
CS 282A/MATH 209A: Foundations of Cryptography © Prof. Rafail Ostrovsky

Lecture 1

Lecture date: January 8, 2024

Scribes: Nakul Khambhati, Sasha Kononova, Nathan Leung

1 Course Administration

This is the Winter 2023 edition of CS 282A/MATH 209A, Foundations of Cryptography.
The text for this class is Prof. Ostrovsky’s 2010 lecture notes, which are available on Prof.
Ostrovsky’s website.

1.1 Grading

The course grade will be weighted as follows: 40% midterm exam, 50% final exam, and 10%
for scribe notes (these notes are one such example).

1.2 Exams

Exams will be closed book. The exact date of the midterm exam will depend on how fast
Prof. Ostrovsky can lecture (this will be affected by the number of questions in lecture,
etc.), but it will occur shortly after the lectures discussing zero-knowledge proofs and digital
signatures.

1.3 Undergraduate PTEs

Prof. Ostrovsky is working on getting PTEs for undergraduate students who wish to take
the course and will have them by Wednesday, January 10th.

For more details on course administration, see the syllabus on Prof. Ostrovsky’s website.

2 Introduction to Encryption

To begin our study of cryptography, we consider the classic example of Alice, Bob, and Eve.
Alice and Bob want to communicate secretly, while Eve is trying to listen in (or eavesdrop)

1-1

https://web.cs.ucla.edu/∼rafail/PUBLIC/OstrovskyDraftLecNotes2010.pdf
https://web.cs.ucla.edu/~rafail/282A.pdf

on their communications. Alice and Bob do not want Eve to know what they are talking
about.

Figure 1: Communication diagram between Alice, Bob, and Eve.

So, what can Alice and Bob do to prevent Eve from listening in? One idea is to use a
one-time pad.

2.1 One-Time Pads

A one-time pad is essentially a huge random string that Alice and Bob securely share.
When Alice wants to send a message, she can encrypt her message by XORing the bits of
her message with bits of the one-time pad and then sending them to Bob. Then Bob can
XOR Alice’s encrypted message with his (identical) one-time pad to recover the original
message (since XOR with one fixed parameter is an involution).

As long as the one-time pad is sufficiently random (this can be achieved using a psuedo-
random generator, which allows the generation of massive amounts of data that are function-
ally indistinguishable from true randomness) and not leaked or reused (hence “one-time”),
this encryption is unbreakable.

2.2 Public-Key Encryption

One-time pads, however, have the limitation that Alice and Bob must securely share the
one-time pad in advance. What if they can’t do that? Public-key encryption solves this
problem. Invented in 1976 by Diffie and Hellman, the concept is as follows:

1-2

1. Alice has a public key (shared) and a private key (never shared)

2. Bob has a public key (shared) and a private key (never shared)

3. When Alice wants to send a message to Bob, she can encrypt her message using Bob’s
public key

4. The mathematics of public-key encryption make it so that the only way to decrypt
Alice’s message is with Bob’s private key

Thus, no secure secret exchange (as with one-time pads) is required; parties can commu-
nicate securely immediately. Public-key encryption can be implemented in various ways;
one popular way today is RSA — a very efficient public-key encryption system based on
the hardness of factoring numbers. One limitation of public-key encryption, however, is
that public-key encryption is more mathematically complex than secret-key encryption (i.e.
with a shared secret), and hence is computationally slower.

Public-key encryption is the basis for all secure internet communication today (think SSH,
HTTPS), and as a result Diffie and Hellman received a Turing Award for their work. In
the HTTPS example, however, (and in other cryptographic protocols, too), public-key en-
cryption is only used to exchange an initial shared secret key. The shared secret key is used
for all further communication, because secret-key encryption is much faster that public-key
encryption.

2.3 Digital Signatures

Another concern is what happens if Eve, despite being unable to view the message between
Alice and Bob, is able to tamper with it, for instance by flipping certain bits. How would
Bob know that the message he is receiving and decrypting is actually what Alice initially
sent?

This problem can be resolved using digital signatures, implemented with public-key encryp-
tion. In essence, Alice can create a signature attesting to the contents of her message with
her private key, and then Bob can verify that the signature is authentic with Alice’s public
key and the contents of the received message. If the signature verification step fails, Bob
will know that the message was tampered with.

2.4 Cryptographic Proofs and “Hardness”

Above, we used the term “hardness” — for instance, we said that RSA is based on the
“hardness” of factoring. What does this mean? How can we show “hardness”?

1-3

In academic cryptography, we typically show “hardness” by reducing our problem of interest
to another problem known to be “hard”, meaning that the problem can only be solved, as
far as we know, by a superpolynomial algorithm. In other words, we show that an attack
on a cryptosystem implies a solution to a famously difficult math problem.

This allows cryptographers to delegate the mathematical security of their protocols to math-
ematicians. The idea is that if a system is broken, it isn’t because of something in the domain
of cryptography, but because of a transformative result in the domain of mathematics (e.g.
P=NP).

Another important aspect of cryptographic proofs is that there is no “security through
obscurity” — we assume that the attacker (Eve) knows all the algorithms, functions, etc.
being used in the cryptosystem.

This assumption is one reason why provably secure public-key encryption needs randomness
— a result of Goldwasser and Micali. Otherwise, the same message would yield the same
ciphertext every time; the ciphertext would be revealing something about the contents
of the message. By incorporating randomness, the ciphertext reveals nothing about the
underlying message. As a sidenote, lack of randomness is one reason why Turing was able
to break the Nazi Enigma cipher — every Enigma message started with the same standard
header, and Turing was able to take advantage of that regularity.

3 Randomness Used in Encryption: Average Salary

Suppose there are three people (P1, P2, P3) who wish to find their average salary, but do
not wish to share their own salaries with each other. There are several ways to do this by
utilizing randomness. Suppose there is some number M that is definitely larger than any
of the three people’s salaries. Let each person choose two random numbers between 0 and
M , and tell each of the other people one of those numbers. The information is then shared
as in Figure 2; an arrow indicates a piece of information being communicated in private
between the two people involved.

For example, P1 generates the random numbers A1, A2 and communicates them to P2, P3

respectively; in turn, P1 receives the random numbers R1, B1 generated by P2, P3 respec-
tively.

Now, let each person report to both other people (i.e., publicly) the following:

their salary + sum of incoming arrows− sum of outgoing arrows

For example, P1 would report

their salary + (R1 +B1)− (A1 +A2)

1-4

Figure 2: Information between P1, P2, and P3.

The sum of these three reported values is equal to the sum of the actual salaries, since
each of the random variables is added to one reported value (from the person who received
the random number) and subtracted from another reported value (from the person who
generated the random number). Thus, their average is equal to the true average salary.
Note that no single person can figure out how much the other people make, as long as the
lines of communication are indeed secure (i.e., P3 does not know the values of A1 and R1).

While finding the average of three values is easy mathematically, it can be shown that any
function of several variables that can be computed in polynomial time can be encrypted
with a similar strategy. That is, using randomness in a clever way can solve a relatively
complex mathematical problem correctly and without “leaking” information.

4 NP-Completeness: “Decision = Search”

Recall that a problem lies in complexity class P if, for an input that can be represented
in n bits, it can be solved in time O(nc) for some constant c. Problems in class P will
typically have an answer beyond “yes” or “no” – that is, they are search problems, where
one needs to actually present a solution. A problem that does not appear to be in class P
is the problem of factoring: given the product of two (large) primes P1, P2, what are the

1-5

values of P1 and P2? The best known way to compute this runs in O

(
2

(
N

log logN

)1/3
)
, so

the problem does not lie in P as far as we know.

A decision problem, on the other hand, has an answer that is simply “yes” or “no.”

There is a result that states that if one has an algorithm that can, in polynomial time,
answer decision questions, it can be used to obtain an actual solution to an analogous
problem. For example, consider a boolean circuit. A boolean circuit takes several inputs
(either 1’s or 0’s), which then go through some series of logic gates (AND, OR, NOT, and so
on), leading to a single output. The decision question attached to such a circuit is whether
or not some set of inputs can cause the output to be 1. The search question is what set of
inputs will cause the output to be 1.

For the boolean circuit, suppose we have an algorithm that answers the decision question. If
it says that it is impossible to produce a 1, there is nothing to show for the search question.
If it says a solution exists that produces a 1, we can set the first input to be 1, and ask the
algorithm whether the modified circuit, with the first input fixed, can produce a 1. If it says
yes, we know there exists a solution where the first input is a 1; otherwise, we know there
exists a solution where the first input is a 0, and so we set the first input to be 0. We can
continue doing this for each bit; thus, we get a solution to the search problem after running
the algorithm n times. If our initial algorithm solved the decision question in polynomial
time, the we have solved the search question in polynomial time as well.

5 Complexity classes

5.1 Uniform complexity classes

The modern approach to cryptography is based on certain complexity assumptions. As
a result, some background on complexity classes will be helpful. We quickly recap some
complexity classes P, NP, RP, co-RP and BPP.

Definition 1 (Polytime (P)) P is the set of languages L ⊂ {0, 1}∗ that can be decided
by a determinstic Turing machine running in polynomial time on the length of the input.

Definition 2 NP is the set of languages L ⊂ {0, 1}∗ that can be decided by a non-
determinstic Turing machine running in polynomial time on the length of the input.

Definition 3 (Randomized Polytime (RP)) A language L ⊂ {0, 1}∗ is in RP if and
only if there exists a probabilistic Turing machine A that runs on polynomial time for all
inputs and

1-6

(1)

∀x ∈ L : Pr[A(x) = 1] >
2

3
.

(2)
∀x /∈ L : Pr[A(x) = 1] = 0.

Definition 4 (Co-RP) A language L ⊂ {0, 1}∗ is in co-RP if and only if there exists a
probabilistic Turing machine A that runs on polynomial time for all inputs and

(1)
∀x ∈ L : Pr[A(x) = 1] = 1

(2)

∀x /∈ L : Pr[A(x) = 1] <
1

3
.

Definition 5 (Bounded Probabilistic Polytime (BPP/PPT)) A language L ⊂
{0, 1}∗ is in BPP if and only if there exists a probabilistic Turing machine A that runs
on polynomial time for all inputs and

(1)

∀x ∈ L : Pr[A(x) = 1] >
2

3
.

(2)

∀x /∈ L : Pr[A(x) = 1] <
1

3
.

Remark We require that the probability of A making a mistake on any input is bounded
away from 1/2. We can reduce the probability that A makes an error by running it n times
with fresh randomness each time and taking the majority output.

Next, we justify that this method works by showing that repeating the computation n times
and taking majority gives us a low error probability – in fact one that decays exponentially
as n increases.

Proposition 6 Consider the Turing machine A′ that executes A a total of n times with
fresh randomness obtaining outputs b = b1b2 · · · bn and outputs MAJ(b). For any input
x ∈ {0, 1}∗ the probability that A′ makes a mistake (i.e. A makes at least n/2 mistakes in
n independent trials) is less than e−n/24.

1-7

Proof Let x ∈ L be arbitrary. Let E denote the bad event that A makes a mistake
on input x i.e. x ∈ L and A(x) = 0 or x /∈ L and A(x) = 1. Since L ∈ BPP, in either
case Pr[E] < 1/3. Formally, let Xi denote the random variable that equals 1 if A makes
a mistake on input x in trial i and 0 otherwise. Note that the Xi are independent and
identically distributed (i.i.d.). Let

X =
n∑

i=1

Xi

be the total number of mistakes that A makes. Our goal is then to show that

Pr[X ≥ n/2] < e−n/24.

We will do this by appealing to the Chernoff Bound.

Theorem 7 (Chernoff bound) Let X1, ..., Xn be i.i.d. random variables and X =∑n
i=1Xi. Let E(X) denote the expectation of X and β < 1.5. Then

Pr[X ≥ (1 + β)E(X)] < e−β2E(X)/2.

Proof Omitted.

Setting β = 1/2 and observing that E(X) = n/3 we get

Pr[X ≥ 3

2
· n
3
] < e−n/24

Pr[X ≥ n/2] < e−n/24

as required

5.2 Non-uniform complexity classes

In the previous section, we looked at languages that can be decided by Turing machines.
Next, we look at languages that can be decided by sequences of circuits {Cn}n∈N where
each Cn has n inputs, one output, and a number of gates polynomial in n.

Definition 8 (P/poly) P/poly is the set of languages that can be decided by polynomial-
sized circuit families.

As it turns out, P/poly circuits are so powerful that they do not require coin flips to make
their decisions. We capture this idea in the following theorem due to Leonard Adelman.

1-8

Theorem 9 (Adelman) BPP ⊂ P/Poly

Proof Let L ⊂ BPP i.e. it can be decided by a Turing machine that makes mistakes
with low probability. We want to show that it can be decided deterministically by some
family of circuits {Cn}n∈N. First, by Proposition 6, we can assume wlog that there exists
a Turing machine A that runs in polynomial time on all inputs and letting n = |x| denote
the length of string x we have

(1)
∀x ∈ L : Pr[A(x) = 1] > 1− 2−(n+1).

(2)
∀x /∈ L : Pr[A(x) = 1] < 2−(n+1).

Let r denote the total number of coins used by A. Fix some n ∈ N (i.e. for the time being
only consider strings of length n) and consider the 2n × 2r matrix M below that represents
all possible inputs (including the coins) to A on a string of length n.

ρ1 ρ2 ρ3 · · · ρ2r

x1 1 0 0 · · · 1

x2 0 1 0 · · · 0

x3 1 0 0 · · · 0
...

...
...

...
. . .

...

x2n 1 0 0 · · · 1

Figure 3: Caption

Let the (i, j)-th position of this matrix denote A’s output on input xi where xi ∈ {0, 1}n and
sequence of coin flips ρj ∈ {0, 1}r. By assumption, on each input, A makes a mistake with
probability less than 2−(n+1) which means that the fraction of 1’s in each row must be less
than 2−(n+1). This implies that the total number of 1’s in matrix M is < 2n · 2r · 2−(n+1) =
2r/2. However, there are only 2r many columns in M . By the pigeonhole principle, at
least half of the columns have all zeroes. Interpreting this differently, at least half of the
configurations of the coin flips will give the correct result on all 2n inputs of length n. We
pick any one such configuration ρ = ρ1ρ2 · · · ρr and hardwire it into the P/poly circuit
Cn for strings of length n. This circuit is of polynomial size as A runs in polynomial time
and decides L for strings of length n without using any randomness. Since n was picked
arbitrarily, we can construct the entire family {Cn}n∈N in this way which shows that L ⊂
P/poly as required.

1-9

	Course Administration
	Grading
	Exams
	Undergraduate PTEs

	Introduction to Encryption
	One-Time Pads
	Public-Key Encryption
	Digital Signatures
	Cryptographic Proofs and ``Hardness"

	Randomness Used in Encryption: Average Salary
	NP-Completeness: ``Decision = Search"
	Complexity classes
	Uniform complexity classes
	Non-uniform complexity classes

