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1 Round Complexity of MPC

In the context of Multi-Party Computation (MPC), we have explored various approaches
to achieve secure computation. Two discussed methods include:

• OT-Based Approach: involves using a two-party secret sharing mechanism to com-
pute operations gate by gate, providing a secure way for two parties to jointly evaluate
a function.

• BGW (Information-Theoretical) Approach: utilizes a two-party secret sharing
scheme, with considerations for every participant, ensuring information-theoretical
security during multi-party secure function evaluation.

It’s noteworthy that in both cases, the round complexity is determined by the depth of the
circuit, denoted as O(Depth of Circuit).

An important question arises: Can the number of rounds in MPC be effectively reduced?

2 Multi-Party Computation Protocols

2.1 Asynchronous Protocols

One approach involves asynchronous protocols with a message-driven nature. In this sce-
nario, there is no predetermined notion of time. The protocol remains inactive until a
message is transmitted, prompting activity. Parties are essentially ”asleep” until engaged.

2.2 Synchronous Protocols

Synchronous protocols establish a global clock to synchronize participating players. Com-
munication rounds are dictated by the ticks of this clock, introducing a structured timing
mechanism. Typically, all players engage in communication during the first round.
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2.3 Constant Round MPC

For constant round MPC, it’s interesting to note that 4 computational protocol rounds are
both necessary and sufficient. This is denoted as O(c/ log c) rounds.

3 Yao’s Garbled Circuits

Yao’s Garbled Circuits, introduced by Andrew Yao, play a pivotal role in achieving constant
round MPC. Randomized Encoding is a key concept, denoted as (f,R) → f̂ , where f is the
circuit, R is randomness, and f̂ is the ”garbled” version of f .

3.1 Overview

Yao’s garbled circuit technique shows how to evaluate any polynomial time computable
function securely in a constant number of rounds based on computational assumptions. Let
us assume that the parties are A and B with private inputs x and y respectively. Every
polynomial-time computable function f can be represented as a polynomial-size circuit. So
let f have a well-known public circuit C. One of the parties, say B, garbles this circuit and
her own inputs (garbling the input means that it selects two independent random strings for
each input value, one string representing 0 and another representing 1). The garbled circuit
is nothing but a set of tables, one for each gate, explaining how to do the computation for
that gate (explained later).

Once the tables are prepared for each gate, B sends to A all these tables and the garbled
values corresponding to her own inputs. A then executes oblivious transfer with B to obtain
the garbled values for its inputs (i.e., one of the two strings). Now A has both the garbled
circuit and the garbled inputs. The function f can now be computed gate by gate. For each
gate, A uses the table to compute the output values until the final output wires. These
final garbled outputs are sent to B who can then convert these garbled values back to 0/1
values to learn the output.

3.2 Randomized Encoding of Input

Randomized encoding of input, denoted as (x,R) → x̂, is performed such that f(x) = f̂(x̂).
Additionally, the mapping from f to f̂ and x to x̂ is such that for every x, x′ such that
f(x) = f(x′), (f̂ , x̂) ≡ (f̂ , x̂′) (computationally indistinguishable).

For constant-depth circuits, no assumption is necessary. However, for circuits with varying
depths, assumptions like the existence of a one-way function become crucial.
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4 Garbler-Evaluator Interaction

In the Garbler-Evaluator interaction, denoted as Ek(m) → c, the garbler picks two keys:
the ”0” key and the ”1” key. The evaluator will ”know” only one of the two keys for each
wire, corresponding to the wire value.

4.1 Inputs

For the input wire of gate G, the garbler just has to encrypt using one key.

For the key wire of gate E, a 1-2-OT (One-out-of-Two Oblivious Transfer) protocol is
employed.

4.2 Decryption and Information

If the evaluator can only decrypt one row, they have no information. However, if they can
decrypt two rows, due to the AND gate, they can decrypt everything.

k0, k1

z0, z1

w0, w1

Ek0(Ez0(w0))

Ek0(Ez1(w0))

Ek1(Ez0(w0))

Ek1(Ez1(w1))

Garbler

The garbler’s task is to construct a garbled circuit from the original boolean circuit, which
may be composed of logical gates like AND, OR, and NOT. This is achieved by:

1. Generating random keys for each possible input bit, acting as encrypted values.

2. Encrypting the outputs of each gate according to a chosen encryption scheme.

For an AND gate, the garbler prepares a table with encrypted outputs for all possible input
combinations without revealing which keys correspond to the binary values 0 or 1.
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Evaluator

The evaluator is responsible for computing the output of the garbled circuit. They:

1. Receive the garbled circuit and encrypted inputs from the garbler.

2. Decrypt the outputs of each gate using the encrypted input keys provided.

The evaluator performs these operations without learning the actual input values or the
function of the gates, using the encrypted keys to navigate the garbled circuit and obtain
the final output.

Encrypted AND Gate Table

The table for an encrypted AND gate in a garbled circuit might look as follows:

Ek0(Ez0(w0)), Ek0(Ez1(w0)),

Ek1(Ez0(w0)), Ek1(Ez1(w1)).

The evaluator uses these encrypted outputs to decrypt the result of the AND gate operation,
guided by the encrypted input keys, while the table’s permutation prevents any leakage of
information about the inputs or the operations.

4.3 Intel Accelerator and Compiler Construction

Intel Accelerator

Garbling is a fundamental technique in secure multi-party computation and other privacy-
preserving cryptographic protocols. Intel has capitalized on this by integrating AES accel-
eration into their hardware. The AES acceleration feature allows for the execution of AES
encryption in a highly efficient manner. Despite the AES algorithm being implemented in
hardware with 76 thousand gates, Intel’s accelerators can perform AES encryption in just
33 clock cycles.

Compiler Construction using Garblers

With advancements in secure computation, we observe a trend where developers are con-
structing compilers that can handle Yao’s garbled circuits, which can have billions of gates.
These compilers optimize the garbled circuit creation and evaluation process. When the
encryption key k is fixed, the initial loading of the key can be a slow process. However, once
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the key is loaded, the evaluation of the garbled circuit is relatively fast. This is significant
because it allows for the practical execution of complex functions in a secure and private
manner.

5 Proving Information Security

To prove that a construction doesn’t leak information if the construction is secure, we can
follow these steps:

5.1 Version 1

1-2-OT
k′0
k′1
y1

k′y1

· · ·
1-2-OT

kn0
kn1
yn

knyn

G E
f̂

5.2 Version 2

First, give Garbling, then get to choose y after learning the circuit (This is not secure)

G E
f

Garble(f, x)

1-2-OT
k′0
k′1
y1

k′y1

· · · n-times
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In Version 2 of the protocol, the Evaluator (‘E‘) is allowed to choose their input ‘y‘ after
they have learned about the garbled circuit. This ordering is problematic because it could
potentially compromise the security of the computation. Specifically, ‘E‘ can adapt their
input based on the structure or the details of the garbled circuit. This sort of problem can
be solved with adaptive Yao that is not discussed in this lecture.

If you are using Version 1 of the protocol, its security relies on the assumption that the
encryption function used within is secure. This security fundamentally rests on the concept
of the indistinguishability of encryptions, which aligns with the standard notion of semantic
security for encryption schemes. If an adversary, potentially the Evaluator in the protocol,
can distinguish between the evaluations of the garbled circuit on different inputs (x) that
result in the same output, this ability would indicate a vulnerability in the encryption
scheme. Formally, if the encryption scheme is not semantically secure, this vulnerability
could be exploited to compromise the underlying block cipher.

6 Yehuda Lindell and Benny Pinkas

G A
X

f̂ , x̂

indistinguishable

sim A

f̂ , x̂

y

y = f̂(x̂) f̂(x̂) = y

Simulation-based Security:

In this framework, security is assessed through a simulation-based approach. The essence
of this method is to demonstrate that for any potential adversarial strategy within the real
protocol, there exists a corresponding simulator within an ideal model. This simulator is
capable of generating a computational outcome that is indistinguishable from that of the
actual protocol execution. Such indistinguishability guarantees that the protocol does not
divulge more information than would be revealed in the ideal model, where a trusted third
party computes the function.

Changing gate behaviors:

Within the context of garbled circuits, a pivotal innovation is the strategic alteration of
gate encryptions. Specifically, in a standard garbled gate, the evaluator is meant to decrypt
a single row out of four, each corresponding to a different input combination. Our ap-
proach modifies the undecryptable rows—those not aligned with the evaluator’s inputs—by
replacing them with double-encrypted entries, using the single decryptable row as a basis.

This modification predicates on the assumption that adversaries cannot discern between
the original and the altered model. The alterations are confined to the encryptions of keys
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unknown to the adversary, thus preserving the semantic security of the encryption. A breach
in this indistinguishability would imply a compromise in the encryption’s semantic security,
challenging the foundational security assumptions of the protocol.

Conclusion:

By applying this technique gate by gate, we effectively neutralize each gate within the
circuit, rendering them ”duds” that produce a uniform output across all input combinations.
This transformation allows us to assign a specific output y to each key, underpinning the
protocol’s security on the fixed nature of inputs prior to execution. This necessity for
predetermined inputs ensures the viability of our security hybrids, safeguarding against the
potential collapse of the security model in dynamic input scenarios.

7 Beaver-Micali-Rogaway Protocol (BMR Paper)

You can use Yao’s garbled circuit to get a n party constant round protocol. The idea is
instead of a garbler can we use the BGW protocol to act as a constant round garbler. If
you can turn the garbling function into a BGW protocol in constant rounds then the whole
protocol becomes constant round.

Question: Public key encryption seems like a complex gadget. How can we possibly make
the garbler, which includes encryption, do it in constant round?

Idea: In the domain of secure multiparty computation, the core challenge lies in executing
encryption operations efficiently while maintaining the protocol’s constant-round nature.
The essence of this challenge revolves around integrating public key and private key en-
cryption mechanisms through the adept use of Pseudo-Random Generators (PRGs).

The pivotal question is: How can we achieve double encryption and subsequently encode the
output leveraging the functionalities of PRGs, all the while ensuring that the computation
adheres to constant depth circuits?
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P2

P1 Pn

S1

S2

Sn =PRG

S1 =PRG

S2 =PRG

S3 =PRG

Sn =PRG

+

+

+

The global pseudo-random generator (PRG) output that is unpredictable by any individual
player is given by the equation:

n⊕

i=1

PRG(si)

where
⊕

denotes the XOR operation applied to the outputs of the PRG with seeds
s1, s2, . . . , sn. Each player knows only their own seed and corresponding PRG output,
rendering the global PRG output indeterminable by any single player.

Players engage in secret sharing of both their seeds and the outputs of their PRGs. The
XOR operation, which is inherently efficient, combines the shared PRG outputs.

The key for the computation is derived from the combination of all n seeds. This singular
key is then used to encrypt each wire in the garbled circuit, with every wire being associated
with such keys.
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k0, k1 L0, L1

W0, W1

+

PRG K0

PRG L1

w0 XOR K0 XOR L1

Suppose we have the circuit as above. We take PRG K0 and PRG L1 and now we bitwise
XOR the first portion of both PRGs. We write W0 XOR K0 XOR L1. We can use different
sections of the PRG to encrypt other combinations.

8 Downside of Garbled Circuits

Suppose we have an encoding of sorted list. We now want to write a program that does
binary search. How do we do this in a circuit form?

We have to compare every value against the value we have. The circuit will be as big as
the sorted list as we have to multiplex into the correct location.

How do we do random access machines using Yao’s garbled circuits.

8.1 Proposed Idea and Refinement

Memory Encryption

In the proposed scheme, each memory location i is encrypted using a Pseudorandom Func-
tion (PRF). This process generates two distinct keys for encoding the binary values 0 and
1 at that location:

PRF (i, 0) = w0,

PRF (i, 1) = w1,

where w0 and w1 represent the encrypted representations of storing a 0 or a 1 at memory
location i, respectively.
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Access Simulation

During runtime, to simulate the reading from a memory location i, the circuit needs to
determine which of the two potential values (0 or 1) is stored at that location. This is
achieved by generating encrypted keys for both values and using an exclusive or (XOR)
operation with a pre-shared secret key specific to the value and location. The corrected
equations, taking into account the need for a secure mechanism to differentiate between the
two potential values, are:

PRF (i, 0) = w0 ⊕K0 label0,

PRF (i, 1) = w1 ⊕K1 label1,

The circular security assumption is critical in this context because the encryption scheme
(embodied by the PRF) is used to encrypt keys (or values) that could potentially include
the PRF’s own secret seed or related information. Circular security ensures that the scheme
remains secure even if an attacker obtains encrypted versions of the keys or seeds used in
the encryption process itself.
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