
Annotated Type Systems
for

Program Analysis

Kirsten Lackner Solberg
Computer Science Department,
Aarhus University, Denmark,
e-mail: kls@daimi.aau.dk

November 20, 1995

i

Acknowledgement

First of all I would like to thank my supervisor, Hanne Riis Nielson, for
support and encouragement. I would also like to thank Flemming Nielson
for valuable discussions.

Part of my research was carried out while visiting Cambridge University;
the visit was supported by the Danish Research Academy. Thanks to Alan
Mycroft for taking the time to explain lots of things to me. Thanks to
Nick Benton for interesting discussions. Thanks to Sebastian Hunt for
explaining further about PERs in abstract interpretation. I would like to
thank Fritz Henglein for his hints and tips for solving the constraints in
Chapter 5. Thanks also to LOMAPS (Esprit Basic Research) and DART
(Danish Science Research Council) for partial funding. Thanks to Chris
Hankin and Daniel Le Métayer for answering questions about their work.

I am grateful to the people at IMADA, especially Søren Larsen and Peter
Kornerup for getting me started. Thanks to Odense Univerty for funding.

Thanks to all the people who have been reading draft versions of my work:
Hanne Riis Nielson, Flemming Nielson, Torben Amtoft, Olivier Danvy,
David Wright, John Immerkær.

And to all those people who never lost faith in me, celebrated my victories
with me and helped me through the difficult times: my fiancé Jan Gasser,
Per Waaben Hansen, Mette-Helene Beck, my father, Elisabeth, Sif and
Thorlak, my mother, Anne and Ole, . . .

Declaration

Part of the work in Chapter 2 is published as [SNN94] and co-authored by
Hanne Riis Nielson and Flemming Nielson. The paper has been invited
for publication in a special issue of the journal “Science of Computer Pro-
gramming”, devoted to SAS’94. The work in Chapter 3 and Chapter 4 will
be published as [Sol95]. Parts of Chapter 5 is published as [SNN92] and
co-authored by Hanne Riis Nielson and Flemming Nielson. A full version
is reported in [Sol93]. The work in Chapter 6 is submitted for publication
as [MS95] and is co-authored by Alan Mycroft.

ii

Preface to the Revised Version

This report is a revised version of my Ph. D. thesis of the same title,
which was accepted for the Ph. D. degree in Computer Science at Odense
University, Denmark, in July 1995.

I would like to take this opportunity to thank the examiners, Joan Boyar,
Department of Math. and Computer Science, Odense University, Denmark,
Chris Hankin, Department of Computing, Imperial College, University of
London, United Kingdom, and Bo Stig Hansen, Department of Computer
Science, DTU, Denmark.

An expanded version of [SNN94] will appear in a special issue of the jour-
nal “Science of Computer Programming”, devoted to SAS’94. A revised
version of Chapter 6 appeared at PLILP’95 [MS95].

The Appendix with proofs and implementations is available from the au-
thor.

Contents

Acknowledgement i

Declaration i

Preface to the Revised Version ii

Danish Summary xi

1 Introduction 1

1.1 The Standard Type System 3

1.1.1 Subtyping . 5

1.2 Annotated Type Systems 6

1.2.1 Annotating Base-types 7

1.2.2 Annotating Subtypes 9

1.2.3 Annotating Type-constructors 14

1.2.4 Annotating Base-types and Type-constructors . . . 21

1.2.5 Summary . 23

1.3 Overview of Thesis . 24

2 Strictness and Totality Analysis 27

2.0.1 Motivating Example 28

2.1 The Annotated Type System 31

iii

iv CONTENTS

2.1.1 Strictness and Totality Types 31

2.1.2 Conjunction Types 36

2.1.3 The Conjunction Type System 37

2.2 The Power of the Fix-rules 42

2.3 Operational Semantics . 45

2.3.1 New Terms . 47

2.3.2 Properties of the Semantics 48

2.4 Soundness . 55

2.4.1 Properties of the Standard Type System 57

2.4.2 Properties of the Conjunction Type System 57

2.4.3 Properties of the Validity Predicate 59

2.4.4 The Soundness Proof 63

2.5 Summary . 67

3 Strictness and Totality Analysis with Conjunction 69

3.1 The Annotated Type System 70

3.1.1 The Strictness and Totality Types 70

3.1.2 The Analysis . 74

3.2 The Power of the Fix-rules 74

3.3 Denotational Semantics . 80

3.3.1 Relation Between the Semantics 81

3.4 Soundness . 84

3.5 Summary . 89

4 Inference Algorithms 91

4.1 Standard Type Inference Algorithms 92

4.1.1 The Algorithm T 94

CONTENTS v

4.2 Strictness and Totality Analysis Inference Algorithm . . . 97

4.2.1 The Structural Strictness and Totality Inference Sys-
tem . 99

4.2.2 Lazy Strictness and Totality Type Inference System 105

4.2.3 The Lazy Strictness and Totality Type Inference Al-
gorithm . 110

4.3 Soundness . 115

4.3.1 Discussion of Completeness of the Algorithm 116

4.4 Summary . 124

5 Binding Time Analysis 125

5.1 Review of Binding Time Analysis 126

5.1.1 Well-formedness of Types 127

5.1.2 Well-formedness of Expressions 128

5.1.3 Algorithms for Binding Time Analysis 132

5.2 A Constraint based Binding Time Analysis 132

5.2.1 Types and Their Well-formedness 133

5.2.2 Expressions and Their Well-formedness 136

5.3 Incorporating [up] and [down] 144

5.3.1 [up] and [down] on Function Types 145

5.3.2 [up] and [down] on Non-function Types 146

5.3.3 The [up-down]-rule 148

5.3.4 Making the [up-down]-rule Implicit 151

5.4 Generating the Constraint Set 156

5.5 Solving the Constraint Set 168

5.6 Summary . 176

vi CONTENTS

6 Uniform PERs 179

6.1 Introduction . 179

6.2 Formalism . 183

6.2.1 PERs on Domains 183

6.2.2 The Egli-Milner Ordering 183

6.3 Uniform PERs on Types 185

6.4 Examples in Int→ Int 191

6.5 Comportment Analysis . 196

6.5.1 Correctness of the Analysis 200

6.6 Summary . 205

7 Conclusion 209

7.1 Summary . 209

7.1.1 Summary of Analyses 209

7.1.2 Summary of Techniques 211

7.2 Future Work . 213

7.2.1 Multi-paradigmatic Languages 214

Bibliography 217

List of Tables

1.1 Annotations in Chapter 1 23

1.2 Annotations in the Thesis 24

2.1 Relation Between the Fix-rules 43

3.1 Relation Between the Fix-rules 77

5.1 Solutions to the Constraints in Example 5.5 136

5.2 Solution to the constraints in Example 5.9 143

5.3 Solutions to the Constraints of Example 5.19 155

5.4 Minimal Solutions to the Constraints 169

5.5 The Three Groups of Constraints 170

6.1 Properties on Int → Int 208

7.1 Proof Techniques . 212

vii

viii LIST OF TABLES

List of Figures

1.1 Type Inference . 4

1.2 The Subtyping Rules . 5

2.1 Coercions Between Strictness and Totality Types 33

2.2 Coercions Between Conjunction Types 38

2.3 Conjunction Type Inference 39

2.4 Picturing the [fix]-rule . 40

2.5 Lazy Semantics for Closed Terms 46

2.6 The definition of validity 56

3.1 Coercions Between Strictness and Totality Types 72

3.2 Strictness and Totality Type Inference 75

3.3 Denotational Semantics for the λ-calculus 81

3.4 The Meaning of the Strictness and Totality Types 85

4.1 The Algorithm U . 93

4.2 The Algorithm T . 95

4.3 The Algorithm W . 98

4.4 Structural Strictness and Totality Type Inference 100

4.5 Lazy Strictness and Totality Type Inference 106

4.6 The Algorithm ST . 111

4.7 The Algorithm I (Part 1) 113

ix

x LIST OF FIGURES

4.8 The Algorithm I (Part 2) 114

5.1 Well-formedness of the 2-level Types 127

5.2 Well-formedness of the 2-level λ-calculus 130

5.3 Constraints for Well-formedness for Types 134

5.4 The Well-formedness Relation for the 2-level λ-calculus . . 137

5.5 [up] and [down] on Function Types 144

5.6 [up] and [down] on Non-function Types 147

5.7 The [up-down]-rule . 148

5.8 The Well-formedness Relation for the 2-level λ-calculus With-
out [up] and [down] . 152

5.9 Auxiliary Functions K and P 156

5.10 Auxiliary Functions U and UList 158

5.11 Auxiliary Function UBt . 158

5.12 Auxiliary Function UType 159

5.13 Algorithm L for Collecting Constraints (Part 1) 161

5.14 Algorithm L for Collecting Constraints (Part 2) 162

5.15 The Function Exp . 170

5.16 The function Div . 172

5.17 The Function ForceR . 173

5.18 The Functions Solve and Solve
′ 174

6.1 The Subset Ordering on Int 187

6.2 The Egli-Milner Ordering on Int 187

6.3 The Subset Ordering on Int → Int 193

6.4 The Egli-Milner Ordering on Int → Int 194

6.5 The Projection Functions 198

6.6 Auxiliary Functions . 199

Danish Summary

Annoterede Typesystemer til
Programanalyse

Det er velkendt at programanalyse er et brugbart vrktj nr programmer-
ingssprog skal implementeres effektivt. Vi ser her p et par eksempler: For
funktionelle sprog er strictness-analyse brugbart: en funktion er strict, hvis
den anvendt p et ikke terminerende argument vil resultere i en beregning,
der ikke terminerer. En strictness-analyse vil finde ud af om en funktion
er strict. Analysen skal vre plidelig, dvs. hvis analysen siger at en funk-
tion er strict, s er funktionen rent faktisk strict, men en funktion kan godt
vre strict selvom analysen siger at den ikke er. For en strict funktion er
det sikkert at beregne argumentet fr funktionskaldet, og derved optimere
funktionskaldet.

Et andet eksempel er totalitetsanalyse. Her er mlet at finde ud af om en
funktion er total, dvs. om funktionen anvendt p et terminerende argument
vil terminere. Ogs for totale funktioner er det sikkert at beregne argu-
mentet fr funktionskaldet.

Et sidste eksempel er bindingstidsanalyse. Analysen introducerer en skel-
nen mellem data tilgngelig p oversttelsestid eller p krselstid. Nr et argu-
ment til en funktion er kendt p oversttelsestidspunktet, s kan funktionen
specialiseres med hensyn til dette argument p oversttelsestidspunktet, og
derved reduceres krselstiden p bekostning at get oversttelsestid. Udfold-
ning af rekursion kan introducere ikke-terminerende beregninger p overst-
telsestidspunktet. Dette er mske ikke nsket, selvom det oprindelig program
ikke vil terminere. Her kan totalitetsanalysen hjlpe med information om
hvornr det er sikkert at udfolde. Bindingstidsanalyse afviger fra strictness-
analyse og totalitetsanalyse ved at ikke at interessere sig for en egenskab
ved den vrdi, som programmet beregner, men for selve beregningen.

xi

xii DANISH SUMMARY

Forskellige teknikker til specifikation af programanalyser er udviklet: bl.a.
abstrakt fortolkning [BHA86, Myc81] og projektionsanalyse [WH87, Lau91].
I abstrakt fortolkning gives en abstrakt vrdi til programmet i stil med
denotationssemantik, hvor en konkret mening tildeles programmet.

I den seneste tid har flere forskere, deriblandt [NN88, KM89, Ben93, TJ92a,
Wri91], anvendt typesystemer til at specificere programanalyser. Ideen er
at annotere typerne med program analyse information. For et udtryk med
standard typen t1 → t2 kan vi annotere typekonstruktren, dvs. funktion-
spilen, med programanalyse informationen s som i t1 →s t2. Vi vil forst
dette som “nr funktionen er beregnet, s vil den udvise opfrelsen s”. En
anden mde at annotere typer p er (t1 → t2)s og vi vil forst det som “dette
udtryk vil evaluere til en funktion med egenskaben s”. For strictness-
analyse er et muligt valg af annoteringer:

s ::= ⊥ | >
Et program med typen (t1 → t2)⊥ vil evaluere til en strict funktion, der
tager argumenter af typen t1 og giver et resultat af typen t2. Et program
med typen (t1 → t2)> vil evaluere til en funktion, der tager argumenter
af typen t1 og giver et resultat af typen t2 og vi ved ikke noget om dens
opfrsel. Til totalitetsanalyse annoteringerne kan f.eks. vre:

s ::= 6⊥ | >
En total funktion fra t1 til t2 vil have typen (t1 → t2)6⊥. Til bindingstids-
analyse er et valg af annoteringer:

s ::= r | c
Et program med typen t1 →c t2 vil f sit argument p oversttelsestids-
punktet, hvorimod et program af types t1 →r t2 vil f sit argument p krsel-
stidspunktet.

I denne afhandling flges denne trend. I Kapitel 1 ser vi p flere eksempler
fra litteraturen af analyser specificeret ved typesystemer.

I Kapitel 2 prsenterer vi en kombineret strictness- og totalitetsanalyse. Vi
specificerer analysen som et annoteret typesystem. Typesystemet tillader
konjunktion af annoterede types, men kun p verste niveau. Denne analyse
er kraftigere end Kuo og Mishra’s [KM89] strictness-analyse, da vi inklud-
erer totalitets egenskaber. Analysen vises sund med hensyn til en opera-
tions semantik. Det er ikke umiddelbart hvordan analysen kan udvides til
“fuld” konjunktion.

DANISH SUMMARY xiii

Analysen i Kapitel 3 er ogs en kombineret strictness- og totalitetsanalyse,
men med “fuld” konjunktion. Sundhed af analysen er vist med hensyn til en
denotations semantik. Analysen er kraftigere end strictness-analyserne af
Jensen [Jen92a] og Benton [Ben93] — igen fordi vi ogs inkluderer totalitets
egenskaber.

Indtil nu har vi kun set p specifikation af analyser, men for at de kan
vre praktisk brugbare har vi brug for an algoritme, der kan rekonstruere
de annoterede typer. I Kapitel 4 konstruerer vi en algoritme for ana-
lysen i Kapitel 3 ved at anvende lazy type metoden af Hankin and Le
Métayer [HM94a]. Grunden til at vi har valgt analysen i kapitel 3, er at
metoden ikke kan anvendes p analysen fra Kapitel 2.

I Kapitel 5 studerer vi en bindingstidsanalyse. Vi tager analysen speci-
ficeret af Nielson og Nielson [NN92] og vi konstruerer en mere effektiv
algoritme end den foreslet i [NN92]. Algoritmen opsamler “constraints”
ved strukturelt at g igennem udtrykket, ligesom standard type rekonstruk-
tions algoritmen T [Dam85]. Bagefter beregnes den minimale lsning til
mngden af “constraints”.

Analysen i Kapitel 6 er specificeret ved abstrakt fortolkning. Hunt [Hun91]
har vist at projektions baseret analyse er inkluderet i PER (partiel kvi-
valens relation) baserede analyser i abstrakt fortolkning. De PERs, som
Hunt bruger, er stricte, dvs. bundelementet er relateret til bundelementet.
I Kapitel 6 fjerner vi denne restriktion ved at krve at PER’erne er uni-
forme, p den mde at de behandler alle tal ens. Ved at tillade ikke stricte
PERs fr vi tre uniforme egenskaber p Int: {⊥, ZZ, ZZ⊥}. De korresponderer
til de tre annoteringer, b, n og >, brugt i Kapitel 2 og 3.

xiv DANISH SUMMARY

Chapter 1

Introduction

It is well known that program analysis is a useful tool in the efficient im-
plementation of programming languages. Let us give a few examples. For
the lazy functional languages strictness analysis is profitable: a function
is strict if its application to a looping argument results in a looping com-
putation. A strictness analysis detects safely when functions are strict:
whenever the analysis says a function is strict then the function is indeed
strict, however the function may be strict even though the analysis says it
is not. Function application can be optimised using strictness information
because for strict functions it is safe to evaluate the argument before per-
forming the function call and hence enforcing a call-by-value evaluation of
function applications.

Another example is totality analysis. Here the goal is to determine whether
a function is total, i.e. that the application of the function to any argument
results in a terminating computation. For a total function it is also safe
to evaluate the argument before performing the function call and thereby
enforce call-by-value evaluation of function applications.

A final example is binding time analysis. The analysis introduces a distinc-
tion between data available at compile-time and at run-time. Whenever
an argument to a function is already known at compile-time it is possible
to specialise the function to that particular argument at compile-time and
thereby reduce the evaluation time at run-time (at the cost of evaluation
time at compile-time). Unfolding of recursion may introduce looping at
compile-time which sometimes is not desirable though the original pro-
gram would loop too. Here the totality analysis can help by providing
information to tell when it is safe to do the unfolding. Binding time anal-
ysis differs from strictness analysis and totality analysis in that it is not

1

2 CHAPTER 1. INTRODUCTION

concerned with a property of the value the program evaluates to but with
the evaluation of the program.

A number of techniques have been developed for the specification of pro-
gram analysis including abstract interpretation [BHA86, Myc81] and pro-
jection analysis [WH87, Lau91]. In abstract interpretation, there is asso-
ciated an abstract value with each program in the spirit of denotational
semantics where a denotation is associated with each program. In the pro-
jection based approach a projection is associated with each program. The
analyses come in two flavours: forward analyses and backward analyses.
Forward analysis amounts to: given a property for the argument to a func-
tion what is the property of the result of the application of the function.
In backwards analysis we want to find the property of the argument given
the property of the result of the function application.

More recently, the use of type systems for program analysis have been pur-
sued by a number of researchers including [NN88, KM89, Ben93, TJ92a,
Wri91]. The idea is to annotate the types with program analysis infor-
mation. If an expression has the standard type t1 → t2 we can annotate
the type constructor, i.e. the function arrow, with the program analysis
information s as in t1 →s t2. We will interpret this as “when the function
is evaluated it will exhibit the behaviour s”. Another way to annotate
the type is (t1 → t2)s and we can interpret this as “the expression will
evaluate to a function with the property s”. For a strictness analysis one
possible choice of annotations is

s ::= ⊥ | >

A program with the type (t1 → t2)⊥ evaluates to a strict function that
takes programs of type t1 as argument and the result of the application
has the type t2. A program of type (t1 → t2)> evaluates to any function
that takes arguments of type t1 and the result of the application has the
type t2, i.e. we do not know whether the function is strict or not. The
annotations for a totality analysis can be

s ::= 6⊥ | >

A total function from t1 to t2 will then have the type (t1 → t2) 6⊥. For
binding time analysis the annotations might be

s ::= r | c

1.1. THE STANDARD TYPE SYSTEM 3

A program of type t1 →c t2 will be supplied with its argument at com-
pile-time whereas a program of type t1 →r t2 will be supplied with its
argument at run-time.

In this thesis we shall follow this trend. The development is preformed for
a simply typed lambda calculus. We will mainly work combined strictness
and totality analysis and with binding time analysis.

In the remainder of this chapter we shall give an overview of different
approaches found in the literature and show how the work of this thesis
fits into the picture.

1.1 The Standard Type System

We consider the simply typed λ-calculus with constants. The standard
types are either base-types or function types:

t ::= B | t → t

and the base-types (the B’s) may include Int and Bool and in some cases
type variables. The terms are:

e ::= x | λx.e | e e | c | if e then e else e | fix e

The constants (the c’s) include true and false of type Bool and all the
integers of type Int in addition to +, *, . . . of type Int→ Int→ Int. We
will only consider terms that are typeable according to the type inference
rules defined in Figure 1.1 and for simplicity we shall require that the
bound variables are different. The list A of assumptions gives types to free
variables and for each constant c there is an type tc, e.g.

t7 = Int

ttrue = Bool

tfalse = Bool

t+ = Int→ Int→ Int

The set of free variables in the term e is written FV(e) and the usual
substitution on terms is written e[e2/x], where e[e2/x] is the term e where
all free occurrences of x are replaced by e2.

4 CHAPTER 1. INTRODUCTION

[var] A ` x : t if x : t ∈ A

[abs]
A, x : t1 ` e : t2

A ` λx.e : t1 → t2

[app]
A ` e0 : t1 → t2 A ` e1 : t1

A ` e0 e1 : t2

[if]
A ` e1 : Bool A ` e2 : t A ` e3 : t

A ` if e1 then e2 else e3 : t

[fix]
A ` e : t → t
A ` fix e : t

[const] A ` c : tc

Figure 1.1: Type Inference

The idea of a type judgement, A ` e : t, is that under the assumptions,
A, for the free variables, the term, e, has the type t.

Example 1.1
With the rules in Figure 1.1 we can type

∅ ` λx.x : Int → Int

and

∅ ` λx.x : Real → Real

However we are not able to infer

∅ ` if e then 7 else 7.2 : Real

To type if e then 7 else 7.2 we need to coerce Int to Real in order for
the two branches, 7 and 7.2, to have the same type. This is not supported
by the type system of Figure 1.1. 2

The standard type inference system must be sound with respect to a se-
mantics. Suppose that e is closed. Soundness of the inference system
amounts to: the semantics of e must be a member of the semantics of the
type infer for e.

1.1. THE STANDARD TYPE SYSTEM 5

[coer]
A ` e : t1
A ` e : t2

if t1 ⊆ t2

[ref] t ⊆ t

[trans]
t1 ⊆ t2 t2 ⊆ t3

t1 ⊆ t3

[arrow]
t3 ⊆ t1 t2 ⊆ t4
t1 → t2 ⊆ t3 → t4

Figure 1.2: The Subtyping Rules

1.1.1 Subtyping

The type inference system can be extended with a set of rules for subtyping
(Figure 1.2). We have a subtyping rule (or coercion rule):

A ` e : t1
A ` e : t2

if t1 ⊆ t2

where the relation between the types is reflexive, transitive, and anti-
monotonic in contravariant position (see Figure 1.2). Assuming that Int,
Real, and Float are base-types we may add:

Int ⊆ Real Real ⊆ Float (1.1)

Terms of type Int also have type Real, which also have type Float. The
reason is that the integer 7 can be viewed as the real 7.0 and the real 8.4
can be viewed as 8.40000000. The idea is that whenever t1 ⊆ t2, then all
terms of type t1 must also have the type t2.

Example 1.2
With the rules in Figure 1.1, Figure 1.2, and the rules (1.1) we can type

∅ ` if e then 7 else 7.2 : Real

so the problem in Example 1.1 is solved by the introduction of subtyping.
2

6 CHAPTER 1. INTRODUCTION

1.2 Annotated Type Systems

The type of the term tells something about the structure of the term, i.e.
it is an integer or is is function. The type does not tell anything about the
evaluation properties of the term. We will now attach to the types some
kind of program analysis information, which can be strictness information,
totality information, binding time information, etc. The general form of
an annotated type is

t ::= Bs1 | ts2 | uts3 | t →s4 t

ut ::= B | ut1 → ut2

where the annotations s1, s2, s3, and s4 belongs to four sets (maybe equal).
Given an annotated type t (often just called type) we can speak about the
shape or underlying type of the type t as the type obtained by removing all
the annotations from the type; we will write ε(t) for the underlying type
of t.

The annotations can be put on the base-types, on subtypes, or on type-
constructors. A term with the annotated type Bs1 will have the type B and
the property s1. A term of the annotated type ts2 will be a term of the
annotated type t and it will furthermore have the property s2. Another
way to annotate subtypes is, uts3, where the subtype is only telling that
this term is of the underlying type ut and has the property s3. Functions
with the annotated type t1 →s4 t2 will map terms of type t1 to terms of
type t2 while exhibiting the property s4.

For each of these possibilities we will look at some example analyses:

• In Section 1.2.1 the annotations are only allowed on the base-types.

• In Section 1.2.2 the annotations are on the subtypes. We are looking
at three examples: the usage analysis by Wadler [Wad91],the strict-
ness analysis by Kuo and Mishra [KM89] and the strictness analysis
of Benton and Jensen [Ben93, Jen92a].

• In Section 1.2.3 the annotations are on the type-constructors only.
We look at two examples: an usage analysis by Wright [Wri91] and
a control flow analysis by Tang [Tan94].

• In Section 1.2.4 the annotations are allowed in more places. The
binding time analysis [NN92, SNN92] allows to annotate base-types

1.2. ANNOTATED TYPE SYSTEMS 7

and type-constructors.

The analyses considered are variation of the following analyses:

Strictness analysis In strictness analysis we want to decide whether a
function is strict. A function is strict whenever the application of the
function to a looping argument results in a looping computation.

Binding time analysis In binding time analysis it is the distinction be-
tween data available at compile-time and run-time that has to be
determined.

Usage analysis In usage analysis we want to know how many times an
expression is used. Whenever an expression is used zero times the
compiler need not generate code for the expression at all. An expres-
sion that is used exactly one time can be garbage collected as soon
as it is used.

Control flow analysis In control flow analysis we are interested in find-
ing the functions possible called during the evaluation of an expres-
sion. A function is an lambda-abstraction with a unique name at-
tached.

1.2.1 Annotating Base-types

In the first analysis we are only annotating the base-types with some kind
of information. The annotated types will be

t ::= Bs1 | t → t

Simple Strictness Analysis

An example of the set of annotions s1 is

s1 ::= ⊥ | >

This analysis is a subset of the strictness analysis by Kuo and Mishra
[KM89], Jensen [Jen91, Jen92b, Jen92a], and Benton [Ben93] in that it is
only annotating the base-types. The idea is that a term with the type B⊥

is a term with the underlying type ε(B⊥) = B that does not evaluate to a
HNF (Head Normal Form). This is opposed to a term with type B> which

8 CHAPTER 1. INTRODUCTION

still has the underlying type ε(B>) = B but may evaluate to a HNF but
we really do not know. A term with type t1 → t2 has the underlying type
ε(t1) → ε(t2) and will when applied to a term of type t1 yield a term of
type t2. The inference system is as in Figure 1.1 except for the rules for
condition:

A ` e1 : Bool⊥ A ` e2 : t A ` e3 : t
A ` if e1 then e2 else e3 : t (1.2)

A ` e1 : Bool> A ` e2 : t A ` e3 : t
A ` if e1 then e2 else e3 : t (1.3)

For the constants we have a number of rules one for each possible type that
the constant can have:

A ` 7 : Int>

A ` + : Int⊥ → Int> → Int⊥

A ` + : Int> → Int⊥ → Int⊥

A ` + : Int> → Int> → Int>

The coercion rules are as in Figure 1.2 together with:

B⊥ ⊆ B>
(1.4)

expressing that terms of type B with no HNF are included in all term of
type B.

Example 1.3
Using the rules in Figure 1.1 excluding the [if]-rule, the rules in Figure 1.2,
the rules (1.2), (1.3) and (1.4) we can infer

∅ ` λx.x : Int⊥ → Int⊥

saying that the application of the identity function to a looping argument
will loop and

∅ ` λx.x : Int> → Int>

saying that the identity function will map any argument to any thing.
However we are not able to infer

∅ ` if (fix λx.x) then 7 else 8 : Int⊥

1.2. ANNOTATED TYPE SYSTEMS 9

The reason that we cannot infer the above is that the annotated type of
the conditional is the type of the two branches. The type of the branches
is not affected by the fact that the test does not evaluate to a HNF. We
need to make the first rule for conditional (1.2) more powerful. 2

1.2.2 Annotating Subtypes

There is two different way of annotating subtypes:

• Annotate a subtype where the subtype is already an annotated type.

• Annotate a subtype where the subtype is not annotated, i.e. the
subtype is a standard type.

Annotating Already annotated Subtypes

First consider the annotated types, where the subtypes are already anno-
tated types:

t ::= Bs1 | ts2 | t → t

The analysis in Wadler [Wad91] is one example of this kind of annotated
type system. The annotates are:

s1 ::= 0 | 1
s2 ::= 0 | 1

A linear type is a type of the form (t)0 and a non-linear type is a type
of the form (t)1. A term of a linear type is used exactly once and a term
of a non-linear type is used zero, once, or many times. The structure of
the inference system does not match the ones described here: the inference
system is much in the style of linear logic where the assumption list is
manipulated very carefully.

Annotating Subtypes at the Top-level

We now consider the case where the subtypes are only annotated at the
“top level”. The annotated types are:

t ::= Bs1 | uts3 | t → t

10 CHAPTER 1. INTRODUCTION

ut ::= B | ut → ut

where ut is a underlying type. As an example we will use the annotations:

s1 ::= ⊥ | >
s3 ::= ⊥ | >

Again a term with the type B⊥ is a term with the underlying type ε(B⊥) =
B that does not evaluate to a HNF. This is opposed to a term with type B>

which still has the underlying type ε(B>) = B but may evaluate to a HNF
but we really do not know. A term with type t1 → t2 has the underlying
type ε(t1)→ ε(t2) and will when applied to a term of type t1 yield a term
of type t2. Finally a term with the type ut⊥ has the underlying type ut
and does not evaluate to a HNF whereas a term with type ut> has the
underlying type ut and nothing is known about its evaluation.

We can improve the first rule for condition (1.2):

A ` e1 : Bool⊥ A ` e2 : t A ` e3 : t
A ` if e1 then e2 else e3 : ε(t)⊥

(1.5)

expressing that the conditional does not have a HNF whenever the test
does not have a HNF.

Example 1.4
With this new rule (1.5) we can infer

A ` if (fix λx.x) then 7 else 8 : Int⊥

which is not possible using the rule (1.2). 2

For the coercion-part we take:

ε(t)⊥ ⊆ t
(1.6)

ut1
> → ut2

⊥ ⊆ (ut1 → ut2)⊥
(1.7)

t ⊆ ε(t)>
(1.8)

(ut1 → ut2)> ⊆ ut1
> → ut2

> (1.9)

1.2. ANNOTATED TYPE SYSTEMS 11

The rules (1.6) and (1.8) has (1.4) as a special case: the rule (1.6) expresses
that a ⊥-annotated type is less than any annotated type with the same
underlying type, whereas (1.8) expresses that a >-annotated type is greater
than any annotated type with the same underlying type. For function types
we can do even better: all functions mapping any term to a non-terminating
term is included in the functions without a HNF (1.7) and all functions
are included in the functions that maps anything to anything (1.9).

Example 1.5
Consider the set of rules in Figure 1.1 excluding the [if]-rule, the rules in
Figure 1.2, and the rules (1.5), (1.3), (1.6), (1.7), (1.8), and (1.9).

Consider the term e, which exchanges the arguments to f, due to Kuo and
Mishra [KM89]:

e = λf.λx.λy.λz.if (= 0 z) then + x y else f y x (- z 1)

t1 = Int⊥ → Int> → Int> → Int⊥

t2 = Int> → Int⊥ → Int> → Int⊥

We would like to infer the type t1 or the type t2 for fix e. This is not
possible since we are only able to infer the following:

∅ ` e : t2 → t1

and

∅ ` e : t1 → t2

We will need conjunction in order to infer ∅ ` fix e : t1. 2

The two ways of annotating subtypes are not equal expressive when we do
not have conjunction. The reason is that (B⊥ → B⊥)⊥ can be viewed as
the conjunction of B⊥ → B⊥ and (B → B)⊥.

We will now examine two of the analyses from the literature, that are
annotating subtypes at the top level:

• The strictness analysis by Kuo and Mishra [KM89], which is much
like the analysis above but only allows to compare matching types.

• The strictness analysis with conjunctions by Benton [Ben93] and
Jensen [Jen91, Jen92b, Jen92a], which is introducing conjunctions
of annotated types.

12 CHAPTER 1. INTRODUCTION

Strictness Analysis

The strictness analysis of Kuo and Mishra [KM89] is for the un-typed λ-
calculus. But their algorithm for inferring strictness types assumes the
terms to be well-typed (i.e. the term has a Milner [Mil78] type). Here
we will rewrite the analysis for a typed language. The analysis is as the
one above, but they do not allow types which do not match to be related.
Two types matches if they have the same underlying type and further they
must have an annotation in the same place. The type types ut1 →s ut2 and
ut1

s → ut2
s′ do not match but the two types ut1 →s′ ut2 and ut1 →s′′ ut2

do indeed match. Therefore we will have to exclude the rules (1.6), (1.7),
(1.8), and (1.9) and include the following rule instead:

∀1 ≤ i ≤ n : ti matches t′i
t1 → . . .→ tn → Bs3 ⊆ t′1 → . . .→ t′n→ B>

(1.10)

Example 1.6
Using the rules in Figure 1.1 excluding the [if]-rule, the rules in Figure 1.2,
the rules (1.2), (1.3), and (1.10) we can infer that twice:

twice = λf.λx.f (f x)

has the annotated type

(ut1
> → ut2

⊥)→ ut1
> → ut2

⊥

for all choices of ut1 and ut2 (not only for base-types). 2

The strictness analysis of Leung and Mishra [LM91] is much in the line
of the strictness analysis of Kuo and Mishra [KM89]. The main difference
is that Leung and Mishra are not only distinguishing between terms that
definitely has no HNF and all terms but also can tell if a term surely has
no NF (Normal Form), i.e. the annotations are ⊥, >, and Ω. The meaning
of the ⊥ and > annotated types are as in Kuo and Mishra [KM89] and a
term with a type annotated with Ω does not have a NF. Leung and Mishra
also includes coercion rules that allows to compare strictness types which
does not match.

Strictness Analysis with Conjunction

The strictness analyses of Benton [Ben93] and Jensen [Jen91, Jen92b,
Jen92a] are for the simply typed λ-calculus opposed to the two strictness

1.2. ANNOTATED TYPE SYSTEMS 13

analysis by Kuo and Mishra [KM89] and Leung and Mishra [LM91]. The
strictness types are:

t ::= Bs1 | uts3 | t → t | t ∧ t
ut ::= B | ut → ut

s1 ::= ⊥ | >
s3 ::= ⊥ | >

where the bases types include Int.1

Since a term only has one underlying type we must require that the two
strictness types t1 and t2 must have the same underlying type in order to
construct a conjunction of them. We do this by defining a well-formedness
relation, `W , on the strictness types:

`W B> `W B⊥

`W ut> `W ut⊥

`W t1 `W t2

`W t1 → t2

`W t1 `W t2

`W t1 ∧ t2
if ε(t1) = ε(t2)

A term of the strictness type ut⊥ is a term of type ut without a HNF,
whereas a term of strictness type ut> is a term of type ut, but we know
nothing about the evaluation of the term. The coercion rules are as for
Leung and Mishra [LM91] including the following for conjunctions:

t1 ∧ t2 ⊆ t1 t1 ∧ t2 ⊆ t2
(1.11)

t3 ⊆ t1 t3 ⊆ t2
t3 ⊆ t1 ∧ t2

(1.12)

(t1 → t2) ∧ (t1 → t3) ⊆ t1 → (t2 ∧ t3)
(1.13)

The rules (1.11) express that whenever a term has the strictness type
t1 ∧ t2 it also has the strictness type t1 and the strictness type t2, re-
spectively. Whenever the terms of strictness type t3 is a subset of the

1We are writing ⊥ for f and > for t.

14 CHAPTER 1. INTRODUCTION

terms of type t1 and a subset of the terms of type t2, then the terms of
strictness type t3 is a subset of the terms of strictness type t1 ∧ t2, this
fact is expressed by the rule (1.12). The rule (1.13) says that the functions
that map terms of type t1 to terms of strictness type t2 and also map
terms of type t1 to terms of type t3 must be a subset of the functions that
map terms of type t1 to terms of strictness type t2 ∧ t3.

The new rule for conjunction in the analysis is:

A ` e : t1 A ` e : t2
A ` e : t1 ∧ t2

(1.14)

Example 1.7
Using the rules in Figure 1.1 excluding the [if]-rule, the rules in Figure 1.2,
the rules (1.5), (1.3), (1.6), (1.7), (1.8), (1.9), (1.11), (1.12), (1.13), and
(1.14) we can infer

∅ ` fix e : t1

∅ ` fix e : t2

for the term e from Example 1.10; the reason is that we can make use of
conjunction and infer

∅ ` e : (t1 ∧ t2) → (t1 ∧ t2)

So this strictness analysis solves the limitations of the strictness analysis
by Kuo and Mishra [KM89].

2

1.2.3 Annotating Type-constructors

The third kind of annotated types will annotate the type-constructors:

t ::= B | t →s4 t

A term of type t1 →s4 t2 is a function from t1 to t2 with the behaviour
s4. The coercions rules have to take into account the new structure of the
function types. The new rule for function arrow is:

t3 ⊆ t1 t2 ⊆ t4

t1 →s4
′
t2 ⊆ t3 →s4

′′
t4

if s4
′ � s4

′′ (1.15)

1.2. ANNOTATED TYPE SYSTEMS 15

The coercions are inherited from the reflexive and transitive relation, �, on
the annotations. The rule is still anti-monotonic in contra-variant position.

The rules involving function types will look a bit different — we have to
take the annotations on the function-arrow into account:

[abs′]
A, x : t1 ` e : t2

A ` λx.e : t1 →s4 t2

[app′]
A ` e0 : t1 →s4 t2 A ` e1 : t1

A ` e0 e1 : t2

This analysis will not give much useful information, in fact it does not
give more program analysis information than the standard type system.
In order to get more information we must make a better guess on what
annotation to put on the function arrow. We this by allowing one more
component in the type judgement: the new judgements have the form

A ` e : t : b

and says that under the assumptions A, for the free variables, the term
e has the type t and the behaviour b. The assumption may not only
include type information but also some sort of behaviour information. In
the abstraction rule we will use this extra information to annotate the
function arrow:

A, x : t1 ` e : t2 : b
A ` λx.e : t1 →s4 t2 : b′

where s4 and b′ depend on b. The rule for application is:

A ` e0 : t1 →s4 t2 : b A ` e1 : t1 : b′

A ` e0 e1 : t2 : b′′

where the behaviour b′′ depends not only on b and b′ but also on s4. Here
we can see the connection between the behaviours and the annotations.

We will now take a look at the usage analysis of Wright [Wri91] and the
control flow analysis of Tang [Tan94].

Usage Analysis

One example of this class of annotated type systems is the usage analysis
of Wright [Wri91, Amt93a, Amt94, Amt93b, Hen94]. The annotated types

16 CHAPTER 1. INTRODUCTION

and the annotations are:

t ::= B | t →s4 t

s4 ::= 0 | 1 | α | ¬s4 | s4 ∧ s4 | s4 ∨ s4

where α are arrow variables and the base-types includes type variables. The
annotated type t1 →0 t2 denotes all constant functions from t1 to t2, i.e.
the argument is used zero times. The type t1 →1 t2 denotes all strict func-
tions from t1 to t2, i.e. the argument is used once or more. Note here that
not all terms can be given a type. In all the other annotated type system
there is a type denoting all terms with a given underlying type; there is no
such annotated type here. Hence the term if e then λx.x else λx.7
cannot be given a usage type in this system, since the two branches must
have the same type.

The relation on annotations is defined by substitution on the annotations:

s4
′ � s4

′′ ⇔ ∃S.S(s4
′) = s4

′′ (1.16)

where S is a substitution from arrow variables to annotations. The co-
ercions are inherited from the notion of renaming instances on the type
variables:

∃R . R (B) = B′

B ⊆ B′
(1.17)

where B and B′ are base-types or type-variables and R is a substitution (i.e.
a renaming of type variables) from type variables to type variables. The
rule for function arrow is:

t1 ⊆ t′1 t2 ⊆ t′2
t1 →s4

′
t2 ⊆ t′1 →s4

′′
t′2

if s4
′ � s4

′′ (1.18)

Note that the function type constructor is not anti-monotonic in the first
argument. The reason is that the relation is inherited from renaming of
type variables.

Let the usage list, V, be a list of pairs of variables and annotations

V ::= (x, s4) : V | nil

We will use the usage list as the behaviours. Let V0 be the usage list that
assigns 0 to all the variables, i.e meaning that no variables are used. The
rule for variables is:

A ` x : t : (x, 1):V0 if x : t ∈ A (1.19)

1.2. ANNOTATED TYPE SYSTEMS 17

where the usage list, (x, 1):V0, says that all the variables except x is not
used. The only place where the subtyping rule is allowed is after the rule
for variables. Therefore we built it into the rule for variables (1.19):

A ` x : t2 : (x, 1):V0 if x : t1 ∈ A ∧ t1 ⊆ t2 (1.20)

The abstraction rule is:

A, x : t1 ` e : t2 : V
A ` λx.e : t1 →s4 t2 : (x, 0):Vx

if (x, s4) ∈ V (1.21)

We record that the variable x is not used since x is no longer free in the term
and the usage of x is recorded by the annotation on the function-arrow.
The application rule is

A ` e0 : t1 →s4 t2 : V0 A ` e1 : t1 : V1

A ` e0 e1 : t2 : V0 t (s4 u V1)
(1.22)

where u and t is defined pointwise for each variable as the greatest lower
bound and least upper bound of the usages defined by �. The intuition
of the new usage is that in e0 e1 we are going to use the variables as in
e0, i.e. as recorded by V0, and the variables in e1 are used whenever e1 is
used. The annotation s4 on the function-arrow expresses the usage of e1.
Hence the usage of the variables in e1 is expressed by s4 u V1.

The presentation here has the conditional as a construct whereas in Wright
[Wri91] it is a constant. There is only one rule for condition:

A ` e1 : Bool : V1

A ` e2 : t : V2

A ` e3 : t : V3
A ` if e1 then e2 else e3 : t : V1 u (V2 t V3)

(1.23)

The idea behind the new usage is that for the conditional we are going to
use the variables as in e1 and if a variable is used by either e2 or e3 then
we might use it in the conditional.

We have a set of rules for the constants one for each type that that the
constant can have:

A ` c : tc : V0 (1.24)

18 CHAPTER 1. INTRODUCTION

where the usage for all the variables are zero. Among others we have

t7 = Int

ttrue = Bool

t+ = Int →1 Int →1 Int

Example 1.8
Using the coercion rules in Figure 1.2 excluding the rule [arrow], and the
rules, (1.16), (1.17), (1.18), (1.20), (1.21), (1.22), and (1.23) we can infer

∅ ` λx.x : Int →1 Int : V0

saying that λx.x uses its argument and

∅ ` λx.7 : Int →0 Int : V0

saying that λx.7 does not use its argument. 2

The usage analysis in [WBF93] extends the annotations to be any natural
number, n, and uses + as t and ∗ as u.

Control Flow Analysis

Another example of annotating type-constructors are the effect systems
[Tan94, TJ92a, TJ92b, TT94]. We will take a closer look at the control
flow analysis in Tang [Tan94]. In control flow analysis we are interested in
finding the functions possible called during the evaluation of an expression.
An function is an lambda-abstraction with a unique name. So in the term
that is going to be analysed all the lambdas has a label attached. In the
analysis the annotations is sets of those labels:

s4 ::= ∅ | {n} | s4 ∪ s4

where the n’s are such labels. The behaviours or effects of a term are the
set of label that may be encountered during evaluation of the term. The
type judgement A ` e : t : s4 says that under the assumptions A the term
e has the type t and the abstractions possible encountered is s4. The rule
for variables is:

A ` x : t : ∅ if x : t ∈ A (1.25)

1.2. ANNOTATED TYPE SYSTEMS 19

no functions are called when a variable is mentioned. For abstraction the
rule is:

A, x : t1 ` e : t2 : s4

A ` λx.e : t1 →s4 ∪ {n} t2 : ∅
if n is label of λ (1.26)

no functions are called by constructing a function but the latent effect of the
function is all the program labels that are called by the body of the function
including the label of the function itself. When the function is applied the
latent effect of the function is part of the effect of the application together
with the effects of e0 and e1:

A ` e0 : t1 →s′′4 t2 : s′′′4 A ` e1 : t1 : s′4
A ` e0 e1 : t2 : s′′′4 ∪ s′4 ∪ s′′4

(1.27)

The relation of annotations is

s′4 � s′′4 ⇔ (s′4 is a subset of s′′4) (1.28)

There are two different coercion rules: one that uses the subset-relation on
the annotations to induce the relation on the types:

A ` e : t1 : s4

A ` e : t2 : s4
if t1 ⊆ t2 (1.29)

and the other is sub-effecting:

A ` e : t : s′4
A ` e : t : s′′4

if s′4 � s′′4 (1.30)

where only the effect is changed and not the type. The first coercion rule
is the more powerful one, in the sense that more precise information can
be gained.

Example 1.9
Using the coercion rules in Figure 1.2 excluding the rule [arrow], and the
rules, (1.15), (1.25), (1.26), (1.27), and (1.28) we can infer

∅ ` (λf.f (λa.a)) (λg.g 1) : Int : {nf , na, ng}

Consider the term, e:

e = (λf.+ (f (λa.a) (f (λb.b))))(λg.g 1)

20 CHAPTER 1. INTRODUCTION

Now we are not able to infer the following without one of the coercions
rules:

∅ ` e : Int : {nf , na, nb ng}

To see why, consider the type, tg that must be inferred for λg.g 1 which
must be the same type as the type for the argument to the abstraction
labelled nf . This argument is applied to two different argument, i.e. λa.a
and λb.b, therefore the type tg must be Int →{na,nb} Int and hence both
λa.a and λb.b must have the type tg. From the (1.25) we get

a : Int ` a : Int : ∅

and by applying the rule (1.26) we have

∅ ` λa.a : Int →{na} Int : ∅

and no rules (other than the subtyping rule) can be applied to get the type
tg. By applying the sub-typing (1.29) rule we get

∅ ` λa.a : Int →{na,nb} Int : ∅

and we can construct the rest of the proof-tree straightforward. Now sup-
pose we have the sub-effecting rule (1.30) instead. Again we will start by
using the rule for variables (1.25):

a : Int ` a : Int : ∅

then we will apply the sub-effecting rule (1.30):

a : Int ` a : Int : {nb}

and finally the abstraction rule (1.26) to get

∅ ` λa.a : Int →{na,nb} Int : ∅

as required.

The difference between subtyping (1.29) and sub-effecting (1.30) is seen
by looking at the type inferred for λa.a: for subtyping we get the type
Int →{na} Int whereas for sub-effecting we get the less precise type Int →{na,nb} Int.

2

1.2. ANNOTATED TYPE SYSTEMS 21

1.2.4 Annotating Base-types and Type-constructors

It is also possible to annotate both base-types and type constructors at the
same time. An example where this is useful is binding time analysis.

Binding Time Analysis

The binding time analysis of Nielson and Nielson [NN92, SNN92] annotates
both the base-types and the type constructors. The types are:

t ::= Bs1 | t →s4 t

s1 ::= r | c
s4 ::= r | c

where the base-types include Int and Bool. The annotation r means run-
time and the annotation c means compile-time. The analysis will introduce
the distinction between data available at compile-time and at rune-time.
Data available at compile-time can be manipulated by the compiler and
whereby save execution time at run-time.

Not all types are well-formed — it is not allowed to mix run-time and
compile-time annotated types except for run-time functions can be both of
kind run-time and compile-time:

`W Br : r `W Bc : c
(1.31)

`W t1 : r `W t2 : r
`W t1 →r t2 : r

(1.32)

`W t1 : c `W t2 : c
`W t1 →c t2 : c

(1.33)

`W t1 : r `W t2 : r
`W t1 →r t2 : c

(1.34)

The analysis in [NN92, SNN92] is for the two level simply type λ-calculus,
that means that also the terms are annotated with binding times — except
the variables.

22 CHAPTER 1. INTRODUCTION

The list A of assumptions now contains both the type and kind of the
variable: the list has the form x1 : t1 : b1, . . ., xn : tn : bn where the bi’s
are either r or c. In the rule for variables we take the binding time from
the assumption for the variable as the overall kind of the term:

A ` x : t : s1
if x : t : s1 ∈ A ∧ `W t : s1 (1.35)

where we have to ensure that the type is well-formed. The rule for abstrac-
tion:

A, x : t1 : s1 ` e : t2 : s1

A ` λs1x.e : t1 →s1 t2 : s1
if `W t1 : s1 (1.36)

the annotations on the type and on the term have to match with the kind.
The rule for application:

A ` e0 : t1 →s1 t2 : s1 A ` e1 : t1 : s1

A ` (s1e0 e1) : t2 : s1
(1.37)

also here the annotations on the type and on the term has to match with
the kind. There are two coercion rules:

A ` e : t1 →r t2 : c
A ` e : t1 →r t2 : r (1.38)

A ` e : t1 →r t2 : r
A ` e : t1 →r t2 : c if ∀(xi : ti : bi) ∈ A : bi = c (1.39)

A run-time function is a piece of code which we can manipulate at compile-
time, hence run-time functions can be of kind compile-time. However in
oder to turn a run-time function of run-time kind into a run-time function
of compile-time kind, the function is not allowed to refer to any run-time
objects, i.e. none of the free variables must be of run-time kind. This is
exactly that the side-condition in the rule (1.39) says.

Example 1.10
Using (1.31), (1.32), (1.33), (1.34), (1.35), (1.36), (1.37),(1.38), (1.39) we
can infer

∅ ` λrx.x : Intr →r Intr : r

and

∅ ` λcx.x : Intc →c Intc : c

1.2. ANNOTATED TYPE SYSTEMS 23

and using (1.39) we can infer

∅ ` λrx.x : Intr →r Intr : c

showing that a run-time function can be of compile-time kind. 2

1.2.5 Summary

Section Analysis s1 s2 s3 s4 ∧
1.2.1 Simple Strictness Analysis •
1.2.2 Strictness Analysis • •

Strictness Analysis with Conjunction • • •
1.2.3 Usage Analysis •

Control Flow Analysis •
1.2.4 Binding Time Analysis • •

Table 1.1: Annotations in Chapter 1

In this Section we have been looking at different way of annotating types:

t ::= Bs1 | ts2 | uts3 | t →s4 t | t ∧ t
ut ::= B | ut1 → ut2

The annotations has been put on the base-types, on subtypes, which may
or may not have annotations themselves, or on type-constructors. We have
seen that there is a wide variety not only in the choice of annotations but
also in the choice of how the annotations are attached to the types and
how the types are put together. The different choices of annotations are
summarised in Table 1.1.

The analyses we have seen are:

• A simple strictness analysis annotates only the base-types (s1).

• The strictness analysis by Kuo and Mishra [KM89] where we anno-
tate both the base-types and subtypes (s1 and s3).

• The strictness analysis with conjunction by Jensen [Jen91, Jen92b,
Jen92a] and Benton [Ben93] where both base-types and subtypes are
annotated (s1 and s3). Furthermore the analysis allows to construct
conjunctions of annotated types.

24 CHAPTER 1. INTRODUCTION

• The usage analysis by Wright [Wri91] annotates the type construc-
tors only (s4).

• The control flow analysis of Tang [Tan94] only the type constructors
are annotated (s4).

• The binding time analysis by Nielson and Nielson [NN92] annotates
both the base-types and the type-constructors (s1 and s4).

1.3 Overview of Thesis

Analysis s1 s2 s3 s4 ∧
Chapter 2 • • •2

Chapter 3 • • •
Chapter 4 Algorithm
Chapter 5 • •
Chapter 6 Abstract Interpretation

Table 1.2: Annotations in the Thesis

In Chapter 2 we present a combined strictness and totality analysis . We
are specifying the analysis as an annotated type system. The type system
allows conjunctions of annotated types, but only at the top-level. The
analysis is somewhat more powerful than the strictness analysis by Kuo
and Mishra [KM89] due to the conjunctions and in that we also consider
totality. The analysis is shown sound with respect to a natural-style op-
erational semantics. The analysis is not immediately extendable to full
conjunction.

The analysis of Chapter 3 is also a combined strictness and totality anal-
ysis, however with “full” conjunction. Soundness of the analysis is shown
with respect to a denotational semantics. The analysis is more powerful
than the strictness analyses by Jensen [Jen92a] and Benton [Ben93] in that
it in addition to strictness considers totality.

So far we have only specified the analyses, however in order for the analyses
to be practically useful we need an algorithm for inferring the annotated
types. In Chapter 4 we construct an algorithm for the analysis of Chapter

2The conjunctions are only allow at the “top-level”.

1.3. OVERVIEW OF THESIS 25

3 using the lazy type approach by Hankin and Le Métayer [HM94a]. The
reason for choosing the analysis from Chapter 3 is that the approach not
applicable to the analysis from Chapter 2.

In Chapter 5 we study a binding time analysis. We take the analysis
specified by Nielson and Nielson [NN92] and we construct an more efficient
algorithm than the one proposed in [NN92]. The algorithm collects con-
straints in a structural manner as the algorithm T [Dam85]. Afterwards
the minimal solution to the set of constraints is found.

The analysis in Chapter 6 is specified by abstract interpretation. Hunt
[Hun91] shows that projection based analyses are subsumed by PER (par-
tial equivalence relation) based analyses using abstract interpretation. The
PERs used by Hunt are strict, i.e. bottom is related to bottom. In Chap-
ter 6 we lift this restriction by requiring the PERs to be uniform, in the
sense that they treat all the integers equally. By allowing non-strict PERs
we get the three properties on Int: {⊥, ZZ, ZZ⊥} corresponding to the three
annotations, b, n, and > used in Chapter 2 and 3.

Chapter 7 contains concluding remarks.

26 CHAPTER 1. INTRODUCTION

Chapter 2

Strictness and Totality Analysis

Strictness analysis has proved useful in the implementation of lazy func-
tional languages such as Miranda, Lazy ML and Haskell: when a function
is strict it is safe to evaluate its argument before performing the func-
tion call. Totality analysis has not be adopted so widely: if the argument
to a function is known to terminate then it is safe to evaluate it before
performing the function call [Myc80].

In the literature there are several approaches to the specification of strict-
ness analysis: abstract interpretation (e.g. [Myc81, BHA86]), projection
analysis (e.g. [WH87]) and inference based methods (e.g. [Ben93, Jen91,
Jen92b, KM89, Wri91]). Totality analysis has received much less atten-
tion and has primarily been specified using abstract interpretation [Myc81,
Abr90]. Totality analysis can be regarded as an approximation to time
complexity analysis; most literature performing such developments con-
sider eager languages but [San90] considers lazy languages.

In this Chapter we present an inference system for performing strictness
and totality analysis. Three annotations on underlying types, ut, are
introduced:

• utb: the value has type ut and is definitely ⊥,

• utn: the value has type ut and is definitely not ⊥, and

• ut>: the value has type ut and it can be any value.

Annotated types can be constructed using the function type constructor
and (top-level) conjunction. As an example a function may have the an-
notated type (Intn → Intn) ∧ (Intb → Intb) which means that given
a terminating argument the function will definitely terminate and given a

27

28 CHAPTER 2. STRICTNESS AND TOTALITY ANALYSIS

non-terminating argument it will definitely not terminate. Thus we cap-
ture the strictness as well as the totality of the function. Strictness and
totality information can also be combined as in

(Intn→ Intn → Intn) ∧ (Intb → Intn → Intn)
∧(Intn → Intb → Intn) ∧ (Intb → Intb → Intb)

which will be the annotated type of McCarthy’s ambiguity operator: if
one of the two argument terminates so does the function call but if both
argument diverges so does the function call.

The inference based approach allows to combine the two analyses. My-
croft [Myc81] presents both analyses using abstract interpretation but the
semantic foundations are different: the strictness analysis is based on down-
ward closed sets and the totality analysis on upward closed sets. We believe
that the two analyses could be combined using the convex power-domains
of [MN83] but this will be untractable for two reasons. One is that the
mathematical foundations will be rather complicated and extensions to
richer languages would not be easy. Another reason is that implementa-
tions based on abstract interpretation often are rather inefficient due to
the local computation of fixpoints and we would like to explore the use of
other approaches that seem to offer better performance.

The semantic foundations of our work is based on natural style operational
semantics [Des86, Plo81]. We employ a lazy semantics so terms are eval-
uated to weak head normal form (WHNF). This means we capture the
semantics of “real-life” lazy functional languages in contrast to most other
papers on strictness analysis like [BHA86] where terms are evaluated to
head normal forms. Since we are based on operational semantics fixpoint
induction is not available for free and in the soundness proof for the anal-
ysis we shall use the trick of annotating the fixpoint operator with the
number of unfoldings allowed.

2.0.1 Motivating Example

Example 2.1
Consider the CBN program

29

let f = λg.λx.g (x)
a = . . .

in f (λx.x) a

A naive CBV version of it may be

let f = λg.λx.(g ()) (x)
a = λ().. . .

in f (λ().λx.x ()) a

However, an optimised CBV version is:

let f = λg.λx.g (x)
a = . . .

in f (λx.x) a

since f is strict in its first argument we need not thunkify the first argument
to f and since the first argument to f is always a strict function we need not
thunkify the second argument to f. This can be seen from the strictness
type of f:

((Int→ Int)b → Intb → Intb) ∧ ((Intb → Intb) → Intb → Intb)

Now consider the CBN program

let f = λg.λx.g (x)
h = . . .

in f h 1

A naive CBV version of it may be

let f = λg.λx.(g ()) (x)
h = λ().. . .

in f h (λ().1)

However, an optimised CBV version is:

let f = λg.λx.g (x)
h = . . .

in f h 1

since, again, f is strict in its first argument we need not thunkify the first
argument to f and since the argument to g (i.e. the second argument to
f) is terminating we need not thunkify it. This information can be gained
from the strictness type of f:

(Int → Int)b → Intb → Intb

30 CHAPTER 2. STRICTNESS AND TOTALITY ANALYSIS

and the totality type of f:

(Intn → Intn) → Intn → Intn

Now let us combine the two examples into one:

let f = λg.λx.g (x)
a = . . .
h = . . .

in f (λx.x) a + f h 1

A naive CBV version of it may be

let f = λg.λx.(g ()) (x)
a = λ().. . .
h = λ().. . .

in f (λ().λx.x ()) a + f h (λ().1)

The strictness type of f is

((Int→ Int)b → Intb → Intb) ∧ ((Intb → Intb) → Intb → Intb)

However, we cannot remove the thunkification of the second argument to
f since in the second call to f the first argument is not a strict function.
So what we get is

let f = λg.λx.g (x)
a = λ().. . .
h = . . .

in f (λx.x) a + f h (λ().1)

The totality type of f is:

(Intn → Intn) → Intn → Intn

We cannot use this information to remove the thunkification of the second
argument to f since in the first call to f the second argument need not
terminate.

But from the strictness and totality type of f:

((Intn → Intn) → Intn → Intn) ∧ ((Intb → Intb) → Intb → Intb)

we can indeed remove the thunkification of the second argument to f.

This example shows clearly that we get more information by doing strict-
ness and totality analysis at the same time, instead of do first strictness

2.1. THE ANNOTATED TYPE SYSTEM 31

analysis and then totality analysis.

2

Overview In Section 2.1 we define the strictness and totality types and
give rules for coercing between them; a notion of conjunction type is de-
fined but only at “top-level”; finally the inference system is presented and
examples of its use are given. In Section 2.2 we discuss the power of the
fixpoint-rules; in Section 2.3 we then present a natural style operational
semantics and finally in Section 2.4 the analysis is proven sound.

2.1 The Annotated Type System

2.1.1 Strictness and Totality Types

A strictness and totality type, t, is either an annotated underlying type or
a function type between strictness and totality types:

t ::= uts | t → t

ut ::= B | ut → ut

s ::= > | n | b

The annotations (the s’s) can either be >, n, or b. The idea is that a term
with the strictness and totality type utb has the underlying type ut and
does not evaluate to a WHNF. A term with the strictness and totality type
utn has the underlying type ut and does evaluate to a WHNF. Finally
a term with the strictness and totality type ut> has the underlying type
ut but we do not know anything about the evaluation of the term. A
term with the strictness and totality type t1 → t2 will, when applied to a
term with strictness and totality type t1, yield a term with strictness and
totality type t2.

Example 2.2
All functions with the underlying type ut1 → ut2 will also have the strict-
ness and totality types (ut1 → ut2)> and (ut1

> → ut2
>). A function

with no WHNF has the strictness and totality type (ut1 → ut2)b and the
function that applied to any term yields a term with no WHNF has the
strictness and totality type ut1

> → ut2
b. 2

32 CHAPTER 2. STRICTNESS AND TOTALITY ANALYSIS

Later we shall need the predicate BOTST(t) defined by

BOTST(utb) = tt BOTST(ut>) = tt

BOTST(utn) = ff BOTST(t1 → t2) = BOTST(t2)

The idea is, that it holds whenever the strictness and totality type will
incorporate a term without WHNF.

2.1. THE ANNOTATED TYPE SYSTEM 33

[ref] t ≤ST t

[trans]
t1 ≤ST t2 t2 ≤ST t3

t1 ≤ST t3

[arrow]
t3 ≤ST t1 t2 ≤ST t4
t1 → t2 ≤ST t3 → t4

[top1]
t ≤ST ε(t)>

[top2]
(ut1 → ut2)> ≤ST ut1

> → ut2
>

[bot]
(ut1 → ut2)b ≤ST ut1

> → ut2
b

[notbot]
ut1

n → ut2
n ≤ST (ut1 → ut2)n

[monotone]
t1 → t2 ≤ST t′1 → t′2

if t′1 = ↓t1 and t′2 = ↓t2

Figure 2.1: Coercions Between Strictness and Totality Types

Coercions between strictness and totality types

Most terms have more than one strictness and totality type; as an ex-
ample the strictness and totality types of λx.7 include (Int → Int)>,
(Int → Int)n, and Int> → Intn. Some of these are redundant and to
express this we define coercions between them: t1 ≤ST t2 may only hold if
all terms of strictness and totality type t1 also have strictness and totality
type t2 (assuming the underlying types are the same).

The relation ≤ST is defined by the rules in Figure 2.1: it is reflexive,
transitive, and anti-monotonic in contravariant position. The three first
rules are as the rules for the standard types (Figure 1.2). We write ≡ for
the equivalence induced by ≤ST , i.e. t1 ≡ t2 if and only if t1 ≤ST t2
and t2 ≤ST t1. The rule [top1] expresses that the strictness and totality
type ut> is the greatest among the strictness and totality types with the
underlying type ut. One axiom derived from the rule [top1] is

ut1
> → ut2

> ≤ST (ut1 → ut2)> (2.1)

34 CHAPTER 2. STRICTNESS AND TOTALITY ANALYSIS

Axiom (2.1) then motivates rule [top2] because when combined they yield

(ut1 → ut2)> ≡ ut1
> → ut2

>

The left-hand side of the rule [bot] represents the functions without WHNF
and the right-hand side represents all non-terminating functions; this also
includes the functions without WHNF. The rule [notbot] says that func-
tions that map terms with a WHNF to a term with WHNF are also included
in the functions with a WHNF.

The rule [monotone] ensures that we live in a universe of monotone func-
tions: if we know less about the argument to a function, then we should
know less about the result as well. The formulation of this requires the
function ↓ on strictness and totality types defined by

↓(utb) = utb (2.2)
↓(ut>) = ut> (2.3)
↓(utn) = ut> (2.4)

↓(t1 → t2) = t1 → ↓t2 (2.5)

The idea behind ↓ is that ↓t is the smallest type (in the sense of “contain-
ing” fewest elements) such that both t ≤ST ↓t and BOTST(↓t) hold; this
if formalised in Fact 2.27 in Section 2.4.1.

To see that the rule [monotone] is useful consider the term twice:

λf.λx.f (f x)

and the strictness and totality type

(Intn → Intb)→ Int> → Intb

In order to show that twice does indeed have that type we must be able
to coerce

Intn → Intb ≤ST Int> → Intb

However we cannot do so without the [monotone]-rule. For more details
see Example 2.7 below.

We shall later show that the relation ≤ST is sound (Lemma 2.39). However
it is not complete. To see this consider the two strictness and totality types

2.1. THE ANNOTATED TYPE SYSTEM 35

Intb → Intn and Int> → Intn. It must be the case that every term with
the first type also has the second type and vice versa since the terms are
monotonic. However, although we can infer

Int> → Intn ≤ST Intb → Intn

it turns out that we cannot infer

Intb → Intn ≤ST Int> → Intn

using the coercions. This can be remedied by introducing the rule [mono-
tone2] below: first we define the function ↑ on strictness and totality types
as follows:

↑(utb) = ut> ↑(ut>) = ut>

↑(utn) = utn ↑(t1 → t2) = t1 → ↑t2

The idea behind ↑ is that it is the smallest type such that both t ≤ST ↑t
and notBOTST(↑t) hold where the predicate notBOTST(t) must hold
whenever the strictness and totality type must incorporate a term with a
WHNF. Now we can write the new coercion rule using ↑:

[monotone2]
t1 → t2 ≤ST t′1 → t′2

if t′1 = ↑t1 and t′2 = ↑t2

With this rule we can infer Intb → Intn ≤ST Int> → Intn. More work
is needed to clarify if ≤ST is complete with the new rule added.

Example 2.3
To see that the rule [monotone2] is useful consider the term twice defined
by

λf.λx.f (f x)

and the strictness and totality type

(Intb → Intn)→ Int> → Intn

In order to show that twice does indeed have that type we must be able
to coerce

Intb → Intn ≤ST Int> → Intn

However we cannot do so without the [monotone2]-rule. The details are
analogous to Example 2.7 below.

2

36 CHAPTER 2. STRICTNESS AND TOTALITY ANALYSIS

While we conjecture that adding [monotone2] will be semantically sound
the technical machinery needed for characterising the new auxiliary con-
cepts, ↑ and notBOTST, (corresponding to ↓ and BOTST for [monotone])
in order to formally prove our conjecture is sufficiently involved that we
shall dispense with so doing.

2.1.2 Conjunction Types

Based on the strictness and totality types we now define the conjunction
types. A conjunction type, ct, is either a strictness and totality type or a
conjunction of two conjunction types:

ct ::= t | ct ∧ ct
t ::= uts | t → t

ut ::= B | ut → ut

s ::= > | n | b

Thus conjunction is only allowed at the top-level (just like type-schemes in
ML are only allowed at the top-level [Mil78]). The introduction of conjunc-
tion types means that it is possible to have empty types like Intn ∧ Intb.
Actually, the fine details of empty types are closely connected with the
choice of semantic model: emptiness of the type

(Intb→ Intn → Intn)
∧(Intn → Intb → Intn) ∧ (Intb → Intb → Intb)

depends on whether the semantic model allows non-sequential behaviours
of type Int→ Int→ Int. This will normally be the case for denotational
semantics but will not be the case for natural-style operational semantics
when the order of evaluation is forced (as when specifying lazy reduction to
WHNF). The restriction to top-level conjunctions allows us to avoid some
of the problems introduced by empty types; we return to this later.

Since a term can only have one underlying type a well-formed conjunc-
tion type will not involve types with different underlying types. The well-
formedness predicate is defined by:

`W t

2.1. THE ANNOTATED TYPE SYSTEM 37

a strictness and totality type is well-formed viewed as a conjunction type,
and a conjunction of annotated types is well-formed whenever the two
conjuncts are well-formed and they have the same underlying type:

`W ct1 `W ct2

`W ct1 ∧ ct2
if ε(ct1) = ε(ct2)

This allows us to overload the function ε to also find the underlying type of
a conjunction type: ε(ct1 ∧ ct2) = ε(ct1). The predicate BOTST is lifted
to conjunction types:

BOTCT(ct1 ∧ ct2) = BOTCT(ct1) ∧ BOTCT(ct2)
BOTCT(t) = BOTST(t)

The rules for coercing between conjunction types are given in Figure 2.2.
The relation ≤CT is reflexive and transitive, and for strictness and totality
types the relation is inherited from the relation, ≤ST , on strictness and
totality types; this is express by the rule [type] in Figure 2.2. For con-
junctions we have the three rules as in Benton and Jensen [Ben93, Jen91,
Jen92b, Jen92a]. However we do not have the rule

(t1 → t2) ∧ (t1 → t3)≤CT t1 → (t2 ∧ t3)

the reason for this is that (t1 → (t2 ∧ t3)) is not a well-formed conjunction
type here.

2.1.3 The Conjunction Type System

We have now prepared the ground for presenting the conjunction type in-
ference system of Figure 2.3. The list A of assumptions gives strictness
and totality types to free variables. All the variables in the list are dis-
tinct. Only the lambda abstraction can extend the assumption list and
since conjunction types only can appear at the top-level this means that
assumption lists always will associate strictness and totality types, not con-
junction types, with the variables. For each constant c, we assume that a
conjunction type ctc is specified; as an example ctsucc = (Intn → Intn)
∧ (Intb → Intb).

The rules [var], [abs], [app], and [const] are just as their standard type in-
ference counterparts (see Figure 1.1). There are three rules for conditional

38 CHAPTER 2. STRICTNESS AND TOTALITY ANALYSIS

[ref] ct ≤CT ct

[trans]
ct1 ≤CT ct2 ct2 ≤CT ct3

ct1 ≤CT ct3

[∧1] ct1 ∧ ct2 ≤CT ct1

[∧2] ct1 ∧ ct2 ≤CT ct2

[∧3]
ct ≤CT ct1 ct ≤CT ct2

ct ≤CT ct1 ∧ ct2

[type]
t1 ≤ST t2
t1 ≤CT t2

Figure 2.2: Coercions Between Conjunction Types

— depending on whether the test is of strictness and totality type Boolb,
Booln, or Bool>.

The rule [coer] can be applied to change the strictness and totality type to
a greater strictness and totality type. It is quite useful as a preparation for
applying rule [if3]. The rule [conj] allows to construct conjunction types
(as is the case also for rule [const]).

From rule [fix] we may derive rules

[fix1]
A S̀T e : t → t
A S̀T fix e : t if BOTST(t)

and

[fix2]
A S̀T e : t1 → t2
A S̀T fix e : t2

if BOTST(t1) and t2 ≤ST t1

that are simpler and more intuitive. Note that in rule [fix] we have to ensure
that the type t0 can describe bottom in order to be able to calculate the
fixpoint. After the first iteration, see Figure 2.4, the term has the strictness
and totality type t1 and after the second the strictness and totality type
t2, etc. When the term reaches the strictness and totality type tq we can
apply the rule [coer] because we have tq ≤ST tp and so the term has
the strictness and totality type tp. In this way we can go on as long as

2.1. THE ANNOTATED TYPE SYSTEM 39

[var] A S̀T x : t if x : t ∈ A

[abs]
A, x : t1 S̀T e : t2

A S̀T λx.e : t1 → t2

[abs2]
A, x : t1 S̀T e : t2

A S̀T λx.e : ε(t1 → t2)n

[app]
A S̀T e1 : t1 → t2 A S̀T e2 : t1

A S̀T e1 e2 : t2

[if1]
A S̀T e1 : Boolb A S̀T e2 : ct A S̀T e3 : ct

A S̀T if e1 then e2 else e3 : ε(ct)b

[if2]
A S̀T e1 : Booln A S̀T e2 : ct A S̀T e3 : ct

A S̀T if e1 then e2 else e3 : ct

[if3]
A S̀T e1 : Bool> A S̀T e2 : ct A S̀T e3 : ct

A S̀T if e1 then e2 else e3 : ct
if BOTCT(ct)

[fix]
A S̀T e : (t0 → t1) ∧ (t1 → t2) ∧ . . . ∧ (tn−1 → tn)

A S̀T fix e : tn

if

BOTST(t0),
∃p, q : p < q
∧tq ≤ST tp

[const] A S̀T c : ctc

[coer]
A S̀T e : ct1

A S̀T e : ct2
if ct1 ≤CT ct2

[conj]
A S̀T e : ct1 A S̀T e : ct2

A S̀T e : ct1 ∧ ct2

Figure 2.3: Conjunction Type Inference

40 CHAPTER 2. STRICTNESS AND TOTALITY ANALYSIS

- ------ ------ ------

�

�
�

�
�

t0 t1 t2 tp tp+1 tq tq+1 tn

⊥ e e2⊥ ep⊥

eq⊥

ep+1⊥ eq⊥

Figure 2.4: Picturing the [fix]-rule

necessary to evaluate the fixpoint. Finally we iterate n− q more times to
get the type tn for the fixpoint.

The following observations are easily verified by induction on the shape of
the inference tree:

Fact 2.4
If A S̀T e : ct then `W ct and ε(A) ` e : ε(ct). 2

Proof We assume A S̀T e : ct and then we prove by induction on the
proof-tree for A S̀T e : ct that ε(A) ` e : ε(ct) can be inferred.

For the full details see Appendix page 223.

We also have a form of completeness:

Fact 2.5
If A ` e : ut then top(A) S̀T e : ut> where top(x : ut, A) = (x : ut>),
top(A). 2

Example 2.6
In the inference system we can infer ∅ S̀T fix (λx.x) : Intb which is more
precise than the Int> obtained by [Wri91]. In the systems of [Ben93, Jen91,
Jen92b] the best one can infer is the type Int> for the term fix (λx.7)
whereas we can infer ∅ S̀T fix (λx.7) : Intn and so again are more precise.

2

Example 2.7

2.1. THE ANNOTATED TYPE SYSTEM 41

The term twice is given by

λf.λx.f (f x)

and has the strictness and totality type

t = (Intn → Intb)→ Int> → Intb

In order to show this we need to apply the rule [monotone]. For this let

A = f : Intn → Intb, x : Int>

and let P1 be

Intn → Intb ≤ST Int> → Intb
[var] + [coer] + [monotone]

A S̀T f : Int> → Intb

and let P2 be

Intn → Intb ≤ST Int> → Int> [var] + [coer]+
[monotone]A S̀T f : Int> → Int> A S̀T x : Int>

[app]
A S̀T f x : Int>

Now we have
P1 P2

[app]
A S̀T f (f x) : Intb

[abs]
f : Intn → Intb

S̀T λx.f (f x) : Int> → Intb
[abs]

∅ S̀T λf.λx.f (f x) : t

In this example we have used the rule [monotone] in an essential way. 2

Example 2.8
Consider the term1 e and types t1 and t2:

e = λf.λx.λy.λz.if (= 0 z) then + x y else f y x (- z 1)

t1 = Intb → Int> → Int> → Intb

t2 = Int> → Intb → Int> → Intb

We want to infer ∅ S̀T fix e : t1 but it is not possible to infer

∅ S̀T e : t1 → t1

1This example is due to Kuo and Mishra [KM89].

42 CHAPTER 2. STRICTNESS AND TOTALITY ANALYSIS

However we can infer ∅ S̀T e : t1 → t2 and ∅ S̀T e : t2 → t1 and we can
apply the [conj]-rule to get ∅ S̀T e : (t1 → t2) ∧ (t2 → t1). Now we are
able to apply the rule [fix] and thereby get ∅ S̀T fix e : t1 as desired.
This shows that even though we do not have “full” conjunction system of
Jensen and Benton [Jen92a, Ben93] we can make good use of conjunction
to type the “difficult” example of [KM89]. 2

Example 2.9
Consider next the term2 e given by

e = twice g

twice = λf.λx.f (f x)
g = λy.λx.+ x (y (fix λx.x))

It will have the strictness and totality type

(Int> → Int>)→ Int> → Intb

but we are not able to obtain it using our analysis because one needs full
conjunction in order to construct the proof-tree. The reason is that we
need to infer that twice has the type

((t1→ t2) ∧ (t2 → t3))→ (t1 → t3)

for any t1, t2, and t3 but this is not a well-formed conjunction type in the
current system. 2

2.2 The Power of the Fix-rules

Previous work on strictness analysis [Jen91, Jen92b, Ben93, KM89] contain
only a simple fix-rule corresponding to our [fix1]-rule rather than our more
general [fix]-rule. In this section we will investigate the extent to which
this is essential.

LetA be a set of permissible annotations; so far we usedA = {n, b, >} but
we shall consider also the restriction A = {b, >} that disallows n and that
corresponds more closely to the aims of [Jen91, Jen92b, Ben93, KM89].
Note that the side-condition BOTST(t) is trivially true when A = {b, >}.

2Thanks to Nick Benton for pointing to this example.

2.2. THE POWER OF THE FIX-RULES 43

Let `Afix be the inference system of Figure 2.3 but with annotations in A.
Similarly let `Afix1 be the system where [fix] is replaced by [fix1] and let
`Afix2 be the system where [fix] is replaced by [fix2]. Note that `{b,>}fix1 is the
system of [KM89].

For any two inference systems `A1
φ1

and `A2
φ2

write

`A1
φ1
⊆ `A2

φ2
for A `A1

φ1
e : t ⇒ A `A2

φ2
e : t

and

`A1
φ1

= `A2
φ2

for `A1
φ1
⊆ `A2

φ2
∧ `A2

φ2
⊆ `A1

φ1

`A1
φ1
⊂ `A2

φ2
for `A1

φ1
⊆ `A2

φ2
∧ ¬(`A2

φ2
⊆ `A1

φ1
)

It is immediate that

`Afix1 ⊆ `Afix2 ⊆ `Afix

and that

`{b,>}φ ⊆ `{n,b,>}φ

for all A and φ ∈ {fix, fix1, fix2}. We now consider the extent to which
the inclusions are proper or are equalities; the results are summarised in
Table 2.1.

annotations A fix-rules

{b, >} `Afix1 = `Afix2

`Afix2 ⊂ `Afix

{n, b, >} `Afix1 ⊂ `Afix2

`Afix2 ⊂ `Afix

Table 2.1: Relation Between the Fix-rules

44 CHAPTER 2. STRICTNESS AND TOTALITY ANALYSIS

Claim `{b,>}fix1 = `{b,>}fix2

In order to show that `{b,>}fix1 = `{b,>}fix2 it suffices to show that the rule [fix2]
can be derived from the rule [fix1]. For this assume

A `{b,>}fix1 e : t1 → t2

t2 ≤ST t1

BOTST(t1)

so that

A `{b,>}fix1 fix e : t2

can be inferred. Since none of the types involves the annotation n it must
be the case that BOTST(t) = tt for all types t. We can now construct
the proof-tree

A `{b,>}fix1 e : t1 → t2

t2 ≤ST t1

t1 → t2 ≤ST t2 → t2

A `{b,>}fix1 e : t2 → t2 BOTST(t2)
[fix1]

A `{b,>}fix1 fix e : t2

and this proves our claim.

Claim `{b,>}fix2 ⊂ `{b,>}fix

To verify that `{b,>}fix2 ⊂ `{b,>}fix we must show that there exists a term e

and a type t and an assumption list A, such that A `{b,>}fix e : t can be
inferred and we cannot infer A `{b,>}fix2 e : t.

For this we take

e = fix (λf.λx.λy.λz.if (= 0 z) then + x y else f y x (- z 1))
t1 = Intb → Int> → Int> → Intb

t2 = Int> → Intb → Int> → Intb

In Example 2.6 we have shown how to infer:

∅ `{b,>}fix fix e : t1 ∧ t2

2.3. OPERATIONAL SEMANTICS 45

and we argued about the unlikeliness of being able to infer ∅ `{b,>}fix2 fix e : t1 ∧ t2

(as is indeed stated also in [KM89]).

Claim `{n,b,>}fix1 ⊂ `{n,b,>}fix2

When we go to the {n, b, >}-part (both strictness and totality informa-
tion on the types) the two rules [fix1] and [fix2] are no longer equivalent.
Consider the term fix (λx.7) and the type Intn. We can infer

∅ `{n,b,>}fix2 λx.7 : Intn → Intn

but this does not suffice for using the rule [fix1] to infer

∅ `{n,b,>}fix2 fix (λx.7) : Intn

because BOTST(Intn) fails. However we can infer

∅ S̀T λx.7 : Int> → Intn

and we can then apply the rule [fix2] to get the desired type. This argument
shows

¬(A `{n,b,>}fix2 e : t ⇒ A `{n,b,>}fix1 e : t)

and thereby we have `{n,b,>}fix1 ⊂ `{n,b,>}fix2 .

Claim `{n,b,>}fix2 ⊂ `{n,b,>}fix

To argue that `{n,b,>}fix2 ⊂ `{n,b,>}fix when we consider the full strictness and
totality analysis we can use the same term and type as for showing `{b,>}fix2

⊂ `{b,>}fix .

x

2.3 Operational Semantics

The first step towards showing the analysis sound is to introduce the se-
mantics. The semantics will be lazy except that all built-in functions will

46 CHAPTER 2. STRICTNESS AND TOTALITY ANALYSIS

[app1]
` e1 ⇓ λx.e ` e[e2/x] ⇓ v

` e1 e2 ⇓ v

[app2]
` e1 ⇓ c ` e2 ⇓ v
` e1 e2 ⇓ u if (v, u) ∈ δ(c)

[fix]
` e (fix e) ⇓ v
` fix e ⇓ v

[abs] ` λx.e ⇓ λx.e [const] ` c ⇓ c

[condT]
` e1 ⇓ true ` e2 ⇓ v2

` if e1 then e2 else e3 ⇓ v2

[condF]
` e1 ⇓ false ` e3 ⇓ v3

` if e1 then e2 else e3 ⇓ v3

Figure 2.5: Lazy Semantics for Closed Terms

be strict in each argument. Figure 2.5 defines a natural-style operational
semantics [Plo77]. Terms are evaluated to WHNF, i.e. to constants or
lambda-abstractions; we will let u, v, c, and f be such WHNF’s. The
meaning of a constant c is given by a set δ(c) of pairs of constants; the
idea is that if (u, v) ∈ δ(c) then c u = v; e.g. (2, +2) ∈ δ(+) and (1, 3) ∈
δ(+2). As mentioned in the introduction to this Chapter the semantics is
faithful to current lazy languages like Miranda [Tur85] and this is unlike
other approaches (e.g. [BHA86]) where terms are evaluated to HNF rather
than WHNF. As usual we shall regard α-equivalent terms to be equal.

Two closed terms are semantically equivalent, written e1 ∼ut e2, if they
both evaluate to the same WHNF and have the same underlying type:

Definition 2.10
(e1 ∼ut e2) ⇔ ((` e1 ⇓ v) ⇔ (` e2 ⇓ v))
provided both ∅ ` e1 : ut and ∅ ` e2 : ut can be inferred. 2

We shall assume throughout this Chapter that there are no empty types,
i.e. for each underlying type there exists a terminating term with that type.
Clearly, for each type there exists a non-terminating term of that type, for
example fix (λx.x).

2.3. OPERATIONAL SEMANTICS 47

We shall write 6 ` e ⇓ to mean ¬(∃v : ` e ⇓ v); this means that e does not
terminate.

2.3.1 New Terms

For the proof of soundness of the conjunction inference system we find it
helpful to introduce the terms fixn e where n is a number greater than
or equal to 0. The idea is that n indicates how many times the fixpoint is
allowed to be unfolded. So we need to expand the underlying type inference
system and the semantics of the simply-typed λ-calculus. The underlying
type of fixn e is the same as for fix e:

[fixn]
A ` e : ut → ut
A ` fixn e : ut

and the semantics for fixn e is:

[fixn]
` e (fixn e) ⇓ v
` fixn+1 e ⇓ v

There are no rules for fix0 e and hence fix0 e is stuck. We will allow the
function ε to be applied to a term to remove all the annotations on fix.
We do not allow the programmer to use fixn; hence there is no need for
analysis of terms including fixj; it is merely a piece of syntax needed to
facilitate the proof of the soundness theorem.

For proving the monotonicity-rule sound we need to construct a terminat-
ing term given any term e in such a way that the new term computes the
same WHNF as e and terminates if e loops. However, this new term must
also terminate when applied to a number of arguments. Consider the term
λx.x which evaluates to λx.x. Now we want that the new term associated
with λx.x applied to any argument terminates even if λx.x applied to the
same argument does not terminate. To achieve the we introduce the new
terms T ne where is e is a closed term without any fixj. The idea is that
T ne terminates when applied to i ≤ n arguments. The underlying type of
T ne is the same as for e:

[T n]
A ` e : ut

A ` T ne : ut

Let the arity of a standard type be 0 for base-types and for the function
type, ut1 → ut2, it is 1 plus the arity of ut2 and the final result type for a

48 CHAPTER 2. STRICTNESS AND TOTALITY ANALYSIS

base-type B is B and for the function type, ut1 → ut2, it is the final final
result type of ut2. Now the semantics for T ne is:

[eval1]
` e ⇓ v

` T 0
e ⇓ v

[eval2]
` e ⇓ v

` T n+1
e ⇓ T n+1

v

[eval3]
6 ` e ⇓

` T ne ⇓ λx1.. . . λxa.cB
if

∅ ` e : ut
a is the arity of ut and
B is the final result type of ut

[T napp]
` e1 ⇓ T n+1

v ` T nv ε(e2) ⇓ v′

` e1 e2 ⇓ v′

where cB is a constant of type B. Again the programmer is not allowed
to use terms including T n; they are only introduced to be used in the
soundness proof of the analysis.

The reason for not allowing terms to include fixj inside the annotation
on T n is that otherwise monotonicity of evaluation will not be preserved.
Consider Fact 2.15, below, and the term fix6 fac 7. We have

6 ` fix6 fac 7 ⇓

and by the [eval3] rule we get

` T 0
fix6 fac 7 ⇓ cInt

However we have

` ε(T 0
fix6 fac 7) ⇓ 5040

2.3.2 Properties of the Semantics

Whenever e1 does not evaluate, then if e1 then e2 else e3 cannot eval-
uate either:

Fact 2.11
6` e1 ⇓ ⇒ 6` if e1 then e2 else e3 ⇓ 2

2.3. OPERATIONAL SEMANTICS 49

Proof We assume 6` e1 ⇓. Assume that there exists a v′ such that

` if e1 then e2 else e3 ⇓ v′

Then by the [condT]-rule we have (` e1 ⇓ true) and ` e2 ⇓ v′ but this
contradicts 6` e1 ⇓. Otherwise by the [condF]-rule we have (` e1 ⇓ false)
and ` e3 ⇓ v′ but this contradicts 6` e1 ⇓. So it must be the case that

6` if e1 then e2 else e3 ⇓
is true.

Whenever the function does not evaluate then the application cannot eval-
uate either:

Fact 2.12
6` e ⇓ ⇒ 6` e e′ ⇓ 2

Proof We assume 6` e ⇓ and we want to show6` e e′ ⇓. Now assume
that it is not the case; that is assume ∃ v′ : ` e e′ ⇓ v′. Either [app1]
or [app2] has been applied. From the [app1]-rule we get ` e ⇓ λx.e′′ and
` e′′[e′/x] ⇓ v′ but this contradicts the assumption 6` e ⇓.

From the [app2]-rule we get ` e ⇓ f, ` e′ ⇓ v, and (v, v′) ∈ δ(f) but this
also contradicts the assumption 6` e ⇓. So it must be the case that 6` e e′ ⇓.

Provided e1 and e2 are semantically equivalent, then (e1 e′) and (e2 e′) are
semantically equivalent:

Fact 2.13
(e1 ∼ut1 → ut2 e2) ⇒ (e1 e′ ∼ut2 e2 e′) 2

Proof First we show (∅ ` e1 e′ : ut) ⇔ (∅ ` e2 e′ : ut).

Next we show (` e1 e′ ⇓ v′) ⇒ (` e2 e′ ⇓ v′). We do this by induction on
the proof-tree of ` e1 e′ ⇓ v′.

For the proof see Appendix page 226.

Fixpoints

The underlying types that can be inferred for a term e without any fixn′s
can also be inferred for the term e′ with fixn replacing some occurrences
of fix and vice versa:

50 CHAPTER 2. STRICTNESS AND TOTALITY ANALYSIS

Fact 2.14
(A ` e : ut) ⇔ (A ` ε(e) : ut) 2

Proof First we assume that (A ` e : ut) can be inferred and we show by
induction on the proof-tree for (A ` e : ut) that (A ` ε(e) : ut) can be
inferred.

The second part of bi-implication is analogous.

For the full details see Appendix page 229.

A fixpoint that can evaluate with n unfoldings can also evaluate if it is
allowed to unfold an unlimited number of times:

Fact 2.15
(` e ⇓ v) ⇒ (` ε(e) ⇓ ε(v)) 2

Proof We assume ` e ⇓ v and then we prove by induction on the proof-
tree for ` e ⇓ v that ` ε(e) ⇓ ε(v) can be inferred.

For the full details see Appendix page 232.

We now show that if (fix e) evaluates then there exists a number n such
that (fixn e) evaluates. In the proof of this result we need a way to
modify some of the occurrences of fix in a term. For this we introduce
the notion of tree-substitutions, π. They will tell us which occurrences of
fix to replace with an occurrence of fixj.

Definition 2.16 tree-substitution
A tree-substitution π is a set of pairs of tree-addresses and a number. A
tree-address is a list of 0, 1, 2.

For n ∈ {0, 1, 2} let πn be the part of the tree-substitution π where all the
tree-addresses starts with an n but without this leading n, i.e.

πn = {(addr,m) | (n : addr,m) ∈ π}

where “n : addr” denotes the list whose first element is n and whose tail
is addr. Let π + n be the tree-substitution

π + n = {(addr,m + n) | (addr,m) ∈ π}

Let nπ be the tree-substitution

nπ = {(n : addr,m) | (addr,m) ∈ π}

2.3. OPERATIONAL SEMANTICS 51

and let pπ be the tree-substitution

{(p ++ addr, m) | (addr, m) ∈ π ∧ p is a tree-address}

where “++” denotes list concatenation.

The tree-substitution π applied to a term e is written [e]π and is defined
inductively as follows:

[x]π = x
[c]π = c
[if e1 then e2 else e3]π = if [e1]π

0
then [e2]π

1
else [e3]π

2

[e1 e2]π = [e1]π
0
[e2]π

1

[λx.e]π = λx.[e]π
0

[fix e]π =
 fixn [e]π

0
, if ([], n) ∈ π

fix [e]π
0
, otherwise

[T ne]π = T ne

where [] denotes the empty list. 2

Proportion 2.17
For e without any fixj we have

` e ⇓ v ⇒

∀π∃m∃π′ ∀n ≥ 0 :

(` [e]π+m+n ⇓ [v]π
′+n)∧

((` [e]π ⇓ v′)⇒ m = 0)
2

The idea is that for any labelling of the fixpoints in a term, m is the
minimal number to be added so that the term can evaluate. The number
n indicates that whenever a labelling of the fixpoints will let the term
evaluate, then increasing the labels it will still let the term evaluate; this
is stated in Corollary 2.19 below.

Proof We assume ` e ⇓ v and that e is without any fixj; then we prove
by induction in the proof-tree for ` e ⇓ v that

∀π∃m∃π′ ∀n ≥ 0 :
(` [e]π+m+n ⇓ [v]π

′+n) ∧ ((` [e]π ⇓ v′)⇒ m = 0)

holds.

For the full details see Appendix page 235.

52 CHAPTER 2. STRICTNESS AND TOTALITY ANALYSIS

Corollary 2.18
(` fix e ⇓ v)⇒ (∃m∃v′ : ` fixm e ⇓ v′) provided e is without any fixj.

2

Proof Use Proposition 2.17 with π = {([], 0)} and n = 0.

A fixpoint that can evaluate with k unfoldings can also evaluate if it is
allowed to unfold k + 1 times:

Corollary 2.19
(` fixk e ⇓ v)⇒ (∃v′ : ` fixk+1 e ⇓ v′) provided e is without any fixj.

2

Proof Use Proposition 2.17 with π = {([], k)} and n = 1 and observe
that m = 0.

Terminating Terms

Suppose that a term e applied to some terms does indeed evaluate; we now
consider to which term T nε(e) evaluates when applied to the same terms.

Lemma 2.20
Given 1 ≤ i ≤ n ≤ a where a is the arity of e:

(` e e1 . . . ei ⇓ v)⇒ (` T nε(e) e1 . . . ei ⇓

ε(v), if n = i
T n−i
ε(v), otherwise)

2

Proof The lemma is shown by induction on i.

Next suppose that a term e does not evaluate when applied to certain
terms; we now consider what happens for T nε(e) when applied to the same
terms.

Lemma 2.21
Given 1 ≤ i ≤ n ≤ a where a is the arity of e:

(6 ` e e1 . . . ei ⇓) ⇒ (∃ v′ : (` T nε(e) e1 . . . ei ⇓ v′)) 2

Proof We observe that either ` ε(e e1 . . . ei) ⇓ v′ or 6 ` ε(e e1 . . . ei) ⇓
must be the case. In the first case we use Lemma 2.20. In the second case
we use the rules [eval2] and [eval3].

2.3. OPERATIONAL SEMANTICS 53

Finally, from the proof-tree for the term (e e′ e1 . . . ek) we can construct
a proof-tree for the term (e T nε(e′) e1 . . . ek):

Lemma 2.22
(` e e′ e1 . . . ek ⇓ v) ⇒ ∃ v′ : ` e T nε(e′) e1 . . . ek ⇓ v′ 2

Proof In this proof we regard a proof-tree as having its root at the bot-
tom. For the proof we assume that ` e e′ e1 . . . ek ⇓ v and we prove that
` e T nε(e′) e1 . . . ek ⇓ v′. We do this by first constructing a template for
the given proof-tree and then later use this template to construct the de-
sired proof-tree. For an example see Example 2.23 below.

To construct the template we first remove the parts of the proof-tree that
are above certain nodes by traversing the given proof-tree in a left-most-
top-first manner. Let u0 be e′. Now remove the parts of the proof-tree
that are above the nodes of the form:

• ` ui ⇓ ui+1 with no nodes below that is ui applied to a number of
terms. For later use we let ki be 0 in this case.

• ` ui e′1 . . . e
′
ki
⇓ ui+1 with no nodes below that is ui applied to a

greater number of terms.

We continue in this way until there are no more parts of the proof-tree
that can be removed.

The template can be constructed by copying all nodes from the proof-tree
resulting from the above process. However, in nodes involving any ui we
replace ui with a pointer to the pair

(ui,

ε(ui), if n ≤ k0 + · · ·+ ki
T n−k0−···−ki
ε(ui)

, otherwise)

Now note that the proof-tree for ` e e′ e1 . . . ek ⇓ v may be constructed
from the template by extracting the first component of the pairs and then
constructing the top parts of the tree. In a similar way the proof-tree for
` e T nε(e′) e1 . . . ek ⇓ v is constructed by extracting the second compo-
nent of the pairs and using Lemma 2.20 to construct the top-parts of the
tree.

54 CHAPTER 2. STRICTNESS AND TOTALITY ANALYSIS

Example 2.23
Consider the term e e′, where

e = λx.+ (+ 1 2) (x 2)
e′ = λy.× y 4

The full evaluation-tree is:

` e ⇓ e

` + ⇓ + P1 +3 ∈ δ(+, 3)

` + (+ 1 2) ⇓ +3

` e′ ⇓ e′ P2

` e′ 2 ⇓ 8 11 ∈ δ((+3, 8))

` (+ (+ 1 2) (x 2))[e′/x] ⇓ 11

` e e′ ⇓ 11

where P1 is

` + ⇓ + ` 1 ⇓ 1 +1 ∈ δ(+, 1)

` + 1 ⇓ +1 ` 2 ⇓ 2 3 ∈ δ(+1, 2)

` + 1 2 ⇓ 3

and P2 is

` × ⇓ × ` 2 ⇓ 2 ×2 ∈ δ(×, 2)

` × 2 ⇓ ×2 ` 4 ⇓ 4 8 ∈ δ(×2, 4)

` (× y 4)[2/y] ⇓ 8

First we remove the part of the tree that is above ` e′ 2 ⇓ 8 and it looks
like

` e ⇓ e

` + ⇓ + P1 +3 ∈ δ(+, 3)

` + (+ 1 2) ⇓ +3 ` e′ 2 ⇓ 8 11 ∈ δ((+3, 8))

` (+ (+ 1 2) (x 2))[e′/x] ⇓ 11

` e e′ ⇓ 11

and we have

u0 = e′

u1 = 8

u2 = 11

2.4. SOUNDNESS 55

k0 = 1
k1 = 0
k2 = 0

Now the template is:

` e ⇓ e

` + ⇓ + P1 +3 ∈ δ(+, 3)

` + (+ 1 2) ⇓ +3 ` p0 2 ⇓ p1 p2 ∈ δ((+3, p1))

` (+ (+ 1 2) (x 2))[p0/x] ⇓ p2

` e p0 ⇓ p2

where

p0 = (e′,

e′, if n ≤ 1
T n−1
e′ , otherwise)

p1 = (8,
 8, if n ≤ 1
T n−1
8 s, otherwise)

p2 = (11,
 11, if n ≤ 1
T n−1
11 , otherwise)

Whenever we want a proof-tree for e e′ we use the first component of the
pairs and when we want a proof-tree for e T ne′ we use the second component
of the pairs.

2

2.4 Soundness

Our task is now to prove that the inference system of Figure 2.3 is sound
with respect to the natural-style operational semantics of Figure 2.5. First
we define a predicate |= e : ct stating that the term e is valid of conjunc-
tion type ct. Then we show some useful lemmas and finally we can prove
the soundness result: if A S̀T e : ct then |= e[v/x] : ct for all closed sub-
stitutions [v/x] that are valid of the types in A.

The validity predicate is shown in Figure 2.6. The term e is valid of
conjunction type ct1 ∧ ct2 if e is valid of type ct1 as well as ct2. That the

56 CHAPTER 2. STRICTNESS AND TOTALITY ANALYSIS

(I) (|= e : ct1 ∧ ct2) ⇔ (|= e : ct1) ∧ (|= e : ct2)

(II) (|= e : utb) ⇔ (∀v: 6` e ⇓) ∧ (∅ ` e : ut)

(III) (|= e : utn) ⇔ (∃v: ` e ⇓ v) ∧ (∅ ` e : ut)

(IV) (|= e : ut>) ⇔ (∅ ` e : ut)

(V) (|= e : t1 → t2) ⇔ (∀e′: (|= e′ : t1) ⇒ (|= e e′ : t2))
∧ (∅ ` e : ε(t1) → ε(t2))

Figure 2.6: The definition of validity

term e has a WHNF and the underlying type ut amounts to |= e : utn

being true; that e has no WHNF but has the underlying type ut amounts
to |= e : utb being true (i.e. there exists no WHNF, v, such that ` e ⇓ v).
A term with conjunction type ut> just has to be of the underlying type
ut, as we do not know anything about the evaluation of the term. A term
e is valid of function type t1 → t2 if for any other term e′ that is valid of
strictness and totality type t1, also e applied to e′ will be valid of strictness
and totality type t2.

To prepare for the soundness of the conjunction type inference system we
first need to bind all the free variables in the term. Let x be the list
of variables in A, let t be the list of the strictness and totality types
corresponding to the variables x, and let v be a list of closed terms that
are valid of the types t, i.e. |= v : t. We now define |= v : t inductively
by

|= (v, v) : (t, t) = (|= v : t) ∧ (|= v : t)
|= [] : [] = tt

The substitution [[v/x]] is defined inductively by

e[(v, v)/(x, x)] = (e[v/x])[[v/x]]
e[[]/[]] = e

Theorem 2.24 Soundness

2.4. SOUNDNESS 57

For expressions e without any fixn and T n we have
(x : t S̀T e : ct) ⇒ (∀ v: (|= v : t) ⇒ (|= e[v/x] : ct)). 2

Before we prove the soundness theorem we need some facts and lemmas.
They are divided into three groups: first we show one property of the
underlying type system, then we show some properties of the analysis and
finally we show some properties of the validity predicate.

2.4.1 Properties of the Standard Type System

For a free variable x in a term e we can substitute terms e′ with the type
indicated by the type environment A for x. The terms e′ do not have to
be closed but may only use the same free variables as e except for x.

Lemma 2.25
((A ` e : ut2) ∧ (Ax ` e2 : ut1) ∧ (x : ut1 ∈ A))⇒ (Ax ` e[e2/x] : ut2)

2

Proof We assume A ` e : ut2, Ax ` e2 : ut1, and that x : ut1 is in
A. Then we proof by induction in the proof-tree for A ` e : ut2 that
Ax ` e[e2/x] : ut2 can be inferred.

For the full details see Appendix page 249.

2.4.2 Properties of the Conjunction Type System

Two conjunction types can only be compared if they have the same under-
lying type:

Fact 2.26
(t1 ≤ST t2) ⇒ (ε(t1) = ε(t2))

(ct1 ≤CT ct2) ⇒ (ε(ct1) = ε(ct2)) 2

Proof We assume t1 ≤ST t2 and then we prove by induction on the
proof-tree for t1 ≤ST t2 that ε(t1) = ε(t2) holds.

(ct1 ≤CT ct2) ⇒ (ε(ct1) = ε(ct2))

For the full details see Appendix page 254.

Some properties of the function ↓ are expressed by Fact 2.27:

58 CHAPTER 2. STRICTNESS AND TOTALITY ANALYSIS

Fact 2.27
The function ↓ has the following properties:

a) t ≤ST ↓t

b) ↓(↓t) = ↓t

c) (t1 ≤ST t2) ⇒ (↓t1 ≤ST ↓t2)

d) BOTST(↓t) = tt

e) ((t ≤ST t′) ∧ (BOTST(t′)) ⇒ (↓t ≤ST t′)

2

Note that e) expresses that ↓t is the smallest type such that both t ≤ST

↓t and BOTST(↓t) holds.

Proof

Part a) We show t ≤ST ↓t by induction on t.

Part b) We show ↓↓t = ↓t by induction on t.

Part c) We assume t1 ≤ST t2 and show

↓t1 ≤ST ↓t2

by induction on the proof-tree for t1 ≤ST t2.

Part d) We show BOTST(↓t) by induction on the strictness and totality
type t.

Part e) We assume t′ ≤ST t and that BOTST(t′) is true, then we show
by induction on t′ that ↓t ≤ST t′ can be inferred.

For the full details see Appendix page 258.

Provided BOTCT(ct) is true, then the conjunction type ct is greater than
ε(ct)b.

Lemma 2.28
(BOTCT(ct) = tt) ⇔ (ε(ct)b ≤CT ct) 2

Proof First we assume BOTCT(ct) = tt and then we show by induction
on the type ct that ε(ct)b ≤CT ct can be inferred. Second we assume
ε(ct)b ≤CT ct and then we show by induction the type ct that BOTCT(ct)
is true.

2.4. SOUNDNESS 59

For the full details see Appendix page 265.

2.4.3 Properties of the Validity Predicate

The term T 0
e always terminates:

Lemma 2.29
(|= e : ut>) ⇒ (|= T 0

ε(e) : utn) 2

Proof We assume |= e : ut>. There are now two possibilities: either
` e ⇓ v or 6 ` e ⇓. First assume ` e ⇓ v. From Fact 2.15 we have ` ε(e) ⇓ ε(v)
and from the rule [eval1] we get ` T 0

ε(e) ⇓ ε(v) hence we have (|= T 0
ε(e) : utn).

Secondly assume 6 ` e ⇓. Now it must either be the case that ` ε(e) ⇓ v or
6 ` ε(e) ⇓. In the first case we do as above and we have (|= T 0

ε(e) : utn).

In the second case we apply the rule [eval3] to get ` T 0
ε(e) ⇓ λx1.. . . λxa.cB

where a is the arity of ut and B is the final result type of ut. We now have
(|= T 0

ε(e) : utn) as required.

The term T ne applied to n terms will always terminate:

Lemma 2.30
(|= e : t1 → . . . tn → ut>) ⇒ (|= T nε(e) : t1 → . . . tn → utn) 2

Proof We assume (|= e : t1 → . . . tn → ut>). We want to show

|= T nε(e) : t1 → . . . tn → utn

which is equivalent to showing

∀e1 . . . en : (|= e1 : t1 . . . |= en : tn)⇒ (|= T nε(e) e1 . . . en : utn)

We have |= e : t1 → . . . → tn → ut>. Now either ` e e1 . . . en ⇓ v or
6 ` e e1 . . . en ⇓ holds. In the first case we apply Lemma 2.20 and then
have ` T nε(e) e1 . . . en ⇓ v′. In the second case we apply Lemma 2.21 and
then have ` T nε(e) e1 . . . en ⇓ v′. In both cases we have

` T nε(e) e1 . . . en ⇓ v′

60 CHAPTER 2. STRICTNESS AND TOTALITY ANALYSIS

so it must be the case that |= T nε(e) e1 . . . en : utn holds.

Semantic equivalence is lifted to conjunction types:

Lemma 2.31
((|= e1 : ct) ∧ (e1 ∼ε(ct) e2)) ⇒ (|= e2 : ct) 2

Proof We assume |= e1 : ct and e1 ∼ε(ct) e2 then we show by induction
in the type ct that |= e2 : ct is true. In all the case we know that both
∅ ` e1 : ε(ct) and ∅ ` e2 : ε(ct) can be inferred.

For the full details see Appendix page 268.

The Facts 2.32, 2.33, 2.34, 2.35 are applications of Lemma 2.31. They are
all proven by showing that the two terms are semantically equivalent and
then applying Lemma 2.31.

Fact 2.32
(|= (λx.e) e′ : ct) ⇔ (|= e[e′/x] : ct) 2

Proof For the proof see Appendix page 270.

Fact 2.33
We have

(|= if e1 then (e2 e′) else (e3 e′) : ct)
m

(|= (if e1 then e2 else e3) e′ : ct)

2

Proof For the proof see Appendix page 272.

Unfolding fixn or fix does not change validity:

Fact 2.34
(|= e (fixn e) : ct) ⇔ (|= fixn+1 e : ct) 2

Proof For the proof see Appendix page 275.

Fact 2.35
(|= e (fix e) : ct) ⇔ (|= fix e : ct) 2

2.4. SOUNDNESS 61

Proof The proof is analogous the proof of Fact 2.34.

Provided e1 has the type Booln and both e2 and e3 are valid of the con-
junction type ct, then the conditional is valid of the type ct:

Fact 2.36
((|= e1 : Booln) ∧ (|= e2 : ct) ∧ (|= e3 : ct)) ⇔
(|= if e1 then e2 else e3 : ct) 2

Proof We assume (|= e1 : Booln), (|= e2 : ct), and (|= e3 : ct), then we
show by induction on the conjunction type ct that

(|= if e1 then e2 else e3 : ct)

is true. In all the cases we are using that if e1 then e2 else e3 has the
underlying type ε(ct).

For the full details see Appendix page 278.

Provided e1 has the type Bool> and both e2 and e3 are valid of the con-
junction type ct, and ct can describe bottom, then the conditional is valid
of the type ct:

Fact 2.37
((|= e1 : Bool>) ∧ (|= e2 : ct) ∧ (|= e3 : ct) ∧ BOTCT(ct)) ⇒
(|= if e1 then e2 else e3 : ct) 2

Proof We assume (|= e1 : Bool>), (|= e2 : ct), (|= e3 : ct), and that
BOTCT(ct) is true, then we show by induction on the type ct that

(|= if e1 then e2 else e3 : ct)

is true. In all the cases we use that if e1 then e2 else e3 has the un-
derlying type ε(ct).

For the full details see Appendix page 281.

Next we show that our rules for ≤ST and ≤CT are sound:

Lemma 2.38 Soundness of ≤ST

((|= e : t1) ∧ (t1 ≤ST t2)) ⇒ (|= e : t2) 2

Proof We assume that |= e : t1 is true and that t1 ≤ST t2 can be in-
ferred, then we show by induction in the proof-tree of t1 ≤ST t2 that

62 CHAPTER 2. STRICTNESS AND TOTALITY ANALYSIS

|= e : t2 is true. Throughout the proof we use that ∅ ` e : ε(t2) can be
inferred because

|= e : t1

⇓
∅ ` e : ε(t1)

m ε(t1) = ε(t2) from Fact 2.26

∅ ` e : ε(t2)

For the full details see Appendix page 284.

Lemma 2.39 Soundness of ≤CT

((|= e : ct1) ∧ (ct1 ≤CT ct2)) ⇒ (|= e : ct2) 2

Proof We assume that |= e : ct1 is true and that ct1 ≤CT ct2 can be
inferred, then we show by induction in the proof-tree of ct1 ≤CT ct2 that
|= e : ct2 is true.

For the full details see Appendix page 296.

We know from the semantics that (fix0 e) cannot evaluate hence it is
valid of any type that can describe non-termination:

Lemma 2.40
(BOTST(t1) ∧ ε(t1) = ε(t2) ∧ |= e : t1 → t2) ⇒ (|= fix0 e : t1) 2

Proof It is easy to show that |= fix0 e : ε(t1)b holds. Since we have
shown that BOTST(t1) implies ε(t1)b ≤ST t1 (Lemma 2.28) we obtain
the result using Lemma 2.39.

For the full details see Appendix page 298.

The relationship between fixj and fix is clarified by:

Lemma 2.41
(∃j0, j1 : ∀k ≥ 0 : (|= fixj0+j1×k e : t)) ⇒ (|= fix e : t) provided e is
without any fixj 2

Proof We assume ∃j0, j1 : ∀k ≥ 0 : (|= fixj0+j1×k e : t) and then we
prove by induction on the strictness and totality type t that |= fix e : t
is true.

For the full details see Appendix page 298.

2.4. SOUNDNESS 63

2.4.4 The Soundness Proof

Finally we can prove Theorem 2.24:

Theorem 2.24 Soundness
For expressions e without any fixn and T n we have

(x : t S̀T e : ct) ⇒ (∀ v: (|= v : t) ⇒ (|= e[v/x] : ct)). 2

Proof We assume that A S̀T e : ct and that (|= v : t) is true, then we
prove by induction in the proof-tree for A S̀T e : ct that |= e[v/x] : ct is
true.

The case [abs]: We assume A S̀T λx.e : t1 → t2 and that |= v : t is
true. From the [abs]-rule we get A, x : t1 S̀T e : t2. Applying the
induction hypothesis to this we get

((|= v : t for A ∧ |= v : t1)⇒ (|= e[v/x] [v/x] : t2)) (2.6)

We know that x : t′ 6∈ A since all the bound variables are distinct,
that is x 6∈ x. We want to show that

|= (λx.e)[v/x] : t1 → t2

which is equivalent to show

(∀e′ : (|= e′ : t1)⇒ (|= (λx.e)[v/x] e′ : t2))

because x 6∈ x we have

(∀e′ : (|= e′ : t1)⇒ (|= λx.e[v/x] e′ : t2))

By using (2.6) with |= v : t and |= e′ : t1 we get

|= e[v/x][e′/x] : t2

from Fact 2.32 we have

|= (λx.e[v/x]) e′ : t2

because x 6∈ x we get

|= (λx.e)[v/x] e′ : t2

as required.

64 CHAPTER 2. STRICTNESS AND TOTALITY ANALYSIS

The case [if2]: We assume A S̀T if e1 then e2 else e3 : ct and that
|= v : t is true. From the [if2]-rule we get

A S̀T e1 : Booln

A S̀T e2 : ct
A S̀T e3 : ct

by applying the induction hypothesis to all three we get

|= e1[v/x] : Booln

|= e2[v/x] : ct
|= e3[v/x] : ct

By applying Fact 2.36 we have

|= if (e1[v/x]) then (e2[v/x]) else (e3[v/x]) : ct

which is equivalent to

|= (if e1 then e2 else e3)[v/x] : ct

as required.

The case [fix]: We assume

A S̀T fix e : tn

BOTST(t1), tq ≤ST tp, p < q, and that |= v : t is true. From the
[fix]-rule we get

A S̀T e : t1 → t2 ∧ t2 → t3 ∧ . . . ∧ tn−1 → tn

By applying the induction hypothesis we get

|= e[v/x] : t1 → t2 ∧ t2 → t3 ∧ . . . ∧ tn−1 → tn

which is equivalent to

|= e[v/x] : t1 → t2

|= e[v/x] : t2 → t3
...
|= e[v/x] : tn−1 → tn

2.4. SOUNDNESS 65

From Lemma 2.40 we have

|= fix0 e[v/x] : t1

By applying |= e[v/x] : t1 → t2 we get

|= e (fix0 e[v/x]) : t2

and Fact 2.34 gives

|= fix1 e[v/x] : t2

By applying |= e[v/x] : t2 → t3 we get

|= e (fix1 e[v/x]) : t3

and Fact 2.34 gives

|= fix2 e[v/x] : t3

We arrive at

|= fixq−1 e[v/x] : tq

Now because we have tq ≤ST tp we can apply Lemma 2.38 to get

|= fixq−1 e[v/x] : tp

By applying |= e[v/x] : tp → tp+1

|= e (fixq−1 e[v/x]) : tp+1

using Fact 2.34 we get

|= fixq−1+1 e[v/x] : tp+1

We have

∀k ≥ 0 : |= fixq−1+(q−p)k e[v/x] : tq

and using Lemma 2.41 gives

|= fix e[v/x] : tq

66 CHAPTER 2. STRICTNESS AND TOTALITY ANALYSIS

By applying |= e[v/x] : tq → tq+1

|= e[v/x] (fix e[v/x]) : tq+1

Now Fact 2.35 gives

|= fix e[v/x] : tq+1

We arrive at

|= fix e[v/x] : tn

that is

|= (fix e)[v/x] : tn

as required.

The case [coer]: We assume

A S̀T e : ct2

ct1≤CTct2

and that |= v : t is true. From the [coer]-rule we have

A S̀T e : ct1

By applying the induction hypothesis we get

|= e[v/x] : ct1

Using Lemma 2.38 we get

|= e[v/x] : ct2

as required.

For the remaining cases see Appendix page 305.

Soundness of the Standard Type Inference System

Now that we have a semantics we can state the soundness of the standard
type inference system (Figure 1.1): first we extend the notion of validity
to standard types:

2.5. SUMMARY 67

|= e : Bool ⇔ (` e ⇓ true) ∨ (` e ⇓ false)
|= e : Int ⇔ (` e ⇓ c) c is an integer
|= e : ut1 → ut2 ⇔ (∀e′ : (|= e′ : ut1)⇒ (|= e e′ : ut2))

Now soundness of the standard type system can be formalised as:

A ` e : ut ⇒
(∀v : ((|= v : ut) ∧ (` e[v/x] ⇓ v))⇒ (|= e[v/x] : ut))

The soundness proof for the analysis can easily be adapted to a proof of
soundness for the standard type system.

2.5 Summary

We have described an inference system for combining strictness and totality
analysis and we have proved the analysis sound with respect to a natural-
style operational semantics.

We have briefly compared the results obtained by our analysis to those
obtained by e.g. [Jen91, Ben93, Jen92b, KM89, Wri91]. In some cases we
get more precise results, in others they do. One may note that the type
systems of Jensen [Jen91] and Benton [Ben93] allows general conjunction
types. The reason that Jensen has no problems with unrestricted conjunc-
tions is that it is not possible to construct empty types: the type system
only includes the {b, >} annotated part of our system.

An open problem is the meaningful integration of lists and other data-
types. For the strictness part one may be inspired by [Wad87]. Consider
the type B list where B is a base-type. The strictness and totality type
(Bn)list might then describe the finite lists with no bottom elements,
the type (Bb)list might describe the infinite lists or lists with bottom
elements, and the strictness and totality type (B>)list might describe all
list. A strictness and totality type of the map function would then be

(Bn → B′n)→ (Bn)list→ (B′n)list

Similarly, foldl and foldr will have strictness and totality types

(Bn → B′n → Bn)→ Bn→ (B′n)list→ Bn

68 CHAPTER 2. STRICTNESS AND TOTALITY ANALYSIS

and

(Bn → B′n → B′n)→ B′n → (Bn)list→ B′n

respectively. However, to get this information from the analysis we need
to analyse fixpoints in a better way, e.g. as suggested in [NN95]. Consider
the factorial function:

fac ::= fix (λf.λx.if = x 1 then 1 else *(f (- x 1)) x)

We can infer the strictness and totality type for the factorial function

(Intn → Int>) ∧ (Intb → Intb)

but not the type

Intn → Intn

In order to do that we have to define a well-founded ordering as done
in [NN95].

In Chapter 3 we will lift the restriction on the placement of conjunction;
this results in a somewhat more powerful system.

Chapter 3

Strictness and Totality Analysis with
Conjunction

The type system in Chapter 2 only allows conjunctions at the top-level.
Therefore we are not able to write the strictness and totality type

((t1 ∧ t2)→ (t2 ∧ t3))→ t1 → t3

which is exactly what we needed in Example 2.9. In this Chapter we will
lift this restriction:

t ::= uts | t → t | t ∧ t

However it is not immediate to expand the development of Chapter 2 to
the new annotated types. Recall that ↓ was introduced as an operation
on types that allowed us to express downwards-closure on types. This is
needed in order to state the monotonicity rule. We will need to extend the
↓-operation to conjunction types and a first attempt may be to define

↓(t1 ∧ t2) = ↓t1 ∧ ↓t2

However this is not sound because types may be empty: The type

↓(Intn ∧ Intb)

should be empty because (Intn ∧ Intb) is, but

↓Intn ∧ ↓Intb = Int> ∧ Intb ≡ Intb

clearly is not empty.

69

70 CHAPTER 3. STA WITH CONJUNCTION

To overcome this problem we shall introduce ↓ as a syntactic construct. So
the annotated types will be given by

t ::= uts | t → t | t ∧ t | ↓t

The ordering on types will be such that ↓(t1 ∧ t2) ≤D ↓t1 ∧ ↓t2, but as
we shall see we will not have ↓(t1 ∧ t2) ≥D ↓t1 ∧ ↓t2.

Overview In Section 3.1 we define the strictness and totality types with
conjunction and give rules for coercing between them; and the inference
system is presented and examples of its use are given. In Section 3.2 we
discuss the power of the fixpoint-rules; in Section 3.3 we then present a
denotational semantics and finally in Section 3.4 the analysis is proven
correct.

3.1 The Annotated Type System

3.1.1 The Strictness and Totality Types

A strictness and totality type with conjunction, t, is either an annotated
underlying type, a function type between strictness and totality types, a
conjunction of two strictness and totality types, or a ↓-type:

t ::= uts | t → t | t ∧ t | ↓t
ut ::= B | ut → ut

s ::= > | n | b

As in Chapter 2 we will not allow the two conjuncts of t1 ∧ t2 to have
different underlying types, so again we will define a well-formedness pred-
icate for strictness and totality types. An annotated underlying type is a
well-formed strictness and totality type:

`W uts
(3.1)

A function type is well-formed, whenever the two subtypes are well-formed:

`W t1 `W t2

`W t1 → t2
(3.2)

3.1. THE ANNOTATED TYPE SYSTEM 71

A conjunction is well-formed whenever the two conjuncts are well-formed
and they have the same underlying type:

`W t1 `W t2

`W t1 ∧ t2
if ε(t1) = ε(t2) (3.3)

and the strictness and totality type ↓t is well-formed provided t is well-
formed:

`W t

`W ↓t (3.4)

The predicate, BOTST, is true for the strictness and totality strictness and
totality type, t, whenever bottom can be described by the type t. It is
defined by:

BOTST(utn) = ff

BOTST(ut>) = tt

BOTST(utb) = tt

BOTST(↓t) = BOTST(t)
BOTST(t1 → t2) = BOTST(t2)
BOTST(t1 ∧ t2) = BOTST(t1) ∧ BOTST(t2)

The reason for not taking BOTST(↓t) to be tt is t may be empty, e.g. if t
= utn ∧ utb. Therefore BOTST(↓(utn ∧ utb)) cannot be true. However,
the definition of BOTST(↓t) that we have adopted is not as precise as one
would wish. An example of which is when t = utn where we get

BOTST(↓utn) = BOTST(utn) = ff

however

BOTST(↓utn) = tt

is more precise. In Chapter 2 we did not have this problem with the
predicate for the simple reason that we did not have to define the BOTST

on ↓-types.

The coercion relation ≤D is defined by the rules of Figure 3.1. Most of
the rules are the ones from Figure 2.1, which define the relation ≤ST and
from Figure 2.2, which define the relation ≤CT. We will write ≡D for the

72 CHAPTER 3. STA WITH CONJUNCTION

[ref] t ≤D t

[trans]
t1 ≤D t2 t2 ≤D t3

t1 ≤D t3

[arrow]
t3 ≤D t1 t2 ≤D t4
t1 → t2 ≤D t3 → t4

[top1]
t ≤D ε(t)>

[top2]
(ut1 → ut2)> ≤D ut1

> → ut2
>

[bot]
(ut1 → ut2)b ≤D ut1

> → ut2
b

[notbot]
ut1

n → ut2
n ≤D (ut1 → ut2)n

[∧1] t1 ∧ t2 ≤D t1
[∧2] t1 ∧ t2 ≤D t2

[∧3]
t ≤D t1 t ≤D t2

t ≤D t1 ∧ t2

[↓1] t ≤D ↓t [↓2]
t1 ≤D t2
↓t1 ≤D ↓t2

[↓3]
ut> ≤D ↓utn [↓4]

↓utb ≤D utb

[↓5] ↓(↓t) ≤D ↓t [↓6] ↓(t1 ∧ t2) ≤D ↓t1 ∧ ↓t2

[↓7] ↓(t1 → t2) ≡D t1 → ↓t2

[monotone] t1 → t2 ≤D ↓t1 → ↓t2

[→ ∧] (t1 → t2) ∧ (t1 → t3) ≤D t1 → (t2 ∧ t3)

Figure 3.1: Coercions Between Strictness and Totality Types

3.1. THE ANNOTATED TYPE SYSTEM 73

equivalence relation induced by ≤D , i.e. t1 ≡D t2 if and only if t1 ≤D t2

and t2 ≤D t1. Compared with Chapter 2 the rule [∧ →] is new, and all
the rules involving ↓.

The rule [∧ →] is the one that Jensen and Benton [Jen92a, Ben93] have
but we had to discard in Chapter 2 due to un-well-formedness of the types
involved. The rule [↓1] expresses that all terms of type t is included in the
set of terms of type ↓t. Note that this is expressed by Fact 2.27 part a).
Whenever two types, t1 and t2, are related then so are ↓t1 and ↓t2. This is
expressed by the rule [↓2], which is comparable with Fact 2.27 part c). The
rule [↓5] which is comparable with Fact 2.27 part b), says that applying
the ↓-construct twice makes no difference as to applying the ↓-construct
once.

Terms of type ut> is included in, in fact is equal to, the terms of type
↓utn is expressed by the rule [↓3]. From [top1] we have ↓utn ≤D ut>

and thereby we have ↓utn ≡D ut>. This is exactly what the definition, of
the ↓-operation (2.3) in Chapter 2, says. The rule [↓4] says that terms of
type ↓utb are include in the terms of type utb. From the rule [↓1] we have
utb ≤D ↓utb, so we have utb ≡D ↓utb. This corresponds to (2.2) of
the definition of the ↓-operation. The rule [↓7] correspond directly to (2.5).
The rule [↓6] says that the terms of type ↓(t1 ∧ t2) is included in the terms
of type (↓t1 ∧ ↓t2). There is no counterpart to this rule in Chapter 2 since
the ↓-operation is not defined on conjunction types. There is no special
rule corresponding to (2.4) of the definition of the ↓-operation. However
from the rules [↓1] and [top1] we have ut> ≤D ↓ut> and ↓ut> ≤D ut>,
respectively.

To summarise: we have using the coercion rules:

↓utn ≡D ut> ↓ut> ≡D ut>

↓utb ≡D utb ↓(t1 → t2) ≡D t1 → ↓t2

which is directly comparable with the definition of the ↓-operation, and

↓(t1 ∧ t2)≤D ↓t1 ∧ ↓t2

So we do not have an equivalence between the ↓-types and the types with-
out the ↓-construct. The advantage of having an equivalence would be that
the programmer would not have to think about the ↓-types, however the
programmer can choose not to use the ↓-types.

74 CHAPTER 3. STA WITH CONJUNCTION

The relation ≤D is sound but not complete. The soundness result is
formalised in Lemma 3.9 below. The lack of completeness is seen by the
same example (see page 34) as for the lack of completeness for ≤ST in
Chapter 2: We are not able to infer Intb → Intn ≤D Int> → Intn even
though all terms of type Intb → Intn is included in the terms of type
Int> → Intn.

3.1.2 The Analysis

Now we can define the analysis: The list A of assumptions gives strictness
and totality types with “full” conjunction to the free variables. For each
constant c, we assume that a strictness and totality type is specified. The
inference rules for the analysis is Figure 3.2.

Note that the analysis is as in Figure 3.2 except that we do not distinguish
between ct and t — all the types are strictness and totality types with
“full” conjunction.

Example 3.1
For the term e from Example 2.9:

e = twice g

twice = λf.λx.f (f x)
g = λy.λx.+ x (y (fix λx.x))

we can infer the type

(Int> → Int>)→ Int> → Intb

which is not possible using the analysis in Chapter 2. 2

3.2 The Power of the Fix-rules

Also for this Chapter we will investigate the power of the fix-rule as we did
in Section 2.2 for the analysis in Chapter 2.

Recall the two rules [fix1] and [fix2] from Chapter 2:

[fix1]
A ` e : t → t
A ` fix e : t if BOTST(t)

3.2. THE POWER OF THE FIX-RULES 75

[var] A ` x : t if x : t ∈ A

[abs]
A, x : t1 ` e : t2

A ` λx.e : t1 → t2

[abs2]
A, x : t1 ` e : t2

A ` λx.e : ε(t1 → t2)n

[app]
A ` e1 : t1 → t2 A ` e2 : t1

A ` e1 e2 : t2

[if1]
A ` e1 : Boolb A ` e2 : t A ` e3 : t

A ` if e1 then e2 else e3 : ε(t)b

[if2]
A ` e1 : Booln A ` e2 : t A ` e3 : t

A ` if e1 then e2 else e3 : t

[if3]
A ` e1 : Bool> A ` e2 : t A ` e3 : t

A ` if e1 then e2 else e3 : t
if BOTST(t)

[fix]
A ` e : t1 → t2 ∧ t2 → t3 ∧ . . . ∧ tn−1 → tn

A ` fix e : tn

if

BOTST(t1),
∃p, q : p < q
∧tq ≤D tp

[const] A ` c : tc

[coer]
A ` e : t1
A ` e : t2

if t1 ≤D t2

[conj]
A ` e : t1 A ` e : t2

A ` e : t1 ∧ t2

Figure 3.2: Strictness and Totality Type Inference

76 CHAPTER 3. STA WITH CONJUNCTION

and

[fix2]
A ` e : t1 → t2
A ` fix e : t2

if BOTST(t1) and t2 ≤ST t1

Let `Afix be the inference system of Figure 3.2 but with annotations in A.
Similarly let `Afix1 be the system where [fix] is replaced by [fix1] and let `Afix2
be the system where [fix] is replaced by [fix2]. Note that in the inference
systems `{b,>}fix1 , `{b,>}fix2 , and `{b,>}fix is makes no difference whether we allow
↓-types or not. The reason is that we cannot construct empty types using
only b and > annotates. Thereby we have

↓(t1 ∧ t2)≡D ↓t1 ∧ ↓t2

Also note that `{b,>}fix1 is the strictness analysis of Jensen and Benton [Jen91,
Jen92b, Ben93].

It is immediate that

`Afix1 ⊆ `Afix2 ⊆ `Afix

and that

`{b,>}φ ⊆ `{n,b,>}φ

for all A and φ ∈ {fix, fix1, fix2}. We now consider the extent to which
the inclusions are proper or are equalities; the results are summarised in
Table 3.1.

Claim `{b,>}fix1 = `{b,>}fix2

In order to show that `{b,>}fix1 = `{b,>}fix2 it suffices to show that the rule [fix2]
can be derived from the rule [fix1]. For this assume

A `{b,>}fix1 e : t1 → t2

t2 ≤ST t1

BOTST(t1)

so that

A `{b,>}fix1 fix e : t2

3.2. THE POWER OF THE FIX-RULES 77

annotations A fix-rules in Chapter 2 fix-rules in Chapter 3

{b, >} `Afix1 = `Afix2 `Afix1 = `Afix2

`Afix2 ⊂ `Afix `Afix2 = `Afix

{n, b, >} `Afix1 ⊂ `Afix2 `Afix1 ⊂ `Afix2

`Afix2 ⊂ `Afix `Afix2 ⊂ `Afix

Table 3.1: Relation Between the Fix-rules

can be inferred. Since none of the types involves the annotation n it must
be the case that BOTST(t) = tt for all types t. We can now construct
the proof-tree

A `{b,>}fix1 e : t1 → t2

t2 ≤ST t1

t1 → t2 ≤ST t2 → t2

A `{b,>}fix1 e : t2 → t2 BOTST(t2)
[fix1]

A `{b,>}fix1 fix e : t2

and this proves our claim.

Claim `{b,>}fix2 = `{b,>}fix

To verify that `{b,>}fix2 = `{b,>}fix it suffices to show that the rule [fix] can be
derived from the rule [fix2]. For this assume

A `{b,>}fix2 e : t1 → t2 ∧ t2 → t3 ∧ . . . tn−1 → tn

that BOTST(t1) is true, and that exists p < q such that tq ≤D tp and we
want to show that A `{b,>}fix2 fix e : tn can be inferred. We have

78 CHAPTER 3. STA WITH CONJUNCTION

A `{b,>}fix2 e : t1 → t2 ∧ t2 → t3 ∧ . . . tn−1 → tn
[coer]

A `{b,>}fix2 e : (tp ∧ . . .∧ tn) → (tp ∧ . . .∧ tn)
[fix2]

A `{b,>}fix2 fix e : (tp ∧ . . .∧ tn)
[coer]

A `{b,>}fix2 fix e : tn

since we have

t1 → t2 ∧ t2 → t3 ∧ . . . tn−1 → tn
≤D tp → tp+1 ∧ . . . tn−1 → tn
≤D (tp ∧ . . . ∧ tn)→ tp+1 ∧ . . . (tp ∧ . . . ∧ tn)→ tn
≤D (tp ∧ . . . ∧ tn)→ tp+1 ∧ . . . (tp ∧ . . . ∧ tn)→ tn ∧ (tq−1 → tq)
≤D (tp ∧ . . . ∧ tn)→ tp+1 ∧ . . . (tp ∧ . . . ∧ tn)→ tn ∧ (tq−1 → tp)
≤D (tp ∧ . . . ∧ tn)→ tp ∧ . . . (tp ∧ . . . ∧ tn)→ tn
≤D (tp ∧ . . . ∧ tn)→ (tp ∧ . . . ∧ tn)

Note that we could have used the rule [fix1] in the proof-tree instead of
[fix2] and thereby we can show that `{b,>}fix1 = `{b,>}fix as well.

Claim `{n,b,>}fix1 ⊂ `{n,b,>}fix2

When we go to the {n, b, >}-part (both strictness and totality informa-
tion on the types) the two rules [fix1] and [fix2] are no longer equivalent.
Consider the term fix (λx.7) and the type Intn. We can infer

∅ `{n,b,>}fix2 λx.7 : Intn → Intn

but this does not suffice for using the rule [fix1] to infer

∅ `{n,b,>}fix2 fix (λx.7) : Intn

because BOTST(Intn) fails. However we can infer

∅ S̀T λx.7 : Int> → Intn

and we can then apply the rule [fix2] to get the desired type. This argument
shows

¬(A `{n,b,>}fix2 e : t ⇒ A `{n,b,>}fix1 e : t)

and thereby we have `{n,b,>}fix1 ⊂ `{n,b,>}fix2 .

3.2. THE POWER OF THE FIX-RULES 79

Claim `{n,b,>}fix2 ⊂ `{n,b,>}fix

To argue that `{n,b,>}fix2 ⊂ `{n,b,>}fix when we consider the full strictness and
totality analysis we define

pair = λx.λy.λz.z x y

fst = λp.p (λx.λy.x)
snd = λp.p (λx.λy.y)
t = (Intn → Intn → Intn)→ Intn

and

e = λp.pair (snd p) 3 (3.5)

Now we would like to infer

∅ ` fix e : t

we can show that e has type t → t:

∅ ` e : t → t

However we are not able to apply the rule [fix2] (or [fix1]), since

BOTST(t) = ff

Let

t1 = (Intb → Intb → Intb)→ Intb

t2 = (Intb → Intn → Intn)→ Intn

It is not possible to infer

∅ ` e : t1 → t

so that we can apply the rule [fix2]. However we can infer

∅ ` e : t1 → t2

∅ ` e : t2 → t

Using the rule [conj] we get

∅ ` e : (t1 → t2) ∧ (t2 → t) ∧ (t → t)

and we can apply the rule [fix] to get the desired type.

80 CHAPTER 3. STA WITH CONJUNCTION

3.3 Denotational Semantics

In Chapter 2 the analysis is proven sound with respect to a natural style
operational semantics by defining a validity predicate: |= e : ct for both
strictness and totality types and for the conjunctions types. Here we need
to extend the predicate to ↓-types. However it is not quite clear how to do
this. Therefore we will define the semantics as a denotational semantics:

We have a type-indexed family of domains:

DB = B⊥
Dut1 → ut2 = (Dut1 →cont Dut2)⊥

For the base-types the domain B⊥ is the lifted domain used for the base-
type B, e.g. we have

DInt = ZZ⊥
= {. . . ,−2,−1, 0, 1, 2, . . .} ∪ {⊥Int}

DBool = {true , false}⊥
= {true , false,⊥Bool}

where we have labelled the different bottom elements with the domain that
they belong to. For the function space, Dut1 → ut2, we use the continuous
functions from Dut1 to Dut2 and we lift this, e.g. we include a bottom-
element.

We need the two functions up and dn to get from a domain to the lifted
domain and back again:

up :: D → D⊥ dn :: D⊥ → D

up(d) = d dn(d) =
 ⊥D, if d = ⊥D⊥
d, otherwise

We also need an environment ρ that assigns denotations to variables. This
is a partial function from variables to the disjoint union of the domains.

Now the semantics assigns denotations to terms, meaning that if we have
∅ ` e : ut, then [[e]] is a partial function from environments to Dut (Fig-
ure 3.3). For each constant, c, there is a unique predefined denotation c,
e.g.

[[true]] = true

3.3. DENOTATIONAL SEMANTICS 81

[[x]] ρ = ρ (x)
[[λx.e]] ρ = up(λd.[[e]] ρ[d/x])
[[e1 e2]] ρ = dn([[e1]] ρ)([[e2]] ρ)

[[fix e]] ρ = tndnwhere
d0 = ⊥
dn+1 = dn([[e]] ρ)dn

[[if e1 then e2 else e3]] ρ =

⊥, if [[e1]] ρ = ⊥DBool
[[e2]] ρ, if [[e1]] ρ = true
[[e3]] ρ, if [[e1]] ρ = false

[[c]] ρ = c

Figure 3.3: Denotational Semantics for the λ-calculus

[[false]] = false
[[7]] = 7
[[+]] = λd1.λd2. + d1d2

3.3.1 Relation Between the Semantics

We will now sketch how to relate the above denotational semantics to the
natural style operational semantics in Chapter 2. More details can be
found in [Ben93, Plo77].

The natural-style operational semantics in Chapter 2 shows how the terms
evaluate to WHNF’s whereas the denotational semantics gives denotations
to terms. We can easily related the WHNF 7 with the denotation 7 and the
WHNF true to the denotation true . How can we relate the WHNF λx.e
to a function f? The only thing we can do with a function is to apply it.
The one thing that can be observed from a term is whether it evaluated to
a WHNF of a base-type or not. This motivates the definition of operational
meaning :

O [[e]] =
 v, if ` e ⇓ v
⊥, otherwise

82 CHAPTER 3. STA WITH CONJUNCTION

Whenever e is closed we will write [[e]] for the denotational semantics of e,
i.e. we do not write the empty environment. Now for all closed terms of
base-types we want the operational meaning and the denotational seman-
tics to agree:

3.3. DENOTATIONAL SEMANTICS 83

Proportion 3.2
Given a term, e, of a base-type

O [[e]] = [[e]]

2

We will show this by first proving that O [[e]] ≤ [[e]] and then O [[e]] ≥ [[e]].

Lemma 3.3
(` e ⇓ v) ⇒ ([[e]] = v) 2

Proof We show by induction of the proof tree of ` e ⇓ v that [[e]] = [[v]]
and hence since [[v]] = v that [[e]] = v.

For the second part we need more than just induction on the terms or types:
let {Rt} be a type-indexed family of relations which relate denotations and
terms. The relation is defined by

(d) RB (e) ⇔ d ≤ O [[e]]
(d) Rt1→t2 (e) ⇔ ∀d1, e1 : (d1) Rt1 (e1)⇒ (d d1) Rt2 (e e1)

Lemma 3.4
We have

1. For all closed terms, e, of a base-type we have

(⊥DB
) RB (e)

2. For all closed terms, e, of a base-type and whenever {dn} is a chain
in Dt and for all n we have (dn) Rt (e) then

(tdn) Rt (e)

3. For closed terms, e1 and e2, and denotations, d ∈ Dt, then

` e1 ⇓ v ⇒ ` e2 ⇓ v

⇓
(d) Rt (e1)⇒ (d) Rt (e2)

84 CHAPTER 3. STA WITH CONJUNCTION

4. Assume that A and ρ satisfies that for each xi ∈ dom(ρ) there is a
closed term ei such that (ρ(xi)) RA(xi) (ei). For any term, e, we have

FV(e) ⊆ dom(ρ) ∧A ` e : t
⇓

([[e]] ρ) Rt (e[ei/xi)

2

Proof All parts are proven by induction on the type t.

From Part 4 follows

Lemma 3.5
O [[e]] ≥ [[e]] 2

and we have proved Proposition 3.2.

3.4 Soundness

In this section we will prove the analysis in Figure 3.2 sound with respect
to the denotational semantics in Figure 3.3.

To each strictness and totality type t we will relate a subset of Dε(t).

(Figure 3.4). The set [[utn]] is the set of denotations in Dut which are
not bottom whereas the set [[utb]] is only the denotation bottom from
the domain Dut. The set [[ut>]] is just all the denotations in D

ut>. The
functions in [[t1 → t2]] must map elements of [[t1]] to [[t2]]. For conjunctions
we take the intersection of the two sets. And for the ↓-types, ↓t, we take
the downwards closure of the set for type itself, t. We define the downwards
closure of a subset of a domain:

dc(X) = {d′ | ∃d ∈ X : d′ ≤ d}

Definition 3.6
A subset X of a domain Dut is limit closed if whenever d0 v d1 v · · · is a
chain in Dut and ∀i : di ∈ X then tidi ∈ X and it is convex if whenever
d1 v d2 v d3 ∈ Dut and d1 ∈ X and d3 ∈ X then d2 ∈ X . 2

3.4. SOUNDNESS 85

[[utn]] = Dut\{⊥Dut}
[[utb]] = {⊥Dut}
[[ut>]] = Dut

[[t1 → t2]] = {f ∈ Dε(t1 → t2) | dn(f)[[t1]] ⊆ [[t2]]}
[[t1 ∧ t2]] = [[t1]] ∩ [[t2]]

[[↓t]] = dc([[t]])

Figure 3.4: The Meaning of the Strictness and Totality Types

First we prove that each [[t]] is a limit-closed subset of Dε(t) and convex:

Proportion 3.7 Limit Closed subsets
The set [[t]] is a limit closed and convex subset of Dε(t). 2

Proof We assume that d0 v d1 v · · · is a chain in Dε(t) such that for all
i we have di ∈ [[t]]; then we show by induction on t that tidi ∈ [[t]] holds.
Next we assume that d1 v d2 v d3 and both d1 and d3 are in [[t]]; then we
show by induction on t that d2 is in [[t]].

For the full proof see Appendix page 309.

The predicate BOTST is sound but it is not complete. Whenever the pred-
icate is true, then bottom is a member of the denotation of the type:

Lemma 3.8
(BOTST(t) = tt) ⇒ (⊥Dε(t)

∈ [[t]]) 2

Proof We assume that BOTST(t) is true and then we prove by induction
on t that ⊥Dε(t)

∈ [[t]] holds.

For the full proof see Appendix page 311.

Next we want to prove that the coercion rules are sound:

Lemma 3.9 Soundness of coercions
If t1 ≤D t2 then [[t1]] ⊆ [[t2]]. 2

86 CHAPTER 3. STA WITH CONJUNCTION

Proof We assume t1 ≤D t2 and then we prove by induction on the
proof-tree for t1 ≤D t2 that [[t1]] ⊆ [[t2]] holds.

For the full proof see Appendix page 312.

The validity predicate |= is defined for denotations and properties and
extended to environments:

Definition 3.10 Validity
d |= t ⇔ (d ∈ [[t]])
ρ |= A ⇔ (dom(A) = dom(ρ) ∧ ∀ x ∈ dom(ρ) : ρ (x) |= A(x)) 2

Now soundness is:

Proportion 3.11 Soundness
A ` e : t ⇒ (∀ ρ : ρ |= A ⇒ [[e]] ρ |= t) 2

Proof We assume A ` e : t and ρ |= A; then we show by induction on
the proof-tree for A ` e : t that [[e]] ρ |= t holds.

The case [abs]: We assume A ` λx.e : t1 → t2. From the [abs]-rule we
get

A, x : t1 ` e : t2

by applying the induction hypothesis we get

(∀ρ′ : ρ′ |= A, x : t1)⇒ ([[e]] ρ′ |= t2) (3.6)

We want to show

[[λx.e]] ρ |= t1 → t2

which is equivalent to show

[[λx.e]] ρ ∈ [[t1 → t2]]

which is equivalent to

[[λx.e]] ρ ∈ {f ∈ Dε(t1 → t2) | dn(f)[[t1]] ⊆ [[t2]]}

which is equivalent to

up(λd.[[e]] ρ[d/x]) ∈ {f ∈ Dε(t1 → t2) | dn(f)[[t1]] ⊆ [[t2]]}

3.4. SOUNDNESS 87

which is equivalent to

∀d ∈ [[t1]] : ([[e]] ρ[d/x]) ∈ [[t2]]

Now let ρ′ = ρ[d/x] in (3.6) and we get

[[e]] ρ[d/x] |= t2

as required.

The case [if2]: We assume A ` if e1 then e2 else e3 : t. From the
[if2]-rule we get

A ` e1 : Booln

A ` e2 : t
A ` e3 : t

by applying the induction hypothesis we get

[[e1]] ρ |= Booln

[[e2]] ρ |= t

[[e3]] ρ |= t

now we have

[[if e1 then e2 else e3]] ρ

=
 [[e2]] ρ, if[[e1]] ρ = true

[[e3]] ρ, if[[e1]] ρ = false ∈ [[t]]

as required.

The case [fix]: We assume A ` fix e : tn and BOTST(t1) and

∃p, q : p < q ∧ tq ≤D tp

From the [fix]-rule we get

A ` e : t1 → t2 ∧ t2 → t3 ∧ · · · ∧ tn−1 → tn

by applying the induction hypothesis we get

[[e]] ρ |= t1 → t2 ∧ t2 → t3 ∧ · · · ∧ tn−1 → tn

88 CHAPTER 3. STA WITH CONJUNCTION

We have

[[e]] ρ |= t1 → t2

[[e]] ρ |= t2 → t3
...

[[e]] ρ |= tn−1 → tn

We have from Proposition 3.8 we have

d0 = ⊥Dε(t1)
∈ [[t1]]

and we have

d1 = dn([[e]] ρ)⊥Dε(t1)
∈ [[t2]]

d2 = (dn([[e]] ρ))2⊥Dε(t1)
∈ [[t3]]

...
dq−1 = (dn([[e]] ρ))q−1⊥Dε(t1)

∈ [[tq]]

since tq ≤D tp we have from Proposition 3.9

dq−1 = (dn([[e]] ρ))q−1⊥Dε(t1)
∈ [[tp]]

We arrive at

∀k ≥ 0 : dq−1+(q−p)k = (dn([[e]] ρ))q−1+(q−p)k⊥Dε(t1)
∈ [[tq]]

This is a chain in [[tq]] since [[e]] ρ is monotonic. From Proposition 3.7
we have tidn = [[fix e]] ρ is in [[tq]]. Now

(dn([[e]] ρ))([[fix e]] ρ) ∈ [[tq+1]]

and we have

[[fix e]] ρ ∈ [[tq+1]]

We may now arrive at

[[fix e]] ρ ∈ [[tn]]

as required.

3.5. SUMMARY 89

The case [coer]: We assume A ` e : t2 and t1 ≤D t2. From the [coer]-
rule we get

A ` e : t1

by applying the induction hypothesis we get

[[e]] ρ |= t1

since t1 ≤D t2 we get from Proposition 3.9

[[e]] ρ |= t2

as required.

For the remaining cases see Appendix page 318.

Semantic soundness of the underlying type inference system follows from
Lemma 2.5 and soundness of the strictness and totality analysis:

Corollary 3.12
A ` e : ut ⇒ (∀ρ : (∀x ∈ dom(A) : ρx ∈ dom(A))⇒ [[e]] ρ ∈ Dut) 2

3.5 Summary

In this Chapter:

• We have removed the restriction that conjunctions may only occur
at the top-level; i.e. we have “full” conjunction.

• In order to define the monotonicity-rule we need the ↓-operation also
on conjunction type. However it is not clear how to define this,
therefore we let ↓ be part of the syntax as a type constructor.

• Now since ↓ is part of the types it is not clear how to define validity
for ↓-types using the natural style operational semantics defined in
Chapter 2. Hence we define a denotational semantics.

• We show the analysis sound with respect to the denotational seman-
tics.

90 CHAPTER 3. STA WITH CONJUNCTION

The soundness proof in this Chapter is much smaller and elegant than the
one in Chapter 2. One reason is that in order to prove soundness of the
fixpoint rule in Chapter 2 we need to introduce special terms (i.e. fixn)
and show how they relate to the “normal” terms (i.e. fix). Here we can
use that the sets [[t]] are limit closed (Proposition 3.7).

In Chapter 2 in the proof of soundness of the coercions in the case [mono-
tone] we had to construct an terminating term from an arbitrary term.
Here we use that the sets [[t]] are convex (Proposition 3.7).

Chapter 4

Inference Algorithms

So far we have described the information that we want: In Chapter 1 we
presented an inference system that tells how terms and standard types are
related. In Chapter 2 and 3 we have defined inference systems for how
strictness and totality types relate to terms.

We can now ask two different questions:

• given a term, e, does there exists a type, t, such that A ` e : t can
be inferred?

• given a term, e, and a type, t, is it true that ` e : t can be inferred?

The first question can be answered by a type inference algorithm, i.e. the
algorithm computes the type provided it does exists. The second question
can be answered by a type checking algorithm, i.e. the algorithm checks
that a proof-tree can be constructed.

For the standard types there are two algorithms in the literature: the
algorithm W by Milner [Mil78] and the algorithm T by Damas [Dam85].

A complete type inference algorithm is also a type checking algorithm, since
we can use the type inference algorithm to infer a type and then check the
inferred type against the given type. Whenever the set of types is finite we
can use the type checking algorithm to define a type inference algorithm,
by checking each type. Hence we will refer to both kinds of algorithms as
type inference algorithms.

For the strictness and totality inference system in Chapter 2 and 3 it is
trivial to construct a sound type inference algorithm: use a standard in-
ference algorithm to compute the standard type, ut, of the term, now the

91

92 CHAPTER 4. INFERENCE ALGORITHMS

term will have the strictness and totality type ut>. This is not what we
are interested in: we want to infer a more informative type. The type that
the inference algorithm may compute is the most general type [HM94a], i.e.
the conjunction of all the types that can be infer for the term. We cannot
just choose to compute one of the conjuncts. To see this consider the most
general type of λx.x:

(Intn → Int>) ∧ (Intb → Int>) ∧ (Intn → Intn)
∧(Intb → Intb) ∧ (Int> → Int>) ∧ (Int → Int)n ∧ (Int → Int)>

Note that some of these conjuncts are incomparable, so there is no least
type.

The most general type approach can be used to construct an type inference
algorithm for both the analysis in Chapter 2 and the analysis in Chapter3.
However, for the analysis in Chapter 3 we can do even better: we can
construct a type checking algorithm using the lazy type approach by Hankin
and Le Métayer [HM94a].

Overview In Section 4.1 we will review the standard type inference al-
gorithm T by Damas [Dam85]. In Section 2 we present a strictness and
totality inference algorithm following the lazy type approach by [HM94a].
Syntactic soundness of the algorithm is proven in Section 4.3 and com-
pleteness of the algorithm is discussed.

4.1 Standard Type Inference Algorithms

We extend the standard types with type variables:

t ::= B | t → t | α

where α range over type variables. Now we can infer the types in a bottom-
up manner: Consider the term λx.x: we will give it the type α→ α. Then,
when we discover that λx.x is applied to a term of type Bool we are going
to unify the type variable, α, with the type Bool.

First we will review the unification algorithm by Robinson [Rob65].

4.1. STANDARD TYPE INFERENCE ALGORITHMS 93

U(α1, α2) = [α1/α2]
U(α, t) = [t/α], if α 6∈ FV(t)
U(t, α) = U(α, t)
U(t1 → t2, t3 → t4) = let S1 = U(t1, t3)

S2 = U(S1t2, S1t4)
in S2 ◦ S1

U(t1, t2) = FAIL, otherwise

Figure 4.1: The Algorithm U

Definition 4.1
A substitution S is a partial function from type variables to types. A
substitution S applied to a type will replace all type variables α with
Sα. A ground substitution is a substitution where the type variables are
mapped to closed types, i.e. there are no type variables left in the types.
2

We will write [t/α] for the substitution that maps α to t and any other
type variable is mapped to itself.

Now the algorithm U displayed in Figure 4.1 will given two types, t1 and
t2, return a substitution, S, such that St1 = St2, or it will FAIL. When
two type variables are going to be unified, we map one type variable to the
other type variable. A type variable and a type can be unified whenever
the type variable does not occur in the type. Two function types, t1 → t2

and t3 → t4, can be unified provided t1 and t3 can be unified and t2 and
t4 can be unified. The result of the first unification is applied to t2 and t4

before unifying them. In all other cases we are not able to unify the two
types, e.g. Int and Boolis not unifiable.

Theorem 4.2
If U(t1, t2) = S then

• St1 = St2

• whenever a substitution, R, unifies t1 and t2, then for some substi-
tution S′: R = S′ ◦ S

• dom (S) ⊆ FV(t1) ∪ FV(t2)

2

94 CHAPTER 4. INFERENCE ALGORITHMS

Proof See [Rob65].

Example 4.3
Consider the two types α1 → α2 and α2 → α3. We have

S = U(α1 → α2, α2 → α3) = let S1 = U(α1, α2)
S2 = U(S1α2, S1α3)

in S2 ◦ S1

= let S1 = [α1/α2]
S2 = U(S1α2, S1α3)

in S2 ◦ S1

= U(α1, α3) ◦ [α1/α2]
= [α1/α3] ◦ [α1/α2]

and we have

S(α1 → α2) = α1 → α1 = S(α2 → α3)

as required. 2

4.1.1 The Algorithm T

The algorithm T was first described by Damas [Dam85]. The algorithm T
will when applied to a term, return a list of assumptions and a type. The
assumption list is the assumption made typing the term. For our language
the algorithm is given in Figure 4.2.

For variables we assign a fresh type variable to x in the list of assumptions
and this type variable is the type of the term.

When we have analysed the body of an abstraction we have a list of as-
sumptions and the type of the body. Whenever x is in the assumption
list we use the type recorded by the assumptions to define the type of the
abstraction. However, when x is not in the list of assumptions we use a
fresh type variable to define the type of the abstraction.

For application we first analyse e1 and e2. Next we must ensure that the
type of e1 is a function type and that it can be applied to the argument,
e2, i.e. we must ensure that the type t1 is of the form t2 → α. We do this
by unifying t1 with the type t2 → α. Further we must ensure that the two

4.1. STANDARD TYPE INFERENCE ALGORITHMS 95

T (x) = let α be a fresh type variable
in (x : α, α)

T (λx.e) = let α be a fresh type variable
(A, t) = T (e)

in if x ∈ dom(A) then
(A \ x, A(x) → t)

else
((A, α → t)

T (e1 e2) = let (A1, t1) = T (e1)
(A2, t2) = T (e2)
α be a fresh type variable
S1 = U(t1, t2 → α)
S2 = U(S1A1, S1A2)
S = S2 ◦ S1

in (SA1 ∪ SA2, Sα)
T (if e1 then e2 else e3)

= let (A1, t1) = T (e1)
(A2, t2) = T (e2)
(A3, t3) = T (e3)
S1 = U(t1, Bool)
S2 = U(S1t2, S1t3)
S3 = U((S2 ◦ S1)A1, (S2 ◦ S1)A2, (S2 ◦ S1)A3)
S = S3 ◦ S2 ◦ S1

in (SA1 ∪ SA2 ∪ SA3, St2)
T (fix e) = let α be a fresh type variable

(A, t) = T (e)
S = U(t, α→ α)

in (SA, Sα)
T (c) = ([], tc)

Figure 4.2: The Algorithm T

96 CHAPTER 4. INFERENCE ALGORITHMS

lists of assumptions agree on the assumptions for the same variable. We
can do this by unifying the types for the same variable. Before we unify
the types we must apply the substitution from the first unification to the
assumption lists, thereby updating the assumptions made so far with the
information gained by the unification. The assumptions for application is
the two substitutions applied to the union of the two list of assumptions
and the type is the two substitutions applied to α.

For conditional we first analyse e1 and the two branches. Next we unify the
type, t1, with the type Bool. The two branches must have the same type,
so we unify t2 and t3. Again the we must unify the different assumptions
for each variables in the three lists of assumptions. Each time we have
gained more information, by unification, we apply the substitution before
doing anything else. The assumptions for the conditional is the union of
the three assumption lists and the type is the unified type of the branches.

For fixpoints we first analyse the body. Next we have to ensure that the
type is a function type and that if has the form α → α. We apply the
substitution to the assumptions and the type variable, α, as the result.

For constants we do not construct any assumptions and the type is the
predefined type for the constant.

The type inference algorithm, T , is sound:

Theorem 4.4 Soundness of T
If T (e) = (A, t) then for all ground substitutions S1 we can infer

S1A ` e : S1t

2

Proof By structural induction on e. For the details see [Dam85]

and complete:

Theorem 4.5 Completeness of T
If A ` e : t then there exists a substitution, S, and a subset, A′′, of A
such that

T (e) = (A′, t′)

and

t = St′

4.2. STA INFERENCE ALGORITHM 97

and

A′′ = SA′

2

Proof By structural induction on the proof-tree for A ` e : t. For the
details see [Dam85].

Example 4.6
Consider the term λf.λx.f (f x). We calculate:

T (λf.λx.f (f x))
= let α1, α2, α3, α4, α5, α6, α7 be fresh type variables

in ((f : α3 → α3, x : α3, (α3 → α3) → α3 → α3)

hence we can for all types, t, infer ∅ ` λf.λx.f (f x) : (t → t) → t → t.
2

Another well known standard type inference algorithm is the algorithmW
by Milner [Mil78]. The difference between the algorithm W and the algo-
rithm T is that the algorithm W computes both a type and a substitution
given a term and a list of assumptions, whereas the algorithm T computes
the type and the list of assumption given a term. The substitution in the
algorithmW is to correct/update the assumption made so far. In the algo-
rithm T the assumptions themselves are corrected/updated, hence no need
for returning the substitution. The algorithm W, presented in Figure 4.3,
is also sound and complete [Mil78, Dam85].

The above algorithms does not deal with sub-typing. For algorithms
that do take sub-typing into account see Mitchell [Mit91] and Fuh and
Mishra [FM88, FM89, FM90].

4.2 Strictness and Totality Inference Algo-
rithm

One way to construct an type inference algorithm for strictness and totality
analysis — for both the analysis in Chapter 2 and the analysis in Chapter 3

98 CHAPTER 4. INFERENCE ALGORITHMS

W(A, x) = ([], A(x))
W(A, λx.e) = let α be a fresh type variable

(S, t) = W(A, x : α, e)
in (S, Sα→ t)

W(A, e1 e2) = let (S1, t1) = W(A, e1)
(S2, t2) = W(S1A, e2)
α be a fresh type variable
S3 = U(S2t1, t2 → α)

in (S3 ◦ S2 ◦ S1, S3α)
W(A, if e1 then e2 else e3)

= let (S1, t1) = W(A, e1)
(S2, t2) = W(S1A, e2)
(S3, t3) = W((S2 ◦ S1)A, e3)
S4 = U((S3 ◦ S2)t1, Bool)
S5 = U((S4 ◦ S3)t2, S4t3)

in (S5 ◦ S4 ◦ S3 ◦ S2 ◦ S1, (S5 ◦ S4)t3)
W(A, fix e) = let α be a fresh type variable

(S1, t) = W(A, e)
S2 = U(t, α→ α)

in (S2 ◦ S1, S2α)
W(A, c) = ([], tc)

Figure 4.3: The Algorithm W

is:

T ′(e) = let (A, t) = T (e)
S is a ground substitution

in St>

where the algorithm T computes the standard type of e. A strictness
and totality type for e is now t>. However this type does not give more
strictness and totality information than the standard type. A second way
to construct an inference algorithm for the analyses in Chapter 2 and 3
is to extend the standard inference algorithm to compute the most gen-
eral type by following the most general type approach by Hankin and Le
Métayer [HM94a]. For a given term, the algorithm will find all the strict-
ness and totality types that can be inferred for the term. Often we are

4.2. STA INFERENCE ALGORITHM 99

only interested in knowing if a term possesses one particular strictness and
totality type and not all of them, so this approach seems like using a sledge
hammer to crack a nut. We follow the lazy type approach of Hankin and
Le Métayer [HM94a] where only the information necessary to answer one
question is calculated.

The algorithm is constructed as follows:

• Make the inference system structural in both term and strictness and
totality type. This is achieved by integrating the rule [coer] into all
the appropriate rules and axioms.

• Introduce the lazy strictness and totality types.

• Extract an algorithm from the lazy strictness and totality type infer-
ence system.

4.2.1 The Structural Strictness and Totality Infer-
ence System

The coercion-rule:

A `S e : t1
A `S e : t2

if t1 ≤D t2

can be applied anywhere in the proof-tree. Our goal is to construct an in-
ference system without the coercion rule, whereby we can construct proof-
trees without being concerned with the when to apply the coercion rule.
The new inference system is presented in Figure 4.4. The name of the in-
ference system, “Structural Strictness and Totality Type Inference” refers
to that the rules are structural in the term and type.

The new rules are constructed by applying the rule [coer] after each of the
old rules:

[old rule]
A ` e : t1 t1 ≤D t2

[coer]
A ` e : t2

The new rule for variables is:

A `S x : t2
if x : t1 ∈ A, t1 ≤D t2

100 CHAPTER 4. INFERENCE ALGORITHMS

[varS] A `S x : t2
if x : t1 ∈ A ∧ t1 ≤D t2

[abs1S]
A, x : t1 `S e : t2

A `S λx.e : t1 → t2

[abs2S]
ε(A) ` λx.e : ut1 → ut2

A `S λx.e : (ut1 → ut2)n

[abs3S]
ε(A) ` λx.e : ut1 → ut2

A `S λx.e : (ut1 → ut2)>

[abs4S]
A, x : t1 `S e : t2

A `S λx.e : ↓t1 → ↓t2

[appS]
A `S e1 : t1 → t2 A `S e2 : t1

A `S e1 e2 : t2

[if1S]
A `S e1 : Boolb A `S e2 : t′ A `S e3 : t′ ε(t′)b ≤D t

A `S if e1 then e2 else e3 : t

[if2S]
A `S e1 : Booln A `S e2 : t A `S e3 : t

A `S if e1 then e2 else e3 : t

[if3S]
A `S e1 : Bool> A `S e2 : t A `S e3 : t

A `S if e1 then e2 else e3 : t if BOTST(t)

[fixS]
A `S e : (t1 → t2) ∧ (t2 → t3) ∧ · · · ∧ (tn−1 → tn)

A `S fix e : tn

if
 BOTST(t1),
∃p, q : p < q ∧ tq ≤D tp

[constS]
tc ≤D t
A `S c : t

[conjS]
A `S e : t1 A `S e : t2

A `S e : t1 ∧ t2

[downS]
A `S e : down′(t)

A `S e : ↓t

Figure 4.4: Structural Strictness and Totality Type Inference

4.2. STA INFERENCE ALGORITHM 101

The new rules for constants, and the first rule for conditional, is constructed
in the same way. The coercion rule is not needed after the rules [if2], [if3],
[app], and [fix] since we can “push” the use of the coercion rule upwards
in the proof-tree. To see how, consider the proof-tree

A ` e1 : Booln A ` e2 : t1 A ` e3 : t1
[if2]

A ` if e1 then e2 else e3 : t1 t1 ≤D t2
[coer]

A ` if e1 then e2 else e3 : t2

which can be transformed into

A ` e1 : Booln

A ` e2 : t1 t1 ≤D t2

A ` e2 : t2

A ` e3 : t1 t1 ≤D t2

A ` e3 : t2
[if2]

A ` if e1 then e2 else e3 : t2

where the use of the rule [coer] is moved upwards in the proof-tree.

For abstraction we will at least have the two rules corresponding to the
rules [abs1] and [abs2]. Note that we have changed the presentation of the
rule [abs2] slightly. The reason is that now we are interesting in doing as
little as possible to check that a term has a given type assuming that it
is “cheaper” to construct a standard type proof-tree than a strictness and
totality type proof-tree.

The coercion rule is need after the rules [abs1], [abs2], and [conj]; e.g. we
may construct the following proof-tree:

A ` λx.e : ut1 → ut2
[abs2]

A ` λx.e : (ut1 → ut2)n
[coer]

A ` λx.e : (ut1 → ut2)>

This motivates the new rule:

[abs3S]
ε(A) ` λx.e : ut1 → ut2

A `S λx.e : (ut1 → ut2)>

thereby allowing us not to think about using the coercion rule. We can
also construct the proof-tree:

A, x : t1 ` e : t2
[abs1]

A ` λx.e : t1 → t2
[coer]

A ` λx.e : ↓t1 → ↓t2

102 CHAPTER 4. INFERENCE ALGORITHMS

This motivates the new rule:

[abs4S]
A, x : t1 `S e : t2

A `S λx.e : ↓t1 → ↓t2

We can construct the following rule by applying the coercion rule to the
result of applying either [abs1] or [abs2]:

A `S λx.e : t
A `S λx.e : ↓t

This rule can be stated more generally as

[downS]
A `S e : down′(t)

A `S e : ↓t

where the function down′ moves the ↓-construct inwards one level using the
coercion rules such that

t ≤D down′(t)≤D ↓t

We also define the function down which also moves the ↓-construct inwards
one level using the coercion rules, however this time we want

↓t ≤D down(t)

The functions are defined by:

down′(t1 ∧ t2) = t1 ∧ t2

down′(t) = down(t)

down(utn) = ut>

down(utb) = utb

down(ut>) = ut>

down(t1 → t2) = t1 → ↓t2

down(t1 ∧ t2) = ↓t1 ∧ ↓t2

down(↓t) = ↓t

Note that, whenever t is not a conjunction type, we have

↓t ≡D down′(t)≡D down(t)

4.2. STA INFERENCE ALGORITHM 103

Fact 4.7
t ≤D down′(t) ≤D ↓t ≤D down(t) 2

Proof We will show

t ≤D down′(t) ≤D ↓t ≤D down(t)

by induction on the strictness and totality type t.

For the full proof see Appendix page 323.

The question is now “How many rules are we going to have for abstrac-
tion?” We can verify that no more rules are needed by induction of the
type of the abstraction:

utn: Whenever the abstraction has the type utn we can use the rule
[abs2S].

utb: This is not a possible type for an abstraction since it always
has a WHNF.

ut>: Whenever the abstraction has the type ut> we can use the rule
[abs3S].

t1 → t2: We use either the rule [absS1] or the rule [abs4S].

t1 ∧ t2: It must be the case that we can infer both the type t1 and the
type t2 for the abstraction, hence we can use the rule [conj]S.

↓t: We can use the rule [downS].

For conjunction we have the old [conj]-rule and the following new rule:

A `S e : t1 ∧ t2

A `S e : ↓(t1 ∧ t2)

However we can use the general rule [downS] instead of the above rule. We
do not need to generate more rules for conjunction since the rest of the
cases can be push up the proof-tree.

The new structural strictness and totality type inference system defined
by Figure 4.4 is sound with respect to the strictness and totality inference
system:

Lemma 4.8
A `S e : t ⇒ A ` e : t 2

104 CHAPTER 4. INFERENCE ALGORITHMS

Proof We show that all rules in the structural inference system can be
derived in the non-structural inference system.

For the proof see Appendix page 325.

The new structural inference system is not complete with respect to the
strictness and totality inference system in Figure 3.2. Consider the term
λx.⊥Int and the strictness and totality type

t = ↓((Intn → Intn) ∧ (Intn → Intn))

Using the non-structural inference system we can infer that λx.⊥Int has
the type t:

x : Intn ` ⊥Int : Int>
[abs]

∅ ` λx.⊥Int : Intn → Int> Intn → Int> ≤ST t
[coer]

∅ ` λx.⊥Int : t

In the structural inference system it is not possible to construct a proof-
tree for ∅ `S λx.⊥Int : t. To see this observe that the last rule used to
construct a proof-tree for ∅ `S λx.⊥Int : t cannot have been one of the
abstractions rules — it could only have been the rule [downS]. Now we
have to construct a proof-tree for

∅ `S λx.⊥Int : (Intn → Intn) ∧ (Intn → Intn)

The last rule used here must have been the rule [conjS] and we are left with
the construction of a proof-tree for

∅ `S λx.⊥Int : Intn → Intn

The last rule must have been the rule [abs1S]:

x : Intn `S ⊥Int : Intn

which cannot be the case. Hence we cannot construct a proof-tree for
∅ `S λx.⊥Int : t.

4.2. STA INFERENCE ALGORITHM 105

4.2.2 Lazy Strictness and Totality Type Inference Sys-
tem

Following the lazy type approach by Hankin and Le Métayer [HM94a] we
are now ready to introduce the lazy strictness and totality types : we will
allow terms and assumption list pairs to be part of the types. In this way
we can delay the construction of a part of the proof-tree.

The lazy strictness and totality types are now:

t ::= uts | t → t | t ∧ t | ↓t | (A, e)
ut ::= B | ut → ut

s ::= > | n | b

The new type constructor, (A, e), is a shorthand for the conjunction of
all the strictness and totality types, that can be inferred for e using the
assumption list A. It can be thought of as the delayed construction of the
proof-tree for e. The function expand maps lazy strictness and totality
types to strictness and totality types:

expand(utn) = utn

expand(utb) = utb

expand(ut>) = ut>

expand(↓t) = ↓expand(t)
expand(t1 → t2) = expand(t1)→ expand(t2)
expand(t1 ∧ t2) = expand(t1) ∧ expand(t2)
expand((A, e)) =

∧
{t | expand(A) `L e : t}

and the function is extended to environments in a component-wise manner.
We now want to construct an inference system that makes use of the lazy
types. The new inference system is presented in Figure 4.5.

The well-formedness predicate on lazy strictness and totality types is an
extension of the well-formedness predicate on strictness and totality types
(see (3.1), (3.2), (3.3) and (3.4)) in that the lazy types are always well-
formed:

`W (A, e)

106 CHAPTER 4. INFERENCE ALGORITHMS

[varS] A `L x : t2
if x : t1 ∈ A ∧ t1 ≤D t2

[abs1S]
A, x : t1 `L e : t2

A `L λx.e : t1 → t2

[abs2S]
ε(A) ` λx.e : ut1 → ut2

A `L λx.e : (ut1 → ut2)n

[abs3S]
ε(A) ` λx.e : ut1 → ut2

A `L λx.e : (ut1 → ut2)>

[abs4S]
A, x : t1 `L e : t2

A `L λx.e : ↓t1 → ↓t2

[appL]
A `L e1 : (A, e2) → t

A `L e1 e2 : t

[if1L]
A `L e1 : Boolb

A `L if e1 then e2 else e3 : t

if
 ε(A) ` if e1 then e2 else e3 : ut
∧ utb ≤D t

[if2S]
A `L e1 : Booln A `L e2 : t A `L e3 : t

A `L if e1 then e2 else e3 : t

[if3S]
A `L e1 : Bool> A `L e2 : t A `L e3 : t

A `L if e1 then e2 else e3 : t if BOTST(t)

[fixS]
A `L e : (t1 → t2) ∧ (t2 → t3) ∧ · · · ∧ (tn−1 → tn)

A `L fix e : tn

if
 BOTST(t1),
∃p, q : p < q ∧ tq ≤D tp

[constS]
tc ≤D t
A `L c : t

[conjS]
A `L e : t1 A `L e : t2

A `L e : t1 ∧ t2
[downS]

A `L e : down′(t)
A `L e : ↓t

Figure 4.5: Lazy Strictness and Totality Type Inference

4.2. STA INFERENCE ALGORITHM 107

The predicate BOTST is also extended to lazy strictness and totality types:

BOTST((A, e)) = BOTST(expand((A, e)))

hence we have

Fact 4.9
For all lazy strictness and totality types t we have

BOTST(t)⇔ BOTST(expand(t))

2

The lazy strictness and totality types are useful in the application rule:

[appL]
A `L e1 : (A, e2) → t

A `L e1 e2 : t

where the construction of the proof-tree for e2 is delayed until it is necessary
to construct.

In the [if1]-rule we no longer construct proof-trees for e2 and e3:

[if1L]
A `L e1 : Boolb

A `L if e1 then e2 else e3 : t
if ε(A) ` if e1 then e2 else e3 : ut ∧

utb ≤D t

The reason for this is, that this rule is derivable from the rule [if1S]: we
assume

A `S e1 : Boolb

ε(A) ` if e1 then e2 else e3 : ut
utb ≤D t

From the standard inference system we have

ε(A) ` e2 : ut
ε(A) ` e3 : ut

Therefore we also have

A `S e2 : ut>

A `S e3 : ut>

108 CHAPTER 4. INFERENCE ALGORITHMS

Now we can apply the rule [if1S] to get

A `S if e1 then e2 else e3 : t

as required. Furthermore we have that the rule [if1S] is derivable from
[if1L]: We assume

A `L e1 : Boolb

A `L e2 : t′

A `L e3 : t′

utb ≤D t

In the standard inference system we have

ε(A) ` e1 : Bool
ε(A) ` e2 : ε(t′)
ε(A) ` e3 : ε(t′)

and hence we have

ε(A) ` if e1 then e2 else e3 : ε(t′)

and we can now apply the rule [if1L] to get

A `L if e1 then e2 else e3 : t

as required. All the other rules remain the same.

We need to extend the subtyping relation to the lazy strictness and totality
type. We have two rules for relating the new lazy strictness and totality
types:

[envL]
A `L e : t

(A, e) ≤L t
if t 6= (A′, e′)

[envR]
∀t′ : A `L e : t′ ⇒ (t ≤L t′)

t ≤L (A, e)

The first rule says that if we can infer the strictness and totality type, t,
for e using the assumptions, A, then the lazy type, (A, e) is less than t;
i.e. t is included in the conjunction of the strictness and totality types that
(A, e) represents. Therefore the type t must be a strictness and totality

4.2. STA INFERENCE ALGORITHM 109

type and not a lazy strictness and totality type. The second rule says that
whenever all the types that can be infer for e, using the assumptions, A,
are greater than the type t, then t ≤L (A, e). Also here the type t′ ranges
over strictness and totality type and not over lazy strictness and totality
types. The first rule is comparable with the rules [∧1] and [∧2], whereas
the the second rule is comparable with the rule [∧3] in Figure 3.1.

The subtyping relation ≤L is defined by the rules in Figure 3.1 and the
two rules [envL] and [envR].

The lazy strictness and totality type inference system is sound with respect
to the structural strictness and totality type inference system:

Lemma 4.10 Soundness of ≤L and `L
We have

(t1 ≤L t2 ∧A `L e : t)
⇒ (expand(t1)≤D expand(t2) ∧ expand(A) `S e : expand(t))

2

Proof We will assume t1 ≤L t2 and A `L e : t, we will then show

expand(t1) ≤D expand(t2) ∧
expand(A) `S e : expand(t)

by simultaneous induction on the proof-tree for ≤L and `L.

The reason that we have to do simultaneous induction on ≤L and `L is
that ≤L depends on `L and not only `L depending on ≤L as in the other
inference systems (e.g. in Chapter 2 and 3).

For the full proof see Appendix page 326.

For a discussion of completeness of the lazy strictness and totality type
inference system with respect to the structural strictness and totality type
inference system see Section 4.3.1.

110 CHAPTER 4. INFERENCE ALGORITHMS

4.2.3 The Lazy Strictness and Totality Type Infer-
ence Algorithm

The last step is to construct the lazy strictness and totality type checking
algorithm ST from the lazy strictness and totality type inference system.

The algorithm ST takes as argument a list of assumptions, A, a term, e,
and a lazy strictness and totality type, t, and the result is either tt or ff.
The idea is that whenever the algorithm returns tt then A `L e : t can be
inferred. The algorithm assumes that the term is well-formed with respect
to the standard type system, i.e. that ε(A) ` e : ε(t) can be inferred. The
algorithm ST is presented in Figure 4.6.

For variables we lookup the type in the assumption list and use the algo-
rithm I to test whether the type in the assumption list is less than the
desired type, t. The algorithm I takes as argument two lazy strictness
and totality types, t1 and t2 and returns either tt or ff. The idea is that
the algorithm return tt whenever t1 ≤L t2 can be inferred. Note, the
correspondence between the clause for variables in the definition of ST
and the rule [varL] in Figure 4.5.

There are five clauses involving abstraction: The first three clauses corre-
spond directly to the rules [abs1L], [abs2L], and [abs3L], respectively. In
the first we extend the assumption list with an assumption about x and
test the body. The two next clauses just return tt, since there are no
hypothesis in the rule [abs2L] and [abs3L] that has to be fulfilled. In order
for the abstraction to have the type ↓t1 → ↓t2 we could either use the rule
[abs1L] or the rule [abs4L]. Hence we test both possibilities. The last clause
for abstraction is for the type (ut1 → ut2)b: an abstraction can never have
this type so we return ff.

The clause for application makes use of the lazy construct and is directly
comparable with the rule [appL]. For conditional three possible rules could
have been used: [if1L], [if2L], or [if3L]. In the case of the rule [if1L] we make
a recursive call of ST to test whether e1 has the type Boolb, furthermore
the type, t, for the whole term must be greater than ε(t)b; we call I with
the arguments ε(t)b and t. Secondly, assuming that the applied rule is
[if2L] we must ensure that both branches has the type t in order for the
whole term to have the lazy strictness and totality type t and the test,
e1, must have the type Booln. The last possibility is that the rule [if3L]

4.2. STA INFERENCE ALGORITHM 111

ST (A, x, t) = I(A(x), t)
ST (A, λx.e, t1 → t2) = ST ((x : t1): A, e, t2)
ST (A, λx.e, (ut1 → ut2)n) = tt

ST (A, λx.e, (ut1 → ut2)>) = tt
ST (A, λx.e, ↓t1 → ↓t2) = ST ((x : t1): A, e, t2) ∨

ST ((x : ↓t1): A, e, ↓t2)
ST (A, λx.e, (ut1 → ut2)b) = ff
ST (A, e1 e2, t) = ST (A, e1, (A, e2) → t)
ST (A, if e1 then e2 else e3, t) =

(ST (A, e1, Boolb) ∧ I(ε(t)b, t)) ∨
(ST (A, e2, t) ∧ ST (A, e3, t))∧

(ST (A, e1, Booln) ∨ (ST (A, e1, Bool>) ∧ BOTST(t)))
ST (A, fix e, t) = FIX (A, e, t)
ST (A, c, t) = I(tc, t)
ST (A, e, ↓t) = ST (A, e, down′(t))
ST (A, e, t1 ∧ t2) = ST (A, e, t1) ∧ ST (A, e, t2)

FIX (A, e, t) = let l1 = ST (A, e, ALL(ε(t)))
l2 = CHAIN (t, l1)

in l2 6= []

CHAIN (t, []) = []

CHAIN (t, t′ : l) =
 t′ : CHAIN (t, l), if P(t, t′)
CHAIN (t, l), otherwise

P(t, t′) = (t′ = (t1 → t2) ∧ (t2 → t3) ∧ . . . ∧ (tn→ t))
∧BOTST(t1)
∧∃p, q : p < q ∧ tq ≤ST tp

Figure 4.6: The Algorithm ST

112 CHAPTER 4. INFERENCE ALGORITHMS

has been used: again we must ensure that both branches has the type t
in order for the whole term to have the lazy strictness and totality type t,
the test, i.e. e1, must have the type Bool>, and the predicate BOTST must
be true on the type t.

The clause for fixpoints just makes a call to the function FIX . The func-
tion FIX takes three arguments, an assumption list, A, a term, e, and
a type, t, the result is either tt or ff. The idea is that the result is tt,
when A `L fix e : t can be inferred. The function FIX uses the function
ALL which given a standard type returns the list of all the strictness and
totality types with that standard type as its underlying type. We overload
the function ST and apply it to a list of types. The result is the list of all
the types, t, from the list, where ST (A, e, t) = tt. This is used in the
definition of FIX to compute the list, l1, of all the types that e can have.
Now we have to find the list, l2, of all the types, t′, such that:

t′ = (t′1 → t′2) ∧ (t′2 → t′3) ∧ . . . ∧ (t′n−1 → t′n)
∀i : t′i ∈ l1
t′n = t

BOTST(t′1)
∃p, q : p < q ∧ t′q ≤L t′p

This is done by the function CHAIN .

The clause for constants is analogous to the clause for variables just as the
the rule [constL] is analogous to the rule [varL].

The clause

ST (A, e, ↓t) = ST (A, e, down′(t))

correspond to the rule [downL].

In the clause for conjunction we make two recursive calls using the two
conjuncts of the lazy strictness and totality type. This correspond to the
rule [conjL].

The algorithm, I, for checking the coercions is in displayed Figure 4.7 and
Figure 4.8. The definition is in most cases straightforward: The first clause
in Figure 4.7 says that t cannot be less than t′ whenever they do not have
the same underlying type.

4.2. STA INFERENCE ALGORITHM 113

I(t, t′) = ff, if ε(t) 6= ε(t′)
I(t, t) = tt

I(t, ut>) = tt

I(utn, utb) = ff

I(utb, utn) = ff

I(ut>, utn) = ff

I(ut>, utb) = ff

I(↓(utb), utb) = tt

I(t1 → t2, (ut1 → ut2)b) = ff
I(↓t, utn) = ff
I(t′, t1 ∧ t2) = I(t′, t1) ∧ I(t′, t2)
I(t1 → t2, t′1 → t′2) = (I(t′1, t1) ∧ I(t2, t′2)) ∨

(I(t′1, ↓t1) ∧ I(↓t2, t′2)) ∨
I(ε(t2)>, t′2)

I(↓t1, ↓t2) = I(t1, t2) ∨
I(down(t1), ↓t2) ∨
I(↓t1, down′(t2)) ∨
I(down(t1), down′(t2))

I(t1 → t2, (ut1 → ut2)n) = I(ut1
n, t1) ∧ I(t2, ut2

n)
I(t1 ∧ t2, utn) = I(t1, utn) ∨ I(t2, utn)
I(t1 ∧ t2, utb) = I(t1, utb) ∨ I(t2, utb)
I((ut1 → ut2)n, t1 → t2) = I(ut2

>, t2)
I((ut1 → ut2)b, t1 → t2) = I(ut2

>, t2) ∨ I(ut2
b, t2)

I((ut1 → ut2)>, t1 → t2) = I(ut2
>, t2)

Figure 4.7: The Algorithm I (Part 1)

The second clause corresponds to the rule [ref] in Figure 3.1 and the third
clause to the rule [top1].

The next four clauses return ff due to that we cannot construct proof-tree
for them. The next clause correspond to the rule [↓4]. The clause for
t1 → t2 and (ut1 → ut2)b returns ff, the reason is that we are not able
to infer t1 → t2 ≤L (ut1 → ut2)b, since the most we can say about the
functions in t1 → t2 is that when applied, then the result is described by
t2, hence they are not included in the functions without a WHNF.

The terms of type ↓t may include ⊥, however the term of type utn does

114 CHAPTER 4. INFERENCE ALGORITHMS

I(t1 ∧ t2, t′1 → t′2) = I(t1, t′1 → t′2) ∨ I(t2, t′1 → t′2)
∨ I(ε(t1)>, t′2) ∨
((t1 = t′′1 → t′2) ∧
(t2 = t′′1 → t′′3) ∧ (t′1 = t′′1) ∧
(t′2 = t′′2 ∧ t′′3))

I(↓t, t′1 → t′2) = I(ε(t′2)>, t′2) ∨
(t = (ut1 → ut2)b ∧ I(ε(t′2)b, t′2)) ∨
(t = (t′′1 → t′′2) ∧
I(t′′1 → ↓t′′2, t′1 → t′2)) ∨

(t = (t′′1 ∧ t′′2) ∧
I(↓t′′1 ∧ ↓t′′2, t′1 → t′2))

I(utn, ↓t) = I(utn, t)
I(utb, ↓t) = I(utb, t) ∨ (t = utn)
I(ut>, ↓t) = I(ut>, t) ∨ (t = utn)
I(t1 → t2, ↓t′) = I(t1 → t2, t′)
I(t1 ∧ t2, ↓t′) = I(t1 ∧ t2, t′) ∨ I(t1, ↓t′) ∨ I(t2, ↓t′)
I((A, e), t) = ST (A, e, t)
I(t, (A, e)) = C(ALL(ε(t)), A, e, t)

C([], A, e, t) = tt

C(t′:l, A, e, t) =
 I(t, t′) ∧ C(l, A, e, t), if ST (A, e, t′)
C(l, A, e, t), otherwise

Figure 4.8: The Algorithm I (Part 2)

not include ⊥, therefore we let

I(↓t, utn) = ff

The clause for t′ and t1 ∧ t2 correspond to the rule [∧3], where we must
ensure both t′ ≤L t1 and t′ ≤L t2.

4.3. SOUNDNESS 115

To construct the proof-tree for t1 → t2 ≤L t′1 → t′2 there are three pos-
sibilities:

• use the rule [→]

• use the rule [monotone] followed by [trans]

• use the rule [top1] and [top2] followed by [trans]

this is exactly what is expressed by the clause in the definition of I.

The clause for ↓t1 and ↓t2 is a combination of trying the different possibil-
ities for moving the ↓-construct inwards using the two function down and
down′ and the rule [↓2].

The clause t1 → t2 and (ut1 → ut2)n correspond to first applying the rule
[trans] and then [notbot].

All the clauses with t1 ∧ t2 on the left-hand side correspond to the rule
[∧1] or [∧2]. In the first clause in Figure 4.8 it is also possible to apply the
rule [∧4] or the [top1] and [top2]-rules. In the clause for t1 ∧ t2 and ↓t it
is also possible to apply the rule [↓6] and [trans].

The three last clauses in Figure 4.7 correspond to applying the rule [trans],
[top1], and [top2]. In the second last clause it is also possible to apply the
rule [bot].

In all the clauses involving ↓-types some of the [↓i]-rules has been applied.

The last two clauses in Figure 4.8 for I is for the lazy strictness and totality
type. When the lazy-construct is on the left side we use the algorithm ST ;
this corresponding to the rule [envL]. The algorithm C is used in the last
clause to make the test correspond to the rule [envR]. The function C takes
a list of strictness and totality type, the assumption list, the term, and a
type and check the hypothesis of the rule [envR].

4.3 Soundness

The algorithms are sound with respect to the lazy strictness and totality
type inference system:

116 CHAPTER 4. INFERENCE ALGORITHMS

Lemma 4.11 Soundness of ST and I
We have

(ST (A, e, t) = true ∧ I(t1, t2) = true)
⇓

(A `L e : t ∧ t1 ≤L t2)

2

Proof We will assume that both ST (A, e, t) and I(t1, t2) are true and
then we will prove A `L e : t and t1 ≤L t2 by induction on e, t, and t1,
t2.

For the full proof see Appendix page 329.

Finally we have that the inference algorithm is sound with respect to the
strictness and totality type inference system:

Theorem 4.12
ST (A, e, t) ⇒ expand(A) ` e : expand(t) 2

Proof First we assume ST (A, e, t) and by Lemma 4.11 we get

A `L e : t

By applying Lemma 4.10 we get

expand(A) `S e : expand(t)

and by Lemma 4.8 we have

expand(A) ` e : expand(t)

as required.

4.3.1 Discussion of Completeness of the Algorithm

We conjecture that the algorithm is complete with respect to the lazy
strictness and totality type inference system, and hence (using Lemma
4.14 and Conjecture 4.15 below) with respect to the structural strictness
and totality inference system Figure 4.4.

4.3. SOUNDNESS 117

Conjecture 4.13 Completeness of ST and I
We have

(A `L e : t) ∧ (t1 ≤L t2)
⇓

ST (A, e, t) = true ∧ I(t1, t2) = true

2

Sketch of proof For the proof we will assume A `L e : t and t1 ≤L t2

and then we will show ST (A, e, t) = tt and I(t1, t2) = tt by induction
on the proof-trees for `L and ≤L . Most cases are easy — the only non-
trivial case is to show that the algorithm I is transitive, i.e. that I(t1, t2)
= tt and I(t2, t3) = tt implies that I(t1, t3) = tt.

We can show that the subtyping relation defined by ≤L is complete with
respect to the subtyping relation defined by ≤D :

Lemma 4.14 Completeness of ≤L

expand(t1)≤D expand(t2)⇒ t1 ≤L t2 2

Proof We will assume expand(t1) ≤D expand(t2) and then we will show
t1 ≤L t2 by induction on the prooftree for expand(t1) ≤D expand(t2).

For the full proof see Appendix page 344.

We conjecture that the lazy strictness and totality inference system is com-
plete with respect to the structural strictness and totality inference system:

Conjecture 4.15 Completeness of `L

expand(A) `S e : expand(t) ⇒ A `L e : t 2

Sketch of proof We will assume expand(A) `S e : expand(t) and show
A `L e : t by induction on the proof-tree for

expand(A) `S e : expand(t)

The proof is mostly straightforward but we will need the following property
of the structural strictness and totality inference system:

A `S e : t1 ∧ (t1 ≤ST t2)
⇓

A `S e : t2

118 CHAPTER 4. INFERENCE ALGORITHMS

This property will be a consequence of completeness of the structural in-
ference system with respect to the original inference system in Chapter 3.
It is not clear whether this property can be show directly as the inference
systems are now.

The algorithm is however not complete with respect to the strictness and
totality inference system in Chapter 3. The reason is that the structural
strictness and totality inference system is not complete with respect to the
analysis in Chapter 3. The problem arises from the fact that

↓(t1 ∧ t2) 6 ≡D ↓t1 ∧ ↓t2

We only have

↓(t1 ∧ t2)≤ST ↓t1 ∧ ↓t2

since t1 ∧ t2 can be empty. The rule [downS] says

A `S e : t1 ∧ t2

⇓
A `S e : ↓(t1 ∧ t2)

but we do not have that

A `S e : ↓(t1 ∧ t2)

implies

A `S e : t1 ∧ t2

To gain completeness of the structural strictness and totality inference
system with respect to the inference system in Chapter 3, we must find a
strictness and totality type, t, that is simpler than ↓(t1 ∧ t2), such that

A `S e : ↓(t1 ∧ t2)
m

A `S e : t

One idea is to try to let t be ↓t1 ∧ ↓t2 in the cases where t1 ∧ t2 is not
empty. We will now sketch a solution in the case where neither t1 nor t2
is a conjunction and they have the same structure (e.g. they are both an

4.3. SOUNDNESS 119

annotated underlying type or they are both function types). For the base
cases we have:

↓(utn ∧ utn) = ↓utn = ut>

↓(utb ∧ utn) = utn ∧ utb = ↓(utn ∧ utb)
↓(ut> ∧ utn) = ↓ut> ∧ ↓utn = ut> = ↓(utn ∧ ut>)
↓(utb ∧ utb) = ↓utb = utb

↓(ut> ∧ utb) = ↓ut> ∧ ↓utb = utb = ↓(utb ∧ ut>)
↓(ut> ∧ ut>) = ↓ut> = ut>

In the case of function types we will first expand the type with all possible
conjunctions:

(t1 → t2) ∧ (t3 → t4)
≡D (t1 → t2) ∧ (t3 → t4) ∧ ((t1 ∧ t3)→ (t2 ∧ t4))

It is straightforward to show that this rule is sound with respect to the
semantics.

Lemma 4.16
We have

[[(t1 → t2) ∧ (t3 → t4)]]
= [[(t1 → t2) ∧ (t3 → t4) ∧ ((t1 ∧ t3)→ (t2 ∧ t4))]]

2

Proof From the coercion rules we can infer

(t1 → t2) ∧ (t3 → t4) ∧ ((t1 ∧ t3)→ (t2 ∧ t4))
≤ST (t1 → t2) ∧ (t3 → t4)

so we only have to show

[[(t1 → t2) ∧ (t3 → t4)]]
⊆ [[(t1 → t2) ∧ (t3 → t4) ∧ ((t1 ∧ t3)→ (t2 ∧ t4))]]

Assume

f ∈ [[(t1 → t2) ∧ (t3 → t4)]]
= {f | f[[t1]] ⊆ [[t2]]} ∩ {f | f[[t3]] ⊆ [[t4]]}

120 CHAPTER 4. INFERENCE ALGORITHMS

We have

f[[t1 ∧ t3]] = f([[t1]] ∩ [[t3]])
⊆ f[[t1]] ∩ f[[t3]]
⊆ [[t2]] ∩ [[t4]]
= [[t2 ∧ t4]]

and hence

f ∈ [[(t1 ∧ t3)→ (t2 ∧ t4)]]

but we also had that

f ∈ [[(t1 → t2) ∧ (t3 → t4)]]

so it must be the case that

f ∈ [[(t1 → t2) ∧ (t3 → t4)]] ∩ [[(t1 ∧ t3)→ (t2 ∧ t4)]]
= [[(t1 → t2) ∧ (t3 → t4) ∧ ((t1 ∧ t3)→ (t2 ∧ t4))]]

as required.

The next step is to move the ↓ inward:

↓((t1 → t2) ∧ (t3 → t4) ∧ ((t1 ∧ t3) → (t2 ∧ t4)))
≡D (t1 → ↓t2) ∧ (t3 → ↓t4) ∧ ((t1 ∧ t3)→ ↓(t2 ∧ t4))

To see that this construct is sensible consider the empty type:

(Intn → Intn) ∧ (Intn → Intb)

We expand the type to:

(Intn → Intn) ∧ (Intn → Intb)∧
((Intn ∧ Intn)→ (Intn ∧ Intb))

We have

↓((Intn → Intn) ∧ (Intn → Intb) ∧ ((Intn ∧ Intn)→ (Intn ∧ Intb)))
= (Intn → ↓Intn) ∧ (Intn → ↓Intb) ∧

((Intn ∧ Intn)→ ↓(Intn ∧ Intb))
= (Intn → Int>) ∧ (Intn → Intb)
∧((Intn ∧ Intn)→ (Intn ∧ Intb))

4.3. SOUNDNESS 121

which is still an empty strictness and totality type as required. One part
of the semantically soundness of the last rule is easy: from the coercion
rules we get

↓((t1 → t2) ∧ (t3 → t4) ∧ ((t1 ∧ t3) → (t2 ∧ t4)))
≤ST (t1 → ↓t2) ∧ (t3 → ↓t4) ∧ ((t1 ∧ t3)→ ↓(t2 ∧ t4))

The second part is the non-trivial part.

Conjecture 4.17
We have

[[(t1 → ↓t2) ∧ (t3 → ↓t4) ∧ ((t1 ∧ t3)→ ↓(t2 ∧ t4))]]
⊆ [[↓((t1 → t2) ∧ (t3 → t4) ∧ ((t1 ∧ t3) → (t2 ∧ t4)))]]

2

Sketch of proof The idea of the proof is for any f in

[[(t1 → ↓t2) ∧ (t3 → ↓t4) ∧ ((t1 ∧ t3)→ ↓(t2 ∧ t4))]]

to construct a function g such that

g ∈ [[(t1 → t2) ∧ (t3 → t4) ∧ ((t1 ∧ t3)→ (t2 ∧ t4))]]

and

f ≤ g

then we will have

f ∈ [[↓((t1 → t2) ∧ (t3 → t4) ∧ ((t1 ∧ t3) → (t2 ∧ t4)))]]

as required.

One way to construct g is to define it as f but whenever f x is too “small”
to define g x to be bigger. This will ensure f ≤ g. But is g, defined in this
way, a monotonic and continuous function?

In order to make the proof of g being a monotonic and continuous function
a bit easier we will identify some of the members of the domains to be the
“good” ones:

DG
Int = {⊥Int, 0}

DG
Bool = {⊥Bool, true}

DG
ut2 → ut1

= (Dut2 →cont DG
ut1

)⊥

122 CHAPTER 4. INFERENCE ALGORITHMS

In this way all the members of a domain are laying on a chain. Now given
any element of a domain we would like to approximate it with a good one.
We define

GInt(⊥Int) = ⊥Int
GInt(x) = 0

GBool(⊥Int) = ⊥Bool
GBool(true) = true
GBool(false) = true

Gut1→ut2(⊥ut1→ut2) = ⊥ut1→ut2

Gut1→ut2(f) = λx.Gut2(fx)

Now instead of testing if d belong to [[t]] it suffices to test if Gε(t)(d) belong
to [[t]]:

Lemma 4.18
We have

Gε(t)(d) ∈ [[t]]⇔ d ∈ [[t]]

2

Proof The lemma is easily shown by induction on the strictness and
totality type t.

As a consequence of Lemma 4.18 we can assume that f is an good element.
We define g to be:

g = λx.

t{a | a ∈ [[t2 ∧ t4]], a ∈ DG

ε(t2)
, fx ≤ a}, if x ∈ [[t1 ∧ t3]]

t{b | b ∈ [[t2]], b ∈ DG
ε(t2)

, fx ≤ b}, if x ∈ [[t1]]\[[t3]]

t{c | c ∈ [[t4]], c ∈ DG
ε(t4)

, fx ≤ c} if x ∈ [[t3]]\[[t1]]

Now we must ensure that g satisfies

• g is a monotonic and continuous function

• g ∈ [[↓((t1 → t2) ∧ (t3 → t4) ∧ ((t1 ∧ t3) → (t2 ∧ t4)))]]

• f ≤ g

Firstly we have to ensure that the least upper bounds exists:

4.3. SOUNDNESS 123

Conjecture 4.19
Let d1 and d2 be members of DG

ut, then

d1 t d2 ∈ DG
ut

2

In order to show that g is monotonic we must consider all possible ways of
choosing x1 and x2 in the three clauses of the definition of g. For example,
assume

x1 ≤ x2

and

x1 ∈ [[t1 ∧ t3]]
x2 ∈ [[t1]]\[[t3]]

we must show

t{a | a ∈ [[t2 ∧ t4]], a ∈ DG
ε(t2)

, fx ≤ a}

≤ {b | b ∈ [[t2]], b ∈ DG
ε(t2)

, fx ≤ b}

We will do it by showing

t{a | a ∈ [[t2 ∧ t4]], a ∈ DG
ε(t2)

, fx ≤ a}

≤ t{a | a ∈ [[t2]], a ∈ DG
ε(t2)

, fx ≤ a}

and

t{a | a ∈ [[t2]], a ∈ DG
ε(t2)

, fx ≤ a}

≤ {b | b ∈ [[t2]], b ∈ DG
ε(t2)

, fx ≤ b}

The first one is obvious since

{a | a ∈ [[t2 ∧ t4]], a ∈ DG
ε(t2)

, fx ≤ a}

⊆ {a | a ∈ [[t2]], a ∈ DG
ε(t2)

, fx ≤ a}

We show the second one by constructing an element

b = a t fx2

We know that f x2 ∈ [[↓t2]] so we can apply

124 CHAPTER 4. INFERENCE ALGORITHMS

Conjecture 4.20
Let d1 and d2 be members of DG

ut and d1 ∈ [[t]] and d2 ∈ [[↓t]], then

d1 t d2 ∈ [[t]]

2

to get the desired result. Etcetera!

The next step in getting completeness is to extend the construction of
↓(t1 ∧ t2) to allow t1 and t2 to be of different structure.

4.4 Summary

We have constructed an algorithm for inferring the strictness and totality
types by following the lazy types approach of [HM94a]. The algorithm is
sound with respect to the strictness and totality analysis but not complete.

An implementation in Miranda of the algorithm is presented in the Ap-
pendix page 347.

The type checking algorithm does indeed terminate: in all clauses a finite
set of recursive calls on either a sub-term or a subtype is done. Since there
is a finite number of strictness and totality types with a given underlying
type, then algorithm algorithm ALL terminates. Hence the list given to
CHAIN is finite, and since that algorithm just steps trough the list, it will
terminate. Finally the algorithm I will terminate since all the recursive
calls are on a subtypes and the number of recursive calls is finite. Again
the algorithm C steps trough the list provided by ALL.

Chapter 5

Binding Time Analysis

We consider the problem of introducing a distinction between binding
times (e.g. compile-time and run-time) into functional languages. It is
well-known that such a distinction is important for the efficient implemen-
tation of imperative languages [ASU86] and more recent results show that
the performance of functional languages may be improved by using binding
time information (e.g. [NN89, Jør92]).

There are several approaches to the specification of binding time anal-
ysis. Some approaches are based on variants of abstract interpretation
(e.g. [Bon90, Con90, HS91]), others are based on projection analysis (e.g.
[Lau91]) and yet others (e.g. [NN92, NN88, HM94b]) use non-standard
type systems and develop corresponding type inference algorithms. In this
Chapter we shall take a logical approach and aim at constructing an algo-
rithm for generating a set of constraints to be solved. In this way we will be
able to make full use of substitutions as in ordinary type inference [Mil78]
— this is contrary to other algorithms (e.g. [NN92]) where extra recursive
calls have to be performed.

Overview The starting point for our work is the inference system for
binding times of the simply typed λ-calculus as specified in [NN92]. This
is reviewed in Section 5.1. However, we shall reformulate it in a style
motivated by the inference systems in Chapter 1. We will annotate both
the base-types and the type constructors with the annotations:

s1 ::= r | c | b
s4 ::= r | c | b

125

126 CHAPTER 5. BINDING TIME ANALYSIS

where b is a binding time variable. Furthermore we will let constraints
between the binding times be part of the inference system. This is described
in Section 5.2. We construct an algorithm for binding time analysis from
this inference system. This algorithm is O (n4) where n is the size of the
given term where the algorithm of [NN92] is exponential in the size of the
term. We proceed in a couple of stages. First we get rid of the two rules [up]
and [down] to get a simpler inference system. This is done in Section 5.3.
In Section 5.4 we present an algorithm for finding the constraints that has
to be fulfilled in order to turn a 1-level term into a term in the 2-level
λ-calculus and in Section 5.5 we solve the constraints.

Note that this Chapter differs from the preceeding chapters, that the anal-
ysis described here is not a new analysis but the purpose of this work is to
construct a more efficient algorithm than the one constructed in [NN92].

5.1 Review of Binding Time Analysis

In this section we review the binding time analysis of Nielson and Niel-
son [NN92].

In a 2-level λ-calculus the binding times are explicitly marked on each
construction. For us a type, t ∈ T2, of the 2-level λ-calculus is either a
base type or a function type:

t ::= B | B | t → t | t→t

where the B are the base types including Int and Bool. The underlined
constructions are those of run-time kind and the non-underlined are those
of compile-time kind. A term of compile-time kind can be evaluated at
compile-time, whereas a term of run-time kind must be evaluated at run-
time.

Alternatively we can present the annotated types as:

t ::= Bs | t →s t

s ::= r | c

which is more in the line of the work here. The r-annotations correspond
to underlining and the c-annotations correspond to no underlining. The

5.1. REVIEW OF BINDING TIME ANALYSIS 127

[B]
0̀ B : r

[→] 0̀ t1 : r 0̀ t2 : r
0̀ t1 → t2 : r

[B]
0̀ B : c

[→] 0̀ t1 : c 0̀ t2 : c
0̀ t1 → t2 : c

[up] 0̀ t1 → t2 : r
0̀ t1 → t2 : c

Figure 5.1: Well-formedness of the 2-level Types

2-level terms, e ∈ E2, are

e ::= x | λx.e | λx.e | e (e) | e (e) |
if e then e else e | if e then e else e |
fix e | fix e

Again we have an alternative presentation of the terms:

e ::= x | λsx.e | e (e)s |
ifs e then e else e | fixs e

s ::= r | c

Notice that there is only one sort of variable, x. The overall binding time
of a variable is determined by the λ-binding of it.

5.1.1 Well-formedness of Types

We first introduce rules for annotating types. First we say that a type t
is well-formed of binding time b where b is either r or c, if 0̀ t : b. This
well-formedness relation is given in Figure 5.1. A run-time function type
can be thought of as a piece of code. The compiler, which generates code,
can manipulate this piece of code. Therefore a run-time function type can
be both of run-time kind and compile-time kind. This fact is expressed
by the rule [up], which allows us to turn a run-time function type of kind

128 CHAPTER 5. BINDING TIME ANALYSIS

run-time into a run-time function type of kind compile-time. Only the [up]
rule allows us to transform a run-time type into a compile-time type and
furthermore this is only possible for function types.

Example 5.1
An example of using Figure 5.1 is to show that the type

((B→ B) → (B→ B)) → (B→ B) → (B→ B)

is well-formed of compile-time kind for some base type B. First we have
that 0̀ B : r from [B]. From [→] we get

0̀ B : r 0̀ B : r
0̀ B→ B : r (5.1)

Applying the rule [→] to two copies of (5.1) we get

0̀ (B→ B) → (B→ B) : r

Now we apply the rule [up] to get the binding time c

0̀ (B→ B) → (B→ B) : c (5.2)

From (5.1) we get by applying [up]

0̀ B→ B : c (5.3)

Now we can apply the rule [→] to two copies of (5.3) to get

0̀ (B→ B) → (B→ B) : c (5.4)

The result is now obtained by using [→] to combine (5.2) and (5.4)

0̀ ((B→ B) → (B→ B)) → (B→ B) → (B→ B) : c

as desired. 2

5.1.2 Well-formedness of Expressions

Next we say that the term e has type t and binding time b under the
assumptions tenv1 if

tenv 0̀ e : t : b
1in [NN92] tenv is used to denote the assumption list, or as called in [NN92] the type

environment

5.1. REVIEW OF BINDING TIME ANALYSIS 129

where the type environment, tenv , is a function from variables to 2-level
types and binding times. That is

tenv x = (t, b)

where t is the type of the variable x and b is the binding time of x. Given
tenv then the function tenv [(t, b)/x] is defined by

(tenv [(t, b)/x]) y =
 (t, b), if x = y

tenv y, otherwise

The well-formedness relation for 2-level terms is given in Figure 5.2. Ba-
sically we have two copies of the traditional inference system for typing
the λ-calculus, one for the run-time level and one for the compile-time
level. Furthermore we have the two rules [up] and [down] allowing the
two binding times to mix. The idea behind [up] is that in order to turn a
compile-time term into a run-time term (i.e. to allow it to be evaluated at
run-time) it has to express some computation, i.e. it must have a run-time
function type. In order to turn a run-time term into a compile-time term
(i.e. to talk about its evaluation at compile-time) its type must not only
be a run-time function type, but the term is also not allowed to reference
“free” run-time objects.

Example 5.2
As an example of using Figure 5.2 we show that the term

λx.λy.x (y)

has the type

((B→ B) → (B→ B)) → (B→ B) → (B→ B)

and is well-formed of compile-time kind for some base-type B.

Let tenv be given by

tenv x = ((B → B) → (B → B), c)
tenv y = (B→ B, c)
tenv z = undefined, if z 6= x and z 6= y

130 CHAPTER 5. BINDING TIME ANALYSIS

[var] tenv 0̀ x : t : b if tenv x = (t, b) ∧ 0̀ t : b

[abs]
tenv [(t1, r)/x] 0̀ e : t2 : r
tenv 0̀ λx.e : t1 → t2 : r if 0̀ t2 : r

[abs]
tenv [(t1, c)/x] 0̀ e : t2 : c
tenv 0̀ λx.e : t1 → t2 : c if 0̀ t2 : c

[app]
tenv 0̀ e1 : t1 → t2 : r tenv 0̀ e2 : t1 : r

tenv 0̀ e1 (e2) : t2 : r

[app]
tenv 0̀ e1 : t1 → t2 : c tenv 0̀ e2 : t1 : c

tenv 0̀ e1 (e2) : t2 : c

[if]
tenv 0̀ e1 : Bool : r tenv 0̀ e2 : t : r tenv 0̀ e3 : t : r

tenv 0̀ if e1 then e2 else e3 : t : r

[if]
tenv 0̀ e1 : Bool : c tenv 0̀ e2 : t : c tenv 0̀ e3 : t : c

tenv 0̀ if e1 then e2 else e3 : t : c

[fix]
tenv 0̀ e : t → t : r
tenv 0̀ fix e : t : r

[fix]
tenv 0̀ e : t → t : c
tenv 0̀ fix e : t : c

[const] tenv 0̀ c : t : r

[const] tenv 0̀ c : t : c

[down]
tenv 0̀ e : t : c
tenv 0̀ e : t : r if 0̀ t : r

[up]
tenv 0̀ e : t : r
tenv 0̀ e : t : c if 0̀ t : c ∧∀x ∈ tenv : x = (t, c)

Figure 5.2: Well-formedness of the 2-level λ-calculus

5.1. REVIEW OF BINDING TIME ANALYSIS 131

From [var] we get

tenv 0̀ x : ((B→ B) → (B→ B)) : c

and

tenv 0̀ y : B → B : c

Applying [down] on both of them gives

tenv 0̀ x : ((B→ B) → (B→ B)) : r

and

tenv 0̀ y : B → B : r

Now we can apply [()] to get

tenv 0̀ x (y) : B → B : r

Since tenv only contains variables of compile-time kind and the type of
x (y) is a run-time function type of run-time kind it is possible to apply
[up] to obtain

tenv 0̀ x (y) : B → B : c

After applying [λ] two times we obtain the desired result

tenv ′ 0̀ λy.x (y) : (B→ B) → (B→ B) : c
tenv ′′ 0̀ λx.λy.x (y) : t : c

where

t = ((B→ B) → (B→ B)) → (B→ B) → (B→ B)

and tenv ′ and tenv ′′ are given by

tenv ′ x = (((B→ B) → (B→ B)), c)
tenv ′ z = undefined, if z 6= x

and

tenv ′′ z = undefined for all variables

2

This inference system is part of the one used in [NN92] to construct a
binding time analysis.

132 CHAPTER 5. BINDING TIME ANALYSIS

5.1.3 Algorithms for Binding Time Analysis

In [NN92] the algorithm for binding time analysis is in two parts, one for
types and one for terms.

The algorithm TBTA for binding time analysis of types presented in [NN92]
calculates an annotated type t and its overall binding time b (r or c)
given a type t′ and the overall binding time b′ of the type. The calculated
type is the type with as few underlined constructions as possible and it is
well-formed of kind b (i.e. 0̀ t : b can be inferred from Figure 5.1). This
annotation expresses that as many computations as possible are performed
at compile-time.

The purpose of this Chapter is to construct a new and more efficient algo-
rithm for binding time analysis. We do this four in steps:

• First we reformulate the analysis in Figure 5.2 to allow binding time
variables, wherefore we will introduce constraints between the bind-
ing times.

• Next we will transform the new inference system to be syntax di-
rected.

• Thirdly we construct an algorithm for computing the constraints,
that has to be satisfied.

• Finally we solve the constraints.

The algorithm EBTA for binding time analysis of terms presented in [NN92]
calculates an annotated term e, its type t, and its overall binding time b
given a term e′, a type t′ and an overall binding time b′. The annotated
term is the term with as few underlined constructions as possible and it is
well-formed of type t and binding time b (i.e. 0̀ e : t : b can be inferred
from Figure 5.2).

5.2 A Constraint based Binding Time Anal-
ysis

We are now going to use the alternative way of writing types and term
and then to construct constraints between the annotations. In this way we

5.2. A CONSTRAINT BASED BINDING TIME ANALYSIS 133

can write the rule for e.g. [abs] and [abs] as one rule. The new system we
get in this section corresponds in a one-to-one manner to the analysis of
Section 5.2.

5.2.1 Types and Their Well-formedness

We will allow the annotations to include binding time variables here — the
type system is now:

t ::= Bs | t →s t

s ::= r | c | b

where b is a binding time variable.

The types still has to be well-formed. We do this by means of constraints
on the values a binding time variable can take. The constraints are a list
of inequalities between binding times of the forms

p = b

p < b

p ≤ b

later we shall also allow constraints of other forms. The constraints can
be solved if there exists a mapping from all the binding time variables to
{r, c} such that all the inequalities are satisfied. From this follows that
the constraint set is unsolvable if its transitive closure contains inequalities
of the forms

c ≤ r
c = r
r = c
r < r
c < c
c < r

The functionW, defined in Figure 5.3, is used to determine constraints so
that the type t with overall binding time p is well-formed. A base type
Bb is well-formed of kind p if b = p. A function type, t1 →b t2, is well-
formed of kind p provided t1 and t2 are well-formed of kind b and b = p

134 CHAPTER 5. BINDING TIME ANALYSIS

W(Bb, p) = [b = p]
W(t1 →b t2, p) = [W(t1, b), W(t2, b), b ≤ p]

Figure 5.3: Constraints for Well-formedness for Types

furthermore a run-time function type can be of both run-time kind and
compile-time kind, hence the constraint b ≤ p. The relation between the
function W in Figure 5.3 and the well-formedness relation for types 0̀ in
Figure 5.1 is given by Lemma 5.4 and 5.3:

Lemma 5.3 Soundness of W
If W(t, b) is solvable by M , then 0̀ Mt : Mb can be derived. 2

Proof We assume that W(t, b) is solvable by the mapping M and we
prove that 0̀ Mt : Mb can be inferred by induction on the type t.

For the details see Appendix page 373

Lemma 5.4 Completeness of W
If 0̀ t : b, then W(t, b) is solvable. 2

Proof We assume that

0̀ t : b

can be inferred and we prove that W(t, b) is solvable by induction on
the shape of the proof for 0̀ t : b. More precisely we show that all map-
pings from binding time variables to {r, c} will satisfy the constraints of
W(t, b).

For the details see Appendix page 375.

Example 5.5
We will in this example see how one calculation of W captures all the
well-formed annotations of a type that can be constructed with several
proof-trees using the well-formedness relation defined in Figure 5.1. We
will find the constraints for

t = ((Bb4 →b3 Bb5) →b2 (Bb6 →b8 Bb7)) →b1

(Bb11 →b10 Bb12) →b9 (Bb14 →b13 Bb15)

5.2. A CONSTRAINT BASED BINDING TIME ANALYSIS 135

to be well-formed of binding time p. We calculate

W(t, p)
= [W((Bb4 →b3 Bb5) →b2 (Bb6 →b8 Bb7), b1),
W((Bb11 →b10 Bb12) →b9 (Bb14 →b13 Bb15), b1),
b1 ≤ p]

= [W(Bb4 →b3 Bb5, b2),W(Bb6 →b8 Bb7, b2), b2 ≤ b1,

W(Bb11 →b10 Bb12, b9),W(Bb14 →b13 Bb15, b9), b9 ≤ b1,

b1 ≤ p]
= [W(Bb4, b3),W(Bb5, b3), b3 ≤ b2,

W(Bb6, b8),W(Bb7, b8), b8 ≤ b2, b2 ≤ b1,

W(Bb11, b10),W(Bb12, b10), b10 ≤ b9,

W(Bb14, b13),W(Bb15, b13), b13 ≤ b9, b9 ≤ b1,

b1 ≤ p]
= [b4 = b3, b5 = b3, b3 ≤ b2,

b6 = b8, b7 = b8, b8 ≤ b2, b2 ≤ b1,

b11 = b10, b12 = b10, b10 ≤ b9,

b14 = b13, b15 = b13, b13 ≤ b9, b9 ≤ b1,

b1 ≤ p]
= [b3 = b4 = b5, b3 ≤ b2,

b6 = b7 = b8, b8 ≤ b2, b2 ≤ b1,

b10 = b11 = b12, b10 ≤ b9,

b13 = b14 = b15, b13 ≤ b9, b9 ≤ b1,

b1 ≤ p]

This means that the type, t, must have the form

((Bb3 →b3 Bb3) →b2 (Bb6 →b6 Bb6)) →b1

(Bb10 →b10 Bb10) →b9 (Bb13 →b13 Bb13)

with binding time p and constraints

[b3 ≤ b2, b8 ≤ b2, b2 ≤ b1, b10 ≤ b9, b13 ≤ b9, b9 ≤ b1, b1 ≤ p]

136 CHAPTER 5. BINDING TIME ANALYSIS

b1 b2 b3 b6 b9 b10 b13 p

r r r r r r r r
r r r r r r r c
c r r r r r r c
c r r r c r r c
c r r r c r c c
c r r r c c r c
c r r r c c c c
c c r r r r r c
c c r r c r r c
c c r r c r c c
c c r r c c r c
c c r r c c c c
c c r c r r r c
c c r c c r r c

b1 b2 b3 b6 b9 b10 b13 p

c c r c c r c c
c c r c c c r c
c c r c c c c c
c c c r r r r c
c c c r c r r c
c c c r c r c c
c c c r c c r c
c c c r c c c c
c c c c r r r c
c c c c c r r c
c c c c c r c c
c c c c c c r c
c c c c c c c c

Table 5.1: Solutions to the Constraints in Example 5.5

All the solutions to the constraints are listed in Table 5.1. Notice that the
constraints have more than one solution. This means that if we want to
find all the well-formed annotations of a given type, then we first assign
binding time variables to the type. Now we can find the constraints using
W. That we have found all the possible annotations of the type follows
from Lemma 5.3 and 5.4. 2

5.2.2 Expressions and Their Well-formedness

An assumption list has the form

x1 : t1 : b1, . . . , xn : tn : bn

where the xi’s are variables, the ti’s are the type of the i’th variable, and the
bi’s are the binding time of the i’th variable. We shall assume throughout
that all the xi’s are distinct.

When the assumption list is written in the form A:I, then I is the list of
all the binding times of all the variables, and A is the list of all variables

5.2. A CONSTRAINT BASED BINDING TIME ANALYSIS 137

[var] A:I 1̀ x : t : b [W(t, b)] if x : t : b ∈ A:I

[abs]
A:I, x : t1 : b1 1̀ e : t2 : b2 [C]

A:I 1̀ λ
b1x.e : t1 →b1 t2 : b1 [C, b1 = b2, W(t1, b1)]

[app]
A:I 1̀ e1 : t1 →b t2 : b1 [C] A:I 1̀ e2 : t1 : b2 [D]

A:I 1̀ e1 (e2)b : t2 : b [C, D, b = b1 = b2]

[if]

A:I 1̀ e1 : Boolb : b1 [C]
A:I 1̀ e2 : t : b2 [D]
A:I 1̀ e3 : t : b3 [E]

A:I 1̀ ifb e1 then e2 else e3 : t : b
 C,D,E,
b = b1 = b2 = b3

[const]

A:I 1̀ cb : t
cb

: b []

[fix]
A:I 1̀ e : t →b t : b1 [C]

A:I 1̀ fixb e : t : b [C, b = b1]

[down]
A:I 1̀ e : t : b1 [C]

A:I 1̀ e : t : b2 [C, D(t, b1, b2)]

[up]
A:I 1̀ e : t : b1 [C]

A:I 1̀ e : t : b2 [C, U(t, b1, I, b2)]

D(Bb, b1, b2) = [r = c]
D(t1 →b t2, b1, b2) = [b2 < b1, b ≤ b2]

U(Bb, b1, I, b2) = [r = c]
U(t1 →b t2, b1, I, b2) = [b1 < b2, b ≤ b1, b2 ≤ I]

Figure 5.4: The Well-formedness Relation for the 2-level λ-calculus

and their types.

138 CHAPTER 5. BINDING TIME ANALYSIS

The well-formedness of Expressions

Now the well-formedness relation has the form

A:I 1̀ e : t : b [C]

and says that the term e has type t and binding time b under the assump-
tions A:I, and provided that the constraint set C can be solved.

The [var]-rule of Figure 5.4 says that with the assumption that the variable
x has type t and binding time b, then x has type t and kind b if t is well-
formed of kind b. This rule is much the same as the rule [var] in Figure 5.2.

The [abs]-rule says that if with the assumption list A:I, x : t1 : b1 the
term e has type t2 and binding time b2, and constraints C, then with the
assumption list A:I the term λb1x.e has type t1 →b1 t2 with binding time
b1 and constraints C and [b1 = b2]. By comparing this rule with [abs] and
[abs] in Figure 5.2 the rules say that the variable and the body of the
abstraction must have exactly the same binding time as the λ-abstraction
itself.

The rule [app] says that if with the assumption list A:I a term e1 has type
t1 →b t2 and binding time b1 and constraints C, and with the assumption
list A:I a term e2 has type t1 and binding time b2 and constraints D, then
with the assumption list A:I the term e1 (e2)b has type t2 and binding
time b and constraints C and D and [b = b1 = b2]. By comparing this rule
with the rules [app] and [app] in Figure 5.2 the rules say that if with the
same type environment the two terms have the same binding time, then
the new term has this binding time.

The rules [if], [fix], and [const] can be explained and compared with Fig-
ure 5.2 in much the same way.

The [down]-rule is used to transform a term of run-time function type of
compile-time kind into a term of run-time function type of run-time kind.
The function D is used to generate the constraints to ensure the correct use
of the [down]-rule. To explain the definition of the function consider the
[down]-rule of Figure 5.2. We have to change the binding time from c to r,
this is achieved by the constraint [b1 < b2]; the only solution to this is b2 = r
and b1 = c. It is required that the rule is only applied on run-time function
types and not to compile-time function types; that is we must ensure that
b (the annotation on the function arrow) is r is the only possible solution

5.2. A CONSTRAINT BASED BINDING TIME ANALYSIS 139

for b. This is achieved by the constraint [b ≤ b2] (= [b ≤ r]). The side
condition of [down] in Figure 5.2 says that the type has to be well-formed
of the new binding time b2 (= r); this can be ensured by the constraints
generated byW(t1 →b t2, b2). But we know that t1 →b t2 is well-formed
of binding time b1 (= c) and that the type is a run-time function type.
Then we also know that t1 →b t2 is well-formed of binding time r. So we
can omit to generate the constraints W(t1 →b t2, b2). It should only be
possible to apply [down] in the case where the term has a function type
and therefore D will generate the unsolvable constraints [r = c] in all other
cases.

The [up]-rule is used to transform a term of run-time function type of run-
time kind into a term of run-time function type of compile-time kind. The
function U is used to generate constraints to ensure the correct use of the
[up]-rule. This time we have to ensure that the binding time is changed
from r to c, this is done by the constraint [b1 < b2], which has one solution,
b1 = r and b2 = c. Furthermore in the assumption list all the binding
times have to be compile-time and this is ensured by the constraints [b2 ≤
I] because b2 = c. The operation is point-wise on I and can be written as

[b ≤ ()] = ()
[b ≤ (b1, I)] = [b ≤ b1, b ≤ I]

where we write (b1, I) for the list of bindings times with the first element
b1 and the rest is I. But we will write it as [b ≤ I] for simplicity. We have
to ensure that the rule is only applied on run-time function types; that
is we must ensure that b is r: here the constraint [b ≤ b1] (= [b ≤ r])
will do. We have to ensure that the type is well-formed of the new bind-
ing time b2 (= c); this can be ensured by the constraints generated by
W(t1 →b t2, b2). Again we use the fact that t1 →b t2 is well-formed of
binding time b1 (= r) and that it is a run-time function type and therefore
the type is also well-formed of binding time c. Finally, in the cases where
the term does not have a function type we let U generate an unsolvable
constraint [r = c].

Properties of the well-formedness relation

All the types constructed in 1̀ are well-formed. This property is ensured
by Lemma 5.6:

140 CHAPTER 5. BINDING TIME ANALYSIS

Lemma 5.6
We have

A:I 1̀ e : t : b [C] and the constraints C are solvable by M
⇓

W(t, b) is solvable by M

2

Proof We will assume A:I 1̀ e : t : b [C], and that C is solvable by M ,
We will show thatW(t, b) is solvable by M by induction on the proof-tree
for A:I 1̀ e : t : b [C].

For the full details see Appendix page 377.

The well-formedness relation in Figure 5.4 is sound and complete with
respect to the one defined in Figure 5.2:

Proportion 5.7 Soundness of 1̀

We have

A:I 1̀ e : t : b [C]
∧ C is solvable by M
∧ tenv x = (Mt′,Mp), if x : t′ : p ∈ A : I

⇓
tenv 0̀ Me : Mt : Mb

2

Proof We assume A:I 1̀ e : t : b [C], that the constraints C are solvable
by M ,

tenv x = (Mt′,Mp), if x : t′ : p ∈ A : I

and we show by induction on the proof-tree for A:I 1̀ e : t : b [C] that
tenv 0̀ Me : Mt : Mb can be inferred.

For the details see Appendix page 378.

Proportion 5.8 Completeness of 1̀
We have

tenv 0̀ e : t : b

5.2. A CONSTRAINT BASED BINDING TIME ANALYSIS 141

⇓
∃ C solvable
x : t1 : p ∈ A : I, if tenv x = (t1, p)
A:I 1̀ e : t : b [C]

2

Proof We will assume tenv 0̀ e : t : b and then we will show that there
exists constraints C such that C is solvable by M , A:I 1̀ e : t : b [C] can
be inferred (where x : t1 : p ∈ A:I, if tenv x = (t1, p)) by induction on
the proof-tree of tenv 0̀ e : t : b.

For the details see Appendix page 381.

Example 5.9
As an example of using the system in Figure 5.4 we use the same term as
in Example 5.5. We will see that we with the construction of one proof-
tree can capture the construction of several proof-tree in the analysis in
Figure 5.2. Our main goal is to show that the term

λcx.λcy.x (y)r

has type

((Br →r Br) →c (Br →r Br)) →c (Br →r Br) →r (Br →r Br)

and binding time c for some base type B. In doing this we first place
binding time variables everywhere we can to make the proof more general.
The question is now how can we annotate the term

λb1x.λb2y.x (y)b3

given that it has binding time p? We start by defining the list of assump-
tions A:I to be

A : I = x : tx : p1, y : ty : p2

where

ty = Bb3 →b2 Bb4

t1 = Bb6 →b5 Bb7

tx = ty →b1 t1

142 CHAPTER 5. BINDING TIME ANALYSIS

Using [var] twice and we get

A:I 1̀ x : tx : p1 [W(tx, p1)]

and

A:I 1̀ y : ty : p2
[
W(ty, p2)

]
Applying [app] we get

A:I 1̀ x (y)b1 : t1 : b1
[
W(tx, p1), W(ty, p2), p1 = p2 = b1

]
Applying [abs] we get

x : tx : p1 1̀ λ
p2y.x (y)b1 : ty →p2 t1 : p2 [C]

where

C = W(tx, p1),W(ty, p2), p1 = p2 = b1, p2 = b1,W(ty, p2)

Applying [abs] once more we get to

∅ 1̀ λ
p1x.λp2y.x (y)b1 : tx →p1 ty →p2 t1 : p1 [D]

where

D = C, p1 = p2,W(tx, p1)

All the constraints are

D = [b3 = b2, b4 = b2, b2 ≤ b1, b6 = b5, b7 = b5, b5 ≤ b1, b1 ≤ p1, b3 = b2,

b4 = b2, b2 ≤ p2, p1 = p2 = b1, p2 = b1, p1 = p2].

The solutions to the constraints are displayed in Table 5.2 and the term is

λb1x.λb1y.x (y)b1

with the type

((Bb2 →b2 Bb2) →b1 (Bb5 →b5 Bb5)) →b1 (Bb2 →b2 Bb2) →b1 (Bb5 →b5 Bb5)

and binding time b1.

5.2. A CONSTRAINT BASED BINDING TIME ANALYSIS 143

b1 = p1 = p2 b2 = b3 = b4 b5 = b6 = b7

r r r
c c r
c c c

Table 5.2: Solution to the constraints in Example 5.9

None of the solutions are the one we are looking for. In the proof we did
not apply the rule [up] and [down] as we did in the proof in Example 5.2.
Now we try to copy what we did in Example 5.2. Again we start by using
the rule [var] twice as above, but before we apply [app] we apply [down]
on the results from [var]. Then we get

A:I 1̀ x : tx : p3 [W(tx, p1), D(tx, p1, p3)]

and

A:I 1̀ y : ty : p4
[
W(ty, p2), D(ty, p2, p4)

]
Now we apply [app] to get

A:I 1̀ x (y)b1 : t1 : b1 [C′]

where

C′ = W(tx, p1),D(tx, p1, p3),W(ty, p2),D(ty, p2, p4), p3 = p4 = b1

Now we apply [up] and get

A:I 1̀ x (y)b1 : t1 : p5 [C′, U(t1, b1, (p1, p2), p5)]

Finally we apply [abs] twice to get

∅ 1̀ λ
p1x.λp3y.x (y)b1 : tx →p1 ty →p2 t1 : p1 [C′′]

where

C′′ = C′,U(t1, b1, (p1, p2), p5), p2 = p5,W(ty, p2), p1 = p2,W(tx, p1)

There is one solution to the constraints C′′, which is the one we are looking
for

b2 = b3 = b4 b6 = b5 = b7 p3 = p4 = b1 p1 = p2 = p5

r r r c
2

144 CHAPTER 5. BINDING TIME ANALYSIS

D′(Bb, b1, b2) = [r = c]
D′(t1 →b t2, b1, b2) = [b2 ≤ b1, b ≤ b2]

U′(Bb, b1, I, b2) = [r = c]
U′(t1 →b t2, b1, I, b2) = [b1 ≤ b2, b ≤ b1, b2 ≤ b1 t I]

Figure 5.5: [up] and [down] on Function Types

5.3 Incorporating [up] and [down]

Now we want to build the two rules [up] and [down] into all the other
rules and the axiom [var]. This makes it easier to make a proof in the
inference system, since we do not have to think explicitly about using [up]
and [down] as we had to do in Example 5.9. This is an advantage when
we construct the algorithm, since it implies that when making a proof, we
just apply the rules to get all the solutions with one proof instead of two or
even more proofs as in Example 5.9. To do this we proceed in four stages:

Stage 1: Modify the definition of U and D such that [up] and [down] may
leave the binding time unchanged (in the case of function types).

Stage 2: Modify the definition of U and D such that [up] and [down] may
succeed on base types and product types as well as function types.

Stage 3: Combine the [up] and [down] rule into one rule called [up-down].

Stage 4: Integrate the [up-down]-rule with all the other rules.

Again the new system we get in this section corresponds in a one-to-one
manner to the system in Section 5.3 and therefore also to the analysis in
Section 5.2.

5.3. INCORPORATING [UP] AND [DOWN] 145

5.3.1 [up] and [down] on Function Types

In Stage 1 we shall modify the definitions of U and D such that [up]
and [down] may leave the binding time unchanged (in the case of function
types). This is done by defining two new functions U′ and D′ with this
property and use them together with the rules in Figure 5.4 instead of U
and D. This new well-formed relation is called 2̀. The two functions D′
and U′ are defined in Figure 5.5. The idea is to allow b2 ≤ b1 instead of b2

< b1 in D′ and b1 ≤ b2 instead of b1 < b2 in U′. This works fine for D′ but
not for U′. To see this consider the case where the type is a function type,
t1 →b t2 and both b1 and b2 are c, that means no change in binding time.
Then the constraints generated by U′ would be

U′(t1 →b t2, b1, I, b2) = U′(t1 →b t2, c, I, c)
= [c ≤ c, b ≤ c, c ≤ I]

Thus the assumption list is restricted to contain only compile-time vari-
ables. To avoid this we allow the constraints to also contain inequalities of
the form

b1 ≤ b2 t I

which means that the least upper bound of b2 and every binding time of I
has to be greater than or equal to b1. It is an abbreviation for

[b1 ≤ b2 t (b, I)] = [b1 ≤ b2 t b, b1 ≤ b2 t I]
[b1 ≤ b2 t ()] = ()

Instead of using [b2 ≤ I] in the definition of U′ we use [b2 ≤ b1 t I]. This
solves the problem since c t b is c for all b.

If the [up]-rule is going to change the binding time, then b1 is r (and b2 is
c) and r t b is b for all b and hence [b2 ≤ r t I] is equivalent to [b2 ≤ I].

In the case of no change in binding time for a compile-time function type
the constraints that ensure that the type is a run-time function type, that
is [b ≤ b1] in U′ and [b ≤ b2] in D′, are both solvable because both b1 and b2

have to be c since otherwise the type is not well-formed. If both b1 and b2

are r, then the type is not well-formed and the constraints are unsolvable
because [b ≤ b1] = [c ≤ r] and [b ≤ b2] = [c ≤ r] are unsolvable.

146 CHAPTER 5. BINDING TIME ANALYSIS

The new inference system using U′ and D′ instead of U and D is sound and
complete with respect to the inference system (Figure 5.4) using U and D:

Lemma 5.10 Soundness of 2̀

We have

A:I 2̀ e : t : b [C] ∧M solves C
⇓

∃C′ : A:I 1̀ e : t : b [C′] ∧M solves C′

2

Proof We assume A:I 2̀ e : t : b [C] and that M solves C, then we prove
that there exists constraints C′ such that A:I 1̀ e : t : b [C′] and that M
solves C′ by induction on the proof-tree for A:I 2̀ e : t : b [C].

For the details see Appendix page 383.

Lemma 5.11 Completeness of 2̀

We have

A:I 1̀ e : t : b [C] ∧M solves C
⇓

∃C′ : A:I 2̀ e : t : b [C′] ∧M solves C′

2

Proof We assume A:I 1̀ e : t : b [C] and that M solves C, then we prove
that there exists constraints C′ such that A:I 2̀ e : t : b [C′] and that M
solves C′ by induction on the proof-tree for A:I 1̀ e : t : b [C].

For the details see Appendix page 386.

5.3.2 [up] and [down] on Non-function Types

In Stage 2 we modifying the [up] and [down] rules to succeed on base type
as well as function types. The two new functions U′′ and D′′ are defined in
Figure 5.6 and are used in Figure 5.4 instead of U′′ and D′′. The new well-
formed relation is now called 3̀. The constraints generated for a base-type
must ensure that the binding time is not changed ([b1 = b2]).

5.3. INCORPORATING [UP] AND [DOWN] 147

D′′(Bb, b1, b2) = [b1 = b2]
D′′(t1 →b t2, b1, b2) = [b2 ≤ b1, b ≤ b2]

U′′(Bb, b1, I, b2) = [b1 = b2]
U′′(t1 →b t2, b1, I, b2) = [b1 ≤ b2, b ≤ b1, b2 ≤ b1 t I]

Figure 5.6: [up] and [down] on Non-function Types

The new inference system using U′′ and D′′ instead of U′ and D′ is sound
and complete with respect to the inference system (Figure 5.4) using U′
and D′:

Lemma 5.12 Soundness of 3̀
We have

A:I 3̀ e : t : b [C] ∧M solves C
⇓

∃C′ : A:I 2̀ e : t : b [C′] ∧M solves C′

2

Proof We assume A:I 3̀ e : t : b [C] and that M solves C, then we prove
that there exists constraints C′ such that A:I 2̀ e : t : b [C′] and that M
solves C′ by induction on the proof-tree for A:I 3̀ e : t : b [C].

For the details see Appendix page 387.

148 CHAPTER 5. BINDING TIME ANALYSIS

[up-down]
A:I 4̀ e : t : b1 [C]

A:I 4̀ e : t : b2 [C, UD(t, b1, I, b2)]

UD(Bb, b1, I, b2) = [b1 = b2]
UD(t1 →b t2, b1, I, b2) = [b ≤ b1, b ≤ b2, b2 ≤ b1 t I]

Figure 5.7: The [up-down]-rule

Lemma 5.13 Completeness of 3̀
We have

A:I 2̀ e : t : b [C] ∧M solves C
⇓

∃C′ : A:I 3̀ e : t : b [C′] ∧M solves C′

2

Proof We assume A:I 2̀ e : t : b [C] and that M solves C, then we prove
that there exists constraints C′ such that A:I 3̀ e : t : b [C′] and that M
solves C′ by induction on the proof-tree for A:I 2̀ e : t : b [C].

For the details see Appendix page 388.

5.3.3 The [up-down]-rule

In Stage 3 we combine [up] and [down] into one rule [up-down], this can be
achieved by having one rule combining [up] and [down] and then generate
constraints with a new function UD. The new well-formed relation 4̀ is
defined as in Figure 5.4 but instead of using the two rules [up] and [down]
we use the rule [up-down] defined in Figure 5.7.

For base types there are no change from D′′ and U′′: we still generate the
constraint [b1 = b2]. We want the constraints to be as follows on function
types:

5.3. INCORPORATING [UP] AND [DOWN] 149

b b1 b2 UD(t1 →b t2, b1, I, b2)
r r r id
r r c up
r c r down
r c c id
c r r unsolvable
c r c unsolvable
c c r unsolvable
c c c id

Here id means that the generated constraints have to be solvable and do
not change the binding time. The annotations up and down mean that the
constraints have to be solvable and they change the binding time according
to the application of respectively the rule [up] or [down]. The three rows
marked with unsolvable correspond to the fact that a compile-time function
type cannot be of run-time kind. Both D′′ and U′′ behaves just like this but
for one case each: D′′ cannot cope with the case up and U′′ not with down.
The problem comes from the bond between b1 and b2. Clearly we cannot
include both b1 ≤ b2 and b2 ≤ b1 as then b1 = b2 would follow and rule
[up-down] would always act as the identity, contrary to what we are aiming
for. In the following table the constraints from D′′ and U′′ are summarised.
In the last column there is a OK if all the constraints are solvable and FAIL
if they are unsolvable. If the solvability of the constraints depends on I
then this is showed by the constraints involving I. This only happens in
the case of up.

b b1 b2 [b ≤ b2] [b ≤ b1] [b2 ≤ b1 t I] solvability

r r r [r ≤ r] [r ≤ r] [r ≤r t I] OK
r r c [r ≤ c] [r ≤ r] [c ≤ r t I] [c ≤ r t I]
r c r [r ≤ r] [r ≤ c] [r ≤ c t I] OK
r c c [r ≤ c] [r ≤ c] [c ≤ c t I] OK
c r r [c ≤ r] [c ≤ r] [r ≤ r t I] FAIL
c r c [c ≤ c] [c ≤ r] [c ≤ r t I] FAIL
c c r [c ≤ r] [c ≤ c] [r ≤ c t I] FAIL
c c c [c ≤ c] [c ≤ c] [c ≤ c t I] OK

Notice that the constraints of UD(t1 →b t2, b1, I, b2) (see Figure 5.7) are
those of D′′(t1 →b t2, b1, b2) and U′′(t1 →b t2, b1, I, b2) except that we
have not included b2 ≤ b1 from D′′ and b1 ≤ b2 from U′′.

150 CHAPTER 5. BINDING TIME ANALYSIS

The only case where it is necessary to look at I is when b1 is r and b2 is
c. This knowledge can be used when solving the constraints, so we collect
the constraints in the form [b2 ≤ b1 t I] rather than writing it out.

The relation between the inference systems of Figure 5.6 and 5.7 is given
by the next two lemmas:

Lemma 5.14 Soundness of 4̀

We have

A:I 4̀ e : t : b [C] ∧M solves C
⇓

∃C′ : A:I 3̀ e : t : b [C′] ∧M solves C′

2

Proof We assume A:I 4̀ e : t : b [C] and that M solves C, then we prove
that there exists constraints C′ such that A:I 3̀ e : t : b [C′] and that M
solves C′ by induction on the proof-tree for A:I 4̀ e : t : b [C].

For the details see Appendix page 389.

Lemma 5.15 Completeness of 4̀
We have

A:I 3̀ e : t : b [C] ∧M solves C
⇓

∃C′ : A:I 4̀ e : t : b [C′] ∧M solves C′

2

Proof We assume A:I 3̀ e : t : b [C] and that M solves C, then we prove
that there exists constraints C′ such that A:I 4̀ e : t : b [C′] and that M
solves C′ by induction on the proof-tree for A:I 3̀ e : t : b [C].

For the details see Appendix page 391.

5.3. INCORPORATING [UP] AND [DOWN] 151

5.3.4 Making the [up-down]-rule Implicit

The new rules can now be formed like

[old rule]
A:I 5̀ e : t : b1 [C]

[up-down]
A:I 5̀ e : t : b2 [C, UD(t, b1, I, b2)]

for every rule in Figure 5.4. This is illustrated for the rule [abs]:

The new rule [abs] is obtained by

A:I, x : t1 : b1 5̀ e : t2 : b2 [C]
[old abs]

A:I 5̀ λ
b1x.e : t1 →b1 t2 : b1 [C, b1 = b2, W(t1, b1)]

[up-down]
A:I 5̀ e : t : b3 [D]

where

D = C, b1 = b2,W(t1, b1),UD(t1 →b1 t2, b1, I, b3)

Figure 5.8 defines the well-formed relation with the [up-down]-rule inte-
grated in all the logical rules, and therefore no explicit [up-down] rule.
There is one exception in the rule [const] whenever we know that the type
of a constant is a base-type it makes no sense to apply the [up-down]-rule.

The new inference system 5̀ is sound and complete with respect to the
inference system 4̀:

Lemma 5.16 Soundness of 5̀
We have

A:I 5̀ e : t : b [C] ∧M solves C
⇓

∃C′ : A:I 4̀ e : t : b [C′] ∧M solves C′

2

Proof The [up-down] rule is constructed such that it can always be applied
and it can leave the binding time unchanged. So from the proof-tree of

A:I 4̀ e : t : b [C]

152 CHAPTER 5. BINDING TIME ANALYSIS

[var]
A:I 5̀ x : t : b1

 W(t, b),
UD(t, b, I, b1)

 if x : t : b ∈ A:I

[abs]
A:I, x : t1 : b1 5̀ e : t2 : b2 [C]

A:I 5̀ λ
b1x.e : t1 →b1 t2 : b3

 C, b1 = b2,W(t1, b1),
UD(t1 →b1 t2, b1, I, b3)

[app]
A:I 5̀ e1 : t1 →b t2 : b1 [C] A:I 5̀ e2 : t2 : b2 [D]

A:I 5̀ e1 (e2)b : t2 : b3

 C,D, b = b1 = b2,
UD(t2, b, I, b3)

[if]

A:I 5̀ e1 : Boolb : b1 [C]
A:I 5̀ e2 : t : b2 [D]
A:I 5̀ e3 : t : b3 [E]

A:I 5̀ ifb e1 then e2 else e3 : t : b4

C,D,E,
b = b1 = b2 = b3,
UD(t, b, I, b4)

[fix]
A:I 5̀ e : t →b t : b1 [C]

A:I 5̀ fixb e : t : b2 [C, b = b1, UD(t, b, I, b2)]

[const]
A:I 1̀ cb : t

cb
: b1

[
UD(t

cb
, b, I, b1)

]

W(Bb, p) = [b = p]
W(t1 →b t2, p) = [W(t1, b), W(t2, b), b ≤ p]

UD(Bb, b1, I, b2) = [b1 = b2]
UD(t1 →b t2, b1, I, b2) = [b ≤ b1, b ≤ b2, b2 ≤ b1 t I]

Figure 5.8: The Well-formedness Relation for the 2-level λ-calculus With-
out [up] and [down]

5.3. INCORPORATING [UP] AND [DOWN] 153

we can construct a proof-tree for

A:I 5̀ e : t : b [C′]

by applying the rule [up-down] after each rule — but not after the rule
[up-down]. Now each pair of rules correspond to a rule in 5̀.

Lemma 5.17 Completeness of 5̀

We have

A:I 4̀ e : t : b [C] ∧M solves C
⇓

∃C′ : A:I 5̀ e : t : b [C′] ∧M solves C′

2

Proof Since all the rules in 5̀ has the form
Π

[old rule]
A:I 5̀ e : t: b1 [C]

[up-down]
A:I 5̀ e : t : b2 [C, UD(t, b1, I, b2)]

we can infer

A:I 4̀ e : t : b [C]

using the same proof-tree as for

A:I 5̀ e : t : b [C]

From the Proportions 5.7 and 5.8 and the Lemmas 5.10, 5.11, 5.12, 5.13,
5.14, 5.15, 5.16, and 5.17 follows:

Theorem 5.18 Soundness and completeness of 5̀ with respect to 0̀

We have

A:I 5̀ e : t : b [C]
∧ C is solvable by M
∧ tenv x = (Mt′,Mp), if x : t′ : p ∈ A : I

⇓
tenv 0̀ Me : Mt : Mb

154 CHAPTER 5. BINDING TIME ANALYSIS

and

tenv 0̀ e : t : b
⇓

∃ C solvable
x : t1 : p ∈ A : I, if tenv x = (t1, p)
A:I 5̀ e : t : b [C]

2

Example 5.19
We will in this example see how just need to construct one proof-tree in
order to capture all the proof-trees that can be constructed for a given
term in the analysis given in Figure 5.2. We use the same term as for
Example 5.9. We want to show that the term

λcx.λcy.x (y)r

has type

((Br →r Br) →c (Br →r Br)) →c (Br →r Br) →r (Br →r Br)

and binding time c is well-formed for some base type B. We start with
using [var] twice and we have

A:I 1̀ x : tx : p3 [W(tx, p1), UD(tx, p1, I, p3)]

and

A:I 1̀ y : ty : p4
[
W(ty, p2), UD(ty, p2, I, p4)

]
where A:I is as in Example 5.9:

A : I = x : tx : p1, y : ty : p2

Applying [app] we get

A:I 1̀ x (y)b1 : t1 : p5

W(tx, p1),UD(tx, p1, I, p3),
W(ty, p2),UD(ty, p2, I, p4),
p3 = p4 = b1,UD(t1, b1, I, p5)

Applying [abs] we get

x : tx : p1 1̀ λ
p2y.x (y)b1 : ty →p2 t1 : p6 [C]

5.3. INCORPORATING [UP] AND [DOWN] 155

row b1 = p2 b2 = b3 b5 = b6 p1 = p6 p3 = p5 p7

= p4 = b4 = b7

1 r r r r r r
2 r r r r r c
3 r r r c r c
4 r r r c c c
5 c r r c c c
6 c r c c c c
7 c c r c c c
8 c c c c c c

Table 5.3: Solutions to the Constraints of Example 5.19

where

C = W(tx, p1),UD(tx, p1, I, p3),W(ty, p2),UD(ty, p2, I, p4),
p3 = p4 = b1,UD(t1, b1, I, p5), p2 = p5,W(ty →p2 t1, p2),
UD(ty →p2 t1, p2, (p1), p6)

Applying [abs] once more we get to

∅ 1̀ λ
p1x.λp2y.x (y)b1 : tx →p1 ty →p2 t1 : p7 [D]

where

D = W(tx, p1),UD(tx, p1, I, p3),W(ty, p2),UD(ty, p2, I, p4),
p3 = p4 = b1,UD(t1, b1, I, p5), p2 = p5,W(ty →p2 t1, p2),
UD(ty →p2 t1, p2, (p1), p6)p1 = p6,W(tx, p1),
UD(tx, p1, (), p7)

Now the term λp1x.λp2y.x (y)b1 has type

tx →p1 ty →p2 t1

and binding time p7.

If we look at the solutions in Table 5.3 with p1 = p3 = b1 = p7, then
the solutions in Table 5.3 (rows one, seven, and eight) are as those in
Example 5.9 plus two rows more (five and six). Row four is the solution

156 CHAPTER 5. BINDING TIME ANALYSIS

found in the second half of Example 5.9. The two last rows (rows two and
three) correspond to none of the solutions found before but they can be
found. 2

5.4 Generating the Constraint Set

Now we can construct an algorithm for finding the constraint set that ex-
presses the well-formed annotations of a term. The algorithm is a variation
of the algorithm T (Section 4.1.1) but in addition to the assumption list
and the type it also returns the annotated term, the binding time of the
term, and some constraints. Furthermore, the algorithm will return two
lists of pending arguments to UD and W, respectively. The reason for
this is that in order to infer the types of terms we need to introduce type
variables. Because of the type variables we cannot immediately find the
constraints coming from W and UD when the types involves type vari-
ables; instead we collect the arguments separately in order to expose them
to substitutions.

A type is now either a 2-level type or a 2-level type variable. A type
variable is written Xb, where b is the binding time of the type and X is the
name of the type variable.

K (Bb) = b

K (t1 →b t2) = b

K (Xb) = b

P (Bb) = B

P (t1 →b t2) = t1 → t2

P (Xb) = X

Figure 5.9: Auxiliary Functions K and P

The pseudo types, pt, are as the 2-level types but without the top level
binding time:

pt ::= B | t → t

t ::= Bs | t →s t

s ::= r | c | b

The auxiliary function K (Figure 5.9) is an easy way to get only the top-
level binding time of a type and the function P (Figure 5.9) gets only the

5.4. GENERATING THE CONSTRAINT SET 157

pseudo type of the type.

Definition 5.20
Here a substitution is a mapping from type variables and binding time
variables to pseudo types and binding times. A substitution S applied to
a type is defined by:

SXb = (SX)Sb

SBb = BSb

S(t1 →b t2) = St1 →Sb St2

and on an assumption list

S(x1 : t1 : b1, . . . , xn : tn : bn) = (x1 : St1 : Sb1, . . . , xn : Stn : Sbn)

and on the first pending list

S[(t1, b11, I1, b21), . . . , (tn, b1n, In, b2n)]
= [(St1, Sb11, SI1, Sb21), . . . , (Stn, Sb1n, SIn, Sb2n)]

and on the second pending list

S[(t1, b1), . . . , (tn, bn)] = [(St1, Sb1), . . . , (Stn, Sbn)]

and on the list of binding times

S(b1, . . . , bn) = (Sb1, . . . , Sbn)

and on a binding time

Sr = r
Sc = c
Sb = Sb

and on a term

Sx = x

S(λbx.e) = λSbx.Se
S(e1 (e2)b) = Se1 (Se2)Sb

S(ifb e1 then e2 else e3) = ifSb Se1 then Se2 else Se3

S(fixb e) = fixSb Se

Scb = cSb

2

158 CHAPTER 5. BINDING TIME ANALYSIS

U (E) = UList (E, id)

UList ([], S) = S
UList ([(t1, b1) = (t2, b2), E], S)

= let S′ = UBt (Sb1, Sb2)
S′′ = UType ((S′ ◦ S)t1, (S′ ◦ S)t2)

in UList (E, S′′ ◦ S′ ◦ S)

Figure 5.10: Auxiliary Functions U and UList

UBt (r, r) = id
UBt (c, c) = id
UBt (r, c) = FAIL
UBt (c, r) = FAIL

UBt (b, r) = [r/b]
UBt (b, c) = [c/b]
UBt (r, b) = [r/b]
UBt (c, b) = [c/b]
UBt (b1, b2) = [b2/b1]

Figure 5.11: Auxiliary Function UBt

Definition 5.21
A substitution, S, is a ground substitution if SXb = t implies that t has
no type variables. 2

The unification algorithm here is an extension of the unification algorithm
presented in Chapter 4 in Figure 4.1 in that it takes the annotations into
account.

Unification of types and binding times is done by the function U defined in
Figure 5.10. The function UBt, defined in Figure 5.11, unifies two binding
times. The function UType, presented in Figure 5.12, unifies two types. It
uses UBt to unify the binding times. Now the function UList , defined in
Figure 5.10, unifies a list of type and binding time pairs.

If a substitution is the the result of unifying two binding times, two types,
or two lists of pairs of type and binding time, then the substitution unifies
the two objects:

Lemma 5.22

5.4. GENERATING THE CONSTRAINT SET 159

UType (Xb, t) = let S′ = UBt (b1, K (t))
in if X does not occur in t, then

[P (S′t)/X] ◦ S′
else

FAIL

UType (t, Xb) = UType (Xb, t)
UType (Bb1, Bb2) = UBt (b1, b2)
UType (t1 →b1 t′1, t2 →b2 t′2)

= let S′ = UBt (b1, b2)
S′′ = UType (S′t1, S′t2)
S′′′ = UType (S′′t′1, S

′′t′2)
in S′′′ ◦ S′′ ◦ S′

UType (t1, t2) = FAIL

Figure 5.12: Auxiliary Function UType

We have if UBt(b1, b2) = S then

• Sb1 = Sb2

• whenever a substitution, R, unifies b1 and b2, then for some substi-
tution S′: R = S′ ◦ S

• dom (S) ⊆ FV(b1) ∪ FV(b2)

and if UType(t1, t2) = S then

• St1 = St2

• whenever a substitution, R, unifies t1 and t2, then for some substi-
tution S′: R = S′ ◦ S

• dom (S) ⊆ FV(t1) ∪ FV(t2)

and if S = UList ([(t1, b1) = (t′1, b′1), . . . , (tn, bn) = (t′n, b′n)], S′), then

• for all 1 ≤ i ≤ n : Sti = St′i and Sbi = Sb′i

• whenever a substitution, R, unifies

([(t1, b1) = (t′1, b′1), . . . , (tn, bn) = (t′n, b′n)], S′)

then for some substitution S′′: R = S′′ ◦ S

160 CHAPTER 5. BINDING TIME ANALYSIS

• dom (S) ⊆ ⋃ (FV(ti) ∪ FV(t′i) ∪ FV(bi) ∪ FV(b′i))

2

Proof For Part 1 we assume S = UBt (b1, b2) and that S 6= FAIL and we
show Sb1 = Sb2 by case analysis on b1 and b2.

For Part 2 we assume S = UType (t1, t2) and that S 6= FAIL and we show
St1 = St2 by induction on the type t1.

Part 3 is shown by induction on the length of the list.

For the details see Appendix page 393.

We will construct a well-formed annotation of a 1-level term e by first
using the algorithm L to get A:I, e′, t, b, C, P and P2. Then by using
a ground substitution S0, and UD and W on S0P and S0P2, respectively,
all the constraints C′ are found. Now S0A:I 5̀ S0e′ : S0t : S0b [C′] can be
inferred (see Proposition 5.23).

To explain the algorithm L (Figure 5.13 and 5.13) we have to look at the
rules in Figure 5.8. The rule [var] corresponds to L(x). We give x the type
Xb1, which is a new type variable, and the binding time b3. The assumption
list must contain an assumption about x. Note that the binding time in
the assumption list is different from the overall binding time of the term
x, this is due to the application of UD. The type has to be well-formed of
kind b2 and because the type is a type variable we put the arguments to
W in the second pending list. We also have to apply UD to the type and
again we put the arguments to UD into the first pending list.

The second rule of Figure 5.8, [abs], corresponds to L(λx.e). First we
do a recursive call on the body of the abstraction. Whenever there is an
assumption about x in the list of assumption then we use that to construct
the type of the abstraction. Otherwise we use a fresh type variable and
a fresh binding time variable. Note here that it is possible to apply UD
to the type regardless of the type is containing type variable or not. The
function UD is only looking at the top-level binding time provided the type
is a function type. Here we know that the type is a function type opposed
to the clause L(x) where the type is only a type variable. However it is
not possible to apply W to a type variable, hence the arguments to W is
put in the second pending list.

The third rule of Figure 5.8 is [app] and corresponds to L(e1 (e2)). Again

5.4. GENERATING THE CONSTRAINT SET 161

L(x) = let X, b1, b2, b3 be fresh
in (x : Xb1 : b2, x, Xb1, b3 , [],

[(Xb1, b2, (b2), b3)], [(Xb1, b2)])

L(λx.e) = let b be fresh
(A:I, e′, t2, b2, C, P, P2) = L(e)
(t1, b1) = if x : t1 : b1 ∈ A:I then

(t1, b1)
else

let X, b1 be fresh in (X, b1)
B:J = if x : t1 : b1 ∈ A:I then

A:I \ x : t1 : b1

else
let A:I

in (B:J, λb1x.e′, t1 →b1 t2, b,
[C, b1 = b2, UD(t1 →b1 t2, b1, J, b)], P,
[P2, (t1, b1)])

L(e1 (e2)) = let b3, b4, b5, X be fresh
(A:I, e′1, t1, b1, C, P, P2) = L(e1)
(B:J, e′2, t2, b2, D, Q, Q2) = L(e2)
S = U([(t1, K (t1)) = (t2 →b4 Xb5, b4)] ∪

[(t′1, b′1) = (t′2, b′2) | x : t′1 : b′1 ∈ A:I,
x : t′2 : b′2 ∈ B:J])

in (S(A:I, B:J), S(e′1 (e′2)
b4), SXb5, b3,

[SC, SD, Sb1 = Sb2 = Sb4],
[SP, SQ, (SXb5, Sb4, S(I, J), b3)], [SP2, SQ2])

Figure 5.13: Algorithm L for Collecting Constraints (Part 1)

we first do recursive calls on e1 and e2. Next we have to make sure that
e1 has a function type and that e2 has the right type such that e1 can be
applied to e2. This checking is done by unifying the type inferred for e1

with the type t2 →b4 Xb5 where t2 is the type inferred for e2 and Xb5 is a
new type variable. This is done at the same time as the two assumption

162 CHAPTER 5. BINDING TIME ANALYSIS

L(if e1 then e2 else e3)
= let b1, b5 be fresh

(A1:I1, e′1, t1, b2, C, P, P2) = L(e1)
(A2:I2, e′2, t2, b3, D, Q, Q2) = L(e2)
(A3:I3, e′3, t3, b4, E, R, R2) = L(e3)
S = U([(Boolb1, b1) = (t1, K (t1),

(t2, K (t2)) = (t3, K (t3))] ∪
[(t′1, b′1) = (t′2, b′2), (t′1, b′1) = (t′3, b′3)
| x : t′1 : b′1 ∈ A:I, x : t′2 : b′2 ∈ B:J,

x : t′3 : b3 ∈ F:K])
in (S(A1:I1, A2:I2, A3:I3),

S(ifb1 e′1 then e′2 else e′3) St2, b5,
[SC, SD, SE, Sb1 = Sb2 = Sb3 = Sb4],
[SP, SQ, SR, (St2, Sb1, S(I1, I2, I3), b5)],
[SP2, SQ2, SR2])

L(fix e) = let b1, b2, b3, X be fresh
(A:I, e′, t, b4, C, P, P2) = L(e)
S = U ([(t, K (t)) = (Xb3 →b1 Xb3, b1)])

in (S(A:I), Sfixb1 e′, SXb3, b2, [SC, Sb1 = Sb4],
[SP, (SXb3, Sb1, SI, b2)], SP2)

L(c) = let b2, b3 be fresh
in ((), cb2, tcb2

, b3, [],
[(tcb2

, b2, (), b3)], [(tcb2
, b2)])

Figure 5.14: Algorithm L for Collecting Constraints (Part 2)

5.4. GENERATING THE CONSTRAINT SET 163

lists are compared. They have to agree on the type and binding time of the
variables. The substitution obtained by the unification has to be applied
to all the types and binding times. It is needless to apply the substitution
to the binding time variable b3 because it is a new binding time variable
and it has not taken part in the unification.

The remaining three rules in Figure 5.8 corresponds to the last three cases
in the definition of L. The are obtained in the same way as the first three
clauses.

The algorithm L is sound with respect to the inference system and com-
plete:

Proportion 5.23 Soundness of L
Whenever

L(e) = (A:I, e′, t, b, C, P, P2)

and S0 is a ground substitution, then there exists constraints C′′ such that

S0(A:I) 5̀ S0e′ : S0t : S0b [C′′]

where

C′ = [S0C,UD(S0P),W(S0P2)]

and C′ is solvable by M implies that C′′ is solvable by M .

2

Proof We show the proposition by induction on the term e.

For the details see Appendix page 398.

Proportion 5.24 Completeness of L
If A:I 5̀ e : t : b [C] then there exists a ground substitution, S, and a
subset, A′′, of A such that

L(e) = (A′ : I′, e′, t′, b′,C′,P,P2)

and

e = Se′

t = St′

b = Sb′

A′′ : I′′ = S(A′ : I′)
C′′ = [SC,UD(SP),W(SP2)]

164 CHAPTER 5. BINDING TIME ANALYSIS

and

M solves C ⇒ M solves C′′

2

Proof We will assume that A:I 5̀ e : t : b [C] can be inferred and that
M solves C. We will show the Proposition by induction on the proof-tree
for A:I 5̀ e : t : b [C].

For the details see Appendix page 400.

Example 5.25
Now we can let the algorithm compute the set of constraints in stead of
doing the ourselves as we did in Example 5.19. As an example we calculate
L(λx.λy.x y). First we calculate L(x) and Ly:

L(x) = let p1, b1, b6, X1 be fresh
in (x : X1

p1 : b1, x, X1
p1, [], [(X1

p1, b1, (b1), b6)],
[(X1

p1, b1)])

L(y) = let p2, b2, b7, X2 be fresh
in (y : X2

p2 : b2, y, X2
p2, b7, [], [(X2

p2, b2, (b2), b7)],
[(X2

p2, b2)])

Now we can calculate L(x y):

L(x y) = let b8, b3, b9, X3, p1, b1, b6, X1, p2, b2, b7, X2 be fresh
S3 = U ([(X1

p1, p1) = (X2
p2 →b3 X3

b9, b3)])
in (S3 (x : X1

p1 : b1, y : X2
p2 : b2), S3(x (y)b3), S3X3

b9,
b8, [S3b6= S3b7= S3b3],
[(S3X1

p1, S3b1, (S3b1), S3b6),
(S3X2

p2 , S3b2, (S3b2), S3b7),
(S3X3

b9, S3b3, (S3b1, S3b2), S3b8)],
[(S3X1

p1, S3b1), (S3X2
p2, S3b2)])

And L(λy.x y):

5.4. GENERATING THE CONSTRAINT SET 165

L(λy.x y) = let b8, b3, b9, X3, p1, b1, b6, X1, p2, b2,
b7, X2, b4 be fresh
S3 = U ([(X1

p1, p1) = (X2
p2 →b3 X3

b9, b3)])
in (S3 (x : X1

p1 : b1), λS3b2y.S3(x (y)b3),
S3X2

p2 →S3b2 S3X3
b9, b4,

[S3b6 = S3b7 = S3b3,
UD(S3X2

p2 →S3b2 S3X3
b9, S3b2, (S3b1), b4),

S3b2 = S3b8],
[(S3X1

p1, S3b1, (S3b1), S3b6),
(S3X2

p2 , S3b2, (S3b2), S3b7),
(S3X3

b9, S3b3, (S3b1, S3b2), S3b8)],
[(S3X1

p1, S3b1), (S3X2
p2, S3b2), (S3X2

p2 , S3b2)])

Finally we calculate L(λx.λy.x y):

L(λx.λy.x y) = let b8, b3, b9, X3, p1, b1, b6, X1, p2, b2,
b7, X2, b4, b5 be fresh
S3 = U ([(X1

p1, p1) = (X2
p2 →b3 X3

b9, b3)])
in ((), λS3b1x.λS3b2y.S3(x (y)b3),

S3X1
p1 →S3b1 S3X2

p2 →S3b2 S3X3
b9, b5,

[S3b6 = S3b7 = S3b3,
UD(S3X2

p2 →S3b2 S3X3
b9, S3b2, (S3b1), b4),

S3b2 = S3b8,
UD(S3X1

p1 →S3b1 S3X2
p2 →S3b2 S3X3

b9,
S3b1, (), b5),
S3b1 = b4],
[(S3X1

p1, S3b1, (S3b1), S3b6),
(S3X2

p2 , S3b2, (S3b2), S3b7),
(S3X3

b9, S3b3, (S3b1, S3b2), S3b8)],
[(S3X1

p1, S3b1), (S3X2
p2, S3b2), (S3X2

p2 , S3b2),
(S3X1

p1 , S3b1)])

The substitution S3 is

S3 = U([(X1
p1, p1) = (X2

p2 →b3 X3
b9, b3)])

= UList (([(X1
p1 , p1) = (X2

p2 →b3 X3
b9, b3)], id)

= UList ([], S′′ ◦ S′ ◦ id)
= S′′ ◦ S′ ◦ id

166 CHAPTER 5. BINDING TIME ANALYSIS

where

S′ = UBt(idp1, idb3)
S′′ = UType((S′ ◦ id)X1

p1, (S′ ◦ id)(X2
p2 →b3 X3

b9))

We have

S′ = UBt(idp1, idb3)
= UBt(p1, b3)
= [b3/p1]

and

S′′ = UType((S′ ◦ id)X1
p1, (S′ ◦ id)(X2

p2 →b3 X3
b9))

= UType(S′X1
p1, S′(X2

p2 →b3 X3
b9))

= UType(X1
b3, (X2

p2 →b3 X3
b9))

= [P(S′2(X2
p2 →b3 X3

b9))X1] ◦ S′2
= [(S′2(X2

p2 → X3
b9))X1] ◦ S′2

where

S′2 = UBt(b3, b3)
= [b3/b3]
= id

Now we have

S3 = S′′ ◦ S′ ◦ id
= S′′ ◦ [b3/p1]
= [(S′2(X2

p2 → X3
b9))/X1] ◦ S′2 ◦ [b3/p1]

= [(S′2(X2
p2 → X3

b9))/X1] ◦ id ◦ [b3/p1]
= [(S′2(X2

p2 → X3
b9))/X1] ◦ [b3/p1]

The term

λS3b1x.λS3b2y.S3(x (y)b3)

5.4. GENERATING THE CONSTRAINT SET 167

equals

λb1x.λb2y.x (y)b3

and has the type

(X2
p2 →b3 X3

b9) →b1 X2
p2 →b2 X3

b9

and binding time b5. We now want to find the constraints such that the
term has the same type as in Example 5.19, i.e. the type is

t′x →p′1 t′y →p′2 t′1

where

t′y = Bb
′
2 →b′2 Bb

′
2

t′1 = Bb
′
5 →b′5 Bb

′
5

t′x = t′y →b′1 t′1

We will use the ground substitution S0:

S0 = [P(t′y)/X2] ◦ [P(t′1)/X3] ◦
[b′5/b9] ◦ [b′2/p2] ◦ [p′3/b2] ◦ [p′1/b1] ◦ [b′1/b3]

and the constraints:

[S0b6 = S0b7 = S0b3,UD(S0(X2
p2 →b2 X3

b9), S0b2, (S0b1), S0b4),
S0b2 = S0b8,

UD(S0((X2
p2 →b2 X3

b9) →b1 X2
p2 →b2 X3

b9), S0b1, (), S0b5),
S0b1 = S0b4,UD(S0(X2

p2 →b2 X3
b9), S0b1, (S0b1), S0b6),

UD(S0X2
p2, S0b2, (S0b2), S0b7),UD(S0X3

b9, S0b3, (S0b1, S0b2), S0b8),
W(S0(X2

p2 →b2 X3
b9), S0b1),W(S0X2

S0p2 , S0b2),
W(S0X2

S0p2 , S0b2),W(S0(X2
p2 →b2 X3

b9), S0b1)]

By carefully examination of the constraints we can observe that these con-
straints are comparable to the constraints found in Example 5.19.

The next step is to solve the constraints. 2

168 CHAPTER 5. BINDING TIME ANALYSIS

5.5 Solving the Constraint Set

Here as in [NN92] we will only find the solution with as many c’s as possible.
This is called the minimal solution because most of the work is done at
compile-time and a minimum at run-time. The minimal solution to the
various forms of constraints are listed in Table 5.4.

First we assume that the solution to the constraints C are the one that maps
all the binding time variables to c. Next we have to find the constraints
that forces some of the binding time variables to be mapped to r. This can
then affect other constraints. So we have to find the constraints that are
affected by this. The algorithm is as follows:

1. Divide the constraints into the three groups of Table 5.5:

• The constraints that are not affected by some binding time vari-
able being mapped to r.

• The constraints that forces the solution to map some binding
time variable to r .

• The constraints that are affected by some binding time variable
being mapped to r.

2. Find the binding time variables that have to be mapped to r.

3. Apply the intermediate solution to the rest of the constraints. That
is only the constraints in the last group — those that are affected by
the forced binding time variables.

We will not consider the constraints that are not affected by the
forcing binding time variables, again. Hence there is no need to apply
the substitution to them. The constraints that force the binding time
to be r will not give any more contribution to the solution of the set
of constraints.

4. Repeat step 1 to 3 on the set of constraints that are affected by
intermediate solution until either

• no constraints force any binding time variables to be mapped to
r

• no constraints are affected by the intermediate solution

5.5. SOLVING THE CONSTRAINT SET 169

constraint minimal solution
b = r M b = r
b = c M b = c
r = b M b = r
c = b M b = c
b ≤ r M b = r
c ≤ b M b = c

c ≤ r t I
 M b = c for all b in I, if I contains no r

unsolvable, otherwise
r = r
c = c
b1 = b2 M b1 = c and M b2 = c
r ≤ r
r ≤ c
c ≤ c
r ≤ b M b = c
b ≤ c M b = c
b1 ≤ b2 M b1 = c and M b2 = c
r ≤ c t I M bi = c, for all bi in I
c ≤ c t M bi = c, for all bi in I
b ≤ c t I M b = c and M bi = c, for all bi in I
r ≤ r t I M bi = c, for all bi in I

b ≤ r t I
 M b = c, if I contains no r
M b = r, otherwise

and M bi = c for all bi in I
r ≤ b t I M b = c and M bi = c for all bi in I
c ≤ b t I M b = c and M bi = c for all bi in I
b2 ≤ b1 t I M b1 = c, M b2 = c, and M bi = c for all bi in I

Table 5.4: Minimal Solutions to the Constraints

170 CHAPTER 5. BINDING TIME ANALYSIS

not affected (N) forces (F) affected (A)
r = c b = r b = c
c = r r = b c = b
c ≤ r b ≤ r c ≤ b
r = r b1 = b2

c = c b1 ≤ b2

r ≤ r c ≤b t I
r ≤ c b2 ≤ b1 t I
c ≤ c
r ≤ b
b ≤ c
r ≤ c t I
c ≤ c t I
b ≤ c t I
r ≤ r t I
r ≤ b t I

Table 5.5: The Three Groups of Constraints

Exp ([r, I], b) = [b ≤ r, Exp (I, b)]
Exp ([c, I], b) = [b ≤ c, Exp (I, b)]
Exp ([b1, I], b) = [b ≤ b1, Exp (I, b)]
Exp ([], b) = []

Exp ([r, I], c) = FAIL
Exp ([c, I], c) = [c ≤ c, Exp (I, c)]
Exp ([b, I], c) = [c ≤ b, Exp (I, c)]
Exp ([], c) = []

Figure 5.15: The Function Exp

If an unsolvable constraint (r = c, c = r, c ≤ r) is encountered while
solving a set of constraints then we know that the set of constraints is
unsolvable so we can stop searching for a solution.

The constraints b ≤ r t I and c ≤ r t I have to be expanded into the

5.5. SOLVING THE CONSTRAINT SET 171

constraints b ≤ I and c ≤ I respectively, and then they can be distributed
into the three groups. This part of the algorithm is done by the function
Exp (Figure 5.15).

Fact 5.26 expresses that it is safe to expand the constraints [b ≤ r t I] into
[b ≤ I] and [c ≤ I]. This is exactly what the function Exp does.

Fact 5.26
M solves [b ≤ r t I] ⇔ M solves [b ≤ I] 2

Proof Since we have r t b = b for all b (i.e. b is r, c, or a binding time
variable) it must be the case that whenever [b2 ≤ r t b] is solvable by M ,
then so is [b2 ≤ b] and visa versa.

The first part of the algorithm (the devision of the constraints into the three
groups) is done by the function Div (Figure 5.16). Let Mc and Mr be the
mappings that maps all binding time variables to c and r, respectively.
Fact 5.27 expresses that the function Div divides the constraints into the
three groups described in Table 5.5:

Fact 5.27
If (N, F, A) = Div (C, [], [], []) then

• N is solvable by both Mc and Mr.

• F is solvable by Mr and not by Mc.

• A is solvable by Mc.

2

Proof It is easily seen by inspection of Table 5.5 that all constraints in the
first column are solvable by bothMc andMr, and that all the constraints in
the the second column are solvable by Mr only. Finally, all the constraints
in the last column are solvable by Mc and maybe by Mr.

Now by inspection of the algorithm Div we can see that the constraints
are put into the right groups. Hence the Fact holds.

Next we have to find the variables that have to be mapped to r. This
part of the algorithm is done by the function ForceR (Figure 5.17). The
function is also defined for the constraints r = r and r ≤ r because the
intermediate solution is applied to the rest of the constraints as soon as it
is found.

172 CHAPTER 5. BINDING TIME ANALYSIS

Div ([], N, F, A) = (N, F, A)
Div ([c = c, C], N, F, A) = Div (C, [c = c, N], F, A)
Div ([c = r, C], N, F, A) = FAIL
Div ([r = c, C], N, F, A) = FAIL
Div ([r = r, C], N, F, A) = Div (C, [r = r, N], F, A)
Div ([r ≤ r, C], N, F, A) = Div (C, [r ≤ r, N], F, A)
Div ([c ≤ r, C], N, F, A) = FAIL
Div ([r ≤ c, C], N, F, A) = Div (C, [r ≤ c, N], F, A)
Div ([c ≤ c, C], N, F, A) = Div (C, [c ≤ c, N], F, A)
Div ([r ≤ b, C], N, F, A) = Div (C, [r ≤ b, N], F, A)
Div ([b ≤ c, C], N, F, A) = Div (C, [b ≤ c, N], F, A)
Div ([r ≤ c t I, C], N, F, A) = Div (C, [c t I ≥ r, N], F, A)
Div ([c ≤ c t I, C], N, F, A) = Div (C, [c t I ≥ c, N], F, A)
Div ([r ≤ r t I, C], N, F, A) = Div (C, [r t I ≥ r, N], F, A)
Div ([b ≤ c t I, C], N, F, A) = Div (C, [c t I ≥ b, N], F, A)
Div ([r ≤ b t I, C], N, F, A) = Div (C, [b t I ≥ r, N], F, A)
Div ([b ≤ r t I, C], N, F, A) = Div ([Exp (I, b), C]), N, F, A)
Div ([b = r, C], N, F, A) = Div (C, N, [b = r, F], A)
Div ([r = b, C], N, F, A) = Div (C, N, [r = b, F], A)
Div ([b ≤ r, C], N, F, A) = Div (C, N, [b ≤ r, F], A)
Div ([b = c, C], N, F, A) = Div (C, N, F, [b = c, A])
Div ([c = b, C], N, F, A) = Div (C, N, F, [c = b, A])
Div ([b1 = b2, C], N, F, A) = Div (C, N, F, [b1 = b2, A]))
Div ([c ≤ b, C], N, F, A) = Div (C, N, F, [c ≤ b, A])
Div ([b1 ≤ b2, C], N, F, A) = Div (C, N, F, [b1 ≤ b2, A])
Div ([c ≤ r t I, C], N, F, A) = Div ([Exp (I, c), C], N, F, A)
Div ([c ≤ b t I, C], N, F, A) = Div (C, N, F, [c ≤ b t I, A])
Div ([b2 ≤ b1 t I, C], N, F, A) = Div (C, N, F, [b2 ≤ b1 t I, A])

Figure 5.16: The function Div

5.5. SOLVING THE CONSTRAINT SET 173

ForceR ([], M) = M
ForceR ([b = r, C], M) = ForceR ([b/r]C, [b/r] ◦ M)
ForceR ([r = b, C], M) = ForceR ([b/r]C, [b/r] ◦ M)
ForceR ([b ≤ r, C], M) = ForceR ([b/r]C, [b/r] ◦ M)
ForceR ([r = r, C], M) = ForceR (C, M)
ForceR ([r ≤ r, C], M) = ForceR (C, M)

Figure 5.17: The Function ForceR

The next lemma expresses that the function ForceR extends the solution
M which solves C to also solve a set of constraints C′. The constraints
C′ all belongs to the group that forces some binding time variable to be
mapped to r (see Table 5.5).

Lemma 5.28
If M solves C, and C and F has no variables in common, and

M ′ = ForceR(F,M)

then M ′ solves [C, F]. 2

Proof We assume that M solves C and that C and F has no variables in
common. Then we prove by induction on the size of the set of constraints
F that M ′ = ForceR (F, M) solves [C, F].

For the details see Appendix page 406.

Now all the pieces are put together by the function Solve
′ (Figure 5.18). It

first divides the constraints into the three groups N, F, and A by applying the
function Div to the constraints. Next we apply ForceR to the constraints
in F to the for the present solution M ′. Finally we apply Solve

′ to the
constraints M ′A and M ′. The operation “+” in Figure 5.18 is defined as
follows

(M1“ +′′M2)b =
 M2b, if M2b is defined
M1b, otherwise

The result is that all the binding time variable not forced to be mapped to
r are mapped to c.

174 CHAPTER 5. BINDING TIME ANALYSIS

Solve
′ ([], M) = M

Solve
′ (C, M) = let (N, F, A) = Div (C, [], [], [])

M ′ = ForceR (F, M)
in if F= [] then

M ′

else
Solve

′ (M ′A, M ′)

Solve C = Mc “+” Solve
′ (C, undef)

Figure 5.18: The Functions Solve and Solve
′

Fact 5.29 expresses that the functions ForceR and Solve
′ extend the

mapping M to also solve the constraints C and it does not forget the
solutions so far:

Fact 5.29
Suppose that MC = C, i.e. M is not defined for any of the binding time
variables in C.

Whenever M ′ = ForceR (C, M), then (M b1 = b2) ⇒ (M ′ b1 = b2) and
if M ′ = Solve

′ (C, M), then (M b1 = b2) ⇒ (M ′ b1 = b2). 2

Proof Assume that M is not defined for any of the binding time variables
in C. In all clauses of ForceR and Solve

′ either M itself is returned or
M ′ ◦M where M ′ does not involve binding time variables in M . Therefore
it must be the case that (M b1 = b2) ⇒ (M ′′ b1 = b2) where M ′′ is either
ForceR (C, M) or Solve

′ (C, M).

Lemma 5.30
If M solves C and

M ′ = Solve
′(C ′,M)

and C and C′ has no variables in common, then Mc “+” M ′ solves [C, C′].
2

Proof We assume that M solves C and that C and C′ has no variables in
common. We prove by induction on the size of C′ that Mc “+” M ′ solves

5.5. SOLVING THE CONSTRAINT SET 175

[C, C′], where

M ′ = Solve
′(C ′,M)

For the details see Appendix page 407.

The solution to the constraints C are found by Solve defined in Fig-
ure 5.18.

We can always map the rest of the binding time variables to c:

Fact 5.31
If M solves C then Mc “+” M solves C. 2

Proof Assume that M solves C, hence for all binding time variables, b,
in C we have that Mb is defined and hence

Mc“ +′′Mb = Mb

and therefore Mc “+” M will also solve C as required.

We have Theorem 5.32 which follows directly from Lemma 5.30:

Theorem 5.32
If M = Solve C then M solves C. 2

Now we can put is all together:

Theorem 5.33 Soundness of the Algorithm with respect to 0̀

Assume that S0 is a ground substitution and

L(e) = (A : I, e′, t, b,C,P,P2)
C′ = [S0C,UD(S0P),W(S0P2)]

Solve(C′) = M

then

tenv 0̀ (M ◦ S0)e′ : (M ◦ S0)t : (M ◦ S0)b

where

tenv x = ((M ◦ S0)t′, (M ◦ S0)p), if x : t′ : p ∈ A : I

2

176 CHAPTER 5. BINDING TIME ANALYSIS

Proof Follows from Theorem 5.32, 5.23 and 5.18.

To get completeness of the algorithm with respect to 0̀ we need complete-
ness of the algorithm solving the constraints:

Conjecture 5.34
Whenever C is solvable, then

Solve(C) 6= FAIL

2

Now completeness is:

Conjecture 5.35 Completeness of the Algorithm with respect to 0̀

Assume

tenv 0̀ e : t : b

and

L(e) = (A′ : I′, e′, t′, b′,C′,P,P2)
C′′ = [SC,UD(SP),W(SP2)]

then

Solve(C′′) 6= FAIL

2

Proof Follows from Conjecture 5.34 and Theorem 5.24 and 5.18.

5.6 Summary

In this Chapter we have taken an inference system for binding time anal-
ysis (Figure 5.1 and Figure 5.2) and reformulated it (Figure 5.4) as an
annotated type system. Then the rules [up] and [down] are eliminated so
we end up with a purely logical inference system (Figure 5.8) — all the
rules are structural in the term. From this system an algorithm for bind-
ing time analysis (Figure 5.13, 5.14 and 5.18) is constructed. One of the
salient features of the algorithm presented here (Figure 5.13 and 5.14) is

5.6. SUMMARY 177

the use of substitution to infer the type in case of function application; this
is contrary to [NN92] where extra recursive call are necessary.

Clearly the algorithm L for collecting the constraints terminates since we
go through the term in a structural way. The algorithms Exp, ForceR,
and Div terminates since they just step through a list. In the algorithm
Solve

′ if the list F is empty the algorithm terminates, otherwise we do a
recursive call on the list A which is smaller than the original list, hence the
algorithm terminates.

The complexity of going though the term finding the constraints is linear
in the size of the term, however the number of constraints for a given term
is O(n2) where n is the size of the term, hence the complexity of finding
the constraints must be O(n2). The complexity for solving the constraints
is quadratic in the number of constraints — so the whole binding time
analysis is O(n4) where n is the size of the term. The algorithm described
here for binding time analysis is faster than the one presented in [NN92].
We conjecture that it possible to find an algorithm to solve the constraints
in O(n logn). So that the binding time analysis becomes an O(n2 log n)
algorithm.

The work of this Chapter is inspired by the work of Wadler [Wad91] where
an inference system for linear types using “use” types is presented. The
types is annotated with “uses”. Then the rules [dereliction] and [promo-
tion] are eliminated and an algorithm for finding constraints is constructed
from the resulting system.

A somewhat related approach is that of Henglein [Hen91]. Here binding
time analysis is also performed via constraints and there is a discussion
of efficient algorithms for their solution. A type of [Hen91] is either the
type constant B, denoting “static” (compile-time) base values, the type
constant Λ, representing all unevaluated (run-time) terms, a function type
τ1 → τ2, where τ1 and τ2 are types, represents a higher-order value, or
a type variable α. There is no structure on the dynamic (compile-time)
values, there is therefore only one kind of function type.

Another difference between the inference system in Figure 5.2 and that
of [Hen91] is that when the [down]-rule is applied it is explicitly marked in
the term. There are no analogous to the [up]-rule. In the inference system
of [Hen91] only base values can be made dynamic (run-time object) by
application of the lift-operator, and not terms of function type.

178 CHAPTER 5. BINDING TIME ANALYSIS

The constraints of [Hen91] are between types, whereas the constraints in
this paper are between binding times (binding time values (r, c) and bind-
ing time variables). To every λ-bound variable x in the term e there is
associated a type variable αx, and to every term e′ occurring in e two type
variables αe′ and αe′. The idea of αe′ is the type (binding time) of e′ if
it is lifted. Now constraints are made between all these type variables to
express the same as the inference system. The constraints are solved by
first normalising them and then finding a minimal solution.

An implementation in Miranda of our algorithm is presented in the Ap-
pendix page 409.

Chapter 6

Uniform PERs and Comportment
Analysis

The analysis in this Chapter is specified by abstract interpretations us-
ing names of uniform PERs. This approach differs from the one used in
the previous chapters. The analysis will capture both strictness and to-
tality properties in additions to constancy. The semantically foundation is
slightly different from the other chapters.

6.1 Introduction

Strictness properties are properties of functions between domains; in prin-
ciple they are intended to capture the notion of how the function reacts to
changes in the definedness of its arguments rather than changes between
incomparable values of its arguments. A comparison to the notion of par-
tial differentiation may prove fruitful. Since many properties conforming to
this notion (e.g. totality) exclude ⊥, we use the word comportment1 prop-
erty as coined by Cousot and Cousot [CC94] to avoid abusing the epithet
“strictness property” by allowing it to encompass totality.

For many years there were two forms of strictness property, the ideal-
based [Myc80, BHA86, EM91, CC94] form and the projection-based form
[WH87, Hun91]. Given domains D and E and a continuous function f :
D → E (the denotational semantics of a program function) these properties
can be summarised as follows.

1The Collins Dictionary: comport: vb. 1. (tr.) to conduct or bear (oneself) in a specified
way. 2. (intr.; foll. by with) to agree (with). comportment n

179

180 CHAPTER 6. UNIFORM PERS

Let I range over the ideals of D (non-empty Scott-closed sets) and J over
those of E. The ideal-based strictness properties are those of the form

|=ideal f : WI,J ⇔ f(I) ⊆ J (6.1)

Similarly, let α range over projections on D (continuous, idempotent func-
tions such that α(x) v x) and β over those on E. The projection-based
strictness properties are those of the form

|=proj f : Wα,β ⇔ β ◦ f = β ◦ f ◦ α (6.2)

or equivalently of the form

|=proj f : Wα,β ⇔ β ◦ f w f ◦ α

Hunt [Hun91] observed that PER-based properties generalise both the
above forms. (Actually Hunt only considered strict and inductive PER-
properties which suffice for his generalisation but we relax this so as to be
able to encompass as many comportment properties as possible.)

A PER P on D is a relation on D which is symmetric and transitive. It
is inductive if it contains limits of chains when seen as a subset of D ×D.
Such a PER P defines a property WP on D given by its diagonal

|=PER d : WP ⇔ d ∈ |P |

where

|P | = {d | dPd}

Hunt essentially defines the PER-properties of functions in two stages,
first defining the basic PER-properties and then the PER-properties as
the conjunctive completion of these. Letting P range over (a class of, see
below) PERs of D and Q over (a class of) PERs of E, the basic PER-
properties appear as

|=basic PER f : WP,Q ⇔ (∀x, y ∈ D)(xPy⇒ (fx)Q(fy))

Conjunctions (intersections) of these give PER-properties.

The reader familiar with the typical UK-Danish presentations of abstract
interpretations will here note an absence of specifying how the properties
at higher-order are related to those at lower-order (or first-order). Indeed,

6.1. INTRODUCTION 181

Cousot and Cousot [CC94] argue that the framework of abstract interpre-
tation should remain neutral on this and applications should select repre-
sentations for program properties at each type independently, all that is
required is that function properties, ranged over by C, should be in Galois
correspondence γ : C → P(D→ E) where P(·) is the power-set construct.
This yields properties

|=Galois f : WC ⇔ f ∈ γ(C)

We take the opposite view in this paper, that it is fundamental to define
a set (or range of sets) of properties for each type rather than allowing
parasitic applications in which the space of properties is not even decidable.
After all, restrictions of media have historically spawned great art.

One can, perhaps over-simplistically, observe that the French (or at least
[CC94]) approach is platonic in that it prescribes a framework and then
searches for special cases which explain or yield various analyses. Similarly
the UK-Danish approach has generally been constructivist: abstract spaces
have been crafted which explain exactly the range of phenomena at hand;
abstract spaces for higher types are expected to be derivable from those
at lower types (cf. intuitionistic implication). The old arguments trans-
fer beautifully: the Platonist argues that the constructivist is doomed to
extend his constructions each time the world demands (and never models
it perfectly); the constructivist chides the generality of the Platonist for
allowing parasitic solutions which have no application or physical reality.2

The present construction of uniform PERs, both at ground type and hered-
itarily at higher types, is designed to capture as many comportment prop-
erties as possible (hopefully all) in a constructive manner. It was developed
concurrently with [CC94] and attempts to capture comportments from the
constructive, as opposed to platonic, viewpoint. Interestingly the two ap-
proaches differ (ours yields four extra properties at type Int → Int) but
the reasons for this are not yet clear.

The range of comportment properties expressible by uniform PERs include
2There is more programming analogy here: the Platonist is the program specifier who con-

structs the framework containing A and B; the constructivist is the program writer who needs
to consider whether obtaining A from B is possible in practice. There is an amusing analogy
(thanks to Thomas Jensen for this) which links back to abstract interpretation in that Pla-
tonist/specification essentially forms the greatest fixpoint (ban only what requirements forbid)
whereas constructivism/programming forms the least fixpoint (allow only what the requirements
necessitate).

182 CHAPTER 6. UNIFORM PERS

not only strictness properties but also totality properties. These latter are
also captured by the annotated type system of Chapter 2 and 3.

Overview In Section 6.2 we recall the definition of PERs and we define
both the subset ordering and the Egli-Milner ordering on PERs.

In Section 6.3 we define the notion of uniform PER on the integers. These
PERs are uniform in the sense that they treat all the integers identically (as
in [EM91]). We observe that some of the uniform PERs on the integers are
not strict. Far from being a problem these non-strict PERs can describe
the property of being a non-bottom value (or at higher types being a total
function) in contrast to most work on ideal- or projection-based program
analysis (subject to the unsurprising need to use the Egli-Milner ordering
on PERs which we define). The empty PER also appears as a uniform
PER but is not proscribed because of its possible use to represent some
sort of dead code. Next we form following Hunt the PERs on the function
space and again we observe that some of the PERs are not strict.

In Section 6.4 we take a closer look at the uniform PERs on ZZ⊥ → ZZ⊥.
It appears that we are able to express all the properties that are express-
ible with ideal-based [EM91, Myc81], projection-based [WH87], and non-
standard [Ben93, SNN94] program analysis. Some new properties also
emerge, e.g. the property of being constant on the integers, the property of
being non-bottom on the integers, the property of being constant and non-
bottom on the integers, the property of being non-bottom on the integer
or the bottom-function.

For each property there exists an optimisation that can be applied to the
code implementing an expression with that property. So again we can see
the advantage of also considering the non-strict PERs. Moreover for each
property there exists a function which has that property as the best/most
exact description of the expression.

The next step is to define the language in Section 6.5, its standard se-
mantics, and a non-standard semantics for program analysis. We define
the semantics and the program analysis as two different interpretations of
the language (as in [Hun91]). Following Hunt’s proof of correctness of the
analysis we show that the standard and non-standard semantics of terms
satisfy a ternary logical relation which relates pairs of standard values with
an abstract value.

6.2. FORMALISM 183

The final step is to define the abstract-denotations of the constants, e.g.
if, fix, +, such that their standard-denotation is related to the abstract-
denotation. The problems here is mostly for fix. Not all the PERs we are
dealing with are strict therefore we cannot just follow Hunt using a union
operator to form the fixpoint. (We cannot just start with the least PER in
the subset ordering which is the empty PER and apply the functional to
it. The result would be the empty PER and hence the fixpoint would be
the empty PER.) Our solution is to start with the least strict PER and a
form of the Egli-Milner-ordering which we define on PERs.

6.2 Formalism

We start by defining the notion of a PER on a set and then consider the
possible orderings on PERs when the sets has order-structure:

6.2.1 PERs on Domains

Recall that a PER on a set S is a relation on S that is symmetric and
transitive. Both the domain and range of the PER is equal to the diagonal-
part of P , defined by |P | = {x | (x, x) ∈ P}. For a given set A of PERs,
the properties associated with A are the set of diagonals of members of A.
PERs can be ordered in at least two different ways: the subset ordering
and the Egli-Milner ordering.

Definition 6.1 The subset ordering
The PER P is less than or equal to the PER Q, written P ≤ Q, if P ⊆ Q

2

6.2.2 The Egli-Milner Ordering

The subset ordering does not take into account the structure of the domain
on which the PERs are built. The least PER in the subset ordering is the
empty PER. The result of applying a functional to the empty PER is the
empty PER, therefore the fixpoint of a functional is the empty PER. What
we want to do is to start with the least, strict, PER. But starting there

184 CHAPTER 6. UNIFORM PERS

may not yield a chain under the subset ordering. The obvious choice is to
use the Egli-Milner ordering.

Let D be a cpo. We define the Egli-Milner ordering on the space of PERs
over D by treating the PERs as subsets of D ×D.

Definition 6.2 The Egli-Milner ordering on PERs over D
Let P and Q be PERs over D. We define P vPER

EM Q if P v Q when
considered as subsets of D ×D, i.e.

(∀p ∈ P∃q ∈ Q : p vD×D q) ∧ (∀q ∈ Q∃p ∈ P : p vD×D q)

2

We also define a PER P being strict and downwards closed by inheritance
from D ×D:

Definition 6.3 strict and downwards closed PERs
A PER P on D is strict if (⊥D,⊥D) ∈ P ; it is downwards closed whenever
P seen as a subset of D ×D is downwards closed, i.e.

((d1, d2) v (d3, d4) ∧ (d3, d4) ∈ P)⇒ (d1, d2) ∈ P

2

For strict PERs (i.e. Hunt’s work) we want the subset ordering to coincide
with the Egli-Milner ordering:

Lemma 6.4
For all strict PERs P on D and for all downwards closed PERs Q on D:

P vPER
EM Q⇔ P ≤ Q

2

Proof We assume P is a strict PER on D and that Q is a downwards
closed PER on D.

First we assume P vPER
EM Q and show P ≤ Q. We have (x, y) ∈ P then

from Definition 6.2 part one we get that there exits (x′, y′) ∈ Q such that
(x, y) ≤ (x′, y′). Since Q is downwards closed it can be the case that x′ = x
and y′ = y. Hence we have that P is a subset of Q.

6.3. UNIFORM PERS ON TYPES 185

Next assume P ≤ Q and show P vPER
EM Q. Since P is a subset of Q then

for all (x, y) ∈ P we have (x, y) ∈ Q such that (x, y) ≤ (x, y) which is the
first part of Definition 6.2.

We have (⊥D,⊥D) ∈ P since P is strict. Therefore for all (x, y) ∈ Q we
have (⊥D,⊥D) ≤ (x, y), which is the second part of Definition 6.2.

6.3 Uniform PERs on Types

Although the intuition is to define a class of uniform PERs associated with
a domain it turns out to be more natural to define the classes of uniform
PERs associated with (the standard interpretation of) a type. (For the
purposes of abstract interpretation representations of these PERs can be
used as abstract values and it is too restrictive to insist that (accidentally)
isomorphic domains described by different types should have identical sets
of abstract values). We will continue to refer to (e.g.) “the set of uniform
PERs on ZZ⊥” when this reads better.

We start with a set standard types:

t ::= Int | t → t | t × t

For each type t there is a standard domain DS
t:

DS
Int = ZZ⊥

DS
t1→t2

= DS
t1
→ DS

t2

DS
t1×t2

= DS
t1
×DS

t2

Note here that the function space is not lifted.

A PER on a type is:

Definition 6.5
Let t be a type, then P is a PER on t if P is a PER on DS

t. 2

For each type t we now define a finite set of uniform PERs, U(t), consisting
of PERs on t. A uniform PER on the integers is a PER on the standard
domain of the integers which treats all the integers in the same way. The
reason for only looking at uniform PERs is that in a comportment analysis
we are typically interested in knowing whether an expression evaluates to

186 CHAPTER 6. UNIFORM PERS

an integer or undefined value—not about it being any particular integer.
The uniform PER on the integers are:

Definition 6.6
A PER P on Int is uniform if, whenever π is a permutation on ZZ⊥
(= DS

Int) leaving ⊥ unchanged, then

∀x, y ∈ ZZ⊥ : (x, y) ∈ P ⇔ (πx, πy) ∈ P

2

The set of uniform PERs on the integers, which we call U(Int), thus con-
tains the following 7 elements:

• 1A = ∅
• 2A = {(x, x) | x ∈ ZZ}
• 3A = ZZ× ZZ
• 1B = {(⊥,⊥)}
• 2B = {(x, x) | x ∈ ZZ⊥}
• 3B = ZZ× ZZ ∪ {(⊥,⊥)}
• 4 = ZZ⊥ × ZZ⊥

and they are related by the subset ordering as in Figure 6.1 and the Egli-
Milner ordering as in Figure 6.2. For the strict PERs {1B, 2B, 3B, 4} we
observe that the Egli-Milner ordering coincides with the subset ordering.

Note that U(Int) is intersection and union closed: intersection closedness
is desirable for abstract interpretation as it ensures each (standard) value
has a best abstract approximation. Union closedness ensures that no more
information than necessary is lost on a merge resulting from if then else .

We define the uniform properties P(t) associated with t in the obvious
way:

Definition 6.7
To the set U(t) of uniform PERs there is associated the set P(t) of prop-
erties:

P(t) = {|P | | P ∈ U(t)}

2

The uniform properties of Int are as one might expect:

P(Int) = {∅, {⊥},ZZ,ZZ⊥}

6.3. UNIFORM PERS ON TYPES 187

1A

2A

3A

1B

2B

3B

4

�
��

@
@@

@
@@

�
��

�
��

�
��

@
@@

Figure 6.1: The Subset Ordering on Int

1B

2B

3B

4

2A 3A

�
�
�

@
@
@

Figure 6.2: The Egli-Milner Ordering on Int

188 CHAPTER 6. UNIFORM PERS

Starting from U(Int) we will define uniform PERs compound types. First
we recall constructions which derive PERs at compound types from PERs
of their components:

Definition 6.8
Given a PER P on t1 and a PER Q on t2 we can construct a PER P → Q
on t1 → t2 as:

P → Q = {(f, g) ∈ DS
t1→t2

×DS
t1→t2

| ∀(a, b) ∈ P ⇒ (fa, gb) ∈ Q}

and a PER P × Q on t1 × t2 as:

P × Q = {((a, c), (b, d)) ∈ DS
t1×t2

×DS
t1×t2

| (a, b) ∈ P, (c, d) ∈ Q}

2

Now we define the set of uniform PERs on compound types inductively.
Doing so is facilitated by defining them mutually with a set of basic PERs.

Definition 6.9 The uniform PERs on compound types
Given types t1 and t2 and their associated sets U(t1) and U(t2) of uniform
PERs, we define, at type t1 → t2, the set of basic PERs, B(t1 → t2) as:

B(t1 → t2) = {P → Q | P ∈ U(t1), Q ∈ U(t2)}

and the set of uniform PERs, U(t1 → t2) as:

U(t1 → t2) = {∩S | S ⊆ B(t1 → t2)}.

Similarly we define, at type t1 × t2, the set of basic PERs, B(t1 × t2), as:

B(t1 × t2) = {P × Q | P ∈ U(t1), Q ∈ U(t2)}

and the set of uniform PERs, U(t1 × t2), as:

U(t1 × t2) = {∪S | S ⊆ B(t1 × t2)}.

2

In general B(t1 → t2) is not intersection closed; hence the definition of
U(t1 → t2) as its intersection-closure. Note that U(t1 → t2) is not union
closed but we resist the temptation to form the union-closure because the
given definition preserves the ‘abstract function spaces are function spaces
on abstract values’ property found in [BHA86, EM91, Hun91].

6.3. UNIFORM PERS ON TYPES 189

Fact 6.10
Let t be a type and A and B be members of U(t) then: A∩B ∈ U(t) but
in general A ∪B 6∈ U(t). 2

Section 6.4 considers the uniform PERs and properties on Int → Int and
the need for intersection closure in some detail.

For the Observation 6.12 below we need the following lemma:

Lemma 6.11 Intersections and unions
For PERs P1, P2, . . . Pn on t1 and one PER Q on t2:

(P1 ∪ P2 ∪ · · · ∪ Pn) → Q

= (P1 → Q) ∩ (P2 → Q) ∩ · · · ∩ (Pn → Q)

2

Proof Let

PL = (P1 ∪ P2 ∪ · · · ∪ Pn) → Q

and

PR = (P1 → Q) ∩ (P2 → Q) ∩ · · · ∩ (Pn → Q)

We show PL = PR by first showing PL ⊆ PR and then PL ⊇ PR.

Assume (f, f ′) ∈ PL and further assume (d, d′) ∈ P1 ∪ P2 ∪ · · · ∪ Pn. From
the definition of → we get (fd, f ′d′) ∈ Q. That is

(d, d′) ∈ Pi ⇒ ((fd, f ′d) ∈ Q)
(d, d′) 6∈ Pi ⇒ ((fd, f ′d) ∈ Q)

and hence

(f, f ′) ∈ Pi → Q

so

(f, f ′) ∈ ∩(Pi → Q)

Next we assume that for all 1 ≤ i ≤ n we have (f, f ′) ∈ ∩ (Pi → Q).
That is

(d, d′) ∈ Pi ⇒ ((fd, f ′d) ∈ Q)

190 CHAPTER 6. UNIFORM PERS

and hence

(d, d′) ∈ ∪Pi ⇒ ((fd, f ′d) ∈ Q)

so

(f, f ′) ∈ ∪Pi → Q

as required.

Observation 6.12
We have

U(t1 × t2 → t3)
= {∩S | S ⊆ B(t1 × t2 → t3)}
= {∩S | S ⊆ {P → Q | P ∈ U(t1 × t2), Q ∈ U(t3)}}
= {∩S | S ⊆ {P → Q | P ∈ {∪S1 | S1 ∈ B(t1 × t2)}, Q ∈ U(t3)}}

Consider the uniform PERs on t1 × t2 → t3 but with the restriction that
the product PERs involved are basic PERs. That is look at:

PB = {∩S | S ⊆ {P → Q | P ∈ B(t1 × t2), Q ∈ U(t3)}}

Now since we have

B(t1) ⊆ U(t1)

we arrive at

U(t1 × t2 → t3) ⊇ PB

Next we want to show that U(t1 × t2 → t3) ⊆ PB so that we have

U(t1 × t2 → t3) = PB

Consider a PER in U(t1 × t2 → t3):

(P11 · · · ∪ P1n → Q1) ∩ · · · ∩ (Pk1 ∪ · · · ∪ Pkn → Qk)

where Pij ∈ B(t1 × t2) and Qi ∈ U(t3). By applying Lemma 6.11 we get

(P11 → Q1) ∩ · · · ∩ (P1n → Q1)
∩ · · · ∩ (Pk1 → Qk) ∩ · · · ∩ Pkn → Qk)

So we have that the PER is in PB and therefore U(t1 × t2 → t3) ⊆ PB.

2

6.4. EXAMPLES IN INT→ INT 191

Therefore in this Chapter we will restrict the types to the form

t ::= Int | t × · · · × t → t

This has the sole effect of forbidding products in function results. Indeed,
we could have achieved much the same effect by treating such restricted use
of product types as shorthand for curried functions. However the present
formalism is more natural and enables us to discuss properties of products.
Note that because of Observation 6.12, it suffices to consider B(t1 × t2)
instead of U(t1 × t2); i.e. U(t1 × t2) = B(t1 × t2).

6.4 Examples in Int→ Int

As an example let us take a look at the basic and uniform on Int → Int.
The PERs on Int → Int is a subset of the standard domain of

(Int→ Int)× (Int→ Int)

Given two uniform PERs P and Q on Int a basic PER on the function
space Int → Int can be constructed as:

P → Q

= {(f, g) ∈ (ZZ⊥ → ZZ⊥)× (ZZ⊥ → ZZ⊥) | ∀(a, b) ∈ P ⇒ (fa, gb) ∈ Q}

The set of all basic PERs on the function space Int → Int is:

B(Int→ Int) = {P → Q | P,Q ∈ U(Int)}

The set of all uniform PERs on the function space ZZ⊥ → ZZ⊥ is:

U(Int→ Int) = {∩S | S ⊆ B(Int→ Int)}

The reason why it is not sufficient to look at the basic PERs only is that
not every expression has a least and best PER. Consider the function
λx.if x = ⊥ then ⊥ else 42; we have that

(λx.if x = ⊥ then ⊥ else 42) ∈ |1B → 1B|

and

(λx.if x = ⊥ then ⊥ else 42) ∈ |3A → 2A|.

192 CHAPTER 6. UNIFORM PERS

But the greatest lower bound in the subset ordering of PERs of the form
P → Q of the two PERs 1B → 1B and 3A → 2A is the PER 3B → 1A
which is empty. One of the missing PER is the greatest lower bound in
the subset ordering of 1B → 1B and 3A → 2A.

The properties, P(Int→ Int), on Int→ Int are:

• empty = ∅
• cgt = {f ∈ ZZ⊥ → ZZ⊥ | ∀a, b ∈ ZZ⊥ : fa = fb ∈ ZZ}
• strcon∗† = {f ∈ ZZ⊥ → ZZ⊥ | (∀a, b ∈ ZZ : fa = fb ∈ ZZ)

∧(f⊥ = ⊥)}
• totcon∗ = {f ∈ ZZ⊥ → ZZ⊥ | ∀a, b ∈ ZZ : fa = fb ∈ ZZ}
• ide† = {f ∈ ZZ⊥ → ZZ⊥ | (∀a ∈ ZZ : fa ∈ ZZ) ∧ (f⊥ = ⊥)}
• tot = {f ∈ ZZ⊥ → ZZ⊥ | ∀a ∈ ZZ : fa ∈ ZZ}
• div = {f ∈ ZZ⊥ → ZZ⊥ | ∀a ∈ ZZ⊥ : fa = ⊥}
• cgt|div = {f ∈ ZZ⊥ → ZZ⊥ | ∀a, b ∈ ZZ⊥ : fa = fb ∈ ZZ⊥}
• strcon|div∗† = {f ∈ ZZ⊥ → ZZ⊥ | (∀a, b ∈ ZZ : fa = fb ∈ ZZ⊥)

∧(f⊥ = ⊥)}
• totcon|div∗ = {f ∈ ZZ⊥ → ZZ⊥ | ∀a, b ∈ ZZ : fa = fb ∈ ZZ⊥}
• ide|div† = {f ∈ ZZ⊥ → ZZ⊥ | (∀a ∈ ZZ : fa ∈ ZZ) ∧ f⊥ = ⊥} ∪ div
• tot|div = {f ∈ ZZ⊥ → ZZ⊥ | ∀a ∈ ZZ : fa ∈ ZZ} ∪ div
• strict = {f ∈ ZZ⊥ → ZZ⊥ | f⊥ = ⊥}
• all = {f ∈ ZZ⊥ → ZZ⊥}
and they are related by the subset ordering as in Figure 6.3 and by the Egli-
Milner ordering as in Figure 6.4. In the above, names have been chosen
to match [CC94] except that ‘cgt’ is used for ‘convergent’ leaving ‘con’ to
indicate ‘constant’. Annotations: † indicates a PER added by conjunctive
completion; ∗ indicates a PER not in [CC94]. For PERs in [CC94] the ‘|’
character in the name indicates it is added by disjunctive completion. Note
that [CC94] has an error in that ide|div ⊆ tot|div is omitted from the
Hasse diagrams.

We see that subset ordering coincides with the Egli-Milner ordering for
the strict PERs (i.e. div, cgt|div, strcon|div, totcon|div, ide|div,
tot|div, strict, and all). Also note that some of the PERs are Egli-
Milner equivalent, i.e.

totcon|div ≡EM cgt|div

strict ≡EM ide|div

all ≡EM tot|div

6.4. EXAMPLES IN INT→ INT 193

empty

strcon∗†cgt

totcon∗

tot

ide†

div

strcon|div∗†cgt|div

totcon|div∗

tot|div

ide|div†

strict

all

�
�
�
�
�
��

@
@

@
@@

@
@
@
@

�
�
�
�
��

�
�
�
�
�
��

�
�
�
�
�
�� @

@
@
@

�
�
�
�
�
��

@
@
@

@@

@
@
@
@�

�
�
�
�
��

�
�
�
�
��

�
�
�

�
�

��

@
@
@
@

@
@
@

@@

�
�
�

�
��

�
�
�
�
�
��

Figure 6.3: The Subset Ordering on Int → Int

194 CHAPTER 6. UNIFORM PERS

div

strcon|div∗†

totcon|div∗

cgt|div
strcon∗†

strict
ide|div†

totcon∗
all

tot|div
ide†

cgt tot

@
@

@
@

@
@

@
@

@
@

@
@

�
�
�
�
�
�
�
�
�
��

�
�
�
�
�

@
@
@

@@

�
�
�

@
@
@

�
�
�
��

@
@
@
@
@

�
�
�

��

Figure 6.4: The Egli-Milner Ordering on Int → Int

6.4. EXAMPLES IN INT→ INT 195

It is however not clear how this affects the power of the framework.

One question to be asked is: “Is it useful with all those properties?” The
advantage that we can get from knowing that an expression has a certain
property is that we can optimise the code implementing the expression.
Let f be an function from Int to Int with property:

empty falsity property—which no function possesses.

cgt evaluate f⊥ at compile-time and replace all calls to f with
that result which is a terminating value

strcon if the argument, a, is known to be an integer then f0 can
be evaluated at compile-time and all these calls to f can be
replaced by the result and if the argument is known not to
terminate, then we can replace the calls with the result ⊥

totcon if the argument, a, is know to be an integer then f0 can
be evaluated at compile-time and all these calls to f can be
replaced by the result

ide if the argument is known not to terminate, then we can re-
place the calls with the result ⊥ and in the case where we
know that the argument, a, is an integer then fa can be eval-
uated at compile-time

tot if the argument is known to be an integer then we can evaluate
the call at compile-time

div replace all calls to f be the result ⊥

cgt|div replace all calls to f by f⊥; Egli-Milner equivalent to (and a
subset of) totcon|div

strcon|div if the argument is known not to terminate, then we can re-
place the calls with the result ⊥ and if the argument, a, is
know to be an integer then all these calls can be replaced by
calls of e.g. f0

totcon|div if the argument, a, is know to be an integer then all these
calls can be replaced by calls of e.g. f0

ide|div Egli-Milner equivalent to its convex closure strict compared
to which there do not seem to be additional optimisations

196 CHAPTER 6. UNIFORM PERS

tot|div There appear no optimisations for this property (which is
perhaps unsurprising given that it is Egli-Milner equivalent
to all)

strict transform call-by-need and call-by-name to call-by-value

all truth property—which all functions possess

The next question to ask is: “Does there exist functions with all these
properties?” The function λx.4 has the property cgt and it does not
possess a property less than cgt. The property cgt is the best descrip-
tion of that function. Similarly λx.⊥ has the property div which is the
best. Temporarily suppose e′ is the term true⊕false where ⊕ denotes non-
deterministic choice; then we can construct a term with the best property
cgt|div viz. if e′ then λx.4 else λx.⊥. This argument is more del-
icate in the absence of such an operator since any such e′ must reduce
to true, false or bot. However this fact is not discernible uniformly (for
any analysis method there are undetectable tautologies) and hence for any
analysis method there is such a term with best property cgt|div. The
term fix (λf.λx.if x=0 then 1 else f(x-1)) has the property strcon
as the best one. Now we are able to construct terms for the remainder as
we did for the property cgt|div.

6.5 Comportment Analysis

We assume a simple typed functional language, whose types coincide with
the meta-language types above. Its syntax is

e = x | λx.e | e e | c | if e then e else e | fix e

where c ranges over constants including true and false of type Bool, all
the integers of type Int, and pair, fst, and snd for building and destroying
pairs. Its semantics is given in terms of type-indexed semantic functions
EIt by

EIt [[if e1 then e2 else e3]]ρ

= condI
t (EIBool [[e1]]ρ, EIt [[e2]]ρ, EIt [[e3]]ρ)

EIt [[x]]ρ = ρx

EIt1→t2
[[λx.e]]ρ = lamIt1→t2

(λd.EIt2
[[e]]ρ[d/x])

6.5. COMPORTMENT ANALYSIS 197

EIt2
[[e1e2]]ρ = appIt1→t2

(EIt1→t2
[[e1]]ρ)(EIt1

[[e2]]ρ)

EIt [[c]]ρ = cI

EIt [[fix e]]ρ = fixI
t (EIt→t [[e]]ρ)

where cI (including lamIt1
and appIt1

) are given by an interpretation which
also specifies the interpretation of types as below.

For each type t we have beside the standard domains DS
t an abstract

domain DA
t. We will take DA

t to be the set of names of uniform PERs on
t; e.g. DA

t = N (t). The names of the uniform PERs are defined as follows:

N (Int) = {1A, 2A, 3A, 1B, 2B, 3B, 4}
N (Bool) = {1ABool, 2ABool, 3ABool, 1BBool, 2BBool, 3BBool, 4Bool}

N (t1 → t2) = {[n1,m1; . . . ;nk,mk] | ni ∈ N (t1),mi ∈ N (t2),
k = |N (t1)|}in one name all the ni’s are distinct

N (t1 × t2) = {(n,m) | n ∈ N (t1),m ∈ N (t2)}

Names on the function space t1 → t2 can be seen as a graph of a function
from names on t1 to names on t2. The reason that we can take the names
for products to be pairs of names is that the uniform PERs on products is
just the basic PERs; not unions of them.

For each type there is a function γt1, the logical concretisation map, from
the set of names of PERs on the type, N (t), to the set of uniform PERs
on the type, U(t):

γt1 :: N (t1)→ U(t1)
γInt(1A) = ∅
γInt(2A) = {(x, x) | x ∈ ZZ}
γInt(3A) = ZZ× ZZ
γInt(1B) = {(⊥,⊥)}
γInt(2B) = {(x, x) | x ∈ ZZ⊥}
γInt(3B) = ZZ× ZZ ∪ {(⊥,⊥)}
γInt(4) = ZZ⊥ × ZZ⊥

γBool(1ABool) = ∅
γBool(2ABool) = {(x, x) | x ∈ Bool}
γBool(3ABool) = Bool× Bool

198 CHAPTER 6. UNIFORM PERS

γBool(1BBool) = {(⊥,⊥)}
γBool(2BBool) = {(x, x) | x ∈ Bool⊥}
γBool(3BBool) = Bool× Bool ∪ {(⊥,⊥)}
γBool(4Bool) = Bool⊥ × Bool⊥

γt1→t2([n1,m1; . . . ;nk,mk]) = (γt1(n1)→ γt2 (m1)) ∩ . . .
. . . ∩ (γt1(nk) → γt2 (mk))

γt1×t2((n,m)) = γt1 (n) × γt2 (m)

When using this representation (of functions by graphs) it is important to
recall Hunt’s observation that the γ’s are not injective — two (extension-
ally) different functions between properties may describe the same PER on
the function space.

The Egli-Milner ordering on names of uniform PERs is inherited from the
Egli-Milner ordering on the uniform PERs:

Definition 6.13
Let n and m be in N (t1) then n vNEM m if γt1(n) vPER

EM γt1(m) 2

Some other helpful functions are displayed in Figure 6.5 and 6.6.

πS
1 :: DS

t1×t2
→ DS

t1
πS

1((n,m)) = n
πS

2 :: DS
t1×t2

→ DS
t2

πS
2((n,m)) = m

πA
1 :: DA

t1×t2
→ DA

t1
πA

1 ((n,m)) = n
πA

2 :: DA
t1×t2

→ DA
t2

πA
2 ((n,m)) = m

Figure 6.5: The Projection Functions

The application and projection functions are monotonic and continues:

Lemma 6.14
The two families of functions appS

t1→t2
and appA

t1→t2
are monotonic.

2

Proof From domain theory we know that appS
t is monotonic. We prove

that appA
t is monotonic by induction on the type t.

For the details see Appendix page 433.

6.5. COMPORTMENT ANALYSIS 199

appS
t1→t2

:: DS
t1→t2

→ DS
t1
→ DS

t2
appS

t1→t2
fx = fx

appA
t1→t2

:: DA
t1→t2

→ DA
t1
→ DA

t2
appA

t1→t2
[n1,m1; . . . ;nk,mk]ni = mi

lamS
t1→t2

:: (DS
t1
→ DS

t2
) → DS

t1→t2
lamS

t1→t2
f = f

lamA
t1→t2

:: (DA
t1
→ DA

t2
) → DA

t1→t2
lamA

t1→t2
f = [n1, fn1; . . . ;nk, fnk],

where (ni ∈ DA
t1

) ∧
(k = |DA

t1
|)

fixS
t1

:: DS
t1→t1

→ DS
t1

fixS
t1
f = t {di}

d0 = ⊥DS
t1

di+1 = appS
t1→t1

fdi

fixA
t1

:: DA
t1→t1

→ DA
t1

fixA
t1
n = tNEM {di}

d0 = ⊥EMN
DA
t1

di+1 = appA
t1→t1

ndi

condS
t :: DS

Bool → DS
t → DS

t → DS
t

condS
t (d1, d2, d3) =

d2, if d1 = true
d3, if d1 = false
⊥t, if d1 = ⊥Bool

condA
t :: DA

Bool → DA
t → DA

t → DA
t

condA
t (d1, d2, d3) =

d2 tNSubset d3, if d1 is strict
⊥EMN
DA
t
tNSubset d2 tNSubset d3, otherwise

Figure 6.6: Auxiliary Functions

200 CHAPTER 6. UNIFORM PERS

Lemma 6.15
The functions πS

1 , πA
1 , πS

2 , and πA
2 are monotonic. 2

Proof From domain theory we know that πS
1 and πS

2 are monotonic. We
prove that πA

1 and πA
2 are monotonic by induction on the type t1 × t2.

For the details see Appendix page 434.

Lemma 6.16
The functions appS

t, appA
t, πS

1 , πA
1 , πS

2 , and πA
2 are continues. 2

Proof It is a consequence of Lemma 6.14 and 6.15 and by recalling that
monotonic functions from a space of finite height are continuous.

6.5.1 Correctness of the Analysis

Now we can define the relations by:

(d, d′) ∈ γt1(a)⇔ (d, d′) Rt1 a

Definition 6.17 Ternary Logical Relations
A family R of type-indexed relations (Rt) is logical if for all t1 and t2:

(f, f ′) Rt1→t2 h

⇔ (∀d, d′ ∈ DS
t1
,∀a ∈ DA

t1
: (d, d′) Rt1 a⇔

(appS
t1→t2

fd, appS
t1→t2

f ′d′) Rt2 (appA
t1→t2

ha))

and

(p1, p2) Rt1×t2 p ⇔ (πS
1 (p1), πS

1 (p2)) Rt1 π
A
1 (p) ∧

(πS
2 (p1), πS

2 (p2)) Rt2 π
A
2 (p)

2

Proportion 6.18
The relation R is logical. 2

Proof We prove that R is a logical relation by induction on the type.

For the details see Appendix page 435.

Proportion 6.19
The relation R is inductive. 2

6.5. COMPORTMENT ANALYSIS 201

Proof

We prove that the relation R is inductive by induction on the type.

For the details see Appendix page 437.

The standard fixpoint and the abstract fixpoint of related values are re-
lated:

Lemma 6.20
Let (f, f) Rt→t h then (fixS

tf, fix
S
tf) Rt (fixA

th) 2

Proof We assume (f, f) Rt→t h. First we show that (dS
i , d

S
i) Rt dA

i holds
for all i by induction on i. Next from Lemma 6.14 we know that appS and
appA are monotonic therefore are {dS

i } and {dA
i } chains and since R is

inductive (Proposition 6.19) we have

(ti{dS
i },ti{dS

i }) Rt (tNEM{dA
i })

as required.

The case i = 0 : We want to show (⊥DS
t
,⊥DS

t
) Rt1 ⊥

EMN
DA
t

that is

(⊥DS
t
,⊥DS

t
) ∈ γt(⊥EMN

DA
t

)

This is true since γt(⊥EMN
DA
t

) is strict.

The case i+ 1 : Now assume (dS
i , d

S
i) Rt dA

i and we will show

(dS
i+1, d

S
i+1) Rt dA

i+1

We have

dS
i+1 = appS

t fd
S
i

dA
i+1 = appA

t hd
A
i

since R is logical (Proposition 6.18) we have

(appS
t fd

S
i , app

S
t fd

S
i) Rt appA

t hd
A
i

as required.

202 CHAPTER 6. UNIFORM PERS

Lemma 6.21
Let (f, f) Rt1→t2 h and (d, d) Rt1 a then

(appS
t1→t2

fd, appS
t1→t2

fd) Rt2 (appA
t1→t2

ha)

2

Proof We have

(f, f) Rt1→t2 h

(d, d) Rt1 a

from since R is a logical relation (Proposition 6.18) we get

(appS
t1→t2

fd, appS
t1→t2

fd) Rt2 (appA
t1→t2

ha)

as required.

Lemma 6.22
Let (d1, d1) RBool a1, (d2, d2) Rt a2, and (d3, d3) Rt a3 then

(condS
t (d1, d2, d3), condS

t (d1, d2, d3)) Rt condA
t (a1, a2, a3)

2

Proof We assume (d1, d1) RBool a1, (d2, d2) Rt a2, and (d3, d3) Rt a3
and show by induction on d1 that

(condS
t (d1, d2, d3), condS

t (d1, d2, d3)) Rt condA
t (a1, a2, a3)

holds. We have

condS
t (d1, d2, d3) =

d2, if d1 = true
d3, if d1 = false
⊥t, if d1 = ⊥Bool

condA
t (d1, d2, d3) =

⊥EMN
DA
t
tNSubset d2 tNSubset d3, if d1 is not strict

d2 tNSubset d3, if d1 is strict

The case d1 = ⊥Bool: We have

condS
t (d1, d2, d3) = ⊥t

6.5. COMPORTMENT ANALYSIS 203

since (d1, d1) RBool a1 is must be the case that a1 is strict and hence

condA
t (d1, d2, d3) = ⊥EMN

DA
t
tNSubset d2 tNSubset d3

and clearly

(⊥t,⊥t) Rt ⊥EMN
DA
t
tNEM d2 tNEM d3

as required.

The case d1 = true: We have

condS
t (d1, d2, d3) = d2

For the assumption we have

(d2, d2) Rt a2

hence we have

(d2, d2) Rt a2 tNSubset d3

and

(d2, d2) Rt ⊥EMN
DA
t
tNEM a2 tNSubset d3

and therefore

(d2, d2) Rt condA
t (a1, a2, a3)

as required.

The case d1 = false: Analogous to the case above.

Now the soundness and completeness of the analysis is:

Theorem 6.23
Let ρ be a standard environment and let δ be an abstract environment.
Suppose for all constants c of type t′ we have (cS, cS) Rt′ c

A then for all
t and e we have

(ρ, ρ) R δ

⇓
(ESt [[e]]ρ, ESt [[e]]ρ) Rt (EAt [[e]]δ)

2

204 CHAPTER 6. UNIFORM PERS

Proof We prove the Theorem is by induction on the term.

For the details see Appendix page 442.

Example 6.24
First we will show that the analysis can discover that λx.4 is a total function
and that the fixpoint of λx.4 is a integer. Next we show that the function
λx.⊥Int is divergent and the fixpoint of it is bottom. We calculate

EAInt→Int [[λx.4]]δ
= lamA

Int→Int (λd.EAInt [[4]]δ[d/x])
= lamA

Int→Int (λd.4A)
= lamA

Int→Int (λd.2A)
= [1A, 2A; 2A, 2A; 3A, 2A; 1B, 2A; 2B, 2A; 3B, 2A; 4, 2A]

Now we have

ESInt→Int [[λx.4]]ρ ∈ P(γInt→Int(EAInt→Int [[λx.4]]δ))
= cgt

Recall that cgt is be best description of the function.

We also have

EAInt [[fix λx.4]]δ = fixA
Int→Int (EAInt→Int [[λx.4]]δ)

and

d0 = 1B
d1 = appA

Int→Int (EAInt→Int [[λx.4]]δ)(1B)
= 2A

d2 = appA
Int→Int (EAInt→Int [[λx.4]]δ)(1B)

= 2A

and hence

EAInt [[fix λx.4]]δ = 2A

which is be best description of 4.

6.6. SUMMARY 205

We calculate

EAInt→Int [[λx.⊥Int]]δ
= lamA

Int→Int (λd.EAInt [[⊥Int]]δ[d/x])

= lamA
Int→Int (λd.⊥IntA)

= lamA
Int→Int (λd.1B)

= [1A, 1B; 2A, 1B; 3A, 1B; 1B, 1B; 2B, 1B; 3B, 1B; 4, 1B]

and hence we have

ESInt→Int [[λx.⊥Int]]ρ ∈ P(γInt→Int(EAInt→Int [[λx.⊥Int]]δ))
= div

which is the best description of this function.

We also have

EAInt [[fix λx.⊥Int]]δ = fixA
Int→Int (EAInt→Int [[λx.⊥Int]]δ)

and

d0 = 1B
d1 = appA

Int→Int (EAInt [[fix λx.⊥Int]])1B
= 1B

d2 = appA
Int→Int (EAInt [[fix λx.⊥Int]])1B

= 1B

and hence

EAInt [[fix λx.⊥Int]]δ = 1B

which is the best description of ⊥Int. 2

6.6 Summary

We have defined the notion of uniform PERs on the integers and by fol-
lowing the framework of Hunt [Hun91] we have lifted the uniform PERs to
higher types. In the work of Hunt all the PERs are strict. Here we have
encountered PERs which are not strict; since they are useful too, we had

206 CHAPTER 6. UNIFORM PERS

to handle the fixpoint iteration in another way. We defined the Egli-Milner
ordering on PERs and used it for the fixpoint iteration.

More work is need to clarify why our approach yields four extra properties
at type Int→ Int compared to the approach in [CC94]. The significance of
some of the properties to be Egli-Milner equivalent also need to be worked
out.

This framework is for the un-lifted function space; future work will try to
lift the framework to lifted function space — to be more in the line with
the analyses in Chapter 2 and 3.

BHA-properties

Here we show that the strictness properties of Burn, Hankin and Abram-
sky [BHA86] naturally embed in the uniform PER properties presented
here.

To be precise, let U′(Int) be given by

{1B = {(⊥,⊥)}, 2B = {(x, x) | x ∈ ZZ⊥}}

and U′(t1 → t2) be defined inductively in the same manner as U(t1 → t2).
Then for all types t we have U′(t)⊆ U(t) and moreover U′(t) is isomorphic
to BHA (t). Here BHA (t) are the set of strictness properties defined by
Burn, Hankin and Abramsky [BHA86]:

BHA (Int) = 2 = {0, 1}
BHA (t1 → t2) = BHA (t1)→ BHA (t2)

Note that this embedding can also be seen as selecting uniform PERs
representatives of the uniform ideals of [EM91].

Proportion 6.25
The set U′(t) of uniform PERs is isomorphic to BHA (t). 2

Proof The prove that U′(t) and BHA (t) are isomorphic by induction on
the type.

The case Int: We have

U′(Int) = {1B, 2B}
BHA (Int) = {0, 1}

6.6. SUMMARY 207

and they are clearly isomorphic.

The case t1 → t2: By applying the induction hypothesis to t1 and t2

we get that U′(t1) and BHA (t1) are isomorphic and that U′(t2) and
BHA (t2) are isomorphic. We have

BHA (t1 → t2) = BHA (t1)→ BHA (t2)

and

U′(t1 → t2) = {∩S | S ⊆ {P → Q | P ∈ U′(t1), Q ∈ U′(t2)}}

Let f1 be an isomorphism between BHA (t1) and U′(t1) and let f2 be
an isomorphism between BHA (t2) and U′(t2). Now for any function
f ∈ BHA (t1 → t2) we define the PER

Pf =
⋂
{f1x → f2(fx) | x ∈ BHA (t1)}

which is an isomorphism between BHA (t1 → t2) and U′(t1 → t2)
as required.

Strictness and Totality Types

All the properties of Chapter 2 and 3 can be modelled by the uniform PERs
except for two: the strictness and totality type, ((ut1 → ut2)b), expresses
the property of knowing that a function does not have a WHNF and the
property ((ut1 → ut2)n) of knowing that a function does have a WHNF.
This is not a lack of the uniform PER notion, but due to the fact that we
have used non-lifted function spaces in which λx.⊥ = ⊥ and hence WHNF
properties are inexpressible.

Let the ideal-based properties be as in (6.1), and the projection based prop-
erties are as in (6.2). For Int → Int we have summarised the approaches
in Table 6.1.

208 CHAPTER 6. UNIFORM PERS

PER ideal (6.1) projections (6.2) Chapter 3
empty

cgt Intb → Intn,
Int> → Intn

strcon
totcon
ide
tot Intn → Intn

div WZZ⊥,{⊥} Int> → Intb,
Intn → Intb

cgt|div Wλx.x,λx.⊥
strcon|div
totcon|div
ide
tot|div

strict W{⊥},{⊥} Intb → Intb

all WZZ⊥,ZZ⊥, Wλx.x,λx.x, Int> → Int>,
W{⊥},ZZ⊥ Wλx.⊥,λx.⊥, Intn → Int>,

Wλx.⊥,λx.x Intb → Int>,
(Int→ Int)>

(Int→ Int)b

(Int→ Int)n

Table 6.1: Properties on Int → Int

Chapter 7

Conclusion

We conclude by summarise what we have done in this Thesis and discuss
some future work.

7.1 Summary

Chapter 1 defines a general annotated type system. The strictness and
totality analysis of Chapter 2 is an instance of this general annotated type
system. In Chapter 3 we have extended this analysis to “full” conjunction.
In Chapter 4 we then construct an type checking algorithm for the analysis
of Chapter 3. The analysis of Chapter 5 is also an instance of the general
annotated type system in Chapter 1. The analysis of Chapter 6 is speci-
fied using abstract interpretations, and the program analysis information
includes strictness, totality, and constancy.

We will do two summaries: one that draws lines between the analyses
constructed, and one that focus of the different techniques used.

7.1.1 Summary of Analyses

In Chapter 1 we have reviewed some of the program analyses found in
the literature. We have focussed on the analyses specified by an annotated
type system. The analyses we saw was strictness analysis, usage analysis,
control flow analysis, and binding time analysis. They can all be seen as
instances of a general annotated type system.

209

210 CHAPTER 7. CONCLUSION

In Chapter 2 we defined a combined strictness and totality analysis. The
functions that we consider are monotonic. We wanted that to be reflected
by the type system. In order to state the monotonicity rule we had to define
the ↓-operation on the strictness and totality types. However, it was not
clear how to define the ↓-operation on conjunction types, therefore we only
allowed conjunctions of annotated types at the top-level. We showed the
analysis sound with respect to a natural style operational semantics.

In Chapter 3 the analysis from Chapter 2 was extended to allow full
conjunction. By letting ↓ be part of the syntax as a type constructor,
we avoided the problem of defining the ↓-operation on conjunctions. The
reason for not doing this already in Chapter 2 was that we cannot define
validity for types of the form ↓t using the operational semantics, however
this is easily done in the denotational semantics. We showed the analysis
sound with respect to the denotational semantics.

In Chapter 4 we then constructed an algorithm for checking the strictness
and totality types from Chapter 3. The algorithm was constructed using
the lazy type approach by Hankin and Le Métayer [HM94a]. The algorithm
will given a term and an annotated type tell whether the term has the type.
Our algorithm is only sound with respect to the analysis. The reason that
our algorithm is not complete is found in the fact that we do not have the
equivalence:

↓(t1 ∧ t2)≡D ↓t1 ∧ ↓t2

Which is the same problem we had in Chapter 2 in defining the ↓-operation
on conjunctions.

In Chapter 5 we recalled the binding time analysis of Nielson and Niel-
son [NN92] and constructed an more efficient algorithm for inferring the
annotated types. This algorithm differs from the one constructed in Chap-
ter 4 in that it finds an annotated type for the term and a set of constraints
that has to be fulfilled in order for the term to have the inferred type. The
constraints are then solved and the solution applied to the annotated type;
i.e. the algorithm of Chapter 4 is a type checking algorithm, whereas the
algorithm here is a type inference algorithm. The complexity of the algo-
rithm is O(n4) where n is the size of the term.

In Chapter 6 we have constructed an comportment analysis, i.e. a com-
bined strictness, totality, and constancy analysis. We are using the names
of the uniform PERs for the abstract interpretation. We have extend the

7.1. SUMMARY 211

framework of Hunt [Hun91] to allow non-strict PERs, thereby defined the
Egli-Milner ordering on PERs.

7.1.2 Summary of Techniques

We will compare the different approaches to specifying the analyses, to
proving the analyses sound, and to implementing the analyses.

Specification of Program Analyses

In this thesis we have seen two different ways of specifying a program anal-
ysis: in Chapter 2, 3 and 5 we specified the analyses by annotated type
systems and in Chapter 6 we specified the analysis by abstract interpreta-
tion. In the annotated type system approach we define annotated types:

t ::= Bs1 | ts2 | uts3 | t →s4 t | t ∧ t
ut ::= B | ut1 → ut2

We construct an inference system with judgements of the form

A ` e : t

saying that the term e has the type t under the assumptions A. The
assumptions give annotated types to the free variables in the term. The
analysis in Chapter 5 does not quite match this description: the judgement
is of the form:

A ` e : t : b

saying that the term e has the type t under the assumptions A for the free
variables in e and the overall binding time b. However we can write it is
as

A ` e : tb

and we are back in line.

The analysis in Chapter 6 is specified by abstract interpretation. We define
a function that gives abstract values to the terms in the style of denota-
tional semantics:

Dut = {names of uniform PERs on ut}

212 CHAPTER 7. CONCLUSION

and we define a function EIut [[.]] that gives abstract values to the terms:

EIut [[.]] :: Exp→ (V ar ×D)n→ Dut

where Exp is the set of terms, V ar is the set of variables, and n is the
number of free variables in the term.

Soundness of the Analyses

Chapter Specification of Specification of Proof-technique
Analysis Semantics

2 inference system inference system induction on `
3 inference system denotational induction on `
6 denotational denotational induction on t

Table 7.1: Proof Techniques

The specifications of the analyses must be proved sound with respect to
the semantics of the language. We have seen two different ways of spec-
ifying the semantics: in Chapter 2 we defined a natural-style operational
semantics (a big-step semantics) and in Chapter 3 and 6 we defined a de-
notational semantics. The proof-techniques used in the three chapters are
different: in Chapter 2 both the analysis and the semantics are specified
by inference systems, and we prove soundness by structural induction on
the proof-tree for the analysis. In Chapter 3 the analysis is specified by
an inference system and we have specified a denotational semantics. The
proof is still done by induction on the proof-tree for the analysis. In Chap-
ter 6 both the analysis and the semantics is specified as an interpretation
of the language; an abstract interpretation and a standard interpretation.
The proof is done by induction on the standard type of the term. This is
summarised in Table 7.1.

One might expect that the proofs in Chapter 2 and Chapter 6 are the most
easy ones since the approach of specifying the analysis and the semantics
match. This is true for the proof in Chapter 6. However the proof of
Chapter 2 is much more involved than that of Chapter 3. The reason
is that where the denotational semantics gives an straightforward way of

7.2. FUTURE WORK 213

reasoning about fixpoints, we need in Chapter 2 to introduce special terms
telling how many times it is allowed to unfold the fixpoint.

Algorithms for Program Analyses

A specification of an analysis is not practically useful before we have an
algorithm implementing it. One advantage of specifying the analysis by
abstract interpretation is that it suggests an algorithm at the same time:
Just go ahead an implement the specification. But the resulting algorithm
will in most cases be very inefficient due to the fixpoint computation.

Now the advantage of specifying the analysis by an inference system is
that it does not suggest an algorithm, so we are free to choose whatever
approach to construct the algorithm that we like.

In this thesis we have seen two approaches to standard type inference al-
gorithms, i.e. the algorithm T by Damas [Dam85] and the algorithm W
by [Mil78]. These algorithms will find the standard type that can be in-
ferred for the given term. The algorithm for binding time analysis con-
structed in Chapter 5 is a variation of the algorithm T . It does not only
find the type of the term but also a set of constraints that has to be satis-
fied in order for the term to have the calculated type. Next an algorithm
for solving the set of constraints is constructed. The solution that we are
interested in is the one that is minimal in the sense that as few things as
possible is going to be of run-time kind; i.e. as much as possible is done at
compile-time. The algorithm constructed in Chapter 4 is different: given
both the term and the type it will decide whether the term can have this
type or not.

7.2 Future Work

The developments here was mostly done for the lambda calculus with con-
stants and fixpoints. Real programming languages like Miranda [Tur85],
Lazy ML and Haskell also includes lists, pairs, algebraic data-types, poly-
morphism, in addition to the lambda calculus.

The binding time analysis of Chapter 5 is already extended to products
and lists in [Sol93]. The presentation of the analysis in Chapter 6 is with

214 CHAPTER 7. CONCLUSION

products, however we need to redo the development for the lifted function
space. The work of Hunt [Hun91] is extended to sum types and recursive
types.

Extending the analysis of Chapter 3 to lists can be inspired by the four-
point domain of Wadler [Wad87]: we will have

ut ::= · · · | ut list

t ::= · · · | t list

We may interpret the type (ut list)n as any list of standard type ut list
except the bottom list, e.g. the lists [1,3], [1, . . ., and [1, ⊥] are list of this
type, (ut list)b as the bottom list, (Intb list) as the infinite lists or
lists with bottom elements of standard type Int list, e.g. [1, . . . and [⊥,
⊥], and (Intn list) as the finite list with no bottom elements, e.g. [1,3]
and [].

Both Jensen [Jen92a] and Benton [Ben93] have extended their analyses to
algebraic data-types.

Polymorphism can be include at two different levels: in the underlying type
system and in the annotations. We might have

ut ::= · · · | α
t ::= · · · | αβ | utβ

where α is a standard type variable, β is a annotation variable. Now we
can give the following strictness and totality types to the identify function
(λx.x):

∀α.α→ α

∀β.utβ → utβ

∀α, β.αβ → αβ

∀α.αn → αn

among others.

7.2.1 Multi-paradigmatic Languages

Multi-paradigmatic languages like CML [Rep91] and Facile [PGM90, TLP+93],
which combines functional and concurrent programming, are used more

7.2. FUTURE WORK 215

and more. Hence there is a growing need for analyses for these languages.
First it could be interesting to do the development in Chapter 2 for an ea-
ger language, like ML, since CML and Facile are build on top of standard
ML. Note that for an eager language strictness analysis does not make any
sense, however neededness analysis and the termination analysis are useful.
We can then extend the types with the type of a channel:

ut ::= · · · | ut channel

and the terms with the concurrency primitives:

e ::= · · · | spawn | channel | accept | send

The next step is to extend the annotated types:

t ::= · · · | t channel

We can interpret the type (Intn channel) as the type of a channel where
only terms of type Intn may be communicated, i.e. terms received on this
channel will have the type Intn. Communication over a channel of the type
(ut channel)n will always terminate, i.e. it is always possible to receive a
value on this channel.

The semantics of multi-paradigmatic languages like CML [Rep91] and
Facile [PGM90, TLP+93] are easy to specify by an inference systems (op-
erational semantics) but their semantics are difficult to specify as an de-
notational semantics. So in order to construct program analyses for multi-
paradigmatic languages we need to be able to prove the analyses sound
with respect to a operational semantics, i.e. the proof-technique developed
in Chapter 2 may turn out to be useful.

216 CHAPTER 7. CONCLUSION

Bibliography

[Abr90] Samson Abramsky. Abstract interpretation, logical relations
and Kan extensions. Journal of Logic and Computation, 1(1):5–
39, 1990.

[Amt93a] Torben Amtoft. Minimal thunkification. In Proceedings
WSA’93, LNCS 724, pages 218–229, 1993. Available by WWW
from
http://www.daimi.aau.dk/˜tamtoft/Papers/WSA93.ps.Z.

[Amt93b] Torben Amtoft. Strictness types: An inference algorithm and an
application. Technical Report PB-448, DAIMI, 1993. Available
by WWW from
http://www.daimi.aau.dk/˜tamtoft/Papers/PB448.ps.Z.

[Amt94] Torben Amtoft. Local type reconstruction by means of symbolic
fixed point iterationa. In Proceedings of ESOP’94, LNCS 788,
pages 43–57, 1994. Available by WWW from
http://www.daimi.aau.dk/˜tamtoft/Papers/ESOP94.ps.Z.

[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers — Principles,
Techniques and Tools. Addison-Wesley, 1986.

[Ben93] Nick Benton. Strictness Analysis of Functional Programs. PhD
thesis, University of Cambridge, 1993. Available as Technical
Report No. 309.

[BHA86] Geoffrey L. Burn, Chris Hankin, and Samson Abramsky. Strict-
ness Analysis for Higher-order Functions. Science of Computer
Programming, 7:249–278, 1986.

[Bon90] Anders Bondorf. Automatic autoprojection of higher order re-
cursive equations. In Proceedings of ESOP’90, LNCS 432, pages
70–87, 1990.

217

218 BIBLIOGRAPHY

[CC94] Patrick Cousot and Radhia Cousot. Higher-order abstract inter-
pretation (and application to comportment analysis generalizing
strictness, termination, projection and per analysis of functional
languages), invited paper. In Proceedings of the 1994 Interna-
tional Conference on Computer Languages, ICCL’94, pages 95–
112. IEEE Computer Society Press, 1994. Available by WWW
from lix.polytechnique.fr.

[Con90] C. Consel. Binding time analysis for higher order untyped func-
tional languages. In Proceedings of LFP’90, pages ???–???, 1990.

[Dam85] Luis Damas. Type Assignment in Programming Languages. PhD
thesis, University of Edinburgh, Scotland, 1985.

[Des86] J. Despeyroux. Proof of translation in natural semantics. In
Sumposium on Logic in Computer Science, 1986.

[EM91] Christine Ernoult and Alan Mycroft. Uniform ideals and strict-
ness analysis. In Proceeding of ICALP’91, LNCS 510, 1991.

[FM88] You-Chin Fuh and Prateek Mishra. Type Inference with Sub-
types. In Proceeding of ESOP’88, LNCS 300, pages 94–114,
1988.

[FM89] You-Chin Fuh and Prateek Mishra. Polymorphic subtype in-
ference: closing the theory-pratice gap. In Proceeding of TAP-
SOFT’89, LNCS 352, pages 167–183, 1989.

[FM90] You-Chin Fuh and Prateek Mishra. Type Inference with Sub-
types. Theoretical Computer Science, pages 155–175, 1990.

[Hen91] Fritz Henglein. Efficient type inference for higher-order binding
time analysis. In Proceedings of FPCA’91, LNCS 523, pages
448–472, 1991.

[Hen94] Fritz Henglein. Iterative fixed point computation for type-based
strictness analysis. In Proceedings of SAS’94, LNCS 864, pages
395–407, 1994.

[HM94a] Chris Hankin and Daniel Le Métayer. Deriving algorithms from
type inference systems: Application to strictness analysis. In
Proceedings of POPL’94, pages 202 – 212, 1994.

BIBLIOGRAPHY 219

[HM94b] Fritz Henglein and Christian Mossin. Polymorphic binding-time
analysis. In Proceeding of ESOP’94, LNCS 788, pages 278–301,
1994.

[HS91] Sebastian Hunt and David Sands. Binding time analysis: A new
perspective. In Proceedings of PEPM’91, pages 154–165, 1991.

[Hun91] Sebastian Hunt. Abstract Interpretation of Functional Lan-
guages: From Theory to Practice. PhD thesis, University of
London, 1991.

[Jen91] Thomas P. Jensen. Strictness analysis in logical form. In Pro-
ceedings of FPCA’91, LNCS 523, pages 352 – 366, 1991.

[Jen92a] Thomas P. Jensen. Abstract Interpretation In Logical Form.
PhD thesis, University of London, Imperial College, 1992.

[Jen92b] Thomas P. Jensen. Disjunctive strictness analysis. In Proceed-
ings of LICS’92, pages 174 – 185, 1992.

[Jør92] Jesper Jørgensen. Generating a compiler for a lazy language by
partial evaluation. In Proceedings of POPL’92, pages 258–268,
1992.

[KM89] Tsung-Min Kuo and Prateek Mishra. Strictness analysis: A new
perspective based on type inference. In Proceedings of FPCA’89,
pages 260 – 272. ACM Press, 1989.

[Lau91] John Launchbury. Projection Factorization in Partial Evalua-
tion. Cambridge University Press, 1991.

[LM91] Allen Leung and Prateek Mishra. Reasoning about Simple and
Exhaustive Demand in Higher-Order Lazy Languages. In Pro-
ceedings of FPCA’91, LNCS 523, 1991.

[Mil78] Robin Milner. A Theory of Type Polymorphism in Program-
ming. Journal of Computer and System Sciences, 17:348 – 375,
1978.

[Mit91] John C. Mitchell. Type inference with simple subtypes. Journal
of Functional Programming, 1(3):245–285, 1991.

[MN83] Alan Mycroft and Flemming Nielson. Strong abstract interpre-
tation using power domain (extended abstract). In Proceedings
of ICALP’83, LNCS 154, 1983.

220 BIBLIOGRAPHY

[MS95] Alan Mycroft and Kirsten Lackner Solberg. Uniform PERs and
comportment analysis. In Proceedings of PLILP’95, LNCS 982,
pages 169–187, 1995.

[Myc80] Alan Mycroft. The theory and practice of transforming call-by-
need into call-by-value. In Proceedings of the 4th International
Symposium on Programming, LNCS 83, pages 269–281, 1980.

[Myc81] Alan Mycroft. Abstract Interpretation and Optimising Trans-
formation for Applicative programs. PhD thesis, University of
Edinburgh, Scotland, 1981.

[NN88] Hanne Riis Nielson and Flemming Nielson. Automatic binding
time analysis for a typed lambda calculus. Science of Computer
Programming, pages 139–176, 1988.

[NN89] Hanne Riis Nielson and Flemming Nielson. Transformations on
higher-order functions. In Proceedings of FPCA’89, pages 129 –
143, 1989.

[NN92] Flemming Nielson and Hanne Riis Nielson. Two-Level Func-
tional Languages. Cambridge University Press, 1992.

[NN95] Flemming Nielson and Hanne Riis Nielson. Termination analysis
based on operational semantics. Technical Report DAIMI PB-
492, Aarhus University, 1995.

[PGM90] Sanjiva Prasad, Alessandro Giacalone, and Prateek Mishra. Op-
erational and algebraic semantics for Facile: A symmetric inte-
gration of concurrent and functional programming. In ICALP
90, 1990.

[Plo77] Gordon D. Plotkin. LCF considered as a programming language.
Theoretical Computer Science, 5:223–255, 1977.

[Plo81] Gordon D. Plotkin. A structural approach to operational se-
mantics. Technical report, Aarhus University, 1981. DAIMI
FN-19.

[Rep91] John H. Reppy. CML: A higher-order concurrent language. In
Proceedings of the Conference on Programming Language Design
and Implementation, June 1991.

BIBLIOGRAPHY 221

[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution
principle. Journal of the ACM, 12(1):23–41, 1965.

[San90] David Sands. Complexity analysis for a lazy higher-order lan-
guage. In Proceedings of ESOP’90, LNCS 432, pages 361–376,
1990.

[SNN92] Kirsten Lackner Solberg, Hanne Riis Nielson, and Flemming
Nielson. Inference Systems for Binding Time Analysis. In Pro-
ceedings of Workshop on Static Analysis ’92, pages 247 – 254,
1992.

[SNN94] Kirsten Lackner Solberg, Hanne Riis Nielson, and Flemming
Nielson. Strictness and totality analysis. In Proceedings of
SAS’94, LNCS 864, pages 408 – 422, 1994.

[Sol93] Kirsten Lackner Solberg. Inference systems for binding time
analysis. Technical Report 25, Odense University, Denmark,
1993. ISSN No. 0903-3920.

[Sol95] Kirsten Lackner Solberg. Strictness and Totality Analysis with
Conjunction. In Proceedings of TAPSOFT’95, LNCS 915, pages
501 – 515, 1995.

[Tan94] Yan-Mei Tang. Control-Flow Analysis by Effect Systems and
Abstract Interpretation. PhD thesis, Ecole National Superieure
des Mines de Paris, 1994.

[TJ92a] Jean-Pierre Talpin and Pierre Jouvelot. Polymorphic type, re-
gion and effect inference. Journal of Functional Programming,
2(3):162 – 173, 1992.

[TJ92b] Jean-Pierre Talpin and Pierre Jouvelot. The type and effect
disipline. In Proceedings of LICS’92, 1992.

[TLP+93] Bent Thomsen, Lone Leth, Sanjiva Prasad, Tsung-Min Kuo,
Andre Kramer, Fritz Knabe, and Alessandro Giacalone. Facile
Antigua Release Programming Guide. Technical Report ECRC-
93-20, European Computer-industry Research Centre, Munich,
Germany, 1993.

[TT94] Mads Tofte and Jean-Pierre Talpin. Data region inference for
polymorphic functional languages. In Proceedings of POPL’94,
pages 188 – 201, 1994.

222 BIBLIOGRAPHY

[Tur85] D. A. Turner. Miranda: A non-strict functional language with
polymorphic types. In Proceedings of FPCA’85, LNCS 201,
pages 1 – 16, 1985.

[Wad87] Phil Wadler. Strictness analysis on non-flat domains (by ab-
stract interpretation over finite domains. In Abstract Interpre-
tation of Declarative Languages, Samson Abramsky and Chris
Hankin (eds.), pages 266 – 275. Ellis Horwood, 1987.

[Wad91] Phil Wadler. Is there a use for linear logic? In Proceedings of
PEPM’91, pages 255 – 273, 1991.

[WBF93] David A. Wright and Clement A. Baker-Finch. Usage analysis
with natural reduction types. In Proceeding of WSA’93, LNCS
724, pages 254–266, 1993.

[WH87] Phil Wadler and John Hughes. Projections for strictness analy-
sis. In Proceedings of FPCA’87, LNCS 27, 1987.

[Wri91] David A. Wright. A new technique for strictness analysis. In
Proceedings TAPSOFT’91, LNCS 494, pages 260 – 272. Springer
Verlag, 1991.

