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Abstract
Dimensionality reduction is a very important topic
in machine learning. It can be generally classi-
fied into two categories: feature selection and sub-
space learning. In the past decades, many meth-
ods have been proposed for dimensionality reduc-
tion. However, most of these works study fea-
ture selection and subspace learning independently.
In this paper, we present a framework for joint
feature selection and subspace learning. We re-
formulate the subspace learning problem and use
L2,1-norm on the projection matrix to achieve row-
sparsity, which leads to selecting relevant features
and learning transformation simultaneously. We
discuss two situations of the proposed framework,
and present their optimization algorithms. Experi-
ments on benchmark face recognition data sets il-
lustrate that the proposed framework outperforms
the state of the art methods overwhelmingly.

1 Introduction
High-dimensional data in the input space is usually not good
for classification due to the curse of dimensionality. A com-
mon way to resolve this problem is dimensionality reduction,
which has attracted much attention in machine learning com-
munity in the past decades. Generally speaking, dimensional-
ity reduction techniques can be classified into two categories:
(1) feature selection [Guyon and Elisseeff, 2003]: to select a
subset of most representative or discriminative features from
the input feature set, and (2) subspace learning [Belhumeur et
al., 1997][He and Niyogi, 2003][He et al., 2005][Yan et al.,
2007] (a.k.a feature transformation): to transform the original
input features to a lower dimensional subspace.

The most popular subspace learning methods include Prin-
cipal Component Analysis (PCA) [Belhumeur et al., 1997],
Linear Discriminant Analysis (LDA) [Belhumeur et al.,
1997], Locality Preserving Projection (LPP) [He and Niyogi,
2003] and Neighborhood Preserving Embedding (NPE) [He
et al., 2005]. Despite different motivations of these meth-
ods, they can all be interpreted in a unified Graph Embedding
framework [Yan et al., 2007].

One major disadvantage of the above methods is that the
learned projection is a linear combination of all the origi-

nal features, thus it is often difficult to interpret the results.
Sparse subspace learning methods attempted to solve this
problem. For example, [Zou et al., 2004] proposed a sparse
PCA algorithm based on ℓ2-norm and ℓ1-norm regularization.
[Moghaddam et al., 2006] proposed both exact and greedy
algorithms for binary class sparse LDA as well as its spec-
tral bound. [Cai et al., 2007] proposed a unified sparse sub-
space learning (SSL) framework based on ℓ1-norm regular-
ized Spectral Regression.

However, the selected features by sparse subspace methods
are independent and generally different for each dimension of
the subspace. See Figure 1 (a) for an illustrative toy example
of the projection matrix learned by SSL. Each row of the pro-
jection matrix corresponds to a feature, while each column
corresponds to a dimension of the subspace. We can see that
for the first dimension of the subspace, the 3rd and 6th fea-
tures are not selected, while for the second dimension of the
subspace, the selected features are all except the 1st and 4th
one. Hence it is still unclear which features are really use-
ful as a whole. Our goal is to learn a projection matrix like
Figure 1 (b), which has row-sparsity (elements in a row are
all zero). Hence it is able to discard the irrelevant features
(e.g., the 1st, 5th and 7th features) and transform the relevant
ones simultaneously. One intuitive way is performing feature
selection [Guyon and Elisseeff, 2003] before subspace learn-
ing. However, since these two sub-processes are conducted
individually, the whole process is likely suboptimal.
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Figure 1: An illustrative toy example of the projection matri-
ces learned by (a) Sparse subspace learning; and (b) feature
selection and subspace learning



Based on the above motivation, in this paper, we aim to
jointly perform feature selection and subspace learning. To
achieve this goal, we reformulate subspace learning as solv-
ing a linear system equation, during which we use L2,1-
norm on the projection matrix, encouraging row-sparsity. It
is worth noting that L2,1-norm has already been successfully
applied in Group Lasso [Yuan et al., 2006], multi-task fea-
ture learning [Argyriou et al., 2008], joint covariate selection
and joint subspace selection [Obozinski et al., 2010]. The re-
sulted optimization problem includes two situations, for each
of which we present a very simple algorithm, that is theo-
retically guaranteed to converge. Experiments on benchmark
face recognition data sets demonstrate the effectiveness of the
proposed framework.

The remainder of this paper is organized as follows. In
Section 2, we briefly introduce the graph embedding view of
subspace learning. In Section 3, we present a framework for
joint feature selection and subspace learning. In Section 4, we
review some related works. Experiments on benchmark face
recognition data sets are demonstrated in Section 5. Finally,
we draw a conclusion and point out future work in Section 6.

1.1 Notations
Given a data matrix X = [x1, . . . ,xn] ∈ Rd×n, we aim
to learn a projection matrix A ∈ Rd×m, projecting the
input data into an m-dimensional subspace. For a matrix
A ∈ Rd×m, we denote the ith row of A by ai, and the jth
column of A by aj . The Frobenius norm of A is defined as

||A||F =
√∑d

i ||ai||22, and the L2,1-norm of A is defined as

||A||2,1 =
∑d

i ||ai||2.

2 Graph Embedding View of Subspace
Learning

Many dimensionality reduction methods have been proposed
to find low-dimensional representation of xi. Despite dif-
ferent motivations of these methods, they can be nicely in-
terpreted in a general graph embedding framework [Yan et
al., 2007]. In graph embedding, we construct a data graph G
whose vertices correspond to {x1, . . . ,xn}. Let W ∈ Rn×n

be a symmetric adjacency matrix with Wij characterizes the
favorite relationship among the data. The purpose of graph
embedding is to find the optimal low-dimensional vector rep-
resentation for the vertices of graph G that best preserves the
relationship between the data points. In this paper, we fo-
cus on linear dimensionality reduction. That is, XTA. The
optimal A is given by the following optimization problem,

minA tr(ATXLXTA)

s.t. ATXDXTA = I, (1)

where Dii =
∑

j Wij is a diagonal matrix, and L = D −
W is called graph Laplacian [Chung, 1997], I is the identity
matrix with proper size. The above problem can be solved by
generalized eigen-decomposition XLXTA = ΛXDXTA,
where Λ is a diagonal matrix whose diagonal elements are
eigenvalues.

With different choices of W, the linear graph embedding
framework leads to many popular linear dimensionality re-
duction methods, e.g. PCA [Belhumeur et al., 1997], LDA
[Belhumeur et al., 1997], LPP [He and Niyogi, 2003] and
NPE [He et al., 2005]. We briefly give two examples below.

LDA: Suppose we have c classes and the k-th class have
nk samples, n1 + · · ·+ nc = n. Define

Wij =

{
1
nk

, if xi and xj belong to the k-th class
0, otherwise

. (2)

LPP [He and Niyogi, 2003]: Define

Wij =

{
d(xi,xj), if xj ∈ Nk(xi) or xi ∈ Nk(xj)

0, otherwise ,

(3)
where Nk(xi) denotes the set of k nearest neighbors of xi,
d(xi,xj) measures the similarity between xi and xj , which

can be chosen as Gaussian kernel e−
∥xi−xj∥

2

2σ2 or cosine dis-
tance xT

i xj

∥xi∥∥xj∥ . For more examples and other extensions of
graph embedding, please refer to [Yan et al., 2007].

3 Joint Feature Selection and Subspace
Learning

Since each row of the projection matrix corresponds to a fea-
ture in the original space, in order to do feature selection, it
is desirable to have some rows of the projection matrix be all
zeros. This motivates us to use L2,1-norm on the projection
matrix, which leads to row-sparsity of the projection matrix.
As a result, based on Eq. (1), we formulate joint feature se-
lection and subspace learning as follows,

minA ||A||2,1 + µtr(ATXLXTA)

s.t. ATXDXTA = I, (4)

where µ is a regularization parameter. Although the objective
function is convex, the constraint is not. Hence it is difficult to
optimize. In the following, we will reformulate the problem
to make it easy to be solved.
Theorem 3.1. Let Y ∈ Rn×m be a matrix of which each
column is an eigenvector of eigen-problem Wy = λDy.
If there exists a matrix A ∈ Rd×m such that XTA = Y,
then each column of A is an eigenvector of eigen-problem
XWXTa = λXDXTa with the same eigenvalue λ.

Proof. This is the corollary of Theorem 1 in [Cai et al., 2007].

Theorem 3.1 shows that instead of solving the eigen-
problem XWXTA = ΛXDXTA, A can be obtained by
the following two steps:

1. Solve the eigen-problem WY = ΛDY to get Y;
2. Find A which satisfies XTA = Y.

Note that only the second step involves A. XTA = Y is a
linear system problem, which may behave in any one of three
possible ways: (1) The system has infinitely many solutions;
(2) The system has a single unique solution; and (3) The sys-
tem has no solution. In the rest of this section, we will discuss
(1) in one situation and (2) (3) in another situation.



3.1 Situation 1
When the linear system has infinitely many solutions, we for-
mulate the proposed method as

minA ||A||2,1
s.t. XTA = Y. (5)

The optimization problem in Eq. (5) is similar to the prob-
lem appeared in Multiple Measurement Vector model in sig-
nal processing [Sun et al., 2009]. We derive a very simple
algorithm in the sequel.

The lagrangian function of the problem in Eq. (5) is

L(A) = ||A||2,1 − tr(ΓT (XTA−Y)). (6)

Taking the derivative of L(A) with respect to A1, and set-
ting the derivative to zero, we get

∂L(A)

∂A
= GA−XΓ = 0, (7)

where G is a diagonal matrix with the i-th diagonal element
equal to

gii =

{
0, if ai = 0
1

||ai||2 , otherwise . (8)

Left multiplying the two sides of Eq. (7) by XTG−1, and
using the constraint XTA = Y, we have

Γ = (XTG−1X)−1Y = 0. (9)

Note that when gii = 0, G−1 cannot be computed. This
is handled by adding a smoothing term ϵ to gii. It can be
justified that the algorithm converges to the global solution if
decreasing value of ϵ is used.

Substituting Eq. (9) into Eq. (7), we get

A = G−1X(XTG−1X)−1Y. (10)

In summary, we present the algorithm for optimizing
Eq.(5) in Algorithm 1.

Algorithm 1 Joint Feature Selection and Subspace Learning
(Situation 1)

Initialize:G0 = I, t = 0;
Compute Y based on WY = ΛDY;
repeat

Compute At+1 = G−1
t X(XTG−1

t X)−1Y;
Compute Gt+1 based on At+1;
t = t+ 1;

until convergence

The convergence of this algorithm was proved in [Nie et
al., 2010]. In addition, there is no additional parameter intro-
duced besides the parameters that are needed to construct the
graph as in traditional linear graph embedding. This is a very
appealing property.

1For ||A||2,1, we compute its sub-gradient because it is not
smooth.

3.2 Situation 2
When the linear system has a single unique solution, then it
is also the solution of Eq. (5). However, it does not have row
sparsity. When the linear system has no solution, then the
formulation in Eq. (5) will have no solution either. In both
of these cases, we turn to solve the constrained problem as
follows,

minA ||A||2,1
s.t. ||XTA−Y||2F ≤ δ. (11)

Or equivalently the regularized problem,

min
A

||A||2,1 + µ||XTA−Y||2F . (12)

This is a Group Lasso problem [Yuan et al., 2006]. When
µ = ∞, the optimization problem in Eq. (12) degenerates to
that in Eq. (5). Note that it is difficult to give an analytical
relationship between δ and µ. However, such a relationship
is not crucial for our problem. The objective function in Eq.
(12) is a non-smooth but convex function. In the following,
we will derive an algorithm which is similar to Algorithm 1
for solving Eq. (12).

Taking the derivative of Eq. (12) with respect to A, and
setting the derivative to zero, we get

∂L(A)

∂A
= GA+ 2µ(XXTA−XY) = 0, (13)

which leads to

A = 2µ(G+ 2µXXT )−1XY, (14)

where G is defined in Eq. (8). Since G also depends on A,
the above closed-form expression of the optimal A is funda-
mentally a fixed-point iteration.

According to the Woodbury matrix identity [Golub and
Loan, 1996]

(A+UCV)−1 = A−1−A−1U(C−1+VA−1U)−1VA−1,
(15)

we can further get

A = 2µG−1XY − 2µG−1X(I− (XTG−1X+
1

2µ
I)−1)Y

= G−1X(XTG−1X+
1

2µ
I)−1Y. (16)

It is worth noting that if µ = ∞, Eq. (16) reduces to Eq. (10).
This shows the relation between Eq. (5) and Eq. (12) again.

In summary, we present the algorithm for optimizing
Eq.(12) in Algorithm 2. The convergence of this algorithm
can be proved similarly to [Nie et al., 2010].

4 Related Work
In this section, we discuss some approaches which are closely
related to our method.

In order to pursue interpretability, [Cai et al., 2007] pro-
posed Sparse Subspace Learning (SSL), which is based on
ℓ1-norm regularization on each column of the projection, i.e.,
a,

min
a

||XTa− y||22 + µ||a||1, (17)



Algorithm 2 Joint Feature Selection and Subspace Learning
(Situation 2)

Initialize:G0 = I, t = 0 and µ;
Compute Y based on WY = ΛDY;
repeat

Compute At+1 = G−1
t X(XTG−1

t X+ 1
2µI)

−1Y;
Compute Gt+1 based on At+1;
t = t+ 1;

until convergence

where y is the eigenvector of Wy = λDy. Due to the nature
of the ℓ1 penalty, some entries in a will be shrunk to exact
zero if µ is large enough, which results in a sparse projec-
tion. However, SSL does not lead to feature selection, be-
cause each column of the projection matrix is optimized one
by one, and their sparsity patterns are independent.

Most recently, [Masaeli et al., 2010] proposed Linear Dis-
criminant Feature Selection, which modifies LDA to admit
feature selection as follows,

min
A

tr((ATSwA)−1(ATSbA)) + µ
d∑

i=1

||ai||∞, (18)

where Sb is the between-class scatter matrix, and Sw is
the with-in class scatter matrix [Belhumeur et al., 1997],∑d

i=1 ||ai||∞ is the ℓ1/ℓ∞ norm of A. Note that ℓ1/ℓ∞ has
the similar nature of L2,1-norm, which leads to row-sparsity.
The optimization problem is convex and solved by quasi-
Newton method [Boyd and Vandenberghe, 2004]. The main
disadvantage of this method is that the evaluation of the gra-
dient of tr((ATSwA)−1(ATSbA)) is computationally very
expensive. Hence it is limited to small-scale data.

5 Experiments
In this section, we evaluate two instances of our framework,
FSSL with LDA-type adjacency matrix defined in Eq. (2), re-
ferred to as FSSL(LDA), FSSL with LPP-type adjacency ma-
trix defined in Eq. (3), referred to as FSSL(LPP), and com-
pare them with the state of the art subspace learning meth-
ods, e.g. PCA, LDA, LPP [He and Niyogi, 2003], and sparse
subspace learning approaches, e.g. SSL with LDA-type ad-
jacency matrix, denoted by SSL(LDA) [Cai et al., 2007],
SSL with LPP-type adjacency matrix, denoted by SSL(LPP)
[Cai et al., 2007]. We also compare it with a feature selec-
tion method, e.g., Fisher score (FS), and feature selection
followed with subspace learning (FS+SL). In detail, we use
Fisher score to do feature selection and LDA (or LPP) to do
subspace learning, which are referred to as FS+SL(LDA) and
FS+SL(LPP) respectively. We use 1-Nearest Neighbor classi-
fier as baseline. All the experiments were performed in Mat-
lab on a Intel Core2 Duo 2.8GHz Windows 7 machine.

5.1 Data Sets
We use two standard face recognition databases which are
used in [Cai et al., 2007].

Extended Yale-B database contains 16128 face images of
38 human subjects under 9 pose and 64 illumination condi-
tions. In our experiment, we choose the frontal pose and use

all the images under different illumination, thus we get 2414
image in total. All the face images are manually aligned and
cropped. They are resized to 32 × 32 pixels, with 256 gray
levels per pixel. Thus each face image is represented as a
1024-dimensional vector.

CMU PIE face database [Sim et al., 2003] contains 68
individuals with 41368 face images as a whole. The face
images were captured by 13 synchronized cameras and 21
flashes, under varying pose, illumination and expression. In
our experiment, one near frontal poses (C27) are selected un-
der different illuminations, lighting and expressions which
leaves us 49 near frontal face images for each individual.

5.2 Parameter Settings
For both data sets, p = 10, 20, 30 images were randomly se-
lected as training samples for each person, and the rest im-
ages were used for testing. The training set was used to learn
a subspace, and the recognition was performed in the sub-
space by 1-Nearest Neighbor classifier. Since the training set
was randomly chosen, we repeated each experiment 20 times
and calculated the average recognition accuracy. In general,
the recognition rate varies with the dimensionality of the sub-
space. The best average performance obtained as well as the
corresponding dimensionality is reported in Table 1 and Ta-
ble 2. We also report the computational time (in second) of
subspace learning2.

For LDA, as in [Belhumeur et al., 1997], we first use PCA
to reduce the dimensionality to n− c and then perform LDA
to reduce the dimensionality to c − 1. This is also known
as Fisher Face [Belhumeur et al., 1997]. For LPP, we use
the cosine distance to compute the similarity between xi and
xj . For FS+LDA and FS+LPP, we first use Fisher Score to
select 50% features and then perform LDA (or LPP) to reduce
the dimensionality. For SSL(LDA), SSL(LPP), we tune µ by
searching the grid {10, 20, . . . , 100} according to [Cai et al.,
2007]. For FSSL(LDA) and FSSL(LPP), when p = 10, the
linear system has infinite solution, we run Algorithm 1. And
when p = 20, 30, we run Algorithm 2, where we simply set
µ = 0.1. The smoothing term ϵ is set to 0.01.

5.3 Results
The experimental results are shown in Table 1 and Table 2.
We can observe that (1) SSL is better than the corresponding
linear subspace learning method (e.g., SSL(LDA) > LDA),
which implies sparse subspace learning is able to improve
the classification performance of subspace learning method;
(2) FSSL outperforms the corresponding SSL method over-
whelmingly (e.g., FSSL(LDA) > SSL(LDA)), which indi-
cates feature selection can improve the corresponding linear
subspace learning method greatly; (3) Feature selection be-
fore subspace learning (FS+SL) sometimes achieves better
results than subspace learning and even better than SSL. This
implies the potential performance gain of doing feature se-
lection during subspace learning. However, at more cases,
FS+SL(LDA) and FS+SL(LPP) are worse than LDA and LPP.
This is because feature selection and subspace learning are

2It does not include the testing time of 1-Nearest Neighbor clas-
sifier.



Table 1: Face recognition accuracy on the Yale-B data set
Data set 10 training 20 training 30 training

Acc Dim Time Acc Dim Time Acc Dim Time
Baseline 53.44±0.82 – – 69.24±1.19 – – 77.39±0.98 – –

PCA 52.41±0.89 200 0.53 67.04±1.18 200 2.13 74.57±1.07 200 3.74
FS 64.34±1.40 200 2.92 76.53±1.19 200 3.02 82.15±1.14 200 3.59

LDA 78.33±1.31 37 0.38 85.75±0.84 37 2.44 81.19±2.05 37 1.18
LPP 79.70±2.96 76 0.66 80.24±5.49 75 4.7 86.40±1.45 78 11.13

FS+SL(LDA) 77.89±1.82 37 2.79 87.89±0.88 37 3.65 93.91±0.69 37 3.71
FS+SL(LPP) 66.15±5.63 77 2.87 88.43±1.11 74 3.03 93.85±0.69 38 3.08
SSL(LDA) 81.56±1.38 37 17.38 89.68±0.85 37 28.99 92.88±0.68 37 36.53
SSL(LPP) 80.73±1.27 43 75.57 89.69±0.82 37 123.76 92.97±0.66 37 175.67

FSSL(LDA) 86.64±1.04 37 7.96 96.66±0.75 37 7.14 98.77±0.33 36 12.17
FSSL(LPP) 87.97±1.02 74 3.23 95.57±0.66 74 7.99 97.97±0.40 37 14.26

Table 2: Face recognition accuracy on the PIE data set
Data set 10 training 20 training 30 training

Acc Dim Time Acc Dim Time Acc Dim Time
Baseline 75.84±1.21 – – 90.35±1.18 – – 91.68±0.95 – –

PCA 75.34±1.25 198 1.78 89.99±1.07 200 3.76 95.07±0.69 197 3.58
FS 82.66±1.00 170 3.78 91.74±1.07 200 5.23 94.66±0.63 197 4.84

LDA 90.80±0.87 67 1.70 94.14±0.54 67 1.68 96.52±0.53 67 1.87
LPP 92.35±0.47 171 3.26 94.42±0.51 145 10.61 96.51±0.53 67 11.29

FS+SL(LDA) 87.64±0.96 67 4.77 94.45±0.60 67 5.31 96.08±0.53 66 5.21
FS+SL(LPP) 88.75±0.81 150 4.94 94.49±0.60 67 4.03 96.18±0.57 94 5.14
SSL(LDA) 93.33±0.47 67 58.51 96.83±0.56 67 67.63 97.85±0.38 66 95.15
SSL(LPP) 92.90±0.47 67 288.34 96.63±0.62 67 632.30 97.94±0.39 70 644.26

FSSL(LDA) 94.31±0.42 67 6.46 98.02±0.33 64 27.60 98.44±0.27 64 52.60
FSSL(LPP) 96.41±0.39 67 11.44 97.84±0.38 67 26.86 98.38±0.39 100 42.15

conducted individually in FS+SL. So the selected features
are not necessary helpful for subspace learning. In contrast,
FSSL perform feature selection and subspace learning simul-
taneously, the selected features are generally beneficial for
subspace learning. Hence the proposed framework improves
subspace learning consistently; and (4) The computational
time of FSSL is much less than that of SSL.

5.4 Study on the Dimensionality of the Subspace
In this subsection, we get a closer look at the recognition ac-
curacy with respect to the dimensionality of the learned sub-
space. Figure 2 shows the performance of all the subspace
learning methods on the two databases with 20 training sam-
ples respectively, where the horizontal axis represents the di-
mensionality of the subspace, and the vertical axis denotes
the average recognition accuracy of 20 independent runs.

It is shown that the improvement of our methods over
sparse subspace learning methods and subspace space learn-
ing methods are consistent over a wide range of the dimen-
sionality of the subspace, which strengthens the superiority of
our approaches. Similar phenomenon can be observed when
we use 10 and 30 training samples. For the space limit, we
do not show them.

5.5 Projection Matrices & Selected Features
To get a better understanding of our approach, we plot the
projection matrices of our method and related methods in Fig-
ure 3 (a),(b) and (c). Clearly, the projection matrix of LDA
is not sparse, while each column of the projection matrix of
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Figure 2: Face recognition with 20 selected images for train-
ing on (a) YaleB; and (b) PIE database. For better viewing,
pleas see it in color pdf file.

SSL(LDA) is sparse. However, the sparsity patterns of each
column are not coherent. In contrast, each row of the projec-
tion matrix of FSSL(LDA) tends to be zero or nonzero simul-
taneously, which benefits from the nature of L2,1-norm, and
leads to feature selection.

From Figure 3 (d), we can see that the selected features
(pixels) are asymmetric. In other word, if one pixel is se-
lected, its axis symmetrical one will not be selected. This is
because the face image is roughly axis symmetric, so one in a
pair of axis symmetrical pixels is redundant given the other
one is selected. Moreover, the selected pixels are mostly
around the eyebrow, the corner of eyes, nose and cheek,
which are discriminative for distinguishing face images of
different people. This is consistent with our real-life expe-
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Figure 3: (a)(b)(c)shows the projection matrix learned by LDA, SSL(LDA) and FSSL (LDA) with 10 training samples per
person and µ = 10 for SSL(LDA), (d) shows the pixels selected by the proposed method, which are marked by red points

rience.

6 Conclusion and Future Work
In this paper, we propose to do feature selection and subspace
learning simultaneously in a joint framework, which is based
on using L2,1-norm on the projection matrix, that achieves
the goal of feature selection. Experiments on benchmark face
recognition data sets illustrate the efficacy of the proposed
framework. In our future work, we will study joint feature
selection and nonlinear subspace learning in kernel space.
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