Effect Systems with Subtyping

Yan Mei Tang

Pierre Jouvelot

Centre de Recherche en Informatique
Fcole Des Mines de Paris
E-mail: {tang,jouvelot}@cri.ensmp.fr

Abstract

Effect systems extend classical type systems with effect in-
formation. Just as types describe the possible values of ex-
pressions, effects describe their possible evaluation behav-
iors. Effects, which appear in function types, introduce new
constraints on the typability of expressions. To increase the
flexibility and accuracy of effect systems, we present a new
effect system based on subtyping. The subtype relation is
induced by a subsumption relation on effects. This subtyp-
ing effect system avoids merging effect information together,
thus collecting more precise effect information. We intro-
duce a reconstruction algorithm which for any expression
already typed with classical types, reconstructs its type and
effect based on the subtype relation. The reconstruction
algorithm is sound and complete w.r.t. the static semantics.

1 Introduction

Effect systems extend classical type systems with effect in-
formation. Just as types describe the possible values of
expressions, effects describe their possible evaluation be-
haviors. Effect systems allow powerful static analysis to
be performed in the presence of higher-order functions, im-
perative constructs and separate compilation. However, ef-
fects, which appear in function types, introduce new con-
straints on the typability of expressions, i.e., effect checking
may force the rejection of programs which would have type-
checked if no effects were present.

To increase the flexibility of previous effect systems, subef-
fecting has been introduced [Gifford87, Talpin92, Tang92].
Subeffecting allows expressions to admit larger effects, thus
enabling type misatches due to the introduction of effect in-
formation to be eliminated. But, subeffecting alone forces a
variable to have a unique type in different occurences and
thus merges effect information together; this often limits the
accuracy of the effect analysis. Instead of relying on subef-
fecting to eliminate undue type mismatches, we use the no-
tion of effect-based subtypingto improve both the flexibility
and accuracy of effect systems, while preserving type safety
and reconstruction.

We present a new effect system based on subtyping where
the subtype relation is induced by a subsumption rule on ef-
fects. This subtyping effect system avoids merging effect
information together when forcing two types to be identi-
cal, thus it collects more precise effect information. We in-
troduce a sound and complete reconstruction algorithm for
this static semantics. Since type inequalities are only intro-

duced by effect subsumption, it is a simple extension of clas-
sical type reconstruction algorithms with effect constraints
whose solutions satisfy the subtype relation. To motivate
this new notion, we show how to use effect-based subtyping
within the effect system for control-flow analysis presented
in [Tang92], thus improving the accuracy of this control-flow
analysis technique.

In the sequel, we define a type and effect static semantics
based on ubtyping (Section 2), present the type and effect
reconstruction algorithm and prove it is sound and complete
w.r.t. the static semantics (Section 3), discuss the related
work (Section 4) before concluding (Section 5). The proofs
are given in appendix.

2 Static Semantics with Subtyping

2.1 Language

A simple functional language is enough to present our ideas,
although our analysis can be extended to additional lan-
guage constructs, such as constants, imperative operations,
separate compilation (in the vein of [Tang94-1, Tang94-2]).
In particular, our analysis can also deal with polymorphism
as presented in [Tang94-1]. The syntax of expressions is
defined as follows:

en= x value identifier
(An (x) e) abstraction
(recn (f x) e) recursive function
(e &) application

where all lambda expressions, recursive or not, are explicitly
given a name n (from the domain Id of identifiers) which
is used to uniquely identify them. These names could be
automatically assigned by the reconstruction process.

2.2 Domains

Classical types specify the data structure of expressions. A
classical type 7 can either be int, a type variable o, or a
function type 7' — 7. A classical type environment 7 is a
finite map from identifiers to classical types.

7€ CType =int|o| v — 1 classical type
7¢ CTEnv =Idw~—r classical environment

Effect systems extend classical types with effect informa-
tion. An type t is either int, a type variable «, or a function

type t’ = t with the latent effect ¢, which abstracts the
control-flow behavior of the function body. A type environ-
ment £ is a finite map from identifiers to types.

te Type =int|a|t St type
£€ TEnv =1Idw+—t type environment

Control-flow effects record the function names that are
possibly called during the evaluation of expressions. An ef-
fect ¢ can either be the constant @), denoting the absence of
any function call, an effect variable ¢, a singleton {n} where
n is the name of a called function, or a union set of function
names indicated by the infix union operator U.

c€ Control =0|¢|{n}|cUc control-flow

2.3 Subtype and Subeffect Relations

An effect, i.e. a set of function names, can be conservatively
approximated by one of its supersets. The subeffect relation
is thus the usual set inclusion relation.

The subtype relation < is defined via effect inclusion
between latent effects of function types that have the same
structure. To properly define this notion, we introduce the
Struct function which transforms types to classical types by
erasing latent effects.

Struct(int) = int
Struct(«) =«
Struct(t’' = t) = Struct(t') — Struct(t)

The type structure of t is Struct(t). Two types t and ¢’ have
the same structure if and only if Struct(t) = Struct(t’).

The subtype relation t < t' is defined whenever ¢ and
t' have the same structure. Note that the subtype relation
between function types is contravariant.

Definition 1 (Subtype)

a <o

int < int

02t <t 3t & #<th Ato<ti Acx Do
The function Eff generates the set of effect inequalities

corresponding to a given type inequality. An effect inequal-

ity is a pair (¢, c;) written ¢; D ci.

Eff(a < @) =0

Eff (int < int) =0

Eff(th S to <t 2 t1) = {c1 D coJUEF(#; < th)
UEfF(to < t1)

2.4 Semantics

The static semantics defines the type and control-flow ef-
fect of expressions. It is specified by a set of inference
rules [Plotkin81]. Given a type environment £, the inference
rules associate an expression e with its type ¢ and control-
flow information ¢. We write :

Ere:tc

The crucial rules are the (abs) and (app) rules for lambda
abstraction and application. In the abstraction case, the
current function name is added to the functions called by

the lambda body; the resulting set is the latent control-flow
effect of the lambda expression. When such a function is
applied, in the (app) rule, this latent control-flow informa-
tion is used to determine the functions possibly called while
evaluating the function body.

(var) : E[x—t]Fx:¢,0
Ex—t]ke:tc

, {n}uc

EF(An(x)e):t' "= ¢t,0

(abs) :

&= tlF(An (x) e):t,0
(rec) : EF (recn (£ x)e): 1,0

Sl—e:t'i;t,c
(app): £+ &' t' c
EF(ee):t,cudUC”

EFe:tc
(sub): ¥ <t
Ere:t,c

The novelty here lies in the (sub) rule where we use sub-
typing to allow a larger type t to be used in lien of #'. This
increases the flexibility of the static semantics by relaxing
the constraint on latent effects imposed by the context of an
expression. We show that this new approach performs a bet-
ter analysis than the one previously introduced in [Tang92]
(see an example in Section 4) which used the less precise
subeffecting rule:

Ere:tc
(subeffecting) : ¢ D¢’
EFe:tc

3 Reconstruction with Subtyping

We present a new reconstruction algorithm that reconstructs
types and effects of expressions based on the subtype rela-
tion. We describe the basic ideas, present the algorithm and
state its correctness.

3.1 Basic Idea

The reconstruction of types and effects based on subtyping
is a type inequalities solving problem. Since the subtype re-
lation in our system is defined by the subsumption relation
on effects, type inequalities amount to sets of effect inequal-
ities when the structures of the types are known. There-
fore, we define a type and effect reconstruction algorithm
S which operates on expressions already typed with classi-
cal types. For any expression, the reconstruction algorithm
S computes a set of type inequalities beside its type and
effect. Since classical types specify type structures, solv-
ing type inequalities is reduced to solving the corresponding
effect inequalities. Thus reconstruction can be viewed as
an effect constraint satisfaction problem. For every expres-
sion that has a type and a control-flow effect in the static
semantics, its effect constraint set must have at least one
solution, which satisfies the set of type inequalities. The
classical types of expressions are reconstructed by a simple
type reconstruction algorithm [Milner78, Tofte87].

3.2 Algorithm §

Given a type environment £ and an expression e assumed
priorly decorated with its classical type (we use a straight-
forward expression annotation mechanism to express this
information in the algorithm), the reconstruction algorithm
S computes a type t, an effect ¢ and an effect constraint set
k. We note :
S(€,e) = {t,c, k)
The effect constraint set is partly built by application of Eff
to type inequalities and partly during the reconstruction of
lambda and rec expressions. The function New transforms
a classical type 7 to a type ¢ by adding fresh latent effect
variables to 7. Its proper definition is:
New(int) = int
New(a) =«
New(r' — 1) = New(r') R New(r) for fresh ¢
The inference algorithm S is defined as follows:
S(&,x) =
let ¥/ =&(x)
t = New(Struct(t))
in (t,0, Eff(¥' <1t))
S(E,(An (x:7) e)) =
let ' = New(7)

¢ new
(t,c, 6y = S(E[x — t'], &)

in (t' 54,0,k U{¢ D {n}uc})

S(E,(recn (f: 7 =717 x:7")e)) =
let 5 ¢= New(r' — 1)
(t" e, k) = S(E[f — ' S t][x — t], €)
in (' 54,0,k UEF(H" <t)u{¢D{n}uUc})

S(&,(e €)=
let (t" < t,c,k) = S(&,e)
{t,d r"Yy=8(&,e")
in (t,cucd U kUK UEff(# <t"))
Subeffecting can be easily related to subtyping by notic-
ing that its related reconstruction algorithm [Tang94-1] is

similar to S, except that < is replaced by the more restric-
tive =, implemented by unification.

3.3 Properties of §
The reconstruction algorithm S has the following properties,
easily proved by induction :
Lemma 1 (Properties of &) For any £, e, if S(£,e) =
{t,c, k), then :

e t only includes fresh effect variables.

o All environment extensions within S refer to types with
only fresh effect variables.

The previous lemma implies that the constraint set com-
puted by the reconstruction algorithm S has the following
normal form property:

Lemma 2 (Normal Constraints) If S(€,e) = (¢, ¢, k),
then k has the normal form {{; D c; | 1 = 1..s}.

Proof See the appendix.

3.4 Constraint Satisfaction

An expression e with its type environment & is type and
effect safe if and only if the constraint set x computed by
S(&€,e) admits at least one solution. A constraint set that
is in normal form always has solutions, among which we are
interested in the minimal one. The substitutions satisfying
k are called effect models.

Definition 2 (Effect Model) A substitution p is an effect
model of a constraint set k, noted as p |= k, if and only if
V{2Dce€r, u¢ 2 pc.

The following lemma shows how to satisfy a type inequal-
ity by solving its corresponding effect constraint.

Lemma 3 (Solution of Type Inequality) Ift andt’ ha-
ve the same structure and satisfy Lemma 1, then

nlE= Ef(t <t) & pt’ <pt
Proof By induction of the structure of types.

Theorem 1 (Satisfaction) FEwvery normal form constraint
set K = {(i D ¢; | 1 = 1..8} admits at least one model.

Proof {(;—c, |i=1...n} is an effect model of s, where
ci = Ulq¢; \ UlL1(i, where \ is the set difference operator.

A constraint set may admit more than one effect model,
among which we are interested in the minimal one. We de-
fine a function Min to characterize the minimal effect model
of a constraint set x. Note that the solution is independent
of the order of inequalities in & because of the algebraic prop-
erties of U: the function Min recursively computes an effect
model by applying each solved inequation to the residual
constraints.

Min(0) =1d
Min({¢ D c}UK') =let p = Min(x") in { — pc\ (}p

The constraint set of the reconstruction algorithm al-
ways admits a unique minimal model with respect to the
subsumption relation O on effects.

Theorem 2 (Minimality) Any constraint set admits a uni-
que minimal effect model.

Proof By induction on the constraint set.

3.5 Correctness

Since the reconstruction algorithm & is defined by induction
on the structure of expressions, which are of finite height, it
always terminates.

The reconstruction algorithm is sound and complete with
respect to the static semantics. The soundness theorem
states that the application of any effect model of the re-
constructed type constraint set to the reconstructed type
and effect satisfies the static semantics.

Theorem 3 (Soundness) Given an expression e and its
type environment £, if S(E, e) = (¢, ¢, k), then, for any effect

model p of k, one has:

pE e pt, pc

Proof See the appendix.

The completeness theorem states that the reconstructed
type t and the control-flow effect ¢ are minimal with respect
to any type t1 and control-flow effect c¢i1 derivable from the
static semantics, modulo some substitution g that satisfies
the computed constraint set x. The substitution 1 ranges
over the free variables of £.

Theorem 4 (Completeness) If61EF e: t1,c1 thenS(€, e)
= (t,c¢, k) and there exists an effect model p of K, such that:

6. =p€E and pt < t1 and c1 D pc

Proof See the appendix.

4 Related Work

Subtyping (see e.g. [Cardelli88]) adds flexibility to type sys-
tems by allowing type coercions to be performed if neces-
sary in the presence of type mismatches. It is often used to
captures aspects of object-oriented programming [Wand87,
Stansifer88]. Subtyping in effect systems has been previ-
ously introduced in explicitly typed languages [Gifford87,
Consel94]. There, a subsumption rule similar to the one
presented above was used, but since only type checking was
performed, its treatment was simpler than ours. This paper
shows that type and effect reconstruction may be performed
in an implicitly typed language.

Previous implicit effect systems [Dornic91, Talpin92, Tang92]

have introduced subeffecting, via the subeffecting rule (see
Section 2), to increase the flexibility of the static seman-
tics. Subeffecting allows expressions of same classical types
to also have the same effect-including types by allowing such
effects to be replaced by larger ones if need be. Subtyping
eliminates this information loss by allowing these expres-
sions to simply obey the subtype relation. We show below
on an example how subtyping can thus be more precise than
subeffecting:

((n, ()
(+ (f O, (@))1,
(f Oy (8) B)1.))
(n, (9) (9 D)1,

There, the function f is bound when performing the call
15 and is applied at 1, and 1 with arguments (An, (a) a)
and (An, (b) b) respectively. We give, in the following table,
the types of f at these three occurrences (¢f, tfa and t5s),
and the types of the arguments An, and Ans (¢n, and in,)
For clarity, we use 7z to indicates the type int.

Subeffecting Subtyping
.y} . {Ng e Ty} T N N L L
tf (z =7719) — 1| (2 =579 — ?
. {Nae,ny} . {DNgNe, Ny} . c{n.} ., {Ng NNy} .
tra | (1 =77 0) = 1| (1 =" 19) - 7
- A{n. Ny} . {Da} .
tn, |2 — 1 7 — 1
 {N., N} . {NgNe Ny} . Y | {0y, Ne T}
tgo | (17 =77 0) — 1| (2 =) — 7
. {n. Ny} . ANy} .
tn, |2 — 1 7 — 1
tra =1ty ty < tsa
tip =t ty < tse

Notice that, when using subeffecting, all occurrences of
f are forced to have the same type while, when using sub-
typing, they only have to obey a subtype relation, leading
to more precise local control-flow information.

5 Conclusion

We presented a new effect system based on subtyping where
expressions with the same structure obey a subtype relation
defined by a subsumption relation on effects. This subtype
effect system avoids merging effect information together,
thus collects more precise effect information than effect sys-
tems with subeffecting. We designed a sound and complete
reconstruction algorithm that reconstructs the types and ef-
fects of expressions in the presence of subtyping, and show
that it outperforms previous systems. A natural extension
of this paper is the possibility of combining subtyping and
subeffecting in a single framework. This has been proved
valuable in [?].

Acknowledgements

We thank Jean-Pierre Talpin for his numerous comments on
this paper.

References

[Cardelli88] Cardelli, L. Structural Subtyping and the No-
tion of Power Type. In ACM Symposium on Principles
of Programming Languages, pages 70-79, 1988.

[Consel93] Consel, C., and Jouvelot, P. Separate Polyvari-
ant Binding-Time Analysis. OGI Tech. Rep. CS/E 93-
006, March 1993.

[Consel94] Consel, C., Jouvelot, P., and Orbaek, P. Separate
Polyvariant Binding-Time Reconstruction. Technical Re-
port A-261, Ecole des Mines de Paris, July 1994.

[Dornic91] Dornic, V. and Jouvelot, P. Polymorphic
Time Systems for Estimating Program Complexity. In
JTASPFEFL’91, Bordeauz, France, 1991.

[Gifford87] Gifford, D. K., Jouvelot, P., Lucassen, J.
M., and Sheldon, M. A. FX-87 Reference Manual.
MIT/LCS/TR-407, MIT Laboratory for Computer Sci-
ence, September 1987.

[Milner78] Milner, R. A Theory for type polymorphism
in programming. In Journal of Computer and Systems
Sciences, Vol. 17, pages 348-375, 1978.

[Plotkin81] Plotkin, G. A structural approach to opera-
tional semantics. Technical report DAIMI-FN-19. Aarhus
University, 1981.

[Stansifer88] Stansifer, R. Type Inference with Subtypes.
In ACM Symposium on Principles of Programming Lan-
guages, 1988.

[Talpin92] Talpin, J. P., and Jouvelot, P. Polymorphic
Type, Region and Effect Inference. In the Journal of
Functional Programming, volume 2, number 3. Cam-
bridge University Press, 1992.

[Tang92] Tang, Y. M., and Jouvelot, P. Control-Flow Ef-
fects for Closure Analysis. In Proceedings of the 2nd
Workshop on Semantics Analysis, Bigre numbers 81-82,
pages 313-321. Bordeaux, October 1992.

[Tang94-1] Tang, Y. M. Systémes d’Effet et Interprétation
Abstraite pour 1I’Analyse de Flot de Contréle. Doctoral

Dissertation. Ecole des Mines de Paris et Université Paris
VI, March 1994.

[Tang94-2] Tang, Y. M., and Jouvelot, P. Separate Ab-
stract Interpretation for Control-Flow Analysis. Interna-
tional Symposium on Theoretical Aspects of Computer
Software, Springer Verlag, LNCS 789. Japan, April 1994.

[Tofte87] Tofte, M. Operational semantics and polymorphic
type inference. PhD Thesis, University of Edinburgh,
1987.

[Wand87] Wand, M. Complete type inference for simple
objects. In Proceedings of the 2nd IEFFE Symposium on
Logic in Computer Science, 1987, pages 37-44.

Appendix

Proof of Lemma 2

Lemma 2 (Formal Effect Constraints) If S(&,e) = (¢, c, k),
then « is of the following form:

{(i Deci|i=1..s}
Proof By induction of the structure of expressions.

e Case of x

The hypothesis is
S(&,x)= (1,0, Eff (' <))

By the definition of S
(1) ¢ = &(x)
(2) t = New(Struct(t))

From (1), by Lemma 1
(3) t' only includes fresh effect variables

From (2)(3), by the definition of Eff
Eff (t' < t) satisfies the lemma

e Case of (An (x) e)
The hypothesis is)
S(&,(An (x:7)e)) = (¢ S0, kU {¢ D2 {n}uc})

By the definition of &

(1) ¢ new
(2) (t,c, k) = S(E[x— t'],e)

From (2), by induction
(3) & satisfies the lemma

From (1)(3)
kU {¢ D {n} U c} satisfies the lemma

e Case of (recn (f x) e)

The hypothesis is
S, (recn (f: 7' =17 x:7"))=

(S 40,kUEF(H <t)Uu{¢ D {n}Uc})

By the definition of S

(1 ¢ St= New(r' — 1)

(2) (t", ¢, 5) = S(E[£ — ' S t][x — 1], e)
From (1), by the definition of New

(3) t = New(r)
(4) ¢ new

From (2), by Lemma 1
(5) t” only includes fresh effect variables

From (2), by induction
(6) & satisfies the lemma

From (3)(5), by the definition of Eff
(7) Eff (¥’ < t) satisfies the lemma

From (6)(7)(4)
rUEfF(" <t)u {¢ D {n} Uc} satisfies the lemma

e Case of (e &)

The hypothesis is
S(&,(ee')) ={t,cucd U, kUK UEF# <t")

By the definition of S

(1) (" S t,c,6) = S(E,e)
(2) (t',c,w"y =8(£,e")

From (1)(2), by Lemma 1

(3) ¢ <y only includes fresh effect variables
(4) t' only includes fresh effect variables

From (3)
(5) t” only includes fresh effect variables

From (1)(2), by induction
(6) s and «’ satisfy the lemma

From (6)(4)(5), by the definition of Eff
kUK U Eff(t' <t") satisfies the lemma m]

Proof of Theorem 3

Theorem 3 (Soundness) Given an expression e and its type
environment &, if S(£,e) = (¢,c, k), then for any effect
model p of x, one has :

pE b e:pt pc

Proof By induction on the structure of expressions

e Case of (var)

The hypotheses are
(1) S(&,x) = (¢, 0, Eff (t' < t))
2)uEEFR <1

From (1), by the definition of S
(3) t' = £(x),i.e. pE(x) = pt'

From (3), by (var) rule in the static semantics

(4) u€ Fx: pt', 0

From (2), by Lemma 3
(5) pt" < pt

From (4)(5), by the (sub) rule in the static semantics
nEFx:pt,0

e Case of (abs)

The hypotheses are

(1) S(€,(An (x:7) e)) =

(#' 5 4,0,sU{¢ 2 {n}uc})
(2) pErU{CD {n}uUc}
where t' = New(r) and ¢ new

From (1), by the definition of S
(3) (t.c, k) = S(E[x — t'], €)

From (2), by the definition of effect models
(4) n = |
(5) uE{¢2 mpuc e u¢ 2 u(in}uc)

From (3)(4), by induction
(6) u(Ex— ')k e: put, pc

From (6), by (abs) in the static semantics
(T) nE F On (x) @) = (' 1,0

From (5), by the definition of subtype relation
N}uc

®) w(t' ") <ue S
From (7)(8), by the (sub) rule in the static semantics
pE (An (x) e) : p(t' 5 1),0

o Case of (rec)

The hypotheses are

1) S(E,(xrecn (f: 7" = 7x:7") e)) =
S 40, UEF” <t)u{¢ 2 {n}uc})
(2) 1 2 r UBF(" <D UTC D fm) Ue)

where t/ 5 ¢ = New(r' — 1)

From (1), by the definition of S
(3) (", e, k) = S(E[£ — t' S f][x — #])

From (2), by the definition of effect models
@ prEs

(5) 1= Eff(t" < 1)
(6) n E{¢ 2 {n}Uc},ie. u¢ 2 {n}Upc

From (3)(4), by induction
(T) n(E[f —t' S f]x— t']) F e: ut”, pc

From (5), by Lemma 3
(8) ut" < ut

From (7)(8), by (sub) in the static semantics

(9) (€t — 1t < t[x — t']) Fe: ut, pe

From (9), by (abs) in the static semantics
; {n}ue

(10) (uE)E — (¥ =] F O (x) e) s p(t’ "= 1),0
From (6), by the definition of subtype relation
(1) w0 < (' S 1)

From (10)(11), by the (sub) rule in the static seman-
tics
(12) (&)t = (¥ S O] F (n (x) &) : p(t' 5 1),0

From (12), by (rec) rule in the static semantics
pE b (recn (£ x) e) : p(t' R t),0

Case of (app)

The hypotheses are
(1) S(&,(ee')) =, cud U, kUK UE[(t <t"))
2)pERUKUEFH <t")

From (1), by the definition of S
(3) S(&,e) = (t" < ¢, ¢, r)
(4) S(&,e"y =, k")

From (2), by the definition of effect models
(5) nl=r

(6) nl=r

() n b B <)

From (3)(5) and (4)(6), by induction
(8) pE Fe:pu(t’ S 1), pc
(9) pE ke = pt', pc

From (7), by Lemma 3
(10) pt’ < pt”

From (9)(10), by the (sub) rule in the static semantics
(11) pEF e’ ut”, puc’

From (8)(11), by (app) in the static semantics
pEF(ee):pt,pu(cuc uc”) m|

Proof of Theorem 4

Theorem 4 (Completeness) If 01 £ F e : t1,¢1, then S(&,e) =
(t,c, k) and there exists a effect model p of &, such that:

61.€ = p€ and pt <ty and c1 D pc

Proof By induction on the structure of expressions

e Case of (var)

The hypothesis is
6,EFx:11,0

By the (var) and (sub) rules in the static semantics
(1) t1 = £(x)
(2) 62t <t

From (1), by the definition of S
S(E.x) = (10, B(1h < 1)
where t = New(Struct(t}))

Since t only includes fresh effect variables, we can de-
fined @ such that:
(3) 6t =t

We define the effect model u, such that :

f1v otherwise

o = { v v € fu(t)

Note that since ¢ only includes fresh effect variables, u

is well defined.

From (2)(3), by the definition of x
(4) pty = 6181 < t
(5) ut =6t =11

From (4)(5), by Lemma 3
rl= Ef(t1 < t)

By the definition of u
6.& = p&

From (5)
ut <

Case of (abs)

The hypothesis is
1EF (On (x)e):th 20,0

By the (abs) and (sub) rules in the static semantics
; {n}ueq

(1) 61EF(An (x) e):t] = 1,0

(2) ¢ nigeny, <th 3t

From (1), by (abs) rule in the static semantics
(3) (018)[x — tlFe:ti,c

If x has classical type 7, let ' = New(7).
Then there exists a substitution 6, such that:
(4) t} = ot

We define a substitution 67, such that :

0= { v v € fu(t')

61v otherwise

Note that since ¢’ only includes fresh effect variables,

07 is well defined.

From (4), by the definition of 81, (3) is equivalent to :
(5) 01(5[){ — t']) Fe:ti,c1

From (5), by induction

(6) S(E[x — t'],e) = (L, ¢, k)
there exists p, such that :

(N pEx

(8) 8 (€[x — ¢]) = u(€lx r— ¢])
(9) pt <t

(10) ¢1 D uc

From (8)(4), by the definition of 4]

(11) 1€ = pé&, except on x which doesn’t appear in &
(alpha-renaming)

(12) t; = pt’

From (6), since ¢ = New(r), by the definition of
(13) S(E,An (x:7)e) = (' > 1,0,k U{¢ D {n}uUc})

where (new

We define an effect substitution g’ on fu(€,t',¢, ¢, k)
and (, such that :

!
wlo = { uwv v € fu(€,1,1, ¢, K)

Cc2 v =
Note that since (is fresh, u’ is well defined.

From (7), by the definition of p’

(14) ' E &

By the definition of p’
(15) p'¢ =2
(16) p'({n} Uc) = {n} U pnc

From (10)(16), by the definition of p'
(17) fn} Uer 2 /' ({n} Uc)

From (2), by the definition of the subtype relation
(18) 11 < ta

(19) 4 < #

(20) c2 2 {n} U1

From (20)(15)(17), by the definition of effect models
(21) 1 = {C 2 () Ue)

From (14)(21), by the definition of effect models
' ErU{{2{n}uUc}

From (11)(12), by the definition of p’
& =p'E

(22) th = p't

From (9), by the definition of p’
(23) p't <t

From (22)(23)(15), by the definition of subtype rela-
tion
(24) p'(t' Sty <t 2ty

From (18)(19), by the definition of subtype relation
(25) 1 Bt <th Bt

From (24)(25)

1 ©2

W (@ -)<ty =t

Case of (rec)
The hypothesis is
01€ F (recn (£ x) e) : t5 il 12,0

By the (rec) and (sub) rules in the static semantics
; {n}ue,

(1) 1€ F (recn (£ x) e) 1t = 11,0
(2t Ty < 2y,

From (1), by the (rec) rule in the static semantics
; {n}uey

3) (1)t —t1 = T t]x—t]F et

If £ and x have classical types 7' — 7 and 7’ respec-
tively, let (¢’ < t) = New(r' — 7).

Then, there exists a substitution #, such that:

(a) Py e Lv

We define a substitution on effect variables 6], such
that :

f1v otherwise

a;v:{ 9o et S 1)

Note that since ¢/ - ¢ only includes fresh effect vari-

ables, 6] is well defined.

From (4), by the definition of 47, (3) is equivalent to :
(5) O1(E[f —t! S f]x =t Fe:tr,

From (5), by induction

(6) S(E[£ — ' 5 t][x — t'],e) = (", ¢, &)
there exists u, such that :

(MuE-s

(8) 01 (E[f — t! S f][x — ¢']) =

w(E[E — ' S t][x —]

(9) pt" < s

(10) c1 D pe

From (6), since ¢’ L= New(r' — 1), by the defini-
tion of &

(11) S(&,(recn (f: 7' — 1t x:7") e)) =
5 t,0,k UEF(H <t)Uu{¢ D {n}uc})

From (8)(4), by the definition of 67, except on £ and x
which don’t occur in £ (alpha-renaming)

0 = p€

(12) ¢, Py — @ Lo

(13) 1 = pt

(14) {n} Uec1 =

From (9)(13), by Lemma 3
(15) u | B (" < 1)

From (14)(10), by the definition of effect models
(16) p={¢ 2 {n}uc}

From (7)(15)(16), by the definition of effect models
b= UBF(" <) U{C D {n} Uc)

From (12)(2)
u(t 5 1) <th 3t

Case of (app)

The hypotheses is
0.EF (e e') tta,c0 Uci UcY

By the (app) and (sub) rules in the static semantics
(1) 6:EF (e e/) tt1,c1 Ucy Ucl
(2) t1 < t2

From (1), by the (app) rule in the static semantics
(3)01EF e t] St
(4) 1EF e’ 1 11,1

From (3), by induction

(5) S(£,e) = (t" = ¢, ¢,)
there exists pu, such that :

(6) nl=w

(7) 1€ = pé€

&) u(t" Sty <t 2ty
(9) c1 2 pe

From (4), by induction
(10) S(&,e"y = (¥, ', k)
Ju’, such that :

(11) ' &'

(12) 6. = '€

(13) p't" <1

(14) ¢ D p'c’

From (5)(10), by the definition of S
S(&,(ee))={t,cuduc kUK UEF(t <))

77
We define a substitution u” on fu(€,t"” S t, ¢, k), and
fo(&, ¢, k")

u'y = pv v € fu(&, 1" Ste, K)
p'v ve fu(€,t, k)

Note that ifv € fo(€, ¢, ', s")YNfo(E, ¢ < t,c, k), then,
by the definition of S, v € fo(€) and thus, by (7)(12),
pv = p'v; thus p”’ is well defined.

From (6)(11), by the definition of p”

From (8), by the definition of p”
" 1 1"
(18) uu(t// C_) t) — ﬂ(t“ C_) t) S ti 2, t

From (18), by the definition of the subtype relation
19) p""t <t

EQO% f’l S_ﬂnlt“

(21) Clll B [L”C”

From (13), by the definition of p"
(22) p"t' = p't' < ¥

From g20)(22), by Lemma 3
(23) 1" |2 Bt <)

From (16)(17)(23), by the definition of effect models
p'=ErUK' UEf(t' <t")

From (19)(2)
H”t <t

From (9)(14)(21), by the definition of p”
caUciuc! Dp’(cucduc) m|

