Optimizing ML
Using a Hierarchy of Monadic Types

Andrew Tolmach*

Pacific Software Research Center
Portland State University & Oregon Graduate Institute
Dept. of Computer Science, P.S.U., P.O. Box 751, Portland, OR 97207, USA
apt@cs.pdx.edu

Abstract. We describe a type system and typed semantics that use a
hierarchy of monads to describe and delimit a variety of effects, including
non-termination, exceptions, and state, in a call-by-value functional lan-
guage. The type system and semantics can be used to organize and justify
a variety of optimizing transformations in the presence of effects. In ad-
dition, we describe a simple monad inferencing algorithm that computes
the minimum effect for each subexpression of a program, and provides
more accurate effects information than local syntactic methods.

1 Introduction

Optimizers are often implemented as engines that repeatedly apply improving
transformations to programs. Among the most important transformations are
propagation of values from their defining site to their use site, and hoisting of
invariant computations out of loops. If we use a pure (side-effect-free) language
based on the lambda calculus as our compiler intermediate language, these trans-
formations can be neatly described by the simple equations for beta-reduction

(Beta) let = = e; in ey = eyfer/x]

and for the exchange and hoisting of bindings

e; in (let 2z €y in 63)1:
es in (let z1 = e; in e3)
(21 € FV(e2); 22 & FV (e1))

let x4
(Exchange) let 22

letrec f x = (let y = e; in ey) in e3 =
(RecHoist) let y = e; in (letrec f z = ey in e3)

(x,f € FV(e1);y & FV (e3))

where F'V'(e) is the set of free variables of e. The side conditions nicely express
the data dependence conditions under which the equations are valid. Either

* Supported, in part, by the US Air Force Materiel Command under contract F19628-
93-C-0069 and by the National Science Foundation under grant CCR-9503383.

orientation of the equation generates a valid transformation.! Effective compilers
for pure, lazy functional languages (e.g., [11]) have been conceived and built on
the basis of such transformations, with considerable advantages for modularity
and correctness.

It would be nice to apply similar methods to the optimization of languages
like ML, which have side effects such as I/O, mutable state, and exceptions.
Unfortunately, these “rearranging” transformations are not generally valid for
such languages. For example, if we apply (Beta) (oriented left-to-right) in a
situation where evaluating e; performs output and z is mentioned twice in es,
evaluating the resulting expression might produce the output twice. In fact, once
an eager evaluation order is fixed, even non-termination becomes a “side effect.”
For example, (RecHoist) is not valid unless e; is known to be terminating (and
free of other effects too, of course).

A similar challenge long faced lazy functional languages at the source level:
how could one obtain the power of side-effecting operations without invalidating
simple “equational reasoning” based on (Beta) and similar rules? The effective
solution discovered in that context is to use monads [9,14]. An obvious idea,
therefore, is to use monads in an internal representation (IR) for compilers of
call-by-value languages. Some initial steps in this direction were recently taken
by Peyton Jones, Launchbury, Shields, and Tolmach [13]. The aim of that work
was to design an IR suitable for both eager and lazy source languages. In this
paper we pursue the use of monads with particular reference to eager languages
(only), and address the question of how to discover and record several different
sorts of effects in a single, unified monadic type system. We introduce a hierarchy
of monads, ordered by increasing “strength of effect,” and an inference algorithm
for annotating source program subexpressions with their minimal effect.

Past approaches to coping with effects have fallen into two main camps. One
approach (used, e.g., by SML of New Jersey [1] and the TIL compiler [17]) is
to fall back on a weaker form of (Beta), called (Beta,), which is valid in eager
settings. (Beta,) restricts the bound expression e to variables, constants, and
A-abstractions; since “evaluating” these expressions never actually causes any
computation, they can be moved and substituted with impunity. To augment this
rule, these compilers use local syntactic analysis to discover expressions that are
demonstrably pure and terminating. Local syntactic analysis must assume that
calls to unknown functions may be impure and non-terminating. Still, this form
of analysis can be quite effective, particularly if the compiler inlines functions
enthusiastically. The other approach (used, e.g., by the ML Kit compiler [4])
uses a sophisticated effect inference system [15] to track the latent effects of
functions on a very detailed basis. The goals of this school are typically more
far-reaching; the aim is to use effects information to provide more generous

1 Of course, the fact that a transformation is valid doesn’t mean that applying it will
necessarily improve the program. For example, (Beta) (oriented left-to-right) is not
an improving transformation if e; is expensive to compute and = appears many times
in es; similarly, (RecHoist) (oriented left-to-right) is not improving if f is not applied
in e3.

polymorphic generalization rules (e.g., as in [21,16]), or to perform significantly
more sophisticated optimizations, such as automatic parallelization [6] or stack-
allocation of heap-like data [18]. In support of these goals, effect inference has
generally been used to track store effects at a fine-grained level.

Our approach is essentially a simple monomorphic variant of effect infer-
ence applied to a wider variety of effects (including non-termination, exceptions,
and 10), cast in monadic form, and intended to support transformational code-
motion optimizations. We infer information about latent effects, but we do not
attempt to calculate effects at a very fine level of granularity. In return, our
inference system is particularly simple to state and implement. However, there
is nothing fundamentally new about our system as compared with that of Talpin
and Jouvelot [15], except our decision to use a monadic syntax and validate it
using a typed monadic semantics. A practical advantage of the monadic syn-
tax is that it makes it easy to reflect the results of the effect inference in the
program itself, where they can be easily consulted (and kept up to date) by sub-
sequent optimizations, rather than in an auxiliary data structure. An advantage
of the monadic semantics is that it provides a natural foundation for probing
and proving the correctness of transformations in the presence of a variety of
effects.

In related work, Wadler [20] has recently and independently shown that
Talpin and Jouvelot’s effect inference system can be applied in a monadic frame-
work; he uses an untyped semantics, and considers only store effects. In another
independent project, Benton and Kennedy are prototyping an ML compiler with
an IR that describes effects using a monadic encoding similar to ours [3].

2 Source Language

This section briefly describes an ML-like source language we use to explain our
approach. The call-by-value source language is presented in Fig. 1. It is a sim-
ple, monomorphic variant of ML, expressed in A-normal form [5], which names
the result of each computation and makes evaluation order completely explicit.
The class const includes primitive functions as well as constants. The Let con-
struct is monomorphic; that is, Let (z,e1,e2) has the same semantics and typing
properties as would App(Abs(z,es),e1) (were this legal A-normal form). The
restriction to a monomorphic language is not essential (see Sect. 5). All func-
tions are unary; primitives like Plus take a two-element tuple as argument. For
simplicity of presentation, we restrict Letrec to single functions.

The types of constants are given in Fig. 2. Exceptions carry values of type
Exn, which are nullary exception constructors. Raise takes an exception con-
structor; rather than providing a means for declaring such constructors, we as-
sume an arbitrary pool of constructor constants. Handle catches all exceptions
that are raised while evaluating its first argument and passes the associated
exception value to its second argument, which must be a handler function ex-
pecting an Exn. The body of the handler function may or may not choose to
reraise the exception depending on its value, which may be tested using EqExn.

datatype typ = type varty = var * typ
Int

| Bool datatype value =
| Exn Var of var

| Tup of typ list | Const of comst
|

-> of typ * typ

datatype const = datatype exp =
Integer of int Val of value
True | False Abs of varty * exp

DivByZero | App of value * value
Plus | Minus | Times If of value * exp * exp
Let of varty * exp * exp

EqBool | EqExn Tuple of value list
WriteInt Project of int * value
Raise of value

Handle of exp * value

| I
| I
| I
| Divide I
| EqInt | LtInt | Letrec of varty * varty * exp * exp
| I
| I
| I
I

Fig. 1. Abstract syntax for source language (presented as ML datatype)

Integer _: Int
True,False : Bool
DivByZero : Exn
Plus,Minus,Times,Divide : Tup[Int,Int] -> Int
EqInt,LtInt : Tup[Int,Int] -> Bool
EqBool : Tup[Bool,Bool] -> Bool
EqExn : Tup[Exn,Exn] -> Bool
WriteInt : Int -> Tupl[]

Fig. 2. Typings for constants in initial environment

The primitive function Divide has the potential to raise a particular exception
DivByZero. We supply WriteInt as a paradigmatic state-altering primitive; in-
ternal side-effects such as ML reference manipulations would be handled simi-
larly. All other primitives are pure and guaranteed to terminate. The semantics
of the remainder of the language are completely ordinary.

3 Intermediate Representation with Monadic Types

Figure 3 shows the abstract syntax of our monadic intermediate representation
(IR). (For an example of the code, look ahead to Fig. 11.) For the most part,
terms are the same as in the source language, but with the addition of monad
annotations on Let and Handle constructs and a new Up construct; these are
described in detail below.

datatype monad = ID | LIFT | EXN | ST

datatype mtyp = M of monad * vtyp
and vtyp =

Int
| Bool
| Exn
| Tup of vtyp list
| => of vtyp * mtyp

type varty = var * vtyp

datatype value =
Var of var
| Const of const

datatype exp =
Val of value

| Abs of varty * exp

| App of value * value

| If of value * exp * exp

| Let of monad * monad * varty * exp * exp

| Letrec of varty * varty * exp * exp

| Tuple of value list

| Project of int * value

| Raise of mtyp * value

| Handle of monad * exp * value

| Up of monad * monad * exp

Fig. 3. Abstract syntax for monadic typed intermediate representation

Integer _: Int
True,False : Bool
DivByZero : Exn
Plus,Minus,Times : Tup[Int,Int] -> M(ID,Int)
Divide : Tup[Int,Int] -> M(EXN,Int)
EqInt,LtInt : Tup[Int,Int] -> M(ID,Bool)
EqBool : Tup[Bool,Bool] -> M(ID,Bool)
EqExn : Tup[Exn,Exn] -> M(ID,Bool)
WriteInt : Int -> M(ST,Tupl[l)

Fig. 4. Monadic typings for constants in initial environment

Values have ordinary value types (vtyps); expressions have monadic types
(mtyps), which incorporate a vtyp and a monad (possibly the identity monad,
ID). Since this is a call-by-value language, the domain of each arrow types is
a vtyp, but the codomain is an arbitrary mtyp. The monadic types for the
constants are specified in Fig. 4. The typing rules are given in Fig. 5. In this
figure, and throughout our discussion, ¢ ranges value types, m over monads, v
over values, ¢ over constants, x,y,z,f over variables, and e over expressions.

For this presentation, we use four monads arranged in a simple linear order.
In order of “increasing effect,” these are:

— ID, the identity monad, which describes pure, terminating computations.

— LIFT, the lifting monad, which describes pure but potentially non-terminat-
ing computations.

— EXN, the monad of exceptions and lifting, which describes computations that
may raise an (uncaught) exception, and are potentially non-terminating.

— ST, the monad of state, exceptions, and lifting, which describes computations
that may write to the “outside world,” may raise an exception, and are
potentially non-terminating.

We write m1 < mg iff m; precedes mo on this list. Intuitively, m; < ms implies
that computations in msq are “more effectful” than those in my; they can provoke
any of the effects in m; and then some. This particular hierarchy captures a
number of distinctions that are useful for transforming ML programs. We discuss
the extension of our approach to more elaborately stratified monadic structures
in Sect. 6.

More formally, suppose for each monad m we are given the standard opera-
tions unit,,, which turns values into null computations in m, and bind,,,, which
composes computations in m, and that the usual monad laws hold:

(Left) bind,, (unit,z) k=Fk
(Right) bind,, e unit,, =e
(Assoc) bindy, e (\x.bind,, (k x) h) = bind,,(bind, e k) h

Moreover, suppose that for each value type ¢t and monad m, M[m](T[t]) gives
the domain of values of type M(m,t). Then m; < my implies that there exists an
unique embedding up,,, _,,,, which, for every value type ¢, maps M[m](7[t]) to
M[m2J(TTt]). The up functions, sometimes called monad morphisms or lifting
functions [10], obey these laws:

(Unit) UPpn, s © UMty = UNity,

(Blnd) upml—wng(bindml € k) = bindm2(u’pm1—>mz 6) (upm1—>m2 o k)

The up functions can also be viewed as generalizations of unit operations, since,
by (Unit), upy_,,, = unity,. Fig. 6 gives semantic interpretations for types as

E(w)=t
Eb,Var v:t

Typeof(c) =t
El,Const c:t

Etlyv:t
EFVal v:M(ID,t)

E+{z:t1} Fe:Mima,t2)
EF Abs(x : t1,e) : M(ID,t; -> M(mo,t2))

Elyv ity => M(ma,ta) Ely,v:t
E + App(v1,v2) : M(ma,t2)

Er,v:Bool Ele;:M(m,t) EFes:M(m,t)
EF If (w,e1,e2) : M(m,t)

Etei:M(mi,t1) E+{z:ti}Fes:Mlma,t2) (m1 < mg2)
E+Let(mi,m2,x : t1,e1,e2) : M(ma2,t2)

E+{f:to -> M(m1,t1),z:to} F e1 : M(m1,t1)
E+{f:to -> M(m1,t1) } F ez : M(m2,t2)

E | Letrec(f :to => M(mi,t1),z : to,e1,e2) : M(ma,t2)

(LIFT < my)

Erlyvi:ti ... Elyuv,:ty
E + Tuple(vi,...,v,) : M(ID,Tup[t1,...,t,])

Etry,v:Tuplts,...,tn] (1<i<m)
E | Project(i,v) : M(ID,t;)

ElF,v:Exn
E + Raise (M(EXN,t) ,v) : M(EXN,¢)

Etre:M(m,t) Et,v:Exn -> M(m,t) (EXN<m)
E - Handle(m,e,v) : M(m,t)

Ete:Mmi,t) (m1 <ma)
E +Up(mi1,ma2,e) : M(m2,t)

Fig. 5. Typing rules for intermediate language

complete partial orders (CPO’s), and for our monads, together with the asso-
ciated up and bind functions. Note that the following laws hold under these
semantics:

(1d) Uy s = id

(Compose) upmo—)mz = upm1—>m2 o upmo—>m1 (m() S my S m2)

A typed semantics for terms is given in Figs. 7 and 8. Environments p map
identifiers to values. This semantics is largely predictable. However, the Let
construct now serves to make the composition of monadic computations explicit,
and the Up construct makes monadic coercions explicit. Intuitively,

Let (my,ma, (z,t1) ,e1,e2)

evaluates e;, which has monadic type M(m;,t), performing any associated ef-
fects, binds the resulting value to z : t1, and then evaluates ez, which has mo-
nadic type M(ma,t2). Thus, it essentially plays the role of the usual monadic
bind operation; in particular, if m; = msy, the semantic interpretation of the
above expression in environment p is just

bindy, (E[e1]p) My -Elez]plz = y])

However, our typing rules (Fig. 5) require only that my > my; i.e., e; may be in
a more effectful monad than e; The semantics of a general “mixed-monad” Let
is
bindm, (uppm, —m, (Ele1]p))(My-Ele2]plz == y])

The term Let (Up(my,ma,e1) ,;m2, (x,t) ,e1,e2) has the same semantics, so the
more general form of Let is strictly redundant. But this form is useful, because
it makes it easier to state (and recognize left-hand sides for) many interesting
transformations involving Let whose validity depends on the monad m; rather
than on ms. For example, a “non-monadic” Let, for which (Beta) is always valid,
is simply one in which m; = ID. Further examples will be shown in Sect. 4.

The semantics of the “non-proper morphism” Handle(e,v) deserve special
attention. Expression e may be in either EXN or ST, and the meaning of Handle
depends on which; the ST version must manipulate the state component. Note
that there are two plausible ways to combine state with exceptions. In the se-
mantics we have given (as in ML), handling an exception does not alter the state,
but it would be equally reasonable to revert the state on handle. Incidentally, we
don’t have to give a semantics when e is in ID or LIFT, because the typing rule
for Handle disallows these cases. Of course, such cases might appear in source
code; to generate monadic IR for them, e can be coerced into EXN with an ex-
plicit Up, or the Handle can be omitted altogether in favor of e, which by its type
cannot raise an exception! A Raise expression is handled similarly; the typing
rules force it into monad EXN, so semantics need only be given for that case, but
the whole expression may be coerced into ST by an explicit Up if necessary.

T :vtyp —» CPO

T[Int] = 2
T[Bool] = Z (0 represents false)
T[Exn] = Z
TITuplts,...,txl] = TIt1] X ... x T[ta] (n>0)
TlTupll] =1

Tltr -> M(m2,t2)] = T[t:1] = M[ma](T[t2])

M :monad — CPO — CPO

M[m]e
M[L1FT]c
M[Eexx]e
M[st]c

bi’n,d];]) T k
bindrirr T k

bi’nd]gx]\] z k

bindst = k s

UPr—sm T

UP1pLIFT T

UP1p—EXN T
UPp—sT T S
UPLIFT—EXN T

UPLIFT—ST L S

UPEXN—ST T S

=C
= c

= (Ok(c) + Fail(2)) |

= State — ((Ok(c) + Fail(Z)) x State) |

=kx
=ka
1
=ka
Fail(b) |
1

=kas
(Fail(b), s') |
1

; OJi{(x)J_
— (Ok(z), s),
= Ok(a),

1

= (Ok(a),s)
1

= (Ok(a),s),
(Fail(b), s) |
1

fzx=ay
ife=1
if x = Ok(a)
if £ = Fail(b) |
ife=1

if ¢ s = (Ok(a),s')
if z s = (Fail(b),s') |
ifrs=1

ifm:aL
ifz=1
fzx=ay
ife=_1
if x = Ok(a)
if £ = Fail(b) |
ife=_1

Fig. 6. Semantics of types and monads

V: (value: t) = Env — T[t]
V[var v]p = p(v)
V[Const (Integer ¥)]p =4
V[Const Truelp =1

V[Const False]p =0
V[Const Plus]p = plus
...V[Const Divide]p = divideby
...V[Const WriteInt]p = writeint

V[Const DivByZero]p = divby0

plus (a1,a2)

= a1+a2
divideby (a1,a2) = Ok(ai1/az2), ifas #0
Fail(divby0) | ifa =0
State = [Z] (sequence written out so far)
writeint a s = (Ok(), append(s, [a])) |
divby0 = 42 (arbitrary fixed integer)

Fig. 7. Semantics of values

E: (exp:M(m,t)) = Env — M[m](T[t])
Eval v]p = V[v]p
E[bs(z,e)]p = My.Ele]lplx = y]
E[app (v1,v2)]p = (V[vi]p) (V[v2]p)
E[1£(v,e1,e2)]p = if (V[vlp) (E[er]p) (Ele2]p)
Eltetrec(f,a er enlp = Eleal(plf = firOAf M.Elex)(plf = F'r = u])))
E[Tuple(vi,...,vn)]p = (V[vilp, ..., Vva]p)
E[Project (i,v)]p = proj;(V[vlp)
E[Raise (M(EXN,t) ,v)]p = (Fail(V[v]p))
£[Handle(m,e,v)]p = handlen(E]e]p)(V[v]p)
E[Let(my,m2,z,e1,e2)]p = bindmy(upy, m, (Ele1]p))(Ay.Elez]plz := y])
E[up(my,m2,e)]p = UDpmy —ma (Elelp)

ifvas ar = a ifv#0
af ifv=0

pTOji(’Ul, tee 1vn) = U
handlegxy * h = Ok(a) | if z = Ok(a) |
ha if £ = Fail(a) |
1 ifz=1
handlest © h s = (Ok(a),s’) if z s = (Ok(a),s’) |
has' if z s = (Fail(a), s') |
4 ifes=1

Fig. 8. Semantics of expressions

Let (m2,m3,z,Up(my1,ms,e1) ,e2) = Let(myi,m3,x,e1,€e2)

(LetLeft) (my < ms < ma)

(LetRight) Let(m1,m32,z,e,Up(ID,my,Val(Var z))) = Up(mi,m2,e)
(m1 < ma)

Let(m2,m3,x,Let(m1,m2,y,e1,€2) ,e3) =

(LetAssoc) Let(my,m3,y,e1,Let(ma,m3,z,e2,e3))

(m1 <mz <ms;y & FV(es))

(IdentUp) Up(m,m,e) =e

Up(m1,m3,e) = Up(mz,m3, (Up(mi,m2,e)))

(ComposeUp) (m1 < ms < mg)

Up(ma,maq,Let (m1,ma,x,e1,€2)) =
(LetUp) Let (m3,mq,2,Up(mi,ms,e1) ,Up(mz,mq,e2))
(m1 < ma,m3 < ma)

Fig. 9. Generalized monad laws

4 Transformation Rules

In this section we attempt to motivate our IR, and in particular our choice of
monads, by presenting a number of useful transformation laws. These laws can
can be proved correct with respect to the denotational semantics of Sect. 3. The
proofs are straightforward but tedious, so are omitted here. Of course, this is by
no means a complete set of rules needed by an optimizer; there are many others,
both general-purpose and specific to particular operators. Also, as noted earlier,
not all valid transformations are improvements.

Figure 9 gives general rules for manipulating monadic expressions. (LetLeft),
(LetRight), and (LetAssoc) are generalizations of the usual (Left), (Right), and
(Assoc) laws for a single monad, which can be recovered from these rules by
setting m; = ID and my = mg in (LetLeft), setting m; = mo in (LetRight), and
setting my = ma = mg in (LetAssoc). (IdentUp) and (ComposeUp) are just the
(Ident) and (Compose) laws stated in IR syntax; they let us do housekeeping on
coercions. Law (Unit) is the special case of (ComposeUp) obtained by setting
my = ID. (LetUp) permits us to move expressions with suitably weak effects in
and out of coercions; (Bind) is the special case of (LetUp) obtained by setting
my = ma and m3 = my, All these laws have variants involving Letrec, in which
Letrec(f,r,e1,e2) :M(m,t) behaves just like Let (ID,m, f,Abs(z,e1) ,e2); we
omit the details of these.

Figure 10 lists some valid laws for altering execution order. We have full
beta reduction for variables bound in the ID monad (BetalD). In general, the
order of two bindings can be exchanged if there is no data dependence between
them, and if either of them is in the ID monad (ExchangeID) or both are in or
below the LIFT monad (ExchangeLIFT). The intuition for the latter rule is that

it harmless to reorder two expressions even if one or both may not terminate,
because we cannot detect which one causes the non-termination. On the other
hand, there is no similar rule for the EXN monad, because we can distinguish
different raised exceptions according to the constructor value they carry. This is
the principal difference between LIFT and EXN for the purposes of code motion.

Rule (RecHoistID) states that it always valid to lift a pure expression out of
a Letrec (if no data dependence is violated). (RecHoistEXN) reflects a much
stronger property: it is valid to lift a non-terminating or exception-raising ex-
pression of a Letrec if the recursive function is guaranteed to be executed at
least once. This is the principal advantage of distinguishing EXN from the more
general ST monad, for which the transform is not valid. Although the left-hand
side of (RecHoistEXN) may seem a crude way to characterize functions guar-
anteed to be called at least once, and unlikely to appear in practice, it arises
naturally if we systematically introduce loop headers for recursions [2], according
to the following law:

Letrec(f,z,e;,es) :M(m,t) =
(Hdr) Let(ID,m,f,Abs(z,Letrec(f’',z,e1[f'/f],App(f',2))) ,e2)
(f' € FV(ei); f' # 2)

(HandleHoistExn) says that an expression that cannot raise an exception can
always be hoisted out of a Handle. Finally, (IfHoistID), (ThenHoistID), and
(AbsHoistID) show the flexibility with which ID expressions can be manipu-
lated; these are more likely to be useful when oriented right-to-left (“hoisting
down” into conditionally executed code). As before, all these rules have variants
involving Letrec in place of Let (ID,...), which we omit here.

As a (rather artificial) example of the power of these transformations, con-
sider the code in Fig. 11. The computation of w is invariant, so we would like to
hoist it above recursive function r. Because the binding for w is marked as pure
and terminating, it can be lifted out of the if using (IfHoistID), and can then be
exchanged with the pure bindings for s and t using (ExchangelD). This positions
it to be lifted out of r using (RecHoistID). Note that the monad annotations tell
us that w is pure and terminating even though it invokes the unknown function
g, which is actually bound to h.

The example also exposes the limitations of monomorphic effects: if £ were
also applied to an impure function, then g and hence w would be marked as
impure, and the binding for w would not be hoistable. In practice, it might be
desirable to clone separate copies of f, specialized according to the effectfulness
of their g argument. Worse yet, consider a function that is naturally parametric
in its effect, such as map. Such a function will always be pessimistically anno-
tated with an effect reflecting the most-effectful function passed to it within the
program. The obvious solution is to give functions like map a generic type ab-
stracted over a monad variable, analogous to an effect variable in the system of
Talpin and Jouvelot [15]. We believe our system can be extended to handle such
generic types, but we have not examined the semantic issues involved in detail.

(BetalD) Let(ID,m,z,e1,e2) = exle1/x]

Let(m1,m3,T1,e1,Let(ma, m3,22,€2,e3)) =
(ExchangeID) Let (m2,m3,x2,€2,Let (m1,m3,%1,€1,€3))
(m1 = IDor ma = ID;z1 € FV(e2);x2 & FV(e1))

Let(mi,m3,r1,e1,Let(m2,m3,72,€2,€3)) =
(ExchangeLIFT) Let(ma,ms3,%2,e2,Let(mi,m3,%1,e1,€3))
(ml,mQ < LIFT;z: ¢ FV(GQ); X9 ¢ FV(€1))

Letrec(f,x,Let(ID,m2,y,e1,€2),e3) :M(mgs,t) =
(RecHoistID) Let(ID,ms3,y,e1,Letrec(f,z,e2,€3))

(fixz & FV(e1);y & FV (es3))

Letrec(f,z,Let(m1,m2,y,e1,e2) ,App(f,v)) =
(RecHoistEXN) Let(mi,m2,y,e1,Letrec(f,x,ea,App(f,v)))
(m1 <EXN; f,z & FV(e1);y # v)

Handle (mz,Let(m1,m2,x,e1,€2),v) =
(HandleHoistEXN) Let(mi,m2,z,e1,Handle(ma,e2,v))
(m1 < EXN;z # v)

If(v,Let(ID,m,,e1,€2) ,€3) =
(IfHoistID) Let(ID,m,x,e1,1f(v,e2,€3))
(z & FV(es);x #v)

If(v,e1,Let(ID,m,x,e2,e3)) =
(ThenHoistID) Let(ID,m,x,e2,1f(v,e1,e3))

(x & FV(e1);z #v)

Abs(z : t,Let(ID,m,y,e1,e2)) =
(AbsHoistID) Let(ID,ID,y,e1,Abs(x : t,e2))

(x & FV(e1);y #)

Fig. 10. Code motion laws for monadic expressions

let f:(Int -> M(ID,Int * Int)) -> M(ST,Int) =
fn (g:Int->M(ID,Int * Int)) =>
letrec r (x:Int) : M(ST,Int) =
letID t:Int * Int = (x,1)
in letID s:Bool = EqInt(t)
in if s then
Up(ID,ST,0)
else
letID w:Int * Int = g(3)
in letID y:Int = Plus(w)
in letID z:Int * int = (x,y)
in letEXN x’:Int = Divide(z)
in 1letST dummy:() = WriteInt(x’)

in r(x’)
in r(10)
in let h:Int->M(ID,Int * Int) = fn (p:Int) => (p,p)
in f(h)

Fig. 11. Example of intermediate code, presented in an obvious concrete analogue of
the abstract syntax

5 Monad Inference

It would be possible to translate source programs into type-correct IR programs
by simply assuming that every expression falls into the maximally-effectful mo-
nad (ST in our case). Every source Let would become a LetST, every variable
and constant would be coerced into ST, and every primitive would return a value
in ST. Peyton Jones et al. [13] suggest performing such a translation, and then
using the monad laws (analogous to those in Fig. 9) and the worker-wrapper
transform [12] to simplify the result, hopefully resulting in some less-effectful
expression bindings. The main objection to this approach is that it doesn’t al-
low calls to unknown functions (for which worker-wrapper doesn’t apply) to
return non-ST results. For example, in the code of Fig. 11, no local syntactic
analysis could discover that argument function g is pure and terminating.

To obtain better control over effects, we have developed an inference al-
gorithm for computing the minimal monadic effect of each subexpression in a
program. Pure, provably terminating expressions are placed in ID, pure but po-
tentially non-terminating expressions in LIFT, and so forth. The algorithm deals
with the latent monadic effects in functions, by recording them in the result
types. As an example, it produces the annotations shown in Fig. 11.

The input to the algorithm is an typed program in the source language;
the output is a program in the monadically typed IR. The term translation
is essentially trivial, since the source and target have identical term structure,
except for the possible need for Up terms in the target. Consider, for example,
the source term If(x,Val y,Raise z). Since Val y is a value, its translation is
in the ID monad, whereas the translation of Raise z must be in the EXN or ST

Ery,v:Bool EFe; = ey :M(mi,t) Ele = eb:Mimi,t) (m1 < m2)
EF 1f(v,e1,e2):t = Up(mi,ma,If(v,e],e5)) : M(ma,t)

Elreir = el :M(mi,t1) E+{r:ti}Fe = e5: Mlma,t2) (m1 <mo < ms)
ELet(z :t1,e1,e2):ts = Up(ma,ms,Let(mi,m2,x : t1,€],e5)) : M(ms,t2)

Et,v:Exn (EXN <m)
E |- Raise(t,v) :t = Up(EXN,m,Raise (M(EXN,t),v)) : M(m,t)

Fig. 12. Selected translation rules

monad. To glue together these subterm translations we must insert a coercion
around the translation of the Val term. Up terms serve exactly this purpose; they
add the necessary flexibility to the system to permit all monad constraints to be
met. Such a coercion is potentially needed around each subterm in the program.

To develop a deterministic, syntax-directed, translation, we turn each typing
rule in Fig. 5 (except Up) into a translation rule, simply by recording the inferred
type and monad information in the appropriate annotation slots of the output,
combining the translations of subterms in the obvious manner, and wrapping an
Up term around the result. As examples, Fig. 12 shows the translation rules cor-
responding to the typing rules for If, Let, and Raise. Each free type and monad
in the translated typed term is initially set to a fresh variable; the translation
algorithm generates a set of constraints relating these variables just as in an
ordinary type inference algorithm. We discuss the solution of these constraints
below. As specified here, the translation is profligate in its introduction of Up
coercion terms, most of which will prove (after constraint resolution) to be un-
necessary identity coercions. We use a postprocessing step to remove unneeded
coercions using the (IdentUp) rule.

The translation algorithm generates constraints between types and between
monads. Type constraints can be solved using ordinary unification, except that
unifying the codomain mtyps of two arrow types requires that their monad com-
ponents be equated as well as their vtyp components. The interesting question
is how to record and resolve constraints on the monad variables. Such con-
straints are introduced explicitly by the side conditions in the Let, Letrec, and
Up rules, implicitly by the equating of monads from subexpressions in the If
and Handle rules, and (even more) implicitly as a result of ordinary unification
of arrow types, which mention monads in their codomains. The side-condition
constraints are all inequalities of the form m; > mo, where m; is a monad vari-
able and ms is a variable or an explicit monad. The implicit constraints are all
equalities m; = my; for uniformity, we replace these by a pair of inequalities:
my > my and mo > my. We collect constraints as a side-effect of the translation
process, simply by adding them to a global list.

It is very common for there to be circularities among the monad constraints.
To solve the constraint system, we view it as a directed graph with a node for each

monad and monad variable, and an edge from m; to ms for each constraint m; >
ms. We then partition the graph into its strongly connected components, and
sort the components into reverse topological order. We process one component
at a time, in this order. Since > is anti-symmetric, all the nodes in a given
component must be assigned the same monad; once this has been determined,
it is assigned to all the variables in the component before proceeding to the
next component. To determine the minimum possible correct assignment for a
component, we consult all the edges from nodes in that component to nodes
outside the component; because of the order of processing, these nodes must
already have received a monad assignment. The maximum of these assignments
is the minimum correct assignment for this component. If there are no such
edges, the minimum correct assignment is ID. This algorithm is linear in the
number of constraints, and hence in the size of the source program.

To summarize, we perform monad inference by first translating the source
program into a form padded with coercion operators and annotated with monad
variables, meanwhile collecting constraints on these variables, and then solving
the resulting constraint system to fill in the variables in the translated program.
The resulting program will contain many null coercions of the form Up(m,m,e);
these can be removed by a single postprocessing pass.

Our algorithm is very similar to a that of Talpin and Jouvelot [15], restricted
to a monomorphic source language. Both algorithms generate essentially the
same sets of constraints. Talpin and Jouvelot solve the effect constraints using
an extended form of unification rather than by a separate mechanism.

It would be natural to extend our algorithm to handle Hindley-Milner poly-
morphism for both types and monads in the Talpin-Jouvelot style. The idea is to
generalize all free type and effect variables in let definitions and allow different
uses of the bound identifier to instantiate these in different ways. In particular,
parametric functions like map could be used with many different monads, without
one use “polluting” the others. Functions not wholly parametric in their effects
would place a minimum effect bound on permissible instantiations for monad
variables. Supporting this form of monad polymorphism seems desirable even
if there is no type polymorphism (e.g., because the program has already been
explicitly monomorphized [19]).

In whole-program compilation of a monad-polymorphic program, the com-
plete set of effect instantiations for each polymorphic definition would be known.
This set could be used to put an upper effect bound on monad variables within
the definition body and hence determine what transformations are legal there.
Alternatively, it could be used to guide the generation of effect-specific clones
as suggested in the previous section. In a separate-compilation setting, monad
polymorphism in a library definition would still be useful for client code, but
not for the library code: in the absence of complete information about uses of
a definition, any variable monad in the body of the definition would need to
be treated as ST, the most “effectful” monad, for the purposes of performing
transformations within the body.

6 Extending the Monad Hierarchy

Our basic approach is not restricted to the linearly-ordered set of monads pre-
sented in Sect. 3. It extends naturally to any collection of monads and up em-
bedding operations that form a lattice, with ID as the lattice bottom element.
It is clearly reasonable to require a partial order; this is equivalent to requir-
ing that (Ident) and (Compose) hold. From the partial order requirement, the
distinguished role for ID, and the assumption that each monad obeys (Left),
(Right), and (Assoc), and each up operation obeys (Unit) and (Bind), we can
prove the laws of Fig. 9. (The validity of the laws in Fig. 10 naturally depends
on the specific semantics of the monads involved.) By also insisting that any
two monads in the collection have a least upper bound under embedding, we
guarantee that any two arbitrary expressions (e.g., the two arms of an if) can
be coerced into a (unique) common monad, and hence that the monad inference
mechanism of Sect. 5 will work.

One might be tempted to describe such a lattice by specifying a set of “primi-
tive” monads encapsulating individual effects, and then assuming the existence of
arbitrary “union” monads representing combinations of effects. As the Handle
discussion in Sect. 3 indicates, however, there is often more than one way to
combine two effects, so it makes no sense to talk in a general way about the
“union” of two monads. Instead, it appears necessary to specify explicitly, for
every monad m in the lattice,

— a semantic interpretation for m;

— a definition for bind,,;

— a definition of up,,_,,, for each m < m/';?

— for each non-proper morphism NP introduced in m, a definition of np,,, for
every m' > m.

The lack of a generic mechanism for combining monads is rather unfortunate,
since it turns the proofs of many transformation laws into lengthy case analyses.
We conjecture that restricting attention to up operations that represent natural
monad transformers [10] might help organize such proofs into simpler form.

7 Status and Conclusions

We believe our approach to inferring and recording effects shows promise in
its simplicity and its semantic clarity. It remains to be seen whether effects
information of the kind described here can be used to improve the performance
of ML code in any significant way. To answer this question, we have extended
the IR described here to a version that supports full Standard ML; we have
implemented the monad inference algorithm for this version, and are currently
measuring its effectiveness using the backend of our RML compiler system [19].

% Since the (Ident) and (Compose) laws must hold in a partial order, it suffices to define
UD,y_sm fOT just enough choices of m, m’ to guarantee the existence of least upper
bounds, since these definitions will imply the definition for other pairs of monads.

Acknowledgements

We have benefitted from conversations with John Launchbury and Dick Kie-
burtz, and from exposure to the ideas in their unpublished papers [7,8]. The
comments of the anonymous referees also motivated us to clarify the relationship
of our algorithm with the existing work of Talpin and Jouvelot. Phil Wadler made
helpful commments on an earlier draft.

References

N =

w

10.

11.

12.

13.

14.

15.

16.

A. Appel. Compiling with Continuations. Cambridge University Press, 1992.

A. Appel. Loop headers in A-calculus or CPS. Lisp and Symbolic Computation,
7(4):337-343, 1994.

N. Benton, July 1997. Personal communication.

L. Birkedal, M. Tofte, and M. Vejlstrup. From region inference to von Neumann
machines via region representation inference. In 28rd ACM Symposium on Prin-
ciples of Programming Languages (POPL’96), pages 171-183. ACM Press, 1996.
C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of compiling with
continuations. Proc. SIGPLAN Conference on Programming Language Design and
Implementation, 28(6):237-247, June 1993.

D. Gifford, P. Jouvelot, J. Lucassen, and M. Sheldon. FX-87 REFERENCE MAN-
UAL. Technical Report MIT-LCS//MIT/LCS/TR-407, Massachusetts Institute
of Technology, Laboratory for Computer Science, Sept. 1987.

R. Kieburtz and J. Launchbury. Encapsulated effects. (unpublished manuscript),
Oct. 1995.

R. Kieburtz and J. Launchbury. Towards algebras of encapsulated effects. (un-
published manuscript), 1997.

J. Launchbury and S. Peyton Jones. State in Haskell. Lisp and Symbolic Compu-
tation, pages 293-351, Dec. 1995.

S. Liang, P. Hudak, and M. Jones. Monad transformers and modular interpreters.
In 22nd ACM Symposium on Principles of Programming Languages (POPL ’95),
Jan. 1995.

S. Peyton Jones. Compiling Haskell by program transformation: A report from the
trenches. In Proceedings of ESOP’96, volume 1058 of Lecture Notes in Computer
Science, pages 18—44. Springer Verlag, 1996.

S. Peyton Jones and J. Launchbury. Unboxed values as first class citizens. In Proc.
Functional Programming Languages and Computer Architecture (FPCA ’91), pages
636666, Sept. 191.

S. Peyton Jones, J. Launchbury, M. Shields, and A. Tolmach. Bridging the gulf:
a common intermediate language for ml and haskel. In 25th ACM Symposium on
Principles of Programming Languages (POPL’98), pages 49—61, San Diego, Jan
1998.

S. Peyton Jones and P. Wadler. Imperative functional programming. In 20th
ACM Symposium on Principles of Programming Languages (POPL’93), pages 71—
84, Jan. 1993.

J.-P. Talpin and P. Jouvelot. Polymorphic type, region and effect inference. Journal
of Functional Programming, 2:245-271, 1992.

J.-P. Talpin and P. Jouvelot. The type and effect discipline. Information and
Computation, 111(2):245-296, June 1994.

17

18.

19.

20.

21.

D. Tarditi. Design and Implementation of Code Optimizations for a Type-Directed
Compiler for Standard ML. PhD thesis, Carnegie Mellon University, Dec. 1996.
Technical Report CMU-CS-97-108.

M. Tofte and J.-P. Talpin. Region-based memory management. Information and
Computation, 132(2):109-176, 1 Feb. 1997.

A. Tolmach and D. Oliva. From ML to Ada: Strongly-typed language interop-
erability via source trans lation. Journal of Functional Programming, 1998. (to
appear).

P. Wadler. The marriage of effects and monads. (unpublished manuscript), Mar.
1998.

A. Wright. Typing references by effect inference. In Proc. 4th European Symposium
on Programming (ESOP ’92), volume 582 of Lecture Notes in Computer Science,
Feb. 1992.

