
CS 282A/MATH 209A: Foundations of Cryptography © Prof. Rafail Ostrovsky

Lecture 3

Lecture date: January 17, 2024 Scribes: Turan Vural, Rashmi Raghu

1 Hard-Core Predicate Bits

1.1 Introduction

In this lecture our goal is to discuss Hard-Core Bits and to draw conclusions from defini-
tions presented along the way. Hard-Core Bits were defined by Blum and Micali in 1982.
Informally, a Hard-Core Bit B(·) of a one-way function f(·) is a bit which is almost (i.e.,
polynomially) as hard to compute as it is to invert f . Blum and Micali showed that a
particular number theoretic function (which is believed to be one-way) has a Hard-Core
Bit. It was later shown that all (padded) one-way functions have a Hard-Core Bit. We
conclude by presenting this proof (due to Goldreich and Levin 1989).

Motivating example: Consider the problem of gambling on the outcome of a random coin
flip with an adversary over a telephone line. If you bet on heads and allow the adversary to
flip the coin and then inform you of the outcome, he may cheat and say tails without even
bothering to flip the coin. Now suppose that after losing quite a bit of money, you decide
to play a more sophisticated game in which both you and the adversary select a random
bit, and you win if the XOR of the two bits is 1. Unfortunately, it is still unsafe to transmit
your random bit in the clear to an untrustworthy adversary, for your adversary can always
cheat by claiming that it selected the same bit.

To keep from being swindled further, you decide on the following commitment protocol
to play the game described above fairly. You begin by sending the adversary your bit in
a locked safe, then the adversary sends you its bit in the clear, and finally, you send the
adversary the combination to the safe. Both of you then compute the XOR of the two bits,
certain that the other party had no unfair advantage playing the game. We use this analogy
to motivate the idea that it may be possible to send a commitment of a secret bit to an
adversary without revealing any information as to the value of that bit. Our objective is to
develop such a legitimate commitment protocol based on one-way functions.

Assume that we have a one-way function. One (unfair) strategy would be to commit to b by
sending b⊕ x3 with f(x), where x3 is the third bit of x. The flaw with this strategy is that
the player can cheat, since f(x) might not have unique inverses. In particular, suppose f(x)
has inverses x1 and x2 such that the third bit of x1 and x2 differ. Then once the adversary
presents its random bit in the clear, the player can choose to transmit either x1 or x2 to

3-1

the adversary, and clearly will choose to transmit the one which results in a payoff.

What if we assume much more, i.e., that we have a 1-1, length-preserving one-way function?
The sender can no longer cheat in the manner described above, but the receiver may still
be able to cheat. Just because f(x) is hard to invert does not necessarily mean that any
individual bit of f(x) is hard to invert. As an example, suppose we have a one-way function
f(x) and another function g(x) = g(b1, b2, b3, x4, x5, . . . , xn) = b1b2b3f(x4, x5, . . . , xn). Now
since f is one-way, g is also one-way, yet, given g(x), the three highest-order bits of x are
simple to compute.

1.2 Coin Flipping using Bit Commitment Protocol

Details:

1. Alice flips r0 and locks the result in a safe deposit box.

2. The locked safe deposit box with r0 inside is given to Bob.

3. Bob, in turn, flips r2 in the open and sends the result to Alice.

4. Alice then sends the deposit box combination for Bob to open the box containing the
outcome of r0.

5. Alice and Bob then exclusive-or the two flips r0 and r2 (i.e., coin = r0 ⊕ r2).

This example illustrates the use of what is called a Bit Commitment (BC) Protocol. It is
the idea where Alice commits a bit and sends it to Bob without revealing the value of the
bit. There are two properties that we wish to have in a BC Protocol:

(1) Given the ‘box’, Bob cannot predict what is ‘in it’ with probability ≥ 1
2 + a negligible

amount.

(2) After committing, Alice cannot change her mind about what is in the ‘box’.

This exchange is known as the Commit Phase, where two events take place: hiding and
binding. Alice places the outcome of r0 in the safe deposit box is the hiding event. Hiding
provides that Bob cannot predict the outcome of r0 with probability greater than 1

2 + ε,
where ε is negligible. Putting the bit in the safe deposit box and sending it to Bob is the
binding event. Once Alice commits to the contents of the safe deposit box, she cannot
change her mind. The Commit Phase is followed by the De-commit Phase in which Alice
sends the deposit box combination to Bob.

Intuitively, we now see that we need to somehow ‘commit’ the coin flip that Alice initially
sends to Bob (i.e., find an electronic equivalent of the deposit box). As discussed before, a

3-2

function that is one-way and 1-1 can still reveal a large part of its input. Instead, we look
for some bit of information that is hard to compute. If we can find this bit b, Then we can
use it to ‘commit’ Alice’s coin flip (i.e., b⊕ r0). This bit b is what we call a Hard-Core Bit,
and we discuss it thoroughly in the next section.

Figure 1: Alice and Bob wish to jointly flip an unbiased coin. Concluding with both
parties being able to compute the coin, r0 ⊕ r2.

3-3

1.3 Definition of a Hard core bit

These examples motivate the following definition of a Hard-Core Bit due to Blum and
Micali. Intuitively, a Hard-Core Bit is a bit associated with a one-way function which is as
hard to determine as is inverting the one-way function.

Definition 1 (One-Way Function) A function f is said to be a one-way function if:

Pr
w,c

[x← Un, A← PPT, Aw(f(x)) ⊆ f−1(f(x))] <
1

|nc|

Such that ∀c, ∀A ∈ PPT, ∃Nc A ∧ |x| > Nc. Here x is the input, w is a coin flip and
c is a constant.

Aw denotes the Adversary. The one-way function asserts that the probability of the Adver-
sary (A) successfully inverting the function has a very low confidence, and it falls into the
set of negligible functions.

Definition 2 (Hard-Core Predicate) A boolean predicate p can be called a Hard-Core
Predicate Bit if:

Pr
w,c

[x← Un, A← PPT, Aw(f(x)) = ⟨x, p⟩] <
1

2
+

1

|nc|

Such that x is the input, |x| = n, and probability is taken over x and coin-flips ω of A and
c is a constant.
⟨x, p⟩ is a dot product defined as

∑
xi · pi mod 2.

Informally, B(x) is easy (in probabilistic polytime) to compute given x, while being hard
to guess given f(x).

1.4 Does the existence of a Hard-Core Bit b for a function f(x) imply
that f is a one-way function?

We note first that the existence of a Hard-Core Bit for f does not necessarily imply that
the corresponding one-way function is hard. As an example, the almost-identity function
I(b, x) = x has a Hard-Core Bit b but is not hard to invert in the sense that we have defined
in previous lectures. However, if no information is lost by the function f , then the existence
of a Hard-Core Bit guarantees the existence of a one-way function. We prove a somewhat
weaker theorem below.

3-4

Figure 2: Hard-Core Predicate Bit

Figure 3: Relationship between a one-way function and a Hard-Core Bit

3-5

Theorem 3 If f is a permutation which has a Hard-Core Bit, then f is a one-way function.

Proof Idea The theorem states that every one-way function has a Hard-Core Bit. As-
sume that this Bit is not ‘Hard-Core’. Thus we have an algorithm that can give ⟨x, p⟩.
Then, we should be able to invert f , which means that f is not a one-way function, which
is a contradiction. Hence, we have a Hard-Core Bit.

Proof Attempt We have an algorithm A, which for infinitely many input lengths, and
any c, A can predict ⟨x, p⟩ with probability greater than 50%.

Feed to A a random f(x), random p, and coin flip w. A outputs ⟨x, p⟩ with more than
probability 50% and 1− ⟨x, p⟩ with probability less than 50%.

Our job is to find x. Since A runs in polynomial time, you feed at random x, w and p. For
some x it outputs yes more than half of the time and no less than half of the time.

We want to pick x such that for some fraction of all x, x from this fraction, A predicts
⟨x, p⟩ with probability 50% + ε, better than 50%.

Proof

Assume f is not one-way. Then there exists a good inverter for f which correctly computes
inverses with probability q > ε(n), where probability is taken over x and coin-flips of A.
The predictor for the Hard-Core Bit B first attempts to invert f using this good inversion
strategy. If it succeeds in inverting f , it knows x, and can compute B(x) in polynomial
time. Otherwise, with probability 1− q, it fails to invert f , and flips a coin as its guess for
B(x). The predictor predicts B correctly with probability

q · 1 + (1− q) · 1
2
=

1

2
+

q

2
≥ 1

2
+ ε(n)

Therefore, f does not have a Hard-Core Bit, proving the contra-positive.

3-6

2 Goldreich-Levin Hard-Core Predicate(1989)

This theorem, First proved in 1989 by Goldreich and Levin, then simplified by Venkatesan
and Rackoff says that if f(x) is a strong one-way function, then parity of a random subset
of bits of x is a Hard-Core Bit.

Theorem 4 If f is a one-way function defined f : {0, 1}n → {0, 1}n, and if p is a Hard-
Core Bit, then ⟨x, p⟩, the dot product between them, is as hard to predict as it is to invert the
function, f . In other words, Let f1 be a strong one-way function. Let f2(x, p) ≡ (f1(x), p),
where |x| = |p| = n. Then

B(x, p) ≡
n∑

i=1

xipi(mod 2)

is a Hard-Core Bit for f2.

Observation 5 If Hard-Core Bits exist, then a one-way function exists.

Notice that a random subset is chosen by choosing p at random. The Hard-Core Bit of x
is simply the parity of a subset of bits of x, where the subset corresponds to all bits of x
where corresponding bits of p are set to one.

Sketch of Proof

The proof that B(x, p) is a Hard-Core Bit will be by contradiction. We begin by assuming
that B(x, p) is not a Hard-Core Bit for f2. That is:

B(·, ·) is not Hard-Core: ∃AB ∈ PPT,∃c such that for infinitely many n,

Pr
x,p,ω

[AB(f2(x, p)) = B(x, p)] >
1

2
+

1

nc
≡ 1

2
+ ε(n)

where AB is probabilistic poly-time, and probability is taken over x, p, and coins ω of AB.

We want to show that we can invert f2 with noticeable probability, proving that f2 (and
likewise f1) is not a strong one-way function, i.e.:

f2 is not a strong one-way function: ∃Af2 ∈ PPT, ∃c such that for infinitely many n :

Pr
x,p,ω

[Af2 inverts f2(x, p)] >
1

nc

where Af2 is probabilistic poly-time, and probability is taken over x, p, and coins of Af2 .

We will show how to construct Af2 using AB as a subroutine.

3-7

2.1 Definitions

Definition 6 (Pairwise independence) A set of random variables X1, . . . , Xn are pair-
wise independent if ∀i ̸= j and ∀a, b:

Pr{Xi, Xj}[Xi = a ∧Xj = b] = Pr
Xi

[Xi = a] · Pr
Xj

[Xj = b]

As an example of pairwise independence, consider the distribution of three coins, taken
uniformly from: {HHH, HTT, THT, TTH}. It is easy to check that given the outcome of
any one of the three coins, the outcome of any other (of the two remaining) coins is still
uniformly distributed. Notice, however, that the number of sample points is small (only 4).
On the other hand, for total (i.e., three-wise) independence, we need all 8 combinations.

In other words, If we define n random variables, the probability between any two random
variables is uniform.

Let us try to understand pairwise independence with an example. Let’s start by trying to
construct a pairwise independent set for an array that contains 3 elements. We just need
two random bits r1 and r2, and we can have a pairwise independent setup by taking r1, r2,
and XOR(r1, r2) as the third bit. This makes the array pairwise independent.

If we were to do it for an array of size n, then we could have a table that stores log(n)
random bits. You write down the addresses from 1 to n. We take a random string of length
log(n). In position i, we do the dot product of ⟨R, address⟩, and this can generate pairwise
independence.

If the length of the array is n3, then the random bits required would be 3 log n.

Definition 7 (Chernoff Bound) Let x1, x2, . . . , xn be a set of independent random vari-
ables with identical probability distribution. Let X =

∑
xi and let δ < 1. Then the proba-

bility of X exceeding (1 + δ)E(x) is given by:

P [X > (1 + δ)E(x)] <
1

2e−δ2n/2
(1)

Here E(x) represents the expectation of X. The chances that the sum of the random vari-
ables deviates from the expectation by δ drop exponentially faster in δ. With an increase in
the number of experiments, the probability of error decreases exponentially as a function of
δ.

Definition 8 (Chebyshev Bound) Let x1, x2, . . . , xn be a set of pairwise independent
0/1 random variables with a common probability 0 < p < 1. Let X =

∑
xi and let δ < 1.

3-8

Then the probability of X exceeding (1 + δ)E(x) is bounded by:

P [X > (1 + δ)E(x)] ≤ 1

4δ2n
(2)

Here E(x) represents the expectation of X. With an increase in the number of experiments,
the probability of error drops linearly. For the error to drop to 1/million, you would need
to perform a million experiments.

Notice that as a function of m, the error probability in the Chernoff bound drops exponen-
tially fast. In the case of pairwise independence, we have an analogous Chebyshev bound.
Like the Chernoff bound, the Chebyshev bound states that a sum of identically distributed
0/1 random variables deviates far from its mean with low probability, which decreases with
the number of trials (i.e., m). Unlike the Chernoff bound, in the Chebyshev bound, the
trials need only be pairwise independent, but the probability drops off only polynomially
(as opposed to exponentially) with respect to the number of trials.

Definition 9 (Union Bound) If we have 2 events A and B (need not be independent),
the probability of A and B

P [A ∪B] ≤ P [A] + P [B]

Observation 10 It is easy to see that if we flip the ith bit of p, take its inner product with
x, and XOR the result with the original correctly computed hard-core bit, we will recover the
ith bit of x. That is, < p · x > ⊕ < pi · x >= ith bit of x.

Observation 11 It is easy to see that if we pick two bits b0, b1 at random, the distribution
on three bits (b1, b2, b1 ⊕ b2) is pair-wise independent. (That is, informally speaking, if an
adversary looks at any two of these three bits, they look truly random).

3-9

Figure 4: Behavior of the adversary in the somewhat easy proof

Proof Attempt

To motivate the direction we will be heading for in the full proof, we first consider two
scenarios in which the adversary on input f1(x) and p can guess B(x, p) with probability
much greater than a half.

In the following two warmup proofs, we use the following notation to (hopefully) clarify the
presentation of the results. Given a string x, we use xi to denote the string x with the ith
bit flipped. We use array notation, x[j], to denote the jth bit of x. Also, when referring to
a string in the set of strings P , we use pk to denote the kth string in the set.

The Super-Easy Proof: Suppose the adversary AB is able to guess the Hard-Core Bit
B(x, p) given f2(x, p) with probability 1. Then AB can compute x bit-by-bit in the following
manner. To compute x[i], the ith bit of x, choose a random string p, and construct pi. Since
the adversary can compute Hard-Core Bits with certainty, it can compute b1 = B(x, p) and
b2 = B(x, pi). By a simple case analysis, x[i] = b1⊕ b2. After n iterations of this procedure
(i.e., separately for each bit of x), we have the entire string x.

The Somewhat Easy Proof:

Assume the input x belongs to a subset GOOD that always causes the algorithm
A(f(x), w, p) to result in an output ⟨x, p⟩. Let the probability of this event be 3

4 + ε.
The probability of the result being 1− ⟨x, p⟩ would be 1

4 − ε.

Assume our goal is to find the 3rd bit fX . Start with:

Provide A with w,R. A calculates ⟨R, x⟩ with probability 3
4 + ε. Let this be b1. Provide A

with w,R′. A calculates ⟨R′, x⟩ with probability 3
4 + ε. Let this be b2.

3-10

XOR(b1, b2) = 3rd bit (if A tells the truth for both R and R′)

Now, calculating the probabilities of A never lying for the above scenario:

E1 = Tells truth first time

E2 = Tells truth second time

Pr[E1 ∧ E2] = 1− Pr[¬E1 ∨ ¬E2]

≥ 1−
(
1

4
− ε

)
+

(
3

4
+ ε

)
≥ 1

2
+ 2ε

What does this substantiate? The algorithm A has a high probability of truth-telling for
both R and R′, and it holds with confidence greater than 1

2 + 2ε.

3-11

2.2 One-way Functions Have Hard-Core Bits: The Full Proof

Now that we have obtained some insight as to how using a predictor of a Hard-Core Bit
can help us to invert, we are ready to tackle the full proof. Therefore, we now assume
that we are given an algorithm AB which can compute the Hard-Core Bit with probability
> 1

2 + ε(n) (over x, p, and its coin-flips) and show an algorithm Af (which uses AB as a
black-box) to invert f with noticeable probability.

The main idea of the proof is as follows: from the somewhat easy proof, it is clear that we
cannot use our predictor twice on the same random string p. However, if for a random p
we guess correctly an answer to B(x, p) = b1, we can get the i-th bit of x with probability
1
2 + ε(n) by asking AB to compute B(x, pi) = b2 only once for this (p, pi) pair. So if we
guess polynomially many B(x, pj) = bj correctly for different random pj ’s we can do it.
But we can only guess (with non-negligible probability) a logarithmic number of totally
independent bits. However, as we will see, we can guess (with non-negligible probability) a
polynomial number of pairwise independent bits, and hence can do it. Now we go into the
details.

Eliminating x from Probabilities: In the somewhat easy proof, we assumed that the
predictor AB had > 3

4 + ε(n) chances for all x. But our AB does not have such a guarantee.
Our AB guarantees only 1

2 + ε(n) success probability over all x and p and its coins. From
this, we will conclude that there is a sufficiently “large” fraction of x such that we will still
have a > 1

2 + ε(n)
2 guarantee (only over the choice of p and coins). We will try to invert

f only on this fraction of x’s. Thus, we begin by formalizing the notion of a good x and
restrict our attention to adversaries which have a reasonable chance of inverting f2(x, p)
only on good x.

Figure 5: Behavior of the adversary in the full proof

Claim 12 At least ε
2 of x is good. In other words: Suppose p has a bias of 1

n2 , then the
probability that A predicts with 1

2 +
1

2n2 . For any x in this good set, A predicts with 1
2 +

1
2n2 .

We would just need to concentrate on this set n.

3-12

Formal Proof:

Suppose not. This can be proven by considering the conditional probability of x.

Pp,w,x[Aw(f(x)) = ⟨x, p⟩] ≤

Pp,w,x[Aw(f(x)) = ⟨x, p⟩|x ∈ good] · P [x ∈ good]+

Pp,w,x[Aw(f(x)) = ⟨x, p⟩|x /∈ good] · P [x /∈ good]

≤ 1 · ε
2
+

(
1

2
+

ε

2

)
· 1

≤ 1

2
+ ε

This is a contradiction. Therefore, the claim holds, and at least ε
2 of x is good.

3-13

Figure 6: Behavior of Adversary when x ∈ GOOD

2.3 Overall Strategy

Consider an adversary which attempts to invert f(x) only on the set of good x and suc-
ceeds with probability > 1

2 on this set. Such an adversary succeeds in inverting f(x) with

total probability ≥ ε(n)
4 , which is non-negligible, thereby ensuring that f is not a one-way

function. This is exactly what we are going to do.

Our next question is, for good x, with what probability does the adversary need to guess
each bit x[j] of x correctly to ensure that the entire x string is guessed correctly with
probability > 1

2 . If the adversary computes each x[j] correctly with probability 1 − γ,
then we can upper bound the probability that the adversary’s guess for x is incorrect by
employing the Union Bound:

Pr
ω
[Af1(f1(x)) gets some bit of x wrong] ≤

n∑
i=1

Pr
ω
[Af1(f1(x)) gets ith bit wrong] ≤ nγ

where ω are coin-flips of Af . Setting γ < 1
2n guarantees that the probability that some

bit of x is wrong is less than 1
2 , or equivalently, ensures that Af1 ’s guess is correct with

probability > 1
2 . That is, if Af can get each individual bit of x with probability greater

than (1 − 1
2n), then we can use the same procedure to get all bits of x with probability

greater than 1
2 even if our method of getting different bits of x is not independent!

2.4 Using Pairwise Independent p’s

Our next goal is to devise a strategy for the adversary to guess each bit x[j] with proba-
bility at least 1 − 1

2n . Again, we begin by making an assumption which seems difficult to
achieve, prove the result given the far-fetched assumption, and then show how to derive the
assumption.

Lemma 13 Suppose we are given a collection of m ≡ n
22ε(n)2 pairwise independent

p1, . . . , pm, where 1 ≤ i ≤ m, |pi| = n, and every pi is uniformly distributed. Moreover,

3-14

suppose that for every i, we are given a bi satisfying x · pi = bi. Then, for good x, we can
compute x[j] correctly with probability ≥ 1− 1

2n in polynomial time.

Proof: The adversary employs the following poly-time algorithm.

1. For each i ∈ 1, . . . ,m, construct pij by flipping the jth bit of pi.

2. Compute bij = x · pij by asking AB.

3. Derive a guess for x[j] as in the “somewhat easy” proof: gi = bij ⊕ bi.

4. Take the majority answer of all guesses gi as the guess for x[j].

We are interested in bounding the probability that the majority of our guesses were wrong,
in which case our guess for x[j] is also wrong. Define yi = 1 if gi was incorrect and yi = 0
otherwise, and let Ym =

∑m
i=1 yi. Using Chebyshev:

Pr
(
Ym >

m

2

)
= Pr

(
Ym −mp >

m

2
−mp

)
≤ Pr

(
|Ym −mp| > m

2
−mp

)
≤ 1

4
[(

1
2 − p

)2
m
]

(Chebyshev)

≤ 1

4ε(n)2m

Substituting in for m = n
2ε(n)2

ensures that the probability that we guess incorrectly x[j]

(i.e., that Pr[Ym > m
2]) is at most 1

2n , proving the claim.

Lemma 14 If we are given uniformly distributed completely independent p1, . . . , pl for l ≡
⌊log(m + 1)⌋ together with b1, . . . , bl satisfying B(x, pi) = bi, then we can construct in
polynomial time a pairwise independent uniformly distributed p1, . . . , pm, where m ≡ n

2ε(n)2
,

sample of correct equations of the form B(x, pi) = bi.

Proof: The proof hinges on the following fact, whose proof we omit because it is a simple
case analysis.

Fact 15 Given correct equations x · p1 = b1 and x · p2 = b2, then x · (p1 ⊕ p2) = (b1 ⊕ b2).

It is easy to see by induction that this fact extends to the case in which there are arbitrarily
many bi and pi. Therefore, we can generate a large set of new, valid equations by repeatedly
choosing an arbitrary subset of the pi, XOR them together; XOR the corresponding bi
together to form a new equation of the form, for example, x · p1,3,5,7 = b1,3,5,7. Since there
are 2l−1 non-empty subsets of a set of size l, by choosing all possible subsets, the new set is of
polynomial size 2log l = m, and each new equation is poly-time constructible. Furthermore,
if we look at the symmetric difference of two different subsets, they are pairwise independent,
so the entire set of new equations is pairwise independent.

3-15

2.5 Putting it all together

We now have all the machinery to provide a construction for inverting f1(x) with noticeable
probability given a predictor AB for predicting B(x, p) with probability > 1

2 + ε(n). Here
is the algorithm to invert f1.

Algorithm Af1(y = f1(x)):

Step 1: Pick a set P ≡ {p1, . . . , pl} uniformly at random, where |x| = |pi| = n and

l ≡ ⌈log
(

n
2ε(n)2

+ 1
)
⌉.

Step 2: Compute pairwise independent P̂ ≡ {p̂1, . . . , p̂m} where m ≡ 2l − 1 and P̂ is
computed by taking XOR of all possible non-empty subsets of P .

Step 3: For all pi ∈ P choose bits b1, . . . , bl randomly.

Step 3.1: [Assume that for every pi ∈ P , (1 ≤ i ≤ l), B(x, pi) = bi] From P , and
b1, . . . , bl compute for every p̂k ∈ P̂ bit b̂k, where b̂k are computed by taking XOR of the bi’s
corresponding to pi ∈ P used for computing p̂k, and where b̂k ≡ B(x, p̂k) for all 1 ≤ k ≤ m.

Step 3.2: For j from 1 to n do: [compute all bits x[j] of x]
Step 3.2.1: For every p̂k ∈ P̂ , where 1 ≤ k ≤ m, ask AB to predict ck ≡ B(x, p̂k). Let
bp̂k ≡ ck ⊕ bk.

Step 3.2.2: Define x[j] as the majority of b̂p̂k from step 3.2.1.

Step 3.3: Check if for z ≡ (x[1], . . . , x[n]) after step 3.2, f1(z) = y. If so, return z,
otherwise output fail.

The adversary randomly selects a set of l strings of length n to form a set P . It then
iterates through all possible completions x · pi = bi, of which there are only 2log l = m. For
each incorrect completion, the adversary will perform a polynomial amount of useless work
which we are not interested in; we focus on the work performed on the correct completion
of the set of equations (which we can check in step 3.3). By Lemma 5.10, since the set
of l equations is totally independent, we can construct a pairwise independent set of m
equations which are also correct (step 3.1). Now from Lemma 5.9, this set of m equations
suffices to invert f(x) if x is good with probability > 1

2 . Early on, we noticed that the
existence of a probabilistic poly-time Af1 which succeeds in inverting f1(x) for good x

with probability > 1
2 proves that we can invert f with probability greater than ε(n)

4 , since

good x occurs with probability greater than ε(n)
2 . But if we can invert f1 with probability

greater than ε(n)
4 , f1 is not a strong one-way function. This completes the proof of the

contrapositive, so we have shown that every one-way function has a Hard-Core Bit.

Remark This process allows for efficient extraction of information about x using

3-16

the algorithm A with a high degree of confidence.

Instead of searching through all possible 2l bit strings b1, . . . , bl in step 3, we can just pick
at random b1, . . . , bl and try it only once. We guessed correctly with probability 1

2l
= 1

poly ,

hence we will still invert f1 on good x with 1
poly probability.

This is used in coding theory (list decoding), and it is known that we can reconstruct 49%
of the bits from 51% of the remaining bits by using this.

Can the Hard-Core Predicate be Deterministic?
For certain specific functions, such as those in number theory, Hard-Core Bits could be
deterministic. However, when considering any one-way function, randomized Hard-Core
Bits are still applicable in this theorem.

3-17

