
CS 282A/MATH 209A: Foundations of Cryptography © Prof. Rafail Ostrovsky

Lecture 11

Lecture date: February 14, 2024 Scribes: Boran Erol, Eric Gan

1 Equivalence of 1-2-OT and Rabin OT

Definition 1 (1-2 OT) In 1-2 OT, the sender has two messages m0 and m1 and the
receiver has a bit b. The receiver learns mb and learns nothing about the other message,
whereas the sender doesn’t learn anything about b. (b is uniformly random to the sender.)

Definition 2 (Rabin’s OT) The sender has a message m. The receiver learns the mes-
sage with probability 1/2. The sender is oblivious to whether the receiver actually received
the message.

Theorem 3 1-2-OT and Rabin OT are equivalent.

Proof Suppose we have a protocol for 1-2-OT. The sender randomly sets one of m0 or m1

to the message we want to send and sets the other randomly. When running 1-2-OT with
this setup, with probability 1

2 the receiver will get the desired message and with probability
1
2 the receiver will get noise. Afterwards, the sender tells the receiver which channel was
noise in the clear, so that the receiver knows whether they got the actual bit.

(Note that sending a bit ”in the clear” can be implemented using 1-2-OT by setting both
m0 and m1 to the desired bit, so we do not need a separate clear channel).

Suppose we have a protocol for Rabin OT. The sender sends 3n random strings r1, . . . , r3n
using Rabin OT. With high probability the receiver will get between n and 2n bits (by
Chernoff bound). The receiver then chooses two disjoint sets of indices S0, S1 ⊂ {1, . . . , 3n},
each of size n, where one of the sets contains only indices of bits known to the receiver.
Note that if the number of bits the receiver knows is between n and 2n, then it is possible to
have a set of size n where all the corresponding bits are known, and the other set must have
an index of an unknown bit. The sender then calculates m0 +

∑
i∈S0

ri and m1 +
∑

i∈S1
ri

and sends them to the receiver. The receiver can recover the message that corresponds to
the set of known indices, while the other message looks uniformly random since at least one
of the ri in the corresponding set is unknown.

11-1



2 BGW Protocol for Information Theoretic MPC

This protocol was introduced by Ben-Or, Goldwasser and Wigderson in 1988 [BGW88]
[AL11]. We assume the private-channel model. In other words, every pair of players has a
private channel which the other players can’t see.

Let n be the number of players and assume every player has private input xi. The players
would like to calculate f(x1, x2, ..., xn) securely for some f . We’ll assume a static adversary,
i.e. the adversary picks at most t players before the protocol starts and only controls those
specific t players. The BGW protocol has information-theoretic security when t < n

2 for
semi-honest adversaries and t < n

3 for malicious adversaries. We’ll only cover the case for
semi-honest adversaries.

Before we can see the BGW protocol, however, we need to construct a secret sharing scheme.

2.1 Shamir Secret Sharing

Shamir’s secret sharing enables the sharing of a secret s amongst n parties, so that any
subset of t+ 1 or more parties can efficiently reconstruct the secret, and any subset of t or
less parties learn no information whatsoever about the secret.

Let F be a finite field of size greater than n. Let α1, α2, ..., αn be distinct non-zero field
elements. Let s ∈ F. In order to share s, a polynomial p(x) ∈ F[x] of degree t with constant
term s is randomly chosen, and the share of the ith party Pi is set to p(αi). Using Lagrange
interpolation, it is possible to reconstruct p and therefore compute s = p(0) given the value
of p at t + 1 distinct points. (This is why we require the field to have more than n non-
zero elements.) Moreover, given t or less points on the polynomial, p(0) is still uniformly
random.

Notice that Shamir Secret Sharing is additively homomorphic. In other words, given secret
shares of s1 and s2, the parties can individually add respective their shares for s1 and s2
and construct shares for s1 + s2 in a non-interactive fashion. Similarly, it is possible to
multiply the secret s ∈ F by any scalar in F. Therefore, the Shamir Secret Sharing scheme
is linearly homomorphic.

This scheme isn’t secure against fully malicious adversaries. We need verifiable secret shar-
ing against fully malicious adversaries, which we don’t cover.

2.2 The Protocol

We’d like to have two different security guarantees:

11-2



1. The adversary can’t learn any information about another player’s input.

2. The adversary can’t learn a partial result of the computation.

Notice that in the case of fully malicious adversaries, even ensuring the correctness of the
protocol is non-trivial. However, this isn’t an issue for semi-honest adversaries.

The BGW protocol achieves perfect security. In other words, there’s zero probability of the
adversary cheating.

Recall that every function f can be represented as a family of arithmetic circuits with fan-
in of 2. The BGW computes every gate of the Boolean circuit arithmetic in secret-shared
fashion ensuring no subset of the parties with less than t players can reconstruct the result
at every gate. This is a common paradigm in MPC.

At the start of the protocol, every player secret shares their private input. (Notice that the
player itself also gets a share, even though they have xi anyway). Therefore, at the first
level, the input wires are fully-secret shared. We’ll induct on the depth of the circuit and
maintain this inductive invariant (namely, the wires are secret-shared between the players).

Since every arithmetic circuit can be constructed out of addition and multiplication gates,
it suffices to show how to handle these two gates.

The case of addition is clear and follows immediately from the linear homomorphism of the
Shamir Secret Sharing Scheme. Moreover, addition can be done in non-interactive fashion.
More explicitly, adding two polynomials f and g preserves the constant term and produces
a random polynomial of degree t.

Multiplication isn’t as straightforward and the bound t < n
2 is due to multiplication. There-

fore, it’s left to the next subsection. Now, just assume we have a procedure for carrying out
multiplication.

Assuming we have addition and multiplication, we can preserve the inductive invariant and
then compute the circuit in secret-shared fashion. At the end of the protocol, the parties
reveal their respective shares and reconstruct the output.

In order to prove this rigorously, we use the real-ideal paradigm and construct a simulator.
We won’t cover the rigorous proof in lecture.

2.3 Multiplication

Let x and y be the input wires to a multiplication gate. Notice that if these aren’t input
wires, no player might actually know the value of x or y.

As an initial attempt at implementing multiplication, we might ask every player to multiply

11-3



their respective shares for x and y. There are 2 problems with this:

1. The resulting polynomial has degree 2t. Therefore, reconstructing the output with
t+ 1 players isn’t immediately possible.

2. The resulting polynomial is reducible (it is the product of two polynomials of degree
t). In particular, it isn’t random.

Before we solve these two issues, we recall a useful fact from linear algebra about Vander-
monde matrices.

Definition 4 A Vandermonde matrix for α = (α1, α2, ..., αn) is an n × n matrix such
that

⎡
⎢⎢⎣
1 α1 α2

1 ... αn−1
1

1 α2 α2
2 ... αn−1

2

... ... ... ... ...
1 αn α2

n ... αn−1
n

⎤
⎥⎥⎦

Multiplying the Vandermonde matrix by the column vector consisting of coefficients of a
polynomial p(x) ∈ F[x] resulting in the following vector:

⎛
⎜⎜⎝
p(α1)
p(α2)
...

p(αn)

⎞
⎟⎟⎠

Therefore, evaluating a polynomial at n positions reduces to multiplying a vector by a
matrix. Moreover, the Vandermonde matrix is invertible if and only if α1, . . . αn are distinct.

Here’s the protocol for multiplication at a high-level:

1. The players construct a random polynomial p of degree 2t with constant term 0 and
secret share this polynomial among each other.

2. Each player computes the product of their shares xi and yi. Call the product si = xiyi.
Every party adds si to their share of p. As a result, the parties have a polynomial of
degree 2t with constant term xy.

3. The parties reduce the degree of the shared polynomial to t.

11-4



Here’s how the players construct the random polynomial of degree 2t: Every player samples
a a polynomial pi of degree 2t with constant coefficient 0 at random and secret shares
their polynomial. Every party then adds their shares for all polynomials. Since the sum
of random polynomials of degree 2t with constant term 0 is still a random polynomial of
degree 2t with constant term 0, the players construct a random polynomial of degree 2t.

Let’s now devise a method to reduce the degree of a polynomial. We use the following
lemma:

Lemma 5 Let t < n
2 . Then, there exists a constant matrix A ∈ F

n×n such that for every
degree-2t polynomial p(x) = a0 + a1x + ... + a2tx

2t and p̂ = a0 + a1x + ... + atx
t, we have

that for every α of length n,

(p̂(α1, ..., p̂(αn)) = A · (p(α1, ..., p(αn))

Proof Let P be the projection matrix onto the first t coordinates. In other words, P has
a 1 in its first t diagonal entries and all other entries are 0.

Notice that
Vα · p = (p(α1), ..., p(αn)).

Since Vα is invertible, p = V −1
α · (p(α1), ..., p(αn)).

Then, we have that

(p̂(α1), ..., p̂(αn)) = Vα · p̂ = Vα · P · p = Vα · P · V −1
α · (p(α1, ..., p(αn))

Setting A = Vα · P · V −1
α produces the desired result.

Notice that matrix multiplication can be carried out securely since it reduces to addition
and scalar multiplication, which can be done in non-interactive fashion thanks to the linear
homomorphism of Shamir Secret Sharing.

3 Beaver’s Triples

In the BGW protocol, multiplication requires interaction. One solution to this is to gen-
erated correlated randomness en masse before the protocol (called the offline phase) to
minimize the interaction during the protocol (online phase). This makes it so that the
parties that don’t have to communicate as much during the protocol to share randomness.

11-5



4 1-2-OT with Third Party

Observe that 1-2-OT can be implemented more efficiently if the sender and receiver can talk
to a dealer during setup. In particular, the dealer sends (r0, r1) to the sender and (b, rb)
to the receiver. After the setup phase, the sender and receiver can execute 1-2-OT without
the dealer: the sender only needs to send m0 + r0 and m1 + r1.

References

[AL11] Gilad Asharov and Yehuda Lindell. A Full Proof of the BGW Protocol for
Perfectly-Secure Multiparty Computation. Cryptology ePrint Archive, Paper
2011/136. https://eprint.iacr.org/2011/136. 2011. url: https://eprint.
iacr.org/2011/136.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. “Completeness theo-
rems for non-cryptographic fault-tolerant distributed computation”. In: Pro-
ceedings of the Twentieth Annual ACM Symposium on Theory of Computing.
STOC ’88. Chicago, Illinois, USA: Association for Computing Machinery, 1988,
pp. 1–10. isbn: 0897912640. doi: 10.1145/62212.62213. url: https://doi.
org/10.1145/62212.62213.

11-6


