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1 Pseudorandom Generators (PRG)

1.1 What is a PRG?

Definition 1 (Pseudorandom Generator) A pseudorandom generator (PRG), in the
context of this class, is a deterministic polynomial-time algorithm that takes in a random
sequence of bits known as the seed and outputs a sequence of bits that appears to be “truly
random”. Usually, the output sequence is much longer than the input seed, which allows
PRGs to be useful in cryptography to produce seemingly random numbers.

We denote a PRG as follows:

PRG(s) : {0, 1}|s| → {0, 1}Q(|s|)

Here s is the seed and Q is some polynomial, so a PRG takes the bits of the seed and turns
them into bits of some polynomial length.

A PRG is called pseudorandom, in the sense that the output is not truly random but
appears to be indistinguishable from a truly random sequence. The output cannot be truly
random because it is obtained from a deterministic function acting on an input seed smaller
than the output. However, a PRG should appear to be statistically indistinguishable when
compared to a truly random distribution.

2 Indistinguishability

2.1 Turing Test Inspiration

The classic Turing test attempts to see if a machine is able to exhibit intelligent behavior.
However, it is hard to exactly quantify intelligence, so what Alan Turing proposed is to
compare if a machine’s behavior is indistinguishable to a human, then it passes the test.

Similarly, we can use the same concept to test if the output of a PRG is indistinguishable
from a truly random sequence. In 1982, Andrew Yao devised the following test: if a
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Figure 1: Experiment 1: Input from pseudo-random generator

Figure 2: Experiment 2: Truly random input (ex: coinflips)

polynomial-time algorithm is unable to show a statistical difference between some given
distribution and a truly random distribution, then the former is classified as pseudorandom.

2.2 Sampleable Distributions

Definition 2 (Sampleable Distribution) A sampleable distribution is a distribution
generated by a probabilistic polynomial-time (PPT) algorithm that takes in a random input
sequence of bits and outputs another sequence of bits according to some distribution. If the
algorithm S(1n, r) takes in a finite sequence of random bits r and 1n and outputs strings of
length n, then for some distribution Xn:

Prr[S(1
n, r) = α] = PrXn [Xn = α]

Both a truly random sequence and a pseudorandom sequence meet the definition of being a
sampleable distribution. Given two sampleable distributions Xn and Yn, if a judge J ∈ PPT
is unable to determine which distribution a sample comes from, then they are considered
indistinguishable.

2.3 Indistinguishability Test

Definition 3 (Yao’s Indistinguishability Test) Two sampleable distributions Xn and
Yn are defined to be computationally indistinguishable if for all constants c and for all
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judges J ∈ PPT , ∃N such that ∀n > N :

|Pr J(Xn) = 1− Pr J(Yn) = 1| < 1

nc

Here, the value of 1 is chosen arbitrarily. Since the two outputs of the judge are 0 and 1,
we could similarly look at the probability the judge outputs 0 and compare to see if there
is a significant difference between the two distributions.

2.4 Extended Statistical Test and Hybrid Arguments

Given sampleable distributions Xn and Yn, it would seem logical that using multiple sam-
ples (an extended statistical test) would make it easier to distinguish the distributions as
opposed to taking a single sample from each. Perhaps it would not be possible to distin-
guish with only a single sample of each in polynomial time. However, we now prove that any
two distributions that can be distinguished with noticeable probability from a polynomial
number of samples can also be distinguished using just a single sample.

Claim 4 If a judge J ∈ PPT is able to distinguish between distributions Xn and Yn using
m samples, in an extended statistical test with probability greater than ϵ, then there exists
a judge J ′ ∈ PPT that can distinguish between Xn and Yn using a single sample.

Proof Consider two sampleable distributions consisting of m samples each, namely
X1, X2, . . . , Xm and Y1, Y2, . . . , Ym. Let us enumerate the “hybrids” of these two distri-
butions such that the first m− j samples come from Xn and the remaining j samples come
from Yn, for j = 0, 1, . . . ,m.

H0 : X1, X2, . . . , Xm−1, Xm

H1 : X1, X2, . . . , Xm−1, Ym

...

Hm−1 : X1, Y2, . . . , Ym−1, Ym

Hm : Y1, Y2, . . . , Ym−1, Ym

We know that the judge J is able to distinguish between the first and last hybrids (which
are the original samples) with probability at least ϵ. That is, the judge J takes m samples
as input and outputs a single bit such that:

|Pr J(H0) = 1− Pr J(Hm) = 1| = |Pr J(X1, . . . , Xm) = 1− Pr J(Y1, . . . , Ym) = 1| ≥ ϵ.
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Then, the hybrid argument claims that there must exist some two adjacent hybrids having
at least ϵ/m probability of being distinguished by J . This is because, on taking the sum of
probability gaps between all pairs of adjacent hybrids and applying the triangle inequality,
we get:

m−1∑
j=0

|Pr J(Hj) = 1− Pr J(Hj+1) = 1| ≥ |Pr J(H0) = 1− Pr J(Hm) = 1| ≥ ϵ.

Intuitively, there are m cases where there are two adjacent hybrids, and the sum of the gaps
must add up to ϵ. If all of these gaps are less than ϵ/m, then it would not be possible to
sum them to ϵ meaning at least one of these gaps must be ϵ/m.

Next is the question of how the judge J ′ can guess which hybrids have this ϵ/m gap. Since
there are a polynomial amount of options, J ′ can simply guess the correct hybrids in PPT.
Having guessed the correct pair of adjacent hybrids, say Hj and Hj+1, which differ only in
their sampling of the element in position m− j, J ′ can place the actual inputs in position
m−j and randomly sample inputs to the other positions on its own. By the above reasoning,
when this is given to J as input, it is able to distinguish with probability ϵ/m, which is not
negligible due to ϵ being non-negligible as well. Therefore, given a judge J in PPT that
distinguishes between distributions in an extended statistical test, we can construct a judge
J ′ that uses J to distinguish with only a single sample in PPT.

3 Next-Bit Test

3.1 Defining the Next-Bit Test

Manuel Blum and Silvio Micali devised a separate notion for testing PRGs known as the
next-bit test. A distribution passes the next-bit test if some Adversary A in PPT is not
able to predict the next-bit at some point with probability statistically better than 50%.
That is, a sequence is pseudo-random if it is not possible to determine any bits better than
randomly guessing.

Definition 5 Xn passes the next-bit test if for all constants c and for all adversaries A ∈
PPT , ∃N such that ∀n > N and ∀i, (0 ≤ i ≤ n):

Pr[A(X1, X2, ..., Xi) = Xi+1] <
1

2
+

1

nc

4-4



Figure 3: Example of the next-bit test

3.2 Next-Bit Test from One-Way Permutations

From the previous lecture, we saw how a one-way permutation f can construct a hardcore
bit b that is as hard to predict as it is to invert f . We can also construct a PRG by using
f .

1. Pick a one-way permutation f : {0, 1}n → {0, 1}n

2. Pick a hardcore predicate p such that |p| = n

3. Pick a random seed x0 such that |x0| = n

4. Compute the following values as xi = f(xi−1) for 1 ≤ i ≤ m+ 1

5. Output the hardcore bits as < p, xi > for 1 ≤ i ≤ m

6. Output xm+1 and p

7. Return this sequence of bits in reverse order

The choice to return the bits in reverse order does not affect the pseudo-randomness; it
is just chosen to make the following proof easier. This PRG transforms a random seed of
length n into a pseudo-random output of length 3n.

Claim 6 If f is a strong one-way permutation, then the PRG described passes the next-bit
test.
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Proof We use a proof by contradiction. That is, if there exists an adversary A ∈ PPT
that can break the next-bit test for the PRG, then the adversary can invert f . We saw
from a previous lecture that if it is possible to predict a hardcore bit of f then we can
invert f . Therefore, we can place the output of f(x) = y as the (n− i) xi value. The first
i steps of the generator are computed as usual. Then we use the adversary that can break
the next-bit test. If it selects the exact same position we want, it correctly predicts the
next-bit, which is the hardcore bit. Since we can predict this hardcore bit, we can invert f .
Then the question is how do we know which position to place our “trap” in? Since there
are polynomial many choices, we can just guess the correct position in polynomial time.

3.3 Equivalence of Next-Bit Test and Indistinguishability Test

We have now seen two separate tests for testing a PRG. We can either use Yao’s indistin-
guishability test or we can use Blum’s and Micali’s next-bit test. However, it turns out that
these two tests are actually equivalent to each other as Yao proved.

Claim 7 A pseudo-random sequence Xn passes the indistinguishability test if and only if
Xn passes the next-bit test.

Proof One of the directions is trivial. Since a next-bit test is just a type of statistical
test, then since being indistinguishable means Xn passes all statistical tests, it must pass
the next-bit test.

The other direction is harder. We want to prove that if Xn passes the next-bit test, it must
pass all statistical tests. We will use a proof by contradiction. If there is a judge J that can
distinguish between a psuedo-random distribution p = Xn and a truly random distribution
q = Yn with a probability gap of |p − q| > ϵ, then there is a predictor that makes Xn fail
the next-bit test. We utilize the hybrid argument from earlier. There must be two adjacent
hybrids for some i where |Hi−Hi+1| > ϵ/m. Then we can construct a next-bit predictor by
creating a string b1...bib̂Y and input that into J . If J outputs 1, then we break the next-bit
predictor by guessing b̂. Otherwise if J outputs 0 we guess the inverse.

Pr[J(b1...bi) = bi+1] = Pr[b̂ = bi+1] ∗ Pr[J(b1...bibi+1Y ) = 1]

+ Pr[
¯̂
b = bi+1] ∗ Pr[J(b1...bib̄i+1Y ) = 0]

=
1

2
∗Hi+1 +

1

2
∗ q
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We expand on the hybrid Hi in order to figure out an expression for q.

Hi = Pr[J(b1...biY )]

= Pr[J(b1...bibi+1Y ) = 1] ∗ 0.5
+ Pr[J(b1...bib̄i+1Y ) = 1] ∗ 0.5
= Hi+1 ∗ 0.5 + (1− q) ∗ 0.5

q = 1 +Hi+1 − 2 ∗Hi

By substituting this value of q into the previous equation, we obtain

Pr[J(b1...bi) = bi+1] =
1

2
∗Hi+1 +

1

2
∗ q

=
1

2
∗Hi+1 +

1

2
∗ (1 +Hi+1 − 2 ∗Hi)

=
1

2
+ [Hi+1 −Hi] >

1

2
+

ϵ

m

Therefore we are able to break the next-bit predictor with some significant probability
greater than 1

2 , completing the proof by contradiction.

3.4 PRGs and One-Way Functions

Theorem 8 A pseudo-random generator exists if and only if a one-way function exists.

Hastad, Impagliazzo, Levin, and Luby proved that the existence of a one-way function (not
just a permutation) would imply the existence of a pseudo-random generator and vice versa.
However, it is not currently known if either exist. The proof of this theorem will show only
one direction due to the complexity of the other.

Proof We will prove the direction that a PRG is a one-way function.

Define a PRG : {0, 1}n → {0, 1}l(n) where l(n) ≥ n+ 1. Since there are 2n distinct inputs,
there are the same amount of distinct outputs since it is deterministic. Also, at most half
of the strings in {0, 1}l(n) are in the range of the PRG since l(n) ≥ n+ 1.

Now, we use a proof by contradiction. If we assume that PRG is not a one-way function,
then we can create a distinguisher that can tell the difference between the output of PRG
and true randomness. Since PRG is not a one-way function, there is some algorithm A that
can invert it with probability ϵ. Now we will show that we can distinguish if a bit-string x
with length l(n) is psuedo-random from PRG or truly random. If x is the output of PRG,
then A must be able to invert it with probability ϵ. However, if x is a truly random string,
then A can only invert it with probability less than ϵ/2. This is because there is less than
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1
2 chance that x is in the range of the PRG. We create the distinguisher by attempting
to invert x. If we succeed, we guess x is psuedo-random. Otherwise, we guess x is truly
random. The probability the distinguisher’s guess is correct is 1

2 + ϵ
2 . Therefore, we have

created a distinguisher that can tell the difference between the output of the PRG and true
randomness, which completes the proof.

4 Bit Commitment from PRG

We now show that bit commitment can be realized assuming the existence of pseudorandom
generators. Suppose Alice has a bit b that she wishes to commit to Bob. Consider a PRG
that extends seeds of length n to strings of length 3n, denoted by PRG : {0, 1}n → {0, 1}3n.

Naor (1991) proposed the following bit commitment protocol:

1. Bob samples a uniformly random string Y of length |Y | = 3n and sends it to Alice.

2. Alice samples a uniformly random seed s of length |s| = n, and computes Z = PRG(s).

3. If b = 0, Alice sends Z to Bob. Otherwise, if b = 1, she sends Z ⊕ Y .

This completes the commitment procedure. To open this commitment, Alice simply sends
s to Bob, after which Bob can compute Z = PRG(s) and check which bit was committed.

The above protocol satisfies both the desired properties of bit commitment, as shown below.

Lemma 9 The above bit commitment protocol is hiding.

Proof Suppose the protocol is not hiding, i.e., Bob can distinguish between the dis-
tributions of Z and Z ⊕ Y with a non-negligible probability ϵ. In other words, given a
pseudorandom value Z along with Z ⊕ Y (where Bob chooses Y ), Bob can tell which one
is pseudorandom with probability at least 1

2 + ϵ.

Then, an adversary A capable of distinguishing pseudorandom from truly random can be
constructed as follows. Given a value X, which is either truly random or pseudorandom, A
allows Bob to pick R, and then feeds X and X ⊕ R to Bob, asking Bob which of the two
is pseudorandom. In the case where X is truly random, Bob is bound to output each of X
and X ⊕R with probability exactly 1

2 . In the case where X is pseudorandom, Bob outputs
X with probability 1

2 + ϵ and X ⊕R with probability 1
2 − ϵ.

Suppose A outputs 1 if Bob says X and 0 if Bob says X ⊕R. Then, we have

|PrA(pseudorandom) = 1− PrA(random) = 1| ≥ 1

2
+ ϵ− 1

2
= ϵ,
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and thus A is able to distinguish between pseudorandom and random with non-negligible
probability. This is a contradiction as A is PPT. Thus, the protocol supports hiding.

Lemma 10 The above bit commitment protocol is binding.

Proof In the protocol, Alice can cheat if and only if she can find some Z of length 3n,
along with a PRG seed s1 that outputs Z and another PRG seed s2 that outputs Z ⊕ Y .
Thus, Alice can cheat if and only if she is able to find PRG seeds s1 and s2 such that

PRG(s1)⊕ PRG(s2) = Y.

The seeds s1 and s2 have length n each, which means there are 22n possible seed pairs, and
thus at most 22n possible strings of length 3n that are of the form PRG(s1) ⊕ PRG(s2).
Since Y is a randomly sampled string of length 3n, each value of Y has a probability 1

23n
.

Thus, given randomly sampled Y , the probability that there exist seeds s1 and s2 such that
PRG(s1)⊕PRG(s2) = Y is at most 22n

23n
= 2−n, which is negligible. We conclude that there

is a negligible probability that Alice can cheat.

5 Pseudo-random Functions

5.1 What are PRFs?

Pseudo-random functions (PRFs) are an extension upon PRGs. PRFs take in an input
string and output a string that appears to be truly random. Unlike a PRG which guarantees
a single output appears to be random given a single random input seed, a PRF can be
queried multiple times and all the outputs appear to be random. As PRFs are “functions,”
given the same input the output will be the same every time. Consider an example where
we want a PRG that maps n bits to 2n bits and we want the final bit. This would be very
inefficient since the entire sequence would need to be generated. Instead, we could have
each index have its own independent random bit, which is the general idea of PRFs.

PRFs consist of families of functions. A single function is deterministic so it would not
be able to appear random. In order to be psuedo-random, it should be indistinguishable
to determine if an output comes from a pseudo-random function family compared to the
uniform distribution of functions.

Definition 11 A function family {F} is psuedo-random if it is indistinguishable from the
uniform distribution of functions {U}. That is, if for all constants c and for all algorithms
A ∈ PPT , ∃N such that ∀n > N :∣∣∣Pr(A{F}(1n) = 1)− Pr(A{U}(1n) = 1)

∣∣∣ < 1

nc
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Figure 4: PRF created using a PRG

5.2 Creating a PRF

One way to construct a pseudo-random function family is by using a PRG. Consider a
PRG : {0, 1}n → {0, 1}2n which maps a seed of length n to an output of length 2n. We can
create a family of 2n functions which is indexed by the seed.

We will create a binary tree. First, take the seed s and compute the output PRG(s) = s0, s1
where s0 is the first n bits of the output and s1 is the latter n bits. Then, use these new
bits of length n as the new inputs to the PRG. We repeat this pattern recursively for n
total levels. For example, PRG(s0) = s00, s01.

To use this as a PRF, consider an example input of length n = 4: x = 0110. The sequence
of 0s and 1s represents the path to take down the tree. For example, we would first take
the left branch to s0, then right branch to s01, then right, then left.

5.3 Indistinguishability of PRF

Claim 12 The function family created {F} is indistinguishable from the uniform distribu-
tion of functions {U} that transforms n bits to 2n bits.

Proof We will assume a distinguisher exists that can distinguish with probability 1
2 + ϵ

between {F} and {U}. We then show this implies the existence of a distinguisher that
can detect the difference between the output of a PRG and a truly random sequence. This
would be a contradition, meaning such a distinguisher must not exist.

We use a hybrid argument similar to previous examples in lecture. We construct a collection
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of n+1 binary trees. The initial tree is comprised of truly random bits. The next tree has all
levels of truly random bits except the final depth, where we use the PRG to create the nodes.
The process continues until the final tree is the family {F} we originally created. Since a
distinguisher can tell the difference between the initial and final tree with a probability gap
of at least ϵ, then there must be two adjacent trees with a probability gap of at least ϵ/n.
Being able to distinguish between two adjacent trees is equivalent to distinguishing between
a PRG output and truly random bits. Therefore, this is a contradiction.
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