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Abstract—Active learning on graphs has received increas-
ing interest in the past years. In this paper, we propose a
nonadaptive active learning approach on graphs, based on
generalization error bound minimization. In particular, we
present a data-dependent error bound for a graph-based learn-
ing method, namely learning with local and global consistency
(LLGC). We show that the empirical transductive Rademacher
complexity of the function class for LLGC provides a natural
criterion for active learning. The resulting active learning
approach is to select a subset of nodes on a graph such that
the empirical transductive Rademacher complexity of LLGC
is minimized. We propose a simple yet effective sequential
optimization algorithm to solve it. Experiments on benchmark
datasets show that the proposed method outperforms the state-
of-the-art active learning methods on graphs.
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I. INTRODUCTION

In many practical machine learning problems, the acquisi-
tion of labeled data is often expensive and/or time consum-
ing. This motivates Active Learning [7], which attempts to
select the most informative data points for labeling to reduce
the labeling cost. Traditional active learning methods [15]
[16] [12] focus on the data which are represented by vectors.
However, in many real-life applications, the data are repre-
sented by a graph, e.g., bibliographic networks. Moreover,
the data which are represented by vectors can be transformed
into a graph by standard techniques widely used in graph-
based semi-supervised learning [18] [17]. Therefore, active
learning on graphs is an alternative of practical interest
to traditional active learning and has received increasing
attention.

Depending on whether there is an interaction between the
learner and the oracle, active learning can be roughly catego-
rized into two families. One is adaptive active learning, such
as SVM active learning [15], and agnostic active learning
[1], which is able to use previous labels to determine the
next point to label. The other family is nonadaptive active
learning, which is appealing because it is able to select
a batch of data points without training a classifier. For
example, optimal experimental design methods [16] [12]
have been used for nonadaptive active learning. In our study,
we mainly focus on nonadaptive active learning.

In recent years, many active learning methods on graphs
have been proposed, motivated by different criteria of “infor-
mative” data. For example, [11] derived a deterministic error
bound for Minimum Cut-based semi-supervised learning
approach [4], which shows that the prediction error is small
if the graph cut size is large. This suggests a label selection
method to choose the labeled nodes to maximize the graph
cut size. Therefore, they proposed a heuristic algorithm to
maximize the graph cut for active learning. [10] generalized
the error bound in [11] by replacing the graph cut with an
arbitrary symmetric submodular function, and also proposed
an improved algorithm to maximize the graph cut using
submodular function maximization technique. [11] proposed
a probabilistic error bound that motivates an active learning
method, which first clusters the graph and then randomly
chooses a node in each cluster. [13] proposed to select
the most informative nodes by minimizing the prediction
variance of Gaussian Filed and Harmonic Function (GFHF)
[18]. All the active learning methods mentioned above are
non-adaptive. Another line of research [5] [3] has considered
adaptive active learning, where the labels for the nodes of a
graph are queried and predicted in an iterative way.

In this paper, we aim to develop a non-adaptive active
learning method on graphs, which theoretically guarantees
a good generalization performance. To achieve this goal, it
is natural to consider the generalization error of a specific
classifier on graphs. In particular, we choose Learning with
Local and Global Consistency (LLGC) [17] as the classifier
on graphs, because it is comparable to or even better than
Minimum Cut (MinCut) [4] and GFHF [18]. We present a
data-dependent generalization error bound for LLGC using
the tool of transductive Rademacher Complexity [8], which
is an extension of inductive Rademacher Complexity [2] and
measures the richness of a class of real-valued functions
with respect to a probability distribution. We show that the
empirical transductive Rademacher complexity is a good
surrogate for active learning on graphs. Thus we propose
to actively select the nodes by minimizing the empirical
transductive Rademacher complexity of LLGC on a graph.
The resulting active learning method is a combinatorial
optimization problem. In order to optimize it effectively,
we present a sequential optimization algorithm. It is worth
noting that our proposed active learning method tends to



result in small generalization error for LLGC'. Experiments
on benchmark datasets show that the proposed method
outperforms the state-of-the-art active learning methods on
graphs.

The remainder of this paper is organized as follows.
In Section II, we present a generalization error bound for
LLGC. In Section III, we present a criterion for active
learning and its optimization algorithm. The experiments are
demonstrated in Section IV. Finally, we draw conclusions
and point out some future work in Section V.

II. ANALYSIS OF LEARNING WITH LOCAL AND GLOBAL
CONSISTENCY

Given a weighted graph G = (V, &), where each node
v; € V corresponds to a data point x;, and the weight W, of
edge e;; € & reflects the affinity between i-th node and the j-
th node. W € R™*" is called adjacency matrix of the graph.
For undirected graphs, W is symmetric, while for directed
graphs, W is asymmetric. In the setting of classification,
some of the nodes on the graph are labeled, i.e., y; € {£1},
while the remainder are unlabeled, i.e., y; = 0. And our goal
is to predict the labels of those unlabeled nodes.

A. Review of LLGC

There exist bunches of graph-based (semi-supervised)
learning methods, e.g., Minimum Cut (MinCut) [4], Gaus-
sian Field and Harmonic Function (GFHF) [18] and Learn-
ing with Local and Global Consistency (LLGC) [17]. In this
paper, we focus on LLGC because it is the state-of-the-art
method and amenable to theoretical analysis.

In order to preserve the topological properties of a graph,
LLGC [17] assumes that if two nodes x; and x; are con-
nected in the graph, then the labels of these two nodes tend
to be similar to each other. Given a symmetric adjacency
matrix W € R™*™ of the graph, and let f(x;) be the label
of node x; produced by a classifier f, the above assumption
can be mathematically formulated as:
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where f; is a shorthand for f(x;), f = [f1,...,fs])?, D
is a diagonal matrix, called degree matrix, with D;; =
Z;;l Wi, L=1- D~ 2WD~™z is the normalized graph
Laplacian [6], and I is an identity matrix of appropriate
size. Eq. (1) is called Graph Regularization. Intuitively, the
objective function incurs a heavy penalty if neighboring
points x; and x; are mapped far apart.

In the setting of binary classification, LLGC pursues a
function f by minimizing the following criterion
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! Although it is designed based on LLGC, we will show that it also works
very well for GFHF by experiments.

where p > 0 is a regularization parameter, which controls
the balance between the loss and label smoothness. y is the
label vector with y = [y1,v2,...,yn]”.

B. Generalization Error Bound for LLGC

In this subsection, we derive a generalization error bound
for LLGC using the tool of transductive Rademacher com-
plexity for general function classes [8].

Definition 1. [8] For a fixed sample set S = {x1,...,X,}
generated by a distribution Dy on a set X and a real-valued
function class F with domain X, the empirical transductive
Rademacher complexity of F is the random variable
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where | +u = n, and 0 = (04,...,0,)" are independent

random variables such that
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where 0 < p < 3. The transductive Rademacher complexity
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Note that for the case p = % and [ = u, the transductive
Rademacher complexity coincides with the standard induc-
tive definition [2] up to a normalization factor % + % We
set p = % in the following derivation.

Intuitively speaking, transductive Rademacher complexity
measures the richness of a class of real-valued functions with

respect to a probability distribution.
Theorem 2. [8] Fix 6 € (0,1), and let F be a class of

functions mapping from X x ) to [0,1]. Let co = 1/ %(46)
and Q = }+ L. For any fixed sample set {(x;,y;)}1_;, with
probability 1 — § over random draws of a subsample of size
l, every f € F satisfies
err(f) < eir(f) + Rivu(F)

+  coQv/min(l,u) ++/2Q1n(1/5), (6)
where err(f) is the expected error on the unlabeled data,
and efr(f) is the empirical error on the labeled data.

The above error bound is quite general and applicable
to various transductive learning algorithms if an empirical
transductive Rademacher complexity ]?Hu(]-" ) of the func-
tion class F can be found efficiently. It also implies that in
order to prove the generalization error bound for LLGC, it is
sufficient to give an estimation of the empirical transductive
Rademacher complexity for the following function class.

Definition 3. The function class of LLGC is F; = {f =
(L +D) My, [lyll2 < Vi)



Note that there are [ labeled data with y; € {%1},
therefore, ||y|2 < V1.

In the following, we present two theorems, which serve
as the theoretical foundation of our proposed method in this
paper.

Theorem 4. The empirical transductive Rademacher com-
plexity of the function class F is upper bounded as

A 2
T R
where 1 is an identity matrix.

Proof: The empirical Rademacher complexity of the
function class F; is computed as
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where the first inequality holds due to the Cauchy-Schwarz’s
inequality and the third inequality holds due to the Jensen’s
inequality. [ ]

Using Theorem 2 and Theorem 4, we obtain the following
generalization error bound for LLGC.

Theorem 5. Fix § € (0,1), and let F be a class of functions
/32 11113(46) and Q _
1+ L. For any fixed sample {(x;,y;)}1—,, with probability

1 — § over random draws of a subsample of size 1, every
f € F satisfies

mapping from X x Y to [0,1]. Let ¢ =

err(f) < err(f) ) 2L 1))
+  coQv/min(l,u) +/2Q1In(1/5).  (9)

III. ACTIVE LEARNING VIA ERROR BOUND
MINIMIZATION

The generic problem of non-adaptive active learning on
graphs is as follows. Given a weighted graph G = (V, &), V
is the pool of candidate nodes, our goal is to find a subset
L C V, which contains the most informative [ nodes, namely
active set or labeled set. Let «{ = V' \ L be the unlabeled
set. Given a graph Laplacian matrix L associated with the
graph, L., denotes the principal submatrix corresponding

to the labeled set £, Ly, denotes the principal submatrix
corresponding to the unlabeled set U/, and L.y, denotes the
submatrix which interrelates the labeled set £ with unlabeled
set U.

A. Objective Function

From Theorem 5, we can see that the expected error
on the unlabeled data is upper bounded by the empirical
error on the labeled data plus the empirical transductive
Rademacher complexity Rl+u(]-'l) and the confidence term
coQ/min(l,u) + /2Q1n(1/6). It is easy to check that,
the larger the number of labeled samples () is, the tighter
the bound will be. In other words, the expected error on the
unlabeled data will be approximated by the empirical error
more accurately. Ideally we should minimize the expected
error on the unlabeled data by jointly minimizing the em-
pirical error on the labeled data and Rl+u(]-'l). However,
in the setting of non-adaptive active learning on a graph,
we do not know the label of a given node until we select
this node. That means we cannot estimate e7r(f) before we
label the nodes and train a classifier. Hence the only term
we can control is the empirical transductive Rademacher
complexity. In other words, minimizing Ry, (F;) is a
surrogate to guarantee small expected error. Therefore, we
present an active learning criterion by minimizing the upper
bound of empirical transductive Rademacher complexity for
LLGC as follows,

arg Encigtr (uLee +1)7%). (10)

where we ignore the constant scalers and square root symbol.
Note that L~ is computed based on the selected | samples,
ie., L.

The above optimization problem is a combinatorial opti-
mization problem. Finding the global optimal solution is NP-
hard. Motivated by the success of sequential minimization
algorithm in some existing experimental design approaches
[16] [12] [13], we present a simple yet effective sequential
optimization algorithm as follows.

B. Sequential Optimization
We introduce a selection matrix S € R™*!  which is
defined as
{ 1, if x; is selected as the j-th point in £
Sij = .
0, otherwise.

It is easy to check that each column of S has one and only
one 1, each row has at most one 1, and STS = I. The
constraint set for S can be defined as

S = {S|se{0,1}" sT1=1,81 <1}
{S|S € {0,1}"*! STS =1}, (11)

Then L,, can be represented by STLS. Therefore,
Eq. (10) can be equivalently written as

arg ‘Ispclg tr (uSTLS +1)7?). (12)



Suppose the eigen decomposition of L is UAUT
where U is consisted of the eigenvectors, and A =
diag(A1,...,A,) is a diagonal matrix whose diagonal el-

ements are eigenvalues. We have
tr (uSTLS+1)7?) = u((uSTUAU'S+1)7?)
tr ((STU(pA +T)UTS)~2)
= wu((s"usu’s)!)
((
)%,

= w((STUru’s+17") (13)

,(MAn +1)%), T =

where ¥ = diag ((uA; + 1)
1), and we use the

diag ((pA1 +1)% — o (A + 1)
fact that STUUTS =1.
Using the Woodbury matrix identity [9], we have
(sTuru’s +1n!
= I-sTu@'+u’ss’u)'u’s. 14

Hence
r((STUru’s+1)71)
= |-u(STU[T ! +UTss’u)uTs)
= |—u((T'+UTssTuU) !
r!'+uTss’u-rt))
= l-n+tu (@ '+UTSSTU)ITTY), 15)
where I'™? is a diagonal matrix whose i-th diagonal ele-
ment is ﬁ Therefore, the optimization problem

in Eq. (16) is equlvalent to
arg mcintr (C~'+UzU)'TY),  (16)

where U, = STU is a submatrix of U. More specially, U
consists of the rows in U which corresponds to the selected
nodes.

Let Hy = I'"'. Suppose k nodes have been selected,
denoted by L, which correspond to Uy, € RFX™, Let
H, = T~' + U% Ug,, then the (k + 1)-th node can be
selected by solvmg the following optimization problem

ipy1 = arg Crr&l/ri tr((HkJruZ ) p= ) (17)
i k

where u; is the transpose of the ¢-th row of U (thus a column
vector).
By using the Sherman-Morrison formula [9], we have

H 'u,u/H !
H, +uu ) '=H 1k "1k 18
(HL i) B4 uTH (18)

Therefore,

((Hk—i—uz ) b )
u/H,'T'H, 'y

1+ u/H; 'u;

- wHT) - (19)

2Since the smallest eigenvalue of graph Laplacian is 0, T'~1 is ill-
defined. In our implementation, we resolve this problem by replacing the
zero eigenvalue with a sufficient small value, e.g., 1le — 6.

Since tr(H;, 'T'"') is a constant given H ', the optimization

problem in Eq. (17) is equivalent to

u/H, T H 'y
14 uTH u;

iyl = arg max (20)

iCV /Ly

Once the (k-+1)-th node is selected, H | 1 can be updated
based on H,;l, by using the Sherman-Morrison formula
again,

HfluzkﬂuiHHgl
. [@2))
14+u?

H ' =H,"'- -
Th41 Hk Wiy y

k+1 —

Note that H,_ +1 is updated by matrix (vector) multiplication
and addition, rather than matrix inverse. Therefore, this
process is efficient.

In summary, we present the whole algorithm for active
learning on graphs in Algorithm 1.

Algorithm 1 Active Learning on Graphs via Generalization
Error Bound Minimization (Bound)
Input: Adjacency matrix W, number of nodes to select
l, regularization parameter u;
Compute L=I—- D 2WD"2
Perform eigen decomposition L = UAU7T
Initialize Hy =T, Lo =0
fork=0—1—-14do
Compute iy = argmax;cy,c,
Update £k+1 =L U {Zk_»,_lji
Update Hk+1 = H;l _z

T
B Wi Wi g
end for

u/H, 'A” 1Hk u; |
1+uTHk u; ’

—1
Hk

T -1
1+uik+1Hk Wiy g

C. Complexity Analysis

The computational complexity of Algorithm 1 includes
two parts. The first part is eigen-decomposition of the
adjacency matrix W. For a graph whose average node
degree is k, the Lanczos algorithm [9] can be used to
efficiently compute the eigenvectors of the eigen-problem
within O(tn2k), where ¢ is the number of iterations in
Lanczos. The second part is the sequential optimization
algorithm, whose complexity is O(n?l) where [ is the
number of selected nodes, i.e., |£|. Hence the total time
complexity is O(n?(tk-+1)), which is applicable to medium-
scale graphs.

IV. EXPERIMENTS

In this section, we evaluate the proposed method on real-
world datasets, and compare it with the state-of-the-art active
learning methods on graphs. Recall that the input of active
learning methods on graphs is an adjacency matrix.



A. Datasets

In our experiments, we use three real-world benchmark
datasets to evaluate the active learning methods.
Cora contains the abstracts and references of about 34, 000
research papers from the computer science community. The
task is to classify each paper into one of the subfields
of data structure (DS), hardware and architecture (HA),
machine learning (ML), and programming language (PL),
based on the citation relation between the papers. We only
use the link information of this dataset. We choose DS
and PL subsets to form two datasets. For each dataset, the
largest connected component of the graph is used. Since
the adjacency matrix of the Cora dataset is directed, we
symmetrize it by max(W, WT).
Coauthor is an undirected co-author graph data extracted
from the DBLP? database in four areas: machine learning,
data mining, information retrieval and database. It contains
a total of 1711 authors, each of which is represented by a
node. The edge between each pair of authors is weighted by
the number of papers they co-authored. Each class contains
about 400 authors. This graph is already connected.

B. Methods & Parameter Settings

To demonstrate the effectiveness of our proposed method,
we compare the following active learning approaches.

o Random Sampling (Random) uniformly selects nodes
from the candidate set. It is the simplest baseline for
active learning.

e Variance Minimization (VM) [13] is a recently pro-
posed method, which is motivated by GFHF and min-
imizing the prediction variance.

o METIS [11]: it uses the METIS clustering method [14]
to divide a graph into [ clusters, and randomly chooses
one data point from each cluster.

o U Maximization (?-Max) [10]: it is solved by submod-
ular function maximization, which performs better than
the heuristic optimization algorithm proposed in [11].

o Generalization Error Bound Minimization (Bound) is
our proposed method. It is motivated by Theorem 5.
There is one parameter j tunable. Throughout our
experiments, we simply fix p = 0.01.

After selecting the nodes by active learning, we train a
classifier on the graph to do classification. In our experi-
ments, we tried three classifiers: LLGC, GFHF and MinCut.
The reason why we tried these three classifiers is obvious,
because the proposed active learning method is built upon
LLGC, VM is motivated by GFHF and W-Max is designed
for MinCut. There is a parameter for LLGC, i.e., p, which
is tuned by 3-fold cross validation on the selected labeled
set over the grid {0.01,0.1,1,10,100}.

3www.informatik.uni-trier.de/ ley/db/

C. Experimental Setup

In order to randomize the experiments, in each run of
experiments, we restrict the pool of the candidate nodes to be
selected from a random sampling of 50% of the total nodes.
The random split was repeated 10 times. For each dataset,
we let the active learning methods incrementally choose
{10,20,...,160} nodes from the training set to label. We
evaluate different active learning methods combined with
different classifiers. We compute the mean classification
accuracy on all the unlabeled nodes, that is, the unselected
nodes in the pool plus the remaining 50% nodes.

D. Classification Results

The experimental results evaluated on the unlabeled data
are shown in Figures 1 and 2. In all subfigures, the horizontal
axis represents the number of labeled nodes, while the
vertical axis is the averaged classification accuracy over 10
runs. The experimental result of MinCut is much worse
than LLGC and GFHF for all the active learning methods,
because it usually results in a very unbalanced classification.
Therefore, we omit its result.

From Figures 1 and 2, we observe that the proposed
method (Bound) consistently outperforms other methods in
most cases using either LLGC or GFHF. It is appealing
because even though our method is built upon the error
bound minimization of LLGC, it is also much better than
other methods using GFHF. But note that our method using
LLGC achieves marginally better performance than using
GFHEF. On the Cora datasets, when the number of labeled
nodes is small, e.g., less than 30, our method and ¥-Max
usually perform the best. On the other cases, our method
is much better than the second best method. The superior
performance of our method is attributed to its theoretical
foundation, which guarantees that the classifier can achieve
small generalization error on the unlabeled data.

VM is usually worse than random sampling. The reason is
that minimizing the prediction variance does not guarantee
the quality of predictions on the unlabeled data.

The performance of METIS is usually comparable to or
even better than that of W-Max. Although METIS has a
solid theoretical foundation, the corresponding criterion is
so difficult that we have to solve it by a clustering algorithm
[14] followed by a heuristic sampling, which sacrifices its
performance.

In summary, our method together with LLGC is the most
promising combination, which is consistent with our theory.

V. CONCLUSIONS AND FUTURE WORK

The main contributions of this paper are: (1) We present
a generalization error bound for LLGC; (2) we present an
active learning criterion for graph data via minimizing the
empirical transductive Rademacher complexity of LLGC;
and (3) we present a simple algorithm to optimize the active
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learning criterion. In the future, we plan to develop a more
scalable algorithm to solve Eq. (10).
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