
CS 282A/MATH 209A: Foundations of Cryptography © Prof. Rafail Ostrovsky

Lecture 10

Lecture date: Feburary 12, 2024 Scribes: Yihan Lin

1 Oblivious Transfer

1.1 Rabin Oblivious Transfer

In an Oblivious Transfer (OT) protocol, a sender transmits one of several pieces of infor-
mation to a receiver. The receiver obtains only the specific piece it need, while the sender
can’t learn which piece was transferred.

Rabin oblivious transfer is a kind of formalization of “noisy wire” communication. A Rabin
OT machine models the following behavior. The sender(S) sends a bit b into the OT
machine. The machine then flips a coin, and receiver(R) has a probability of 1

2 getting b, 1
2

getting nothing (notated as # in Fig. 1). S does not know which output R received.

S

b Rabin OT

R

b

#

1
2

1
2

Figure 1: Rabin oblivious transfer

1.2 1-2-Oblivious Transfer (1-2-OT)

In 1-2-OT, sender S sends two bits (b0, b1) to the OT machine. Receiver R sends a selected
bit s to the OT machine indicating which bit from S it want to get. R will only get the
specified bit bs but not b1−s from the machine, while S knows both bits but has no idea
which one R received.

10-1

S

b0

b1

1-2-OT

R

s

bs

Figure 2: 1-2-oblivious transfer

One Example of 1-2-OT

S has a bit x, R has a bit y, our goal is to calculate x op y without leaking x and y to each
other, where op is a bit operation. We construct a 1-2-OT as below:

1. S and R generate secret bits x and y respectively,

2. Since S doesn’t know the value of y, it sends both x op 0 and x op 1 to the OT machine,

3. R sends y to the machine, and receives x op y according to y.

Here, R only knows the outcome of x op y without knowing x, S knows all possible outcomes
without learning y.

S

x

x op 0

x op 1
1-2-OT

R

y

x op y

Figure 3: Example of 1-2-oblivious transfer

2 Secret Sharing

Secret Sharing (SS) refers to methods for distributing a secret among a group, in such a way
that no individual holds intelligible information about the secret bits, but when a sufficient
number of individuals combine their ’shares’, the secret can be reconstructed.

Suppose we want to secretly share a bit b with A and B. We can coin-flip a random bit r,
and give α = r to A, give β = b⊕ r to B. In this case, we can reconstruct b by XOR α and

10-2

β. For A and B, the bit they get looks totally random, which means both of them can’t
figure out b only with their piece of share.

2.1 A Solution for Secret Sharing Boolean Circuit Computation

Boolean circuit is a circuit which turns inputs into boolean bit. It’s structure is shown as
Fig. 4.

Boolean
Circuit

(AND/NOT/OR...)

x y

Figure 4: Boolean circuit

Suppose there are two honest-but-curious players, A and B, each has a portion of the inputs
to a boolean circuit and wish to determine the output without revealing their inputs. They
can do this using secret sharing.

ForXOR circuit, let A has a1, a2, B has b1, b2, they want to compute F = (a1⊕b1)⊕(a2⊕b2).
Because of the commutative and associative property of XOR, we can safely conclude that
(a1 ⊕ b1)⊕ (a2 ⊕ b2) = (a1 ⊕ a2)⊕ (b1 ⊕ b2). Therefore, A and B can xor their pieces of bits
first, and xor the result of A and B to generate the final output. Since xor of two bits can
be seen as a coin-flip, and one player doesn’t know the composition of the two bits of the
other, therefore the output of a1 ⊕ a2 (b1 ⊕ b2) is totally random to B (A).Thus, they can
get the final output of XOR without leaking information to the other player.

For AND circuit, things are a little bit more complex. Let A has a1, a2, B has b1, b2, and
they want to compute F = (a1 ⊕ b1) ∧ (a2 ⊕ b2). First we unfold this formula:

(a1 ⊕ b1) ∧ (a2 ⊕ b2) = (a1 ∧ a2)⊕ (a1 ∧ b2)⊕ (a2 ∧ b1)⊕ (b1 ∧ b2)

where (a1 ∧ a2) can be directly calculated by A and (b1 ∧ b2) can be calculated by B. Next
we compute (a1 ∧ b2) and (a2 ∧ b1) with 1-2-oblivious transfer.

10-3

A

a1, $r

r ⊕ (a ∧ 0)

r ⊕ (a ∧ 1)
1-2-OT

B

b2

r ⊕ (a1 ∧ b2)

Figure 5: Computation of a1 ∧ b2 for AND circuit

An intuition solution to compute a1∧ b2 is, as what we did in 1-2-OT part, A sends (a1∧0)
and (a1 ∧ 1) to the OT machine, B sends b2 to the machine, and B receives (a1 ∧ b2).
However, there is a potential risk of leaking a1 to B. If a1 ∧ b2 = 1, then there is no doubt
that a1 = 1; or if a1 ∧ b2 = 0 and b2 = 1, then B will know a1 = 0.

Therefore, to ensure the secret sharing, we add a random bit r to hide a1. Specifically, A
chooses a random bit r, and sends r ⊕ (a1 ∧ 0) and r ⊕ (a1 ∧ 1) to the OT machine, and
B receives r ⊕ (a1 ∧ b2). Since r is totally unknown to B, for any outcome it receives, the
probability of a1 = 1 and a1 = 0 is the same for B, and thus we secure the sharing process.
To eliminate the influence of r in the final F , A will do xor for a1 ∧ a2. Since for any x,
x⊕ x = 0, therefore (a1 ∧ a2)⊕ (a1 ∧ b2) = (r ⊕ (a1 ∧ a2))⊕ (r ⊕ (a1 ∧ b2)). The process of
calculating a2 ∧ b1 is the same. Thus, the final formula will be like this:

F = (r1 ⊕ r2 ⊕ (a1 ∧ a2))⊕ (r1 ⊕ (a1 ∧ b2))⊕ (r2 ⊕ (a2 ∧ b1))⊕ (b1 ∧ b2)

, where r1 and r2 are random bits picked for calculating a1 ∧ b2 and a2 ∧ b1 respectively.

Some problems for thought:

1. For n (n > 1) non-collusion players, at least how many random bits are needed to
compute the AND circuit of all players without leaking any information, i.e., x1∧x2∧
... ∧ xn, where xi is the secret bit of Player i? Currently, researchers already proved
that 2 random bits are necessary, and 8 bits are sufficient.

2. If there are more than two players, what will happen if players collude?

3 Construct 1-2-OT with Trapdoor One-Way Permutation
Family

Suppose S has two message b0, b1 to be transfer, we can construct a 1-2-OT with a trapdoor
one-way permutation family through the following process:

10-4

1. S picks a trapdoor one-way permutation f : {0, 1}n → {0, 1}n, p is it’s hard core bit,
and S knows its trapdoor while R doesn’t

2. S sends f and p to R

3. R randomly picks an xs with selected bit s, and compute ys = f(xs). Then R
randomly picks a y1−s and sends y0, y1 (i.e. ys, y1−s) to S

4. S compute x0 = f−1(y0), x1 = f−1(y1) using the trapdoor, and sends b0⊕ < x0, p >
and b1⊕ < x1, p > to the OT machine

5. R sends xs to the OT machine and receives bs⊕ < xs, p >, and then computes bs
using xs and p

Since R knows xs and p, it can compute bs in polynimial time. However, for b1−s, R
doesn’t know x1−s because f is a one-way permutation and R doesn’t have the trapdoor.
As a result, R cannot open b1−s. In this way, we construct a 1-2-oblivious transfer with a
trapdoor one-way permutation.

S
b0, b1

f : {0, 1}n → {0, 1}n
p (hard core bit)

f, p

R

s

$xs
$y1−s

compute ys = f(xs)

y0, y1

compute x0 = f−1(y0),

x1 = f−1(y1)

b0⊕ < x0, p >

b1⊕ < x1, p >
bs1-2-OT

Figure 6: 1-2-OT with Trapdoor One-Way Permutation

10-5

