.

The separation of the adversaries into two distinct entities is solely for con-
ceptual reasons. Note that the scheduling adversary cannot be controlled or
eliminated: edges themselves are not inherently “good” or “bad,” so identifying
an unresponsive edge does not allow us to forever refuse the protocol to uti-
lize this edge. By contrast, our protocol will limit the amount of influence the
node-controlling adversary has in the network. Specifically, we will show that
if a node deviates from the protocol in a sufficiently destructive manner (in a
well-defined sense), then our protocol will be able to identify it as corrupted in
a timely fashion. Once a corrupt node has been identified, it will be eliminated
from the network by excluding it from all future communication.

242 P. Bunn and R. Ostrovsky

Note that our network model is on-line and distributed, in that we do not as-
sume that the nodes have access to any information (including future knowledge
of the adversary’s schedule) aside from the packets they receive. Also, we insist
that nodes have bounded memory which is at least Ω(n2).2

Our mechanism for evaluating protocols will be to measure their throughput,
a notion we can now define formally in the context of rounds and the scheduling
adversary. In particular, let fA

P : N → N be a function that measures, for a
given protocol P and adversary A, the number of packets that the receiver has
received as a function of the number of rounds that have passed. Note that in
this paper, we will consider only deterministic protocols, so fA

P is well-defined.
The function fA

P formalizes our notion of throughput.
As mentioned in the Introduction, we utilize competitive analysis to gauge

the performance (with respect to throughput) of a given protocol against all
possible competing protocols. In particular, for any fixed adversary A, we may
consider the ideal “off-line” protocol P ′ which has perfect information: knowledge
of all future decisions of the scheduling adversary, as well as knowledge of which
nodes are/will become corrupt. That is, for any fixed round x, there exists an
ideal off-line protocol P ′(A, x) such that fA

P′(x) is maximal. We demand that
the ideal protocol P ′ never utilizes corrupt nodes once they have been corrupted
(this restriction is not only reasonable, it is necessary, as it can easily be shown
that allowing P ′ to utilize corrupt nodes will result in every on-line protocol
having competitive ratio 1/∞).

Definition 1. We say that a protocol P has competitive ratio 1/λ (respectively is
λ-competitive) if there exists a constant k and function g(n,C) (C is the memory
bound per node) such that for all adversaries A and for all x ∈ N:3

fA
P′(x) ≤ (k · λ) · fA

P (x) + g(n, C) (1)

We assume a Public-Key Infrastructure (PKI) that allows digital signatures. In
particular, this allows the sender and receiver to sign messages to each other that
cannot be forged (except with negligible probability in the security parameter) by
any other node in the system. It also allows nodes to verify/sign communications
with their neighbors (see Section 3.2).

3 Description of Protocol

In this section we present an on-line protocol that enjoys competitive ratio 1/n in
the network model of Section 2. Our protocol uses as its starting point the “Slide”
protocol (or gravitational-flow), which was first introduced by Afek, Gafni, and
Rosén [3], and further developed in a series of work [1], [20], and [17]. As is shown
in [17], Slide+ enjoys competitive ratio 1/n in networks in which all nodes behave
2 For simplicity, we assume that all nodes have the same memory bound, although our

argument can be readily extended to handle the more general case.
3 Typically, λ is a function of the number of nodes in the network n, and Definition 1

implicitly assumes the minimal value of λ for which (1) holds.

Asynchronous Throughput-Optimal Routing in Malicious Networks 243

honestly (but otherwise the network is as modelled here). We first describe this
protocol in Section 3.1, and then in Section 3.2 describe how we modify this
protocol to address networks allowing misbehaving nodes.

3.1 Description of the Slide+ Protocol

Recall that we model an asynchronous network via a scheduling adversary that
maintains a buffer of requests of the form (u, v, p), which is a request from node
u to send packet p to node v. The scheduling adversary proceeds in a sequence
of activated edges (called rounds), and a protocol can be completely described
by the actions of node u (and symmetrically v) during a round E(u, v). Let C
denote the size of each node’s memory, then Slide+ requires that C ≥ 8n2, and
for simplicity we will assume that C/n ∈ N.

During activated edge E(u, v), let (v, u, (p′, h′)) denote the message that u
receives from v in Step 1 of the round (via the scheduling adversary). Also, u
has recorded the request (u, v, (p, h)) that it made during Step 2 of the previous
round in which E(u, v) was activated; note that v will be receiving this message
during Step 1 of the current round. Then during round E(u, v), u does:

1. If u is the Sender, then:

(a) If h < C: u deletes packet p from his input stream {p1, p2, . . . }, ignores
the received p′, and proceeds to Step (1c)

(b) If h′ ≥ C: u keeps p, ignores the received p′, and proceeds to Step (1c)
(c) The Sender finds the next packet pi ∈ {p1, p2, . . . } that has not been

deleted and is not currently an outstanding request already sent to the
adversary, and sends the request (u, v, (pi, C + C

n −n)) to the adversary.

2. If u is the Receiver, then u sends the request (u, v, (⊥, −C
n − 2n + 1)) to

the adversary. Meanwhile, if p′ �= ⊥, then u stores/outputs p′ as a packet
successfully received.

3. If u is any internal node, then:

(a) If h ≥ h′ + (C/n + 2n): u ignores p′, deletes p, updates height h = h− 1,
and proceeds to Step (3d)

(b) If h ≤ h′ − (C/n + 2n): u keeps both p and p′, updates height h = h + 1,
and proceeds to Step (3d)

(c) If |h − h′| < C/n + 2n: u ignores packet p′, keeps p, and proceeds to
Step (3d)

(d) Node u finds a packet p′′ that it has not already committed in an out-
standing request to the adversary, and sends the request (u, v, (p′′, h)) to
the adversary

3.2 Our Protocol

Our protocol extends the Slide+ protocol described above to provide security
against the node-controlling adversary by using digital signatures in the following
two ways:

244 P. Bunn and R. Ostrovsky

1. The sender signs every packet, so that honest nodes do not waste resources on
modified or junk packets, and so that packets the receiver gets are unmolested

2. Communication between nodes will be signed by each node. This information
will be used later by the sender (if there has been malicious activity) to hold
nodes accountable for their actions, and ultimately eliminate corrupt nodes

The routing rules for each internal node are the same as in the Slide+ protocol,
except that whenever a node u sends a packet to a neighbor v, there will be four
parts to this communication:

(a) The packet itself, i.e. a packet from the sender intended for the receiver
(b) The current height of u, i.e. how many packets u is currently storing
(c) A signature on the communication thatuhas hadwith v, as describedbelow
(d) Signatures from other nodes that the sender requested, as described below

The first two parts of each communication are identical to the Slide+ protocol, so
it remains to discuss the second two items, which are used for the identification
of corrupt nodes. Note that the second two items each consist of a signature on
some quantity; for this reason we will require that the bandwidth of each edge is
large enough to allow for simultaneous transmission of two signatures (plus the
packet itself). The signature that u includes on his communications with v for
Item (c) above pertains to the following four items:

Sig1 The total number of packets u has sent to v so far
Sig2 The total number of times the previous packet p that was exchanged

between them has crossed the edge E(u, v) (can be more than once)
Sig3 The cumulative difference in u and v’s heights, measured from each

time u and v exchanged a packet
Sig4 An index representing how many times E(u, v) has been activated, to

serve as a time-stamp on the above three items

It remains to explain Item (d) from above, for which it will be useful to first
describe from a high-level how our protocol handles malicious activity by corrupt
nodes. Since secure routing is impossible if either the sender or receiver is cor-
rupted, we will assume that they remain uncorrupted through the protocol, and
they will be responsible for regulation of the network (e.g. identifying and elim-
inating corrupt nodes). Also, because our definition of security (see Section 2)
requires that the receiver gets all of the packets sent by the sender, we will
use error-correction and first expand the messages into codewords so that the
receiver can reconstruct each message if he has a constant fraction of the code-
word packets. See e.g. [7] for a specific description of how this can be done. We
note that because the definition of throughput only cares about asymptotic per-
formance (i.e. constants are absorbed in the k that appears in Definition 1), the
use of error-correction will not affect the throughput of our protocol.

From a high-level, the protocol attempts to transfer one message (codeword),
consisting of Θ(nC) bits, at a time (this is called a message/codeword trans-
mission). The sender will continue inserting packets corresponding to the same
codeword until one of the following occurs:

Asynchronous Throughput-Optimal Routing in Malicious Networks 245

S1 Sender gets amessage indicating the receiver decoded the current codeword
F2 Sender gets a message alerting him of inconsistencies in height differences
F3 Sender has inserted all packets corresponding to the current codeword
F4 Sender gets a message indicating the receiver got the same packet twice
F5 Sender is able to identify a corrupt node

Cases S1, F2, and F4 come from messages sent by the receiver, a process we
do not explicitly describe due to space constraints. In the case of S1 (successful
codeword transmission), the sender will begin inserting packets corresponding
to the next codeword. In the case of F5, the sender will eliminate the identified
node (i.e. alert all nodes in the network to forever ignore the corrupt node), and
begin anew transmitting packets corresponding to the current codeword. The
other three cases correspond to failed attempts to transfer the current codeword
due to corrupt nodes disobeying protocol rules, and in each case the sender will
use the signed information from Item (c) above to identify a corrupt node.

In cases F2-F4, the sender will begin anew transmitting packets corresponding
to the current codeword. Before nodes are allowed to participate in transferring
the codeword packets, they must first learn that the last transmission failed,
the reason for failure (F2-F4), and the sender must receive all of the signatures
the node was storing from its neighbors, called the node’s status report (i.e. all
signed information from Item (c) above). Note that the network itself is the only
medium of communication available for relaying the signatures a node is storing
to the sender, and hence part of the bandwidth of each edge (and part of the
storage capacity of each node) is devoted to returning these pieces of signed
information to the sender (this is Item (d) from the above list).

Until the sender has received a node’s status report for a failed transmission,
the node will remain on the blacklist. That is, no honest node u will transfer
any codeword packets to another node v until u obtains verification from the
sender that the sender has received v’s status report.

4 Analysis of Our Protocol

We use competitive analysis to evaluate the throughput performance of the above
protocol. To this end, let (A,P ′) denote an adversary/off-line protocol pair for
which we compare our routing protocol P . Due to space constraints, we provide
only a proof sketch of Theorem 3 (see [18] for details):

Theorem 3. If at any time P ′ has received Θ(xn) messages, then P has received
Ω((x − n2)) messages. Thus, if the number of messages x ∈ Ω(n2), then our
protocol has competitive ratio 1/n.

Theorem 3 will follow immediately from the following three Lemmas:

Lemma 1. Suppose transmission T failed and at some later time (after T but
before any nodes are eliminated) the sender has the status report from all nodes
not on the blacklist during T. Then the sender can eliminate a corrupt node.

246 P. Bunn and R. Ostrovsky

Proof. (Sketch) We split the proof into the three cases of transmission failure:

Handling Case F2. If a misbehaving node u tries to jam the network by dupli-
cating packets, then there will be a discrepancy between the recorded values of
cumulative height differences from packets transferred from u’s neighbors to u
and packets transferred from u to its neighbors. Therefore, if the sender has Sig3
from all of u’s neighbors, the he can identify u as corrupt.
Handling Case F3. The number of packets per codeword (Θ(nC)) is chosen so
that even if nC packets are missing, the receiver can still decode. Therefore,
since the capacity of the network is bounded by nC, if the sender has inserted
all of the codeword packets and the receiver cannot decode, then necessarily a
corrupt node is deleting packets. The information from the status reports (in
particular information from Sig1) can be used to identify such a node.
Handling Case F4. A corrupt node is duplicating packets, and the status reports
(in particular information from Sig2) can be used to identify such a node.

Lemma 2. There can be at most n−1 (not necessarily consecutive) failed code-
word transmissions {Ti}n−1

i=1 (i.e. cases F2-F4) before there is necessarily some
Ti such that the sender has gathered the complete status report from every node
that was not on the blacklist during Ti.

Proof. (Sketch) A node is not allowed to participate in a transmission (it is
placed on the blacklist) until the sender has received the node’s status report(s)
for all previous failed transmissions. Thus, for each failed transmission Ti for
which the sender has not collected all status reports, there is (at least) one
distinct node whose status report is missing, and hence this node will be on the
blacklist for all later transmissions until the sender gets this report. Since there
are n − 1 nodes (excluding the sender), this can happen at most n − 1 times.

The final lemma guarantees that one of the cases S1-F5 necessarily happens by
the time the off-line protocol P ′ has delivered O(n2C) packets. For any trans-
mission T, let Y P

T and ZP
T (respectively Y P′

T and ZP′
T) denote the set of packets

sent and received during T by protocol P (respectively by P ′).

Lemma 3. In any transmission T, |ZP′
T | = O(n2C). If the transmission was

successful (as in case S1), then |ZP
T | = Θ(nC).

Proof. (Sketch) The second statement of the theorem is immediate, since the
receiver requires Θ(nC) packets to decode a codeword. For the first statement,
we first fix a transmission T, and split the packets of ZP′

(we will suppress
subscripts T) into subsets as follows. We can view the scheduling adversary A as
simply a schedule (order) of edges that the adversary will honor. We will imagine
a virtual world, in which P and P ′ are run simultaneously. Let ZP′

3 denote the
set of packets in ZP′

that traveled between two honest nodes in some round
of T, and P did not transfer a packet in this round because (at least) one of
these nodes was on the blacklist. Define ZP′

1 to be the subset of ZP′ \ ZP′
3

consisting of packets p′ for which there exists at least one round E(u, v) such

Asynchronous Throughput-Optimal Routing in Malicious Networks 247

that both p′ and some packet p ∈ Y P were both transferred this round.4 Set
ZP′

2 = ZP′ \ (ZP′
1 ∪ZP′

3). Also, let TP denote the number of packet transfers in
P between two honest nodes during T. Then Lemma 3 follows from:

Claim. (1) TP=O(n2C), (2) |ZP′
1 | ≤ TP, (3) |ZP′

2 | ≤ TP, (4) |ZP′
3 |=O(n2C)

Proof. (Sketch) (1) follows from transfer rules: a packet transfer corresponds to a
packet dropping in height by C/n, so this can happen n times per inserted packet,
and there are Θ(nC) packets per codeword. (2) is immediate, and (4) comes from
the fact that by the time O(nC) packets have reached any honest node u, the
sender will necessarily have received any outstanding status report of u. (3) is the
most difficult to obtain, and is done using potential function arguments together
with the following observations: 1) when any packet p′ ∈ ZP′

2 is first inserted,
it was necessarily inserted into some node u such that with respect to P , u had
height ≈ C (otherwise P would have also inserted a packet this round, and then
p′ ∈ ZP′

1). Similarly, when p′ ∈ ZP′
2 is received by the Receiver from some node

v, then with respect to P , v had height zero. The idea will then be to assign a
potential function ϕp′ to every packet p′ ∈ ZP′

2 that represents the current height
with respect to P of the node in which p′ is currently stored. Thus, when a packet
p′ ∈ ZP′

2 is first inserted, ϕp′ = C, and when p′ ∈ ZP′
2 is received, ϕp′ = 0. Then

roughly speaking, we show that for each p′ ∈ ZP′
2 , decreases in ϕp′ can be linked

to decreases in height of packets transferred by P .

References

1. Afek, Y., Awerbuch, B., Gafni, E., Mansour, Y., Rosen, A., Shavit, N.: Slide– The
Key to Poly. End-to-End Communication. J. of Algo’s 22, 158–186 (1997)

2. Afek, Y., Gafni, E.: End-to-End Communication in Unreliable Networks. In: PODC
(1988)

3. Afek, Y., Gafni, E., Rosén, A.: The Slide Mechanism with Applications in Dynamic
Networks. In: Proc. 11th ACM SODA, pp. 35–46 (1992)

4. Aiello, W., Kushilevitz, E., Ostrovsky, R., Rosén, A.: Adaptive Packet Routing For
Bursty Adversarial Traffic. J. Comput. Syst. Sci. 60(3), 482–509 (2000)

5. Aiello, W., Ostrovsky, R., Kushilevitz, E., Rosén, A.: Dynamic Routing on Net-
works with Fixed-Size Buffers. In: Proc. 14th ACM SODA, pp. 771–780 (2003)

6. Ajtai, M., Aspnes, J., Dwork, C., Waarts, O.: A Theory of Competitive Analysis
for Distributed Algorithms. In: Proc. 35th IEEE FOCS, pp. 32–40 (1994)

7. Amir, Y., Bunn, P., Ostrovsky, R.: Authenticated Adversarial Routing. In: 6th
Theory of Crypt. Conf., pp. 163–182 (2009)

8. Andrews, M., Awerbuch, B., Fernández, A., Kleinberg, J., Leighton, T., Liu, Z.:
Universal Stability Results for Greedy Contention-Resolution Protocols. In: Proc.
37th IEEE FOCS, pp. 380–389 (1996)

9. Awerbuch, B., Azar, Y., Plotkin, S.: Throughput-Competitive On-Line Routing.
In: Proc. 34th IEEE FOCS, pp. 401–411 (1993)

10. Awerbuch, B., Holmer, D., Nina-Rotaru, C., Rubens, H.: An On-Demand Secure
Routing Protocol Resilient to Byzantine Failures. In: Proc. of 2002 Workshop on
Wireless Security, pp. 21–30 (2002)

4 Note that we make no condition that the two packets traveled in the same direction.

248 P. Bunn and R. Ostrovsky

11. Awerbuch, B., Leighton, T.: Improved Approximation Algorithms for the Multi-
Commodity Flow Problem and Local Competitive Routing in Dynamic Networks.
In: Proc. 26th ACM STOC, pp. 487–496 (1994)

12. Awerbuch, B., Mansour, Y., Shavit, N.: End-to-End Communication With Poly-
nomial Overhead. In: Proc. of the 30th IEEE FOCS, pp. 358-363 (1989)

13. Barak, B., Goldberg, S., Xiao, D.: Protocols and Lower Bounds for Failure Local-
ization in the Internet. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965,
pp. 341–360. Springer, Heidelberg (2008)

14. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Camb.
Univ Press, Cambridge (1998)

15. Borodin, A., Kleinberg, J., Raghavan, P., Sudan, M., Williamson, D.: Adversarial
Queuing Theory. In: Proc. 28th ACM STOC, pp. 376–385 (1996)

16. Broder, A., Frieze, A., Upfal, E.: A General Approach to Dynamic Packet Routing
with Bounded Buffers. In: Proc. 37th IEEE FOCS, pp. 390–399 (1996)

17. Bunn, P., Ostrovsky, R.: Throughput in Asynchronous Networks. arXiv Technical
Report, arXiv:0910.4572 (2009)

18. Bunn, P., Ostrovsky, R.: Asynchronous Throughput Optimal Routing in Malicious
Networks. IACR Eprint Archive, Report 2010/231. April 2010 (2010)

19. Goldberg, S., Xiao, D., Tromer, E., Barak, B., Rexford, J.: Path-Quality Monitoring
in the Presence of Adversaries. SIGMETRICS 36, 193–204 (2008)

20. Kushilevitz, E., Ostrovsky, R., Rosén, A.: Log-Space Polynomial End-to-End Com-
munication. SIAM Journal of Computing 27(6), 1531–1549 (1998)

21. Leighton, T., Makedon, F., Plotkin, S., Stein, C., Tardos, É., Tragoudas, S.: Fast
Approximation Algorithms for Multicommodity Flow Problem. In: Proc. 23rd
ACM STOC, pp. 101–111 (1991)

22. Sleator, D., Tarjan, R.: Amortized Efficiency of List Update and Paging Rules.
Commun. ACM 28(2), 202–208 (1985)

	Asynchronous Throughput-Optimal Routing in Malicious Networks
	Introduction
	Previous Work
	Our Results

	The Model
	Description of Protocol
	Description of the Slide+ Protocol
	Our Protocol

	Analysis of Our Protocol
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

