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1 Graph Isomorphism

Given two graphs G1 and G2, we can prove G1 and G2 are isomorphic by finding a renaming
of vertices π, and showing that after applying π(G1), edges go to edges and non-edges go
to non-edges. An algorithm for finding π for two given graphs in polytime is in general
unknown. Additionally, an algorithm for checking if two graphs are isomorphic (GI) can be
used to find the permutation π as well, so a polytime algorithm for this is similarly unknown.
Relatedly, a polytime algorithm for graph non-isomorphism (GNI) is also unknown.

Disclaimer: In these notes we will write interactive proofs for two languages: graph-
isomorphism (GI) and graph-non-isomorphism (GNI). These languages are chosen because,
besides the belief that V (a PPT machine) cannot recognize them, they provide a conve-
nient framework in which to study the notions of interactive proofs and zero-knowledge.
In addition, protocols for GI and GNI can be translated into protocols for certain hard
number-theory problems. One would not really base a real system on GI or GNI.

2 Interactive Proofs

2.1 IP For Graph Non-Isomorphism

Say a hacker says he has some spaghetti code to find graph non-isomorphism but without
a proof. How can we verify the program works correctly? More formally, say we have a
Verifier V ∈ PPT and a Prover P with infinite power. P claims that two graphs G1 and G2

are not isomorphic and wants to prove this to the V. One strategy is for V to pick a random
bit $b and a random $π. V then sends P H = π(Gb). P then finds if H is isomorphic to G0

or G1 and returns a bit b′. The V can then repeat this process k times and accepts if P is
right every time.

If P is telling the truth, P will predict correctly each time. If P is lying, thenH is isomorphic
to both G0 and G1, and P can only predict b with probability 1/2, so the probability P is
right all k trials is 1/2k.

Note that this is not a classical proof of the statement, instead it is statistical evidence
that the statement is true; the prover convinces the verifier that either the statement is
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true or the prover is incredibly lucky. The formal definition of an Interactive Proof (IP) as
introduced by Goldwasser, Micali, and Rackoff is as follows:

Definition 1 A language L ∈ IP if ∃ protocol (P, V ) for a Prover P and a Verifier V ∈
PPT such that:

• Completeness: If x ∈ L then P has a good chance of convincing V that x ∈ L

∀x ∈ L, Pr
coins of V

[P ↔ V (x), V accepts] >
2

3

• Soundness: If x /∈ L then P, or even a cheating prover P ∗ has little chance of
convincing V that x ∈ L

∀x /∈ L,∀P ∗ Pr
coins of V

[P ∗ ↔ V (x), V accepts] <
1

3

Where P ↔ V (x) defines P interacting with V. IP is defined to be the class of languages
which have Interactive Proofs.

2.2 IP For Graph Isomorphism

One way for a Prover P to prove to a verifier V that two graphs G1 and G2 are isomorphic
would be for P to just tell V the permutation π. But a more clever way would be to use an
interactive proof. We can have P pick $π, $b, and send V H = π(Gb). V then sends back b̃.
P then shows the isomorphism between H and Gb̃. This process is repeated k times.

If P is telling the truth, then V can pick either graph and P can show an isomorphism from
it to H, meaning P will always be right (Completeness). If P is lying, then the probability
P is right on any given trial is 1/2, only when b = b̃. Therefore, the chance of P not getting
caught lying is only 1/2k (Soundness).

This introduces us to our next topic of zero-knowlege proofs. The Verifier did not learn
anything new from the Prover through this process. The Verifier saw a random graph and
found out it was isomorphic to another graph, which the Verifier could have simulated at
home.

3 Zero-knowledge Proofs

We will begin our discussion of zero-knowledge proofs with a motivating example. Say
a crime is committed in some town, and a reporter, with the desire to get the scoop on
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the story, decides to contact the police chief of the town to ask about the investigation.
However, the police chief enjoys playing games with reporters, and thus decides to flip a
coin, if the result is heads he responds with ”There was a murder” and hangs up, or if the
coin comes up tails, he says ”No comment” and hangs up. In this example, the reporter
gains no knowledge from her conversation with the chief, as she could have simulated the
coin flip without contacting the police chief at all. From this intuition, we will build up a
rigourous definition of zero-knowledge.

Definition 2 Given an interactive proof PV on a language L, we say that this proof is
zero-knowledge if

∀V ∗ ∃SV ∗ ∈ PPT s.t. ∀x ∈ L[SV ∗(x)] is statistically close to [P ↔ V ∗(x)]

Where SV ∗(x) is a so-called ”view” of x (we will explain the importance of this later).

With this new understanding, we will show that our interactive proof for graph isomor-
phism is zero-knowledge. Suppose we have the same P, V ∗ for G0 ∼ G1, and as such let
Sim(x, (G0, G1)) for this system. Now, with our previous understanding of how the honest
prover works, we can have our simulator proceed by $π, $ b,H ← π(Gb). This is precisely
what the prover does, so it is a valid simulation. However, we have no idea how to simulate
V ∗, that is when V ∗ generates b̃, this can be done by any method, that is, we have no way
of inspecting the ”code” behind V ∗ to check what the distribution is (ie. say V ∗ is written
all in COBOL that no one knows how to read anymore). However, we are allowed to have
Sim depend on V ∗, so we can solve this problem. Using the b and H we generated above
while simulating the prover, which we will call b1 and H1, we can send H1 to V ∗, and say it
generates b̃ = b. In this case, we trivially have the isomorphism π that shows H ∼ Gb̃ = Gb.

However, in the case where V ∗ gives us back b̃ = 1− b, we can instead decide that we will
restart from the beginning, choosing b in our simulation of the prover such that it matches
b̃ that V ∗ will give us back, which we know we must get, since V ∗ is deterministic. This
will at most take 2 tries for each graph we are to find an isomorphism for, which fits within
our restriction of Sim ∈ PPT. As such we have shown that this method for solving graph
isomorphism is zero-knowledge!

However, we have not completely properly defined zero-knowledge proofs yet. To illuminate
the issue, let us consider an example, also for graph isomorphism (G0 ∼ G1 with PV ). Let
V work by $ b, $π,H ← π(Gb), and subsequently sends H to P . Next, P needs to show
that H ∼ Gb′ , where P randomly determines b′. However, V only accepts when b′ ̸= b. By
our understanding so far, this is a zero-knowledge proof, but our intuition says that this is
certainly not zero-knowledge, as V can determine the isomorphism between G0 ∼ G1, as
it forces P to generate b′ ̸= b. As such we need to flush out our understanding of what
a ”view” of x is from our definition above. More specifically, this view includes both the
messages communicated between P and V , but also the coins of V .
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Finally, we will find a zero-knowledge proof for G0 ̸∼ G1. A logical attempt would be
to use our interactive proof from earlier. But this is not zero knowledge since a cheating
verifier V ∗ could pick a different H, unrelated to the random bit $b that V ∗ was supposed
to generate. V ∗ would then learn if H was isomorphic to G0 or G1, making this proof not
zero knowledge.

Instead, we must force the verifier to prove that they know the bit b to the prover. To do
so, we will define a new idea: commitment. In the scope of this problem, we will say
that choosing (G′

0, D
′
1) corresponds to committing a value of 0, while choosing (G′

1, G
′
0)

correspond to committing a value of 1, where ′ signifies an arbitrary permutation.

From this, we can define our protocol: first V makes some commitment (b) (C,D). Now,
V constructs (C ′

1, D
′
1), . . . (C

′
n, D

′
n). Subsequently, P randomly determines n bits and sends

these to V . For every bit i, if the bit is zero, V shows to P that (C ′
iD

′
i) ∼ (G0, G1),

otherwise, V shows that (C ′
i, D

′
i) ∼ (C,D). From this, we are done, since P can determine

b, and send this to V , and the only way for P to be able to do so is if P can really determine
if G0 ̸∼ G1
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