Lecture 10
Lecture date: Feburary 12, 2024
Scribes: Yihan Lin

1 Oblivious Transfer

1.1 Rabin Oblivious Transfer

In an Oblivious Transfer (OT) protocol, a sender transmits one of several pieces of information to a receiver. The receiver obtains only the specific piece it need, while the sender can't learn which piece was transferred.

Rabin oblivious transfer is a kind of formalization of "noisy wire" communication. A Rabin OT machine models the following behavior. The sender (S) sends a bit b into the OT machine. The machine then flips a coin, and receiver (R) has a probability of $\frac{1}{2}$ getting $b, \frac{1}{2}$ getting nothing (notated as \# in Fig. 1). S does not know which output R received.

Figure 1: Rabin oblivious transfer

1.2 1-2-Oblivious Transfer (1-2-OT)

In 1-2-OT, sender S sends two bits (b_{0}, b_{1}) to the OT machine. Receiver R sends a selected bit s to the OT machine indicating which bit from S it want to get. R will only get the specified bit b_{s} but not b_{1-s} from the machine, while S knows both bits but has no idea which one R received.

Figure 2: 1-2-oblivious transfer

One Example of 1-2-OT

S has a bit x, R has a bit y, our goal is to calculate x op y without leaking x and y to each other, where $o p$ is a bit operation. We construct a 1-2-OT as below:

1. S and R generate secret bits x and y respectively,
2. Since S doesn't know the value of y, it sends both x op 0 and x op 1 to the OT machine,
3. R sends y to the machine, and receives x opy according to y.

Here, R only knows the outcome of x op y without knowing x, S knows all possible outcomes without learning y.

Figure 3: Example of 1-2-oblivious transfer

2 Secret Sharing

Secret Sharing (SS) refers to methods for distributing a secret among a group, in such a way that no individual holds intelligible information about the secret bits, but when a sufficient number of individuals combine their 'shares', the secret can be reconstructed.

Suppose we want to secretly share a bit b with A and B. We can coin-flip a random bit r, and give $\alpha=r$ to A , give $\beta=b \oplus r$ to B . In this case, we can reconstruct b by XOR α and
β. For A and B , the bit they get looks totally random, which means both of them can't figure out b only with their piece of share.

2.1 A Solution for Secret Sharing Boolean Circuit Computation

Boolean circuit is a circuit which turns inputs into boolean bit. It's structure is shown as Fig. 4.

Figure 4: Boolean circuit
Suppose there are two honest-but-curious players, A and B, each has a portion of the inputs to a boolean circuit and wish to determine the output without revealing their inputs. They can do this using secret sharing.

For XOR circuit, let A has a_{1}, a_{2}, B has b_{1}, b_{2}, they want to compute $F=\left(a_{1} \oplus b_{1}\right) \oplus\left(a_{2} \oplus b_{2}\right)$. Because of the commutative and associative property of XOR, we can safely conclude that $\left(a_{1} \oplus b_{1}\right) \oplus\left(a_{2} \oplus b_{2}\right)=\left(a_{1} \oplus a_{2}\right) \oplus\left(b_{1} \oplus b_{2}\right)$. Therefore, A and B can xor their pieces of bits first, and xor the result of A and B to generate the final output. Since xor of two bits can be seen as a coin-flip, and one player doesn't know the composition of the two bits of the other, therefore the output of $a_{1} \oplus a_{2}\left(b_{1} \oplus b_{2}\right)$ is totally random to $\mathrm{B}(\mathrm{A})$.Thus, they can get the final output of XOR without leaking information to the other player.

For AND circuit, things are a little bit more complex. Let A has a_{1}, a_{2}, B has b_{1}, b_{2}, and they want to compute $F=\left(a_{1} \oplus b_{1}\right) \wedge\left(a_{2} \oplus b_{2}\right)$. First we unfold this formula:

$$
\left(a_{1} \oplus b_{1}\right) \wedge\left(a_{2} \oplus b_{2}\right)=\left(a_{1} \wedge a_{2}\right) \oplus\left(a_{1} \wedge b_{2}\right) \oplus\left(a_{2} \wedge b_{1}\right) \oplus\left(b_{1} \wedge b_{2}\right)
$$

where $\left(a_{1} \wedge a_{2}\right)$ can be directly calculated by A and $\left(b_{1} \wedge b_{2}\right)$ can be calculated by B. Next we compute $\left(a_{1} \wedge b_{2}\right)$ and $\left(a_{2} \wedge b_{1}\right)$ with 1-2-oblivious transfer.

Figure 5: Computation of $a_{1} \wedge b_{2}$ for AND circuit

An intuition solution to compute $a_{1} \wedge b_{2}$ is, as what we did in 1-2-OT part, A sends $\left(a_{1} \wedge 0\right)$ and $\left(a_{1} \wedge 1\right)$ to the OT machine, B sends b_{2} to the machine, and B receives ($a_{1} \wedge b_{2}$). However, there is a potential risk of leaking a_{1} to B. If $a_{1} \wedge b_{2}=1$, then there is no doubt that $a_{1}=1$; or if $a_{1} \wedge b_{2}=0$ and $b_{2}=1$, then B will know $a_{1}=0$.

Therefore, to ensure the secret sharing, we add a random bit r to hide a_{1}. Specifically, A chooses a random bit r, and sends $r \oplus\left(a_{1} \wedge 0\right)$ and $r \oplus\left(a_{1} \wedge 1\right)$ to the OT machine, and B receives $r \oplus\left(a_{1} \wedge b_{2}\right)$. Since r is totally unknown to B, for any outcome it receives, the probability of $a_{1}=1$ and $a_{1}=0$ is the same for B, and thus we secure the sharing process. To eliminate the influence of r in the final F, A will do xor for $a_{1} \wedge a_{2}$. Since for any x, $x \oplus x=0$, therefore $\left(a_{1} \wedge a_{2}\right) \oplus\left(a_{1} \wedge b_{2}\right)=\left(r \oplus\left(a_{1} \wedge a_{2}\right)\right) \oplus\left(r \oplus\left(a_{1} \wedge b_{2}\right)\right)$. The process of calculating $a_{2} \wedge b_{1}$ is the same. Thus, the final formula will be like this:

$$
F=\left(r_{1} \oplus r_{2} \oplus\left(a_{1} \wedge a_{2}\right)\right) \oplus\left(r_{1} \oplus\left(a_{1} \wedge b_{2}\right)\right) \oplus\left(r_{2} \oplus\left(a_{2} \wedge b_{1}\right)\right) \oplus\left(b_{1} \wedge b_{2}\right)
$$

, where r_{1} and r_{2} are random bits picked for calculating $a_{1} \wedge b_{2}$ and $a_{2} \wedge b_{1}$ respectively.
Some problems for thought:

1. For $n(n>1)$ non-collusion players, at least how many random bits are needed to compute the AND circuit of all players without leaking any information, i.e., $x_{1} \wedge x_{2} \wedge$ $\ldots \wedge x_{n}$, where x_{i} is the secret bit of Player i? Currently, researchers already proved that 2 random bits are necessary, and 8 bits are sufficient.
2. If there are more than two players, what will happen if players collude?

3 Construct 1-2-OT with Trapdoor One-Way Permutation Family

Suppose S has two message b_{0}, b_{1} to be transfer, we can construct a 1-2-OT with a trapdoor one-way permutation family through the following process:

1. S picks a trapdoor one-way permutation $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}, p$ is it's hard core bit, and S knows its trapdoor while R doesn't
2. S sends f and p to R
3. R randomly picks an x_{s} with selected bit s, and compute $y_{s}=f\left(x_{s}\right)$. Then R randomly picks a y_{1-s} and sends y_{0}, y_{1} (i.e. y_{s}, y_{1-s}) to S
4. S compute $x_{0}=f^{-1}\left(y_{0}\right), x_{1}=f^{-1}\left(y_{1}\right)$ using the trapdoor, and sends $\left.b_{0} \oplus<x_{0}, p\right\rangle$ and $b_{1} \oplus<x_{1}, p>$ to the OT machine
5. R sends x_{s} to the OT machine and receives $b_{s} \oplus\left\langle x_{s}, p\right\rangle$, and then computes b_{s} using x_{s} and p

Since R knows x_{s} and p, it can compute b_{s} in polynimial time. However, for b_{1-s}, R doesn't know x_{1-s} because f is a one-way permutation and R doesn't have the trapdoor. As a result, R cannot open b_{1-s}. In this way, we construct a 1-2-oblivious transfer with a trapdoor one-way permutation.

Figure 6: 1-2-OT with Trapdoor One-Way Permutation

