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The Rise of Deep Learning
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The Rise of Deep Learning–Over-parameterization

The evolution of the winning entries on the ImageNet

Alex Krizhevsky et al. 2012. “Imagenet classification with deep convolutional neural networks”. In Advances in neural information processing systems, 1097–
1105
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The Rise of Deep Learning–Over-parameterization

Top-1 accuracy versus amount of operations required for a single forward
pass in popular neural networks.

Alfredo Canziani et al. 2016. “An analysis of deep neural network models for practical applications”. arXiv preprint arXiv:1605.07678
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Empirical Observations for DNNs

Fitting random labels and random pixels on CIFAR10

Chiyuan Zhang et al. 2016. “Understanding deep learning requires rethinking generalization”. arXiv preprint arXiv:1611.03530
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Empirical Observations for DNNs

Training ResNet of different sizes on CIFAR10.

Behnam Neyshabur et al. 2018. “Towards Understanding the Role of Over-Parametrization in Generalization of Neural Networks”. arXiv preprint
arXiv:1805.12076
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Empirical Observations for DNNs

An empirical observation
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Optimization for DNNs

Question

Why and how does Over-parameterized DNNs trained by gradient descent
can fit any labeling over distinct training inputs?
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Challenge of Optimization for DNNs

Challenge
I The objective training loss is highly nonconvex or even nonsmooth.

I Conventional optimization theory can only guarantee finding second-order stationary point.
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Existing Work

A line of research on the optimization theory for training two-layer NNs is limited to the
teacher network setting (Goel et al. 2016; Tian 2017; Du et al. 2017; Li and Yuan 2017;
Zhong et al. 2017; Zhang et al. 2018).

Limitations of these work:
I Assuming all data are generated from a “teacher network”, which cannot be satisfied in practice.

I Strong assumptions on the training input (e.g., i.i.d. generated from Gaussian distribution).

I Requiring special initialization methods that are very different from the commonly-used one.

Can we prove convergence under more practical assumptions?
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Existing Work

Moreover, under much milder conditions on the training data and initialization, Li and
Liang (2018) and Du et al. (2018b) established the global convergence of (stochastic) gra-
dient descent for training two-layer ReLU networks.

I The neural network should be sufficiently over-parameterized (contains sufficiently large number of hidden
nodes).

I The output of (stochastic) gradient descent can achieve abitrary small training loss.

Can similar results be generalized to DNNs?
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Training Deep ReLU Networks

Setup

I Training data: S = {(xi, yi)}i=1,...,n with input vector xi ∈ Rd and label yi ∈ {−1,+1}.
‖xi‖ = 1, (xi)d = µ and ‖xi − xj‖2 ≥ φ if yi 6= yj .

I Fully connected ReLU network:

fW(x) = v>σ(W>
Lσ(W>

L−1 · · ·σ(W>
1 x) · · · ))

with weight matrices Wl ∈ Rm×m and v ∈ {±1}m.

I Classifier: sign(yi · fW(xi))

I Empirical risk minimization:

min
W

LS(W) =
1

n

n∑
i=1

`[yi · fW(xi)],

where `(z) = log[1 + exp(−z)].
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Training Algorithm

Algorithm 1 (S)GD for training DNNs

1: input: Training data {xi,yi}i∈[n], step size η, total number of iterations K, minibatch size B.

2: initialization: (W
(0)
l )i,j ∼ N(0, 2/m) for all i, j, l

Gradient Descent
3: for k = 0, . . . ,K do

4: W
(k+1)
l = W

(k)
l − η∇Wl

LS(W(k)) for all l ∈ [L]
5: end for
6: output: {W(K)

l }l∈[L]
Stochastic Gradient Descent

7: for k = 0, . . . ,K do
8: Uniformly sample a minibatch of training data B(k) ∈ [n]

9: W
(k+1)
l = W

(k)
l −

η
B

∑
s∈B(k) ∇Wl

`
[
yi · fW(k)(xi)

]
for all l ∈ [L]

10: end for
11: output: {W(K)

l }l∈[L]
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Convergence of GD/SGD for Training DNNs

Theorem (Zou et al. 2018, informal)

For any ε > 0, if

m = Ω̃
(
poly(n,L, φ−1, ε−1)

)
then with high probability, (stochastic) gradient descent converges to a point that achieves
ε-training loss within the following iteration number,

K = O
(
poly(n,L, φ−1, ε−1)

)
.

I The over-parameterization condition and iteration complexity are polynomial in all problem pa-
rameters.

I In order to achieve zero classification error, it suffices to set ε = log(2)/n .

Similar results have also been proved in Allen-Zhu et al. (2018b) and Du et al. (2018b) for regression problem with quadratic loss function.
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Overview of Proof Technique

W(W(0), τ) :=
{
W = {Wl}Ll=1 : ‖Wl −W

(0)
l ‖F ≤ τ, l ∈ [L]

}
For large enough width m:

I For W ∈ W(W(0), τp), τp = O(poly(n,L)),
LS(W) enjoys good curvature properties (e.g.,
sufficiently large gradient, nearly smooth and con-
vex).
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W(W(0), τ) :=
{
W = {Wl}Ll=1 : ‖Wl −W

(0)
l ‖F ≤ τ, l ∈ [L]

}
For large enough width m:

I For W ∈ W(W(0), τp), τp = O(poly(n,L)),
LS(W) enjoys good curvature properties (e.g.,
sufficiently large gradient, nearly smooth and con-
vex).

I Gradient descent converges with trajectory length
τopt ≤ O(poly(n) · ε−1m−1/2).

I Sufficiently large m can guarantee that τopt ≤ τp.
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Stronger Guarantees for Training DNNs

Theorem (Zou and Gu 2019, informal)

For any ε > 0, if

m = Ω̃
(
n8L12φ−4

)
then with high probability, gradient descent converges to a point that achieves ε-training loss
within the following iteration number,

K = O
(
n2L2φ−1 log(1/ε)

)
.
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Comparison with Existing Work

Table: Over-parameterization conditions and iteration complexities of GD for training deep neural
networks.

Over-para. condition Iteration complexity ReLU?

Du et al. (2018a) Ω
(

2O(L)·n4

λ4
min(K

(L))

)
O
(

2O(L)·n2 log(1/ε)
λ2

min(K
(L))

)
no

Allen-Zhu et al. (2018b) Ω̃
(
n24L12

φ8

)
O
(
n6L2 log(1/ε)

φ2

)
yes

Our work Ω̃
(
n8L12

φ4

)
O
(
n2L2 log(1/ε)

φ

)
yes

K(L) denotes the Gram matrix for L-hidden-layer neural network in Du et al. (2018a).
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Overview of Proof Technique

W(W(0), τ) :=
{
W = {Wl}Ll=1 : ‖Wl −W

(0)
l ‖F ≤ τ, l ∈ [L]

}
Improved techniques:

I Prove a larger τp such that for W ∈
W(W(0), τp), LS(W) enjoys good curvature
properties.

I Within the region W(W(0), τp), we prove larger
gradient which leads to faster convergence of GD.

I We provide sharper characterization on the tra-
jectory length of GD which leads to smaller τopt.

I Combine the above results we can significantly
improve the condition on m to guarantee τopt ≤
τp.
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Empirical Observations for DNNs

An empirical observation

Optimization - Over-parameterized DNNs can fit ANY labeling over distinct training inputs.

Generalization - When the labeling is ‘nice’, over-parameterized DNNs can also be trained to
achieve small test error.
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Limitations of Existing Generalization Bounds

Uniform convergence based generalization bounds (Neyshabur et al. 2015; Bartlett et
al. 2017; Neyshabur et al. 2017; Golowich et al. 2017; Arora et al. 2018; Li et al. 2018; Wei
et al. 2018) study

sup
f∈H

∣∣∣∣∣ 1

n

n∑
i=1

`[yi · f(xi)]︸ ︷︷ ︸
training loss

−E(x,y)∼D`[y · f(x)]︸ ︷︷ ︸
test loss

∣∣∣∣∣

I Worst case analysis

I Trade-off between capacity (VC dimension, Rademacher complexity etc.) and training
error
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Wide Enough DNNs Can Fit Random Labels
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What If the Distribution is ’Nicer’?
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What If the Distribution is ’Nicer’?
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Limitations of Existing Generalization Bounds

Both neural networks separate the training data

Algorithm-dependent generalization analysis is necessary
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Algorithm-dependent Generalization Bounds

Algorithm-dependent bounds have been studied recently by (Li and Liang 2018; Allen-
Zhu et al. 2018a; Arora et al. 2019a; Yehudai and Shamir 2019; E et al. 2019) for
shallow networks.

Questions haven’t been fully answered:

I How to obtain generalization bounds for over-parameterized deep neural networks?

I How to quantify the ’classifiability’ of the data distribution?

I What is the benefit of training each layer of the network?
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Learning DNNs with Stochastic Gradient Descent

Setup

I Binary classification: (x, y) ∈ Sd−1 × {±1} is generated from data distribution D.

I Fully connected ReLU network:

fW(x) =
√
m ·WLσ(WL−1σ(WL−2 · · ·σ(W1x) · · · )),

where W1 ∈ Rm×d, Wl ∈ Rm×m, l = 2, . . . , L−1, WL ∈ R1×m, and σ(·) = max{·, 0}.
I Expected risk minimization:

min
W

LD(W) := E(x,y)∼D`[y · fW(x)],

where `(z) = log[1 + exp(−z)] is the cross-entropy loss.
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Learning DNNs with Stochastic Gradient Descent

Algorithm 2 SGD for training DNNs

Input: Number of iterations n, step size η.

Generate each entry of W
(0)
l independently from N(0, 2/m), l ∈ [L− 1].

Generate each entry of W
(0)
L independently from N(0, 1/m).

for i = 1, 2, . . . , n do
Draw (xi, yi) from D.
Update W(i) = W(i−1) − η · ∇W`[yi · fW(i−1)(xi)].

end for
Output: Randomly choose Ŵ uniformly from {W(0), . . . ,W(n−1)}.
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Neural Tangent Random Feature

Definition (Neural Tangent Random Feature)

Let W(0) be generated via the initialization scheme in Algorithm 2. Define

F(W(0), R) =
{
fW(0)(·) + 〈∇WfW(0)(·),W〉 : W ∈ W(0, R ·m−1/2)

}
,

where W(W, τ) := {W′ ∈ W : ‖W′
l −Wl‖F ≤ τ, l ∈ [L]}.

The training of the l-th layer of the network contributes the
random features ∇Wl

fW(0)(·) to the NTRF function class.
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An Expected 0-1 Error Bound

Theorem (Cao and Gu 2019, informal)

For any R > 0, if m ≥ Ω̃
(
poly(R,L, n)

)
, then with high probability, Algorithm 2 returns Ŵ that

satisfies

E
[
L0−1
D (Ŵ)

]
≤ inf
f∈F(W(0),R)

{
4

n

n∑
i=1

`[yi · f(xi)]

}
+O

[
LR√
n

+

√
log(1/δ)

n

]
.

I Trade-off in the bound:
I When R is small, first term is large, second term is small.
I When R is large, first term is small, second term is large.

I When R = Õ(1), the second term is standard large-deviation error.

I Deep neural networks compete with the best function in the NTRF function class
F(W(0), Õ(1)).
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An Expected 0-1 Error Bound

Theorem (Cao and Gu 2019, informal)

For any R > 0, if m ≥ Õ
(
poly(R,L, n)

)
, then with high probability, Algorithm 2 returns Ŵ that

satisfies

E
[
L0−1
D (Ŵ)

]
≤ inf
f∈F(W(0),R)

{
4

n

n∑
i=1

`[yi · f(xi)]

}
+O

[
LR√
n

+

√
log(1/δ)

n

]
.

The training of the l-th layer of the network enlarges F(W(0), Õ(1)),
leading to smaller expected 0-1 loss.

The “classifiability” of the underlying data distribution D can be measured
by how well its i.i.d. examples can be classified by F(W(0), Õ(1)).
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satisfies

E
[
L0−1
D (Ŵ)
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Connection to Neural Tangent Kernel (NTK)

Definition (Neural Tangent Kernel)

The neural tangent kernel is defined as:

Θ(L) = (Θ
(L)
i,j )n×n, Θ

(L)
i,j := m−1E

[
〈∇WfW(0)(xi),∇WfW(0)(xj)〉

]
.

I Consistent with definitions given in Jacot et al. (2018), Yang (2019), and Arora et
al. (2019b).

I Fixes exponential dependence in L in the original definition in Jacot et al. (2018) by
using N(0, 2/m) initialization instead of N(0, 1/m).
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Connection to Neural Tangent Kernel (NTK)

Corollary (Cao and Gu 2019, informal)

Let y = (y1, . . . , yn)> and λ0 = λmin(Θ(L)). If m ≥ Ω̃
(
poly(L, n, λ−10 )

)
, then with high probability,

Algorithm 2 returns Ŵ that satisfies

E
[
L0−1
D (Ŵ)

]
≤ Õ

[
L ·
√

y>(Θ(L))−1y

n

]
+O

[√
log(1/δ)

n

]
.

The “classifiability” of the underlying data distribution D can also be
measured by the quantity y>(Θ(L))−1y.
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Overview of Proof Technique

Key observations

I Deep ReLU networks are almost linear in terms of their parameters in a small neighbour-
hood around random initialization

fW′(xi) ≈ fW(xi) + 〈∇fW(xi),W
′ −W〉.

I L(xi,yi)(W) is Lipschitz continuous and almost convex

‖∇Wl
L(xi,yi)(W)‖F ≤ O(

√
m), l ∈ [L],

L(xi,yi)(W
′) & L(xi,yi)(W) + 〈∇WL(xi,yi)(W),W′ −W〉.

Optimization for Lipschitz and convex functions
+

Online-to-batch conversion

Quanquan Gu Towards Understanding Overparameterized Deep Neural Networks 36 / 43



Overview of Proof Technique

Key observations

I Deep ReLU networks are almost linear in terms of their parameters in a small neighbour-
hood around random initialization

fW′(xi) ≈ fW(xi) + 〈∇fW(xi),W
′ −W〉.

I L(xi,yi)(W) is Lipschitz continuous and almost convex

‖∇Wl
L(xi,yi)(W)‖F ≤ O(

√
m), l ∈ [L],

L(xi,yi)(W
′) & L(xi,yi)(W) + 〈∇WL(xi,yi)(W),W′ −W〉.

Optimization for Lipschitz and convex functions
+

Online-to-batch conversion

Quanquan Gu Towards Understanding Overparameterized Deep Neural Networks 36 / 43



Conclusion

Under certain data distribution assumptions

I Global convergence guarantees for GD in training over-parameterized
deep ReLU networks

I SGD trains an over-parameterized deep ReLU network and achieves
Õ
(
n−1/2

)
expected 0-1 loss.

I The data ”classifiability” can be measured by the NTRF function
class or the NTK kernel matrix.

I An algorithm-dependent generalization error bound.

I Sample complexity is independent of network width.
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Future Work

I Deeper understanding of the NTRF function class and NTK.

I Other learning algorithms.

I Other neural network architectures.
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Thank you!
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