
CS 282A/MATH 209A: Foundations of Cryptography © Prof. Rafail Ostrovsky

Lecture 13

Lecture date: February 26, 2024 Scribes: Benjamin Gillmore

1 Private information retrieval (PIR)

1.1 Overview

Consider a game with user U and a database DB. The database is, from the theoretical
perspective, just an array of bits from from 1 to {1..m}. What user wants to do is retrieve
location i of the database, the element xi. Furthermore, U doesn’t want the DB to know
location i. This is comparable in concept to oblivious transfer where U wishes to hide which
bit he aims to retrieve.

Definition 1 (Communication Complexity (CC)) Given a protocol between two play-
ers, communication complexity is the worst case number of bits that have to be transferred
to achieve their goal.

What makes PIR non-trivial is that we want the CC of PIR, both from U and DB, to be
strictly less than n. Should this not be the case, consider the trivial case where U asks for
the entire database and does not disclose which bit they are interested in.

It is also a bad solution to say for in addition to i, U will ask for 300 other locations. While
DB doesn’t know which out of the 301 locations is the location U is interested in, the DB
can eliminate some locations that U is not interested in. That is, this approach still reveals
information about i. Given the standard notion of indistinguishably, it should be that for
any location accessed, the DB cannot rule it out. Furthermore, after the communication is
over, the DB’s ability to decide if U is interested in location i or location j is the same.

1.2 Protocol 1

Private information retrieval was introduced in a paper by Chor, Goldreich, Kushileveitz,
Sudan (96). They basically said two things. First they proved that this game is theoretically
impossible with one database. However, if you have two identical databases DB1 and DB2

that cannot communicate, that is that DB1 cannot communicate U ’s interactions with DB2

and likewise DB2 to DB1, then this notion of PIR is possible.

13-1



Consider a database that is n bits, form DB1 and DB2 such that they each form identical
matrices of size

√
n∗√n and cannot collude against U . U wants to know some position i in

the database but since the database has been rearranged, the location U is interested in is
at some new position, say (i, j). The user can pick some random bit vector r of size

√
n and

sends r to DB1. DB1 returns a bit wise exclusive or of all columns where r = 1. Next U
sends DB2 a bit vector rj which is exactly the vector r with the j’th bit flipped. DB2 does
the exact same thing as DB1 and returns to U the exclusive or of the columns referenced
by rj . It is trivial to see that if U takes these two vectors and exclusive or them together
then they receive the entirety of j∗, or the j’th column of the database. U can simply look
at the i’th bit of j∗ to find the element at (i, j). Consider the CC of this protocol, U sends
a vector of size

√
n to both of the databases and the databases each send a vector of size√

n back, which results in a total CC of 4
√
n.

1.3 Matching Vector Family

Note: Please see comment in tex.

A matching vector family are n vectors {v1, v2, ..., vn} and {w1, w2, ..., wn} that have the
following property vi •wi = 0 : ∀i and vi •wj �= 0 : ∀i, j(i �= j) A paper by Bhowmick, Dvir,
and Lovett showed how to construct a matching vector family where the the length of this
vector is of nε. They also proved that if can reduce the size of this vector to poly-logarithmic
then you get a big result. However, this remains a big open question in combinatorics.

1.4 Protocol 2

If you have multiple non-colluding databases can you do better? The answer is yes, sort
of. Suppose you have four identical non-communicating databases DB1, DB2, DB3, DB4

organized as a matrix of size
√
n∗√n just as before. Again, U is interested in some location

(i, j). U sends a random vectors x and y of size
√
n bits to DB1. DB1 searches the database

for locations where DB[i∗, j∗] = 1 : ∀i∗, j∗(xi∗ = xj∗ = 1), exclusive or’s the results together
and returns this single bit sum to U . Next, U repeats this process with DB2 but uses xi
and y where xi is x with the i’th bit flipped. Again, U repeats this process with DB3 but
uses x and yj where yj is y with the j’th bit flipped. Finally, U repeats this process with
DB4 but uses xi and yj . Let the results from each database be s1, s2, s3, s4 and U can now
calculate DB[i, j] = s1 ⊗ s2 ⊗ s3 ⊗ s4.

To illustrate this further consider an index where xi∗ = 1, yj∗ = 1 and i∗ �= i, j∗ �= j.
We know every database will return a sum with this bit included, so U will effectively be
calculating DB1[i

∗, j∗] ⊗ DB2[i
∗, j∗] ⊗ DB3[i

∗, j∗] ⊗ DB4[i
∗, j∗]. Since all databases are

identical, we can infer all the results to be identical, and also know a sum of any even
number of identical elements mod 2 to be 0. So for all rows and columns except for i and

13-2



j, everything appears four times and everything gets cancelled.

In the case of DB2 and DB3, where exclusively either the i’th bit of x or the j’th bit of
y is referenced by U , we can infer that the databases will sum either the inner product of
i∗’th row, and the j’th column or the inner product of i’th row and the j∗’th column in
their respective s, but not the bit at DB[xi, yj ]. Thus, the elements referenced in these
cases are factored into the final sum once here. Finally, the case of DB4 where both row
i and column j are referenced by U , it is trivial to see that the element at DB[xi, yj ] will
be included in the sum s4. Also notice that the inner product of all other bits in the i’th
row, and the j’th column will be summed in s4, these will cancel out the the results from
s2 and s3 and leave U with only the element at index (i, j). As a side note, the i’th bit of
x and the j’th bit of y need not be originally 0, in fact they must be random to hide U ’s
intentions to the database.

Notice, the total CC here is of 8
√
n+4 bits with 8

√
n bits U must transmit and only 4 bits

that U must receive.

1.5 More Dimensions

While this looks like fun in two dimensions, consider a 3 dimensional case. Suppose you have
8 identical non-colluding databases {DB1, DB1, ..., DB8} and random vectors x, y, and z of
length n1/3. Similarly to before, the databases can pack their contents into a 3-dimensional
cube which the the user U can reference with the indices i, j, and k. Again, U creates
vectors x∗, y∗, and z∗ with the i’th, j’th, and k’th bit flipped respectively. U now sends
DB1 (xi, xj , xk) and like before returns the sum mod 2 of the referenced bits. U repeats the
process withDB2 with (xi∗ , yj , zk), DB3 with (xi, yj∗ , zk), DB4 with (xi∗ , yj∗ , zk), DB5 with
(xi, yj , zk∗), DB6 with (xi∗ , yj , zk∗), DB7 with (xi, yj∗ , zk∗), andDB8 with (xi∗ , yj∗ , zk∗). Let
the results from each database be the respective sums {s1, s2, ..., s8}. The claim is that U
can now calculate DB[i, j, k] = s1 ⊗ s2 ⊗ ... ⊗ b8. This can be proven similarly to before
by counting which bits appear an odd number of times and which appear an even number
of times. Notice that the total CC here is 16n1/3 + 8 bits, with U transmitting 16n1/3 bits
and receiving 8 bits.

This seems to be utterly ridiculous because now we need to have to have 8 non-colluding
databases. Chor, Goldreich, Sudan observed that we can actually simulate all 8 databases
with only 2 databases. The idea is as follows U only gives x, y, and z to DB1. Notice
that from before the CC from U to DB1 is unbalanced in that U sends DB1

√
n bits and

DB1 sends U a single bit. So what DB1 does instead is iterate all possible i bit flips (x∗)
of x and return to U the n1/3 inner products of all possible x∗, y, and z. U and DB1 now
repeat this process for all possible j bit flips (y∗) of y and all possible k bit flips (z∗) of z.
U now repeats this process with DB2 with the i’th, j’th, and k’th bit flipped of x, y, and
z respectively.

13-3



Note: Please see comment in tex.

Goldreich, Karloff, Schulman, and Trevisan showed that if you do exclusive or summing,
n1/3 is a lower bound for protocols such as the above, but it turns out if you use more
sophisticated math you can actually go all the way to nε and it is expected that there exists
a poly-logarithmic CC solution for cases with only 2 or 3 databases.

2 Locally Decodable Codes (LDC)

The notion of a locally decodable code is that you don’t have to read the actual code word
of interest, rather one can read just a few locations that are correlated with the code word
to recover its value. Katz and Trevisan observed the following connection between PIR and
LDC. Consider any database PIR uniform random solution, say with two databases, U asks
some question xi to DB1 and some question yj to DB2, as long as the databases do not
compare notes, these questions look completely random, and do not reveal the location U is
interested in. Let’s imagine the following absolutely preposterous error correcting code, lets
enumerate all possible 2n questions for xi from 000...0 to 111...1. Similarly lets do the same
for DB2, enumerate all possible questions for yi. Now we can say that our encoding for x
is this vector of all possible results from the two databases. Consider an adversary that has
the ability to corrupt 1/8’th of the bits in each of the databases. While, the question x that
the U asks to DB1 is uniform random so the probability U is receiving non-corrupted data
is 7/8 from each database individually. Together the probability that U receives corrupted
data is 1/4 so therefore with probability 3/4 U will be getting a correct answer. However,
U need not read the correct code word, they may choose to any other two instances and
recover the location of interest. Thus any PIR scheme where the questions are uniform
random implies LDC. As it turns out LDC implies PIR as well.

3 PIR with Homomorphic Encryption

Imagine that we have probabilistic homomorphic encryption as such E(x)∗E(y) = E(x+y).
There is a single database DB and there is a user U what wants to know location i of the
database. DB will partition the database into blocks of size

√
n and U will send to the

database an encryption of E(0) and E(1) for each block. DB will replace every entry of 0
with E(0) and every entry of 1 with E(1). However, in actuality U lies to DB. U sends
the DB E(0) and E(1) for blocks they are interested in and two E(0)’s for blocks that
they are not interested in. Next, the database homomorphically multiplies every i’th entry
of every block Bi together and returns the result to U . Because U did not tell DB which
Bi they lied about and only told the truth for the Bi they are interested in, DB has no
notion of which Bi is of interest to U . Yet still DB is returning to U an encryption of the

13-4



Bi of interest because DB is unknowingly performing either E(0) ∗ E(0) = E(0 + 0) or
E(0) ∗ E(Bi) = E(0 +Bi).

4 PIR and 1-out-of-N OT

Note: Again, please see latex comments for attribution.

Suppose we have a database DB and a user U . U wants to retrieve an element i without
showing DB which i is being retrieved and DB wants to make sure U gets i and nothing
else. Moni Naor’s idea was to have DB create 2 groupings of log(n) keys of log(n) bits in
length, ki0 and ki1. For each entry, the database will encrypt j’th bit of each entry i with
ki0 if kij = 0 and ki1 if kij = 1. For each of the log(n) key pairs, U now uses 1-out-of-2-OT
to get one key out and selects the address they are interested in. Now the user can play the
standard PIR where all the bits are encrypted using these different combination of keys,
receives the encrypted results, and decrypts.

5 Doubly Efficient PIR

Boneh and Corrigan-Gibbs came up with the notion of Doubly Efficient PIR. Suppose we
have 2 databases DB1, DB2 and a user U in which there is an online phase and an offline
phase. In the online phase, U chooses a random subset of

√
n bits and the DB1 exclusive

or’s the bits, returns this result to the user, and they repeat this process
√
n times. This

can be done efficiently by specifying a seed of a PRF. So U knows
√
n sums of random

subsets of bits. Now in the offline phase, U wants to know location i, he also knows that
location i was part of the sum in the

√
n subsets they asked DB1 for. What U can do is tell

DB2 some of the same random subsets he had told to DB1. DB2 now repeats the process
DB1 did before and returns their sums to U . U and DB2 repeat this process a few times
until U can construct a sum of all subsets he had DB1 sum without including the results
that contained location i. All U must do now is subtract the sum they constructed from
DB2’s result from DB1’s result, or exclusive or them together, to retrieve location i.

13-5


