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1 Introduction

1.1 Why Polytime?

It is easy to see that while n1000 grows asymptotically slower than 2log log logn (i.e. poly-
nomial grows asymptotically slower than superpolynomial), 2log log logn is faster than n1000

for all practical purposes. One must then ask why computer scientists primarily concern
themselves with polytime algorithms. There are two such key reasons:

1. Polytime Algorithms are Closed Under Composition: A polytime algorithm
calling another polytime algorithm is overall still polytime.

2. Most Polytime Algorithms Involve Small Polynomials: n1000 may be ex-
tremely slow, but it is an incredibly unrealistic runtime to ever encounter. Most
commonly, polynomial runtimes peak at around n7.

1.2 Types of Probabilistic Polynomial Time (PPT) Algorithms

There are two main types of PPT algorithms, called Monte Carlo and Las Vegas. Both
are important to the study of cryptography.

• Definition 1 (Monte Carlo) A Monte Carlo algorithm is a type of BPP algorithm
that can be bounded to run in PPT, such as O(n3).

• Definition 2 (Las Vegas) A Las Vegas algorithm is a type of PPT algorithm that
can be expected to run in polynomial time in the average case, but not in the worst
case.

One example of this would be an algorithm that flips coins until a heads is flipped.
In expectation, such an algorithm ends after a few attempts, but in the worst case,
it could continue exponentially or infinitely. Another example would be an algorithm
that runs 2n times with 1

2n probability and runs n times with 1 − 1
2n probability.

This would still be a Las Vegas PPT algorithm, despite the unlucky case of possible
exponential runtime.
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1.3 Negligible Functions

If you have an event that occurs with probability 1
n3 , then intuitively, making n3 attempts

is expected to yield at least one instance of the event. Such an event occurs in ”polynomial
time”, and thus the probability of it occurring cannot be considered negligible. As such,
for cryptography, encryptions that cannot be cracked in polynomial time are desirable.

Definition 3 (Negligible) A function f(x) is negligible if ∀c,∃Nc s.t. f(x) < 1
nc for all

n = |x| ≥ Nc.

2 One-Way Functions

2.1 Idea of a One-Way Function

Definition 4 (One-Way Function Conceptually) A function f is a one-way func-
tion if computing x into y using f is ”easy” but computing y back into x is ”hard”. In this
situation, ”hard” means hard for all polytime algorithms.

Examples of One-Way Functions

• Take the case of multiplying primes versus factoring into primes. For two primes p
and q, it is easy to calculate p ∗ q = n. However, given only n which is guaranteed
to be a product of primes, it is hard to find p and q. Shor’s algorithm allows for
potentially efficient prime factorization, but requires quantum computers past our
current technology to be practical. Prime factoring is not NP-Complete.

• Suppose you have Zp, g, x → gx, g, p, find x. This is called the discrete log problem,
very hard (also cracked by Shor’s).

While both of these are good examples of one-way functions, instead of equating a one-way
function we create to a specific hard problem, we want to generalize the idea of a one-way
function. This way, if one hard problem is solved, there are still others that can be used
to guarantee a one-way function is hard. Additionally, generalizing allows us to relax the
amount of number theory needed to prove a problem is hard.

2.2 ”Hard” for One-Way Functions

What does it mean for a function to be ”hard”, in regards to computing it’s inverse? To
see this, take the following situation with Challenger (C) and Adversary (A):
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1. C picks $x, where $x means picking x at random.

2. C computes y = f(x), and sends y to A.

3. A, who uses PPT algorithms only, computes some x′.

In this situation, A ”wins” if f(x′) = y = f(x). In such a case, computing the inverse of
a one-way function is ”hard” if the probability of A finding x′ using its PPT algorithms is
negligible.

Conceptually, with x of short length, A could brute-force finding a solution (remember, f is
publicly known). Thus, inverting one-way functions should be difficult for larger inputs, and
as size increases, the probability of inversion should asymptotically approach negligibility
(as in, falls faster than any polynomial).

2.3 Explicitly Defining One-Way Functions

Definition 5 (One-Way Function Formally) A function f is a one-way function if

1. f is poly-time computable.

2. ∀c ∀A ∈ PPT, ∃Nc s.t. Prx,w[x ← UNc ; y ← f(x); ”Aw(y) inverts f”] < 1
|x|c where w

is the coin flips of A, and x is uniformly randomly chosen but has length Nc.

In English: For all polynomials c and PPT algorithms A, there exists Nc large enough
such that for w arbitrary coinflips of A, an arbitrary uniformly random x of length
Nc, and y = f(x), the probability of Aw(y) inverting f negligible (< 1

|x|c ).

”Aw(y) inverts f” means the same thing as Aw(f(x)) ∈ f−1(f(x)), as in A finds a
something in the preimage.

3. The length of input |x| and output y of f must be polynomially related.

For the second principle, suppose a company such as Google uses 40-bit strings for its
encryption. In such a case, an adversary could build a table of size 240 for all 40-bit
iterations of x and precompute all y = f(x). While this would technically be a polytime
algorithm, one would also expect that it takes up an exorbitant amount of space; however,
it is a polytime algorithm nonetheless. In such a case, one must ask how such an attack is
protected against. One such way is to wait for the adversary to pick c and A, after which
Nc is cranked up such that their algorithm becomes ineffectual.

For the third principle, the input and output length being polynomially related helps assure
that an adversary that cracks f must do so in polytime This is opposed to an algorithm
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with, say, n input length and log2 n output length being cracked in time n, which would be
polynomial to input length but not output length.

Also for the third principle, while algorithms with fixed output size violate this, for large
enough fixed-length output, such as 2256 options as used by SHA256, such a size is imprac-
tical to tabulate and thus secure enough for current purposes.

3 Commitment Protocols

3.1 Introduction of Commitment Protocol

Definition 6 (Commitment Protocol) A commitment protocol is a cryptographic
protocol that allows a Sender to commit a chosen value (or statement) while keeping it
hidden to the Receiver, and the Receiver has the ability to reveal the committed value later.

Here’s a made up story: suppose you’re divorcing your wife, and she’s in New York, you’re
here in California. You own a car, and you need to decide who keeps it. She proposes
flipping a coin. How do the two of you come up with a system such that both of you trust
the coin toss? We introduce the notion of a commitment protocol.

3.2 Physical and Digital Commitment Protocol

Commitment protocols come in two variety, physical and digital. We will begin by going
over the physical version.

Physical Commitment Protocol

The commitment protocol can be broken down into the commitment and opening phases.

We have Alice(A) and Bob(B).

1. (Commitment Phase) A buys a really expensive safe. She has a password to the safe
that only she knows, and she has a secret S that she sticks inside the safe and locks
it. She then ships it to B.

2. (Opening Phase) Some time later, A sends the combination of the safe to B. Now,
Bob can open the safe and get S.

We need two mathematical properties of this commitment protocol.

2-4



1. (Hiding Property) After the commit phase, B has no knowledge of S

2. (Binding Property) A can open safe only in one unique way exposing S to B.

Digital Commitment Protocol

The digital version also has identical commit and open phase. In addition, the digital
version include a protocol COM that A can stick S into and get COM(S), and there’s a
protocol OPEN that given COM(S) gets back S.

For the car divorce scenario, A flips a coin to get result $b and sends COM(b) to B. B then
flips a coin to get result $r and sends it in the open to A. Then A sends OPEN to B, and
the final result of the coin flip is b⊕ r (⊕ is xor).

However, there’s a bit of a problem since A knows whether she wins or loses right after B
sends r to her (and B has no knowledge of S at this point). If A sees she loses she can just
refuse to send OPEN to B, and say ”Oh bad connection let’s do this tomorrow”. So we add
the restriction that if the connection drops, B wins by default. We can see that if
A can send multiple OPEN functions that change what S comes out to, then she can cheat,
which makes the binding property of the commitment protocol all the more important.

Implementation

Let’s try to build a digital commitment protocol. We assume we have a one-way function,
and we assume that this one-way function is a permutation, as in length preserving and
bijective.

Let f be a length preserving bijective one-way function (i.e. f is a permutation). The
parties agree on some parameter k such that the messages are length k. A picks $x where
|x| = k, computes y = f(x) and sends y to B. Alice also has her coin flip $b, and she needs
to hide b inside x. She needs to make guessing b as difficult as reversing f . This notion is
called a hardcore bit or hardcore predicate in cryptography. Here’s an example that does
not work: use b⊕ x1 where x1 is the first bit of x.

Let’s assume g is a one-way permutation that operates on things of length n − 1 bits,
then define f(x1x2 . . . xn) = x1g(x2 . . . xn). It can be proved that if g is one-way then f is
one-way as well.

Proof Prove that g is one-way then f is one-way as well by contrapositive.

Suppose f is not one-way. Then there exists an inverter for f , call it f−1. Given g(y), we
will invert it using adversary A. We flip a coin $b and give A(b, g(y)) = f−1(b+ g(y)) where
+ is concatenation. QED.
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So f is a one-way permutation, but it leaks the first bit! So that previous way of hiding
the bit is bad. Here’s a way that works. Let the one-way function f take inputs of length
n. Alice picks a random predicate $p where |p| = n. She also has her random $x, and
y = f(x). A sends y and p to B in the commit phase. Then

∑n
i=1 xi · pi mod 2 is a hard

core bit for any f . Intuitively, p selects which bits of x you care about, and then you sum
them mod 2 which is the same as xor. It’s also like a dot product ⟨p, x⟩ considering the
numbers as vectors of bits. What hard core bit means is that given y and p, predicting
⟨p, x⟩ is as hard as inverting f . How does A send her coin toss then? If her coin toss is $b,
then she also sends B the value ⟨p, x⟩ ⊕ b. In the opening phase, A sends B the value of x.

Let’s first have a definition of a hard core bit. A hard-core randomized predicate B(x) is
such that ∀c∀A ∈ PPT, ∃Nc s.t. PRx,w,p[x← UNc ; p← UNc ;A(f(x), p) = ⟨x, p⟩] < 1

2 +
1
Nc

c
,

where w is the randomness of A. Since it’s a single bit, you always have a one half chance
of guessing it, but to get any better than that is not possible.

Proof Here’s some intuition for the proof by contrapositive.

If there exists a predictor that can predict the hardcore bit. Then we use that as a subroutine
to reverse the one-way function, and hence it’s not a one-way function. Suppose we feed
p, f(x), w into A and it outputs ⟨x, o⟩ with some probability higher than one half. Actually
let’s say it’s correct all the time. Then to reverse engineer the value of x, we can let
p = 1000 . . .. Then ⟨x, o⟩ is the first bit. We can do all values of p that only have one bit
that is 1 to reconstruct x. Ok, now we can’t assume it’s correct all the time.

Suppose A gets the right answer 3/4 of the time. Take a truly random p1. Then you get
some prediction b1? = ⟨x, p1⟩. We define another p2 that is exactly p1 except the third bit
is flipped. We feed this into A to get another prediction b2? = ⟨x, p2⟩. Then if b1 and b2
are correct, then x3 = b1⊕ b2. By repeating this experiment a bunch of times we can get it
with good probability. The full proof is next lecture.
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