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Abstract. Suppose we translate two different source languages, ��� and ��� , into
the same intermediate language; can they safely interoperate in the same address
space and under the same runtime system? If � � supports first-class continua-
tions (call/cc) and � � does not, can � � programs call arbitrary � � functions?
Would the fact of possibly calling ��� impose restrictions on the implementation
strategy of � � ? Can we compile � � functions that do not invoke call/cc using
more efficient techniques borrowed from the � � implementation? Our view is
that the implementation of a common intermediate language ought to support the
so-called pay-as-you-go efficiency: first-order monomorphic functions should be
compiled as efficiently as in C and assembly languages, even though they may
be passed to arbitrary polymorphic functions that support advanced control prim-
itives (e.g. call/cc). In this paper, we present a typed intermediate language with
effect and resource annotations, ensuring the safety of inter-language calls while
allowing the compiler to choose continuation allocation strategies.

1 Introduction

Safe interoperability requires resolving a host of issues including mixed data represen-
tations, multiple function calling conventions, and different implementation protocols.
Existing approaches to language interoperability either separate code written in differ-
ent languages into different address spaces or have the unsafe, ad hoc and insecure
foreign function call interface.

We position our further discussion of language interoperability in the context of
a system hosting multiple languages, each safe in isolation. The supported languages
may range from first-order monomorphic (e.g. a safe subset of C, or safe-C for short) to
higher-order languages with advanced control, e.g. ML with first-class continuations.
We assume that all languages have type systems which ensure runtime safety of ac-
cepted programs. In other words, in this paper we do not attempt to solve the problem
of cooperating safely with programs written in unsafe languages, which in general can
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only be achieved at the expense of “sandboxing” the unsafe calls or complex and in-
complete analyses of the unsafe code.

We believe that interoperability requires a serious and more formal treatment. As
a first step, this paper describes a novel type-based technique to support principled
language interoperation among languages with different protocols for allocation of ac-
tivation records. Our framework allows programs written in multiple languages with
overlapping features to interact with each other safely and reliably, yet without restrict-
ing the expressiveness of each language.

An interoperability scheme for activation record allocation should be

– safe: it should not be possible to violate the runtime safety of a language by calling
a foreign function;

– expressive: the scheme should allow inter-language function calls;
– efficient: a language implementation should not be forced to use suboptimal meth-

ods for its own features in order to provide support for other languages’ features.
For instance a language that does not use call/cc should not have to be implemented
using heap-based allocation of activation records.

Our solution is to ensure safety by using a common typed intermediate language [21]
into which all of the source languages are translated. To maintain safety in an expres-
sive interoperability scheme the type system is extended with annotations of the effects
of the evaluation of a term, e.g. an invocation of call/cc, and polymorphic types with
effect variables, allowing a higher-order function to be invoked with arguments com-
ing from languages with different sets of effects. The central novelty of our approach
is the introduction of annotations of the resources necessary for the realization of the
effects of an evaluation; for instance a continuation heap may be required when invok-
ing call/cc. Thus our type system can be used to support implementation efficiency by
keeping track of the available language-dependent resources, and safety by allowing
semantically correct inter-language function calls but banning semantically incorrect
ones. In addition to providing safety, making resource handling explicit also opens new
opportunities for code optimization beyond what a foreign function call mechanism can
offer.

A common intermediate language like FLINT [20, 21] will likely support a very
rich set of features to accommodate multiple source languages. Some of these features
may impose implementation restrictions; for example, a practical implementation of
first-class continuations (as in SML/NJ or Scheme) often requires the use of advanced
stack representations [8] or heap-based activation records [22]. However in some cases
stack-based allocation may be more efficient, and ideally we would like to have a com-
piler that can take advantage of it as long as this does not interfere with the semantic
correctness of first-class continuations. Similarly, when compiling a simple safe-C-like
language with no advanced control primitives (e.g., call/cc) into FLINT, we may pre-
fer to compile it to code that uses the simple sequential stack of standard C; programs
written in ML or Scheme using these safe-C functions must then follow the same al-
location strategy when invoking them. This corresponds to the typical case of writing
low-level systems modules in C and providing for their use in other languages, therefore
we assume this model in the sequel, but the dual problem of compiling safe-C functions



calling arbitrary ML functions by selectively imposing heap allocation on safe-C is
similarly represented and solved within our system.

Thus our goal is efficient and expressive interoperability between code fragments
written in languages using possibly different allocation disciplines for activation records,
for instance, ML with heap allocation and safe-C with stack allocation. The following
properties of the interoperability framework are essential for achieving this goal:

– ML and safe-C code should interoperate safely with each other within the same
address space.

– All invocations of safe-C functions in ML functions should be allowed (provided
they are otherwise type-correct).

– Only the invocations of ML functions that do not capture continuations should be
allowed in safe-C functions.

– Any activation record that can potentially be captured as part of a first-class contin-
uation should always be allocated on the heap (or using some fancy stack-chunk-
based representations [8]).

– It should be possible to use stack allocation for activation records of ML functions
when they are guaranteed not to be captured with a first-class continuation.

– The selection of allocation strategy should be decoupled from the actual function
call.

The last property gives the compiler the freedom to switch allocation strategies more
efficiently, instead of following a fixed foreign function interface mechanism. For exam-
ple, an implementation of ML may use heap allocation of activation records by default
to provide support for continuation capture. However, in cases when the compiler can
prove that a function’s activation record is not going to be accessible from any captured
continuation, its allocation discipline is ambiguous; stack allocation may be preferred
if the function invokes, or is invoked by, safe-C functions which use stack allocation.
This specialization of code to a different allocation strategy effectively creates regions
of ML code compiled in “safe-C mode” with the aim of avoiding the switch between
heap and stack allocation on every cross-language call. In general, the separation of the
selection of allocation strategy from the call allows its treatment as a commodity prim-
itive operation and subjects it to other code-motion optimizations, e.g. hoisting it out of
loops.

The proposed method can be applied to achieving more efficient interoperability
with existing foreign code as well, although obviously in this case the usual friction
between safety and efficiency can only be eased but not removed. In particular the
possibility to select the allocation strategy switch point remains, thus higher efficiency
can still be achieved while satisfying a given safety policy by specializing safe code to
“unsafe mode” (e.g. for running with stack allocation within a sand-box).

2 A Resourceful Intermediate Language

To satisfy the requirements for efficient interoperability, outlined in the previous sec-
tion, we define an A-normal-form-based typed intermediate language RL (Figure 1)
with types having effect and resource annotations. Intuitively, an effect annotation such



as ��� indicates that a computation may capture a continuation by performing call/cc;
a resource annotation such as � (continuation heap) or � (continuation stack) means
that the corresponding runtime resource must be available to the computation.1 Non-
trivial effects can be primitive, effect variables, or unions of effects; commutativity and
associativity of the union with � as a unit are consistent with the typing rules and we
assume them for brevity of notation. Each effect can only occur when the proper re-
sources are available, e.g. ��� would require the use of heap-based activation record
allocation. Both the effect and resource usage annotations are inferred during the trans-
lation from the source language to the intermediate language, and can be used to assist
code generation and to check the validity of cross-language function calls.

RESOURCES ����� 	�

stack continuation allocation��
heap continuation allocation

EFFECTS ����� 	��
none�����

call with current continuation���
effect variable,

����������� �� �"!#�
union of effects

TYPES $&%('*),+ ��� 	.-
where

- �0/��21(354 $&%('
� +7689 : +

resource/effect-annotated function type� + 6<;<=�>@?
resource-annotated continuation type�BAC�ED �2F +

bounded effect-polymorphic type

VALUES AND TERMS G ��� 	IH
constant

H �KJML NO1(P��Q
variable

Q��R�&�2���S 6 Q � + F<T
resource-annotated abstraction��U��ED �2F G

bounded effect abstraction��Q�V ��W
effect applicationTX��� 	ZY [2\ 6 Q 	]T_^a`�T

resource-annotated binding�cb G�d 6
resource-annotated value�cb T d :

adding spurious effects��eEf [ 6Mg T2h
resource selection�jiBQ�Q

application�jkml YnY kmkoQp� \rq�sutwv V + W Q�Q
first class continuations

Fig. 1. Syntax of a resource-aware intermediate language RL

The resources required and effects produced by a function are made explicit in its
type. A continuation can potentially produce all effects possible with the set of re-
sources available at the point of its capture; for that reason continuation types only have
a resource annotation.

1 In this paper, we focus on application of this system to interoperability issues related to contin-
uation allocation, but more diverse sets of resources will be necessary in a realistic language.



Function abstractions are annotated with the resources they may require and will
maintain. In a higher-order language the effect of the evaluation of a function applica-
tion may depend on the effects of its functional arguments; this dependence is expressed
by means of effect polymorphism. Polymorphic abstractions introduce variables rang-
ing over the set of possible effects of the term. Since the possible effects are determined
by the available resources, we have bounded effect polymorphism; the relation �����
(defined in the context of an effect environment in Figure 3) reflects the dependence
between effects and resources, e.g. that ���	�
����� can only be performed if continuations
are heap-allocated. The effect application �� ��� instantiates the body of the polymorphic
abstraction to which � is bound. The language construct ������������� serves to mark the
point where a change in the allocation strategy for activation records is required. In-
stead of having effect subsumption the language is equipped with a construct �����! for
explicitly increasing the set of effects of � to include � .

Example 1. The use of resource annotations to select allocation strategies is shown in
the RL code below which includes extra type annotations for clarity.

� �#"%$'&)(*()+ ,�-�.0/2143 5
��6
3
� �87:9�$8;=<

/>1?3 $@A 3 />143
7�BC;�D*E*�F$

: G
3
� �874�

/2143 $@A 3 />1?3
� $@A 3 /2143

&=H*H0I
���

5
�J9 $LK <

/2143
7

� �#" $NM
5
�J9O$QP�<

/>1?3
$ M
.�143

7
� �#"%$SR

5
BUT!V M%M KXW>Y "%Z�[]\*^_

/2143
�`PaR?�F$

W>Y �#���2����� M �F$
:

/>1?3 $@A b4b /2143&=H*H0I c
V*dfe

5
�J9'g K <

/2143
7�BUT!V M%M K �F$

:

/>1?3 g@Aih /2143
&=H*H0I j

d
&)(*(

e
HS5

�J9O$ K <
/2143

7������)g8�JB
&=H)H'I c

V)die K �F�F$
:

/>1?3 $@Aih /2143

W>Y B_�
&)()(*+ ,=-�.'/>143

n�����k�
&=H*H0I

���Xl
B_�

&)()(*+ ,=-�.'/>143
 ���k�

&=H)H'I j
d
&)()(

e
H

The function

&)()(*+ ,=-�.'/>1?3
is polymorphic in the effect of its parameter, but the param-

eter’s resource requirements are fixed – it must use heap allocation. We consider two
applications of

&)(*()+ ,=-�.'/>1?3
. The argument in the first,

&=H*H0I
��� , is a function invoking���	�
����� , which consequently uses heap allocation; on the other hand the argument in the

second application,

&=H)H'I c
V)die , is pure and uses stack allocation. It is therefore incor-

rect to apply

&)()()+ ,�-�.0/2143
to

&=H*H0I c
V*dfe . We use a wrapper to coerce it to the proper type:



we apply

&)()()+ ,�-�.0/2143
to

&=H)H0I j
d
&)(*(

e
H

whose activation record is heap-allocated, and
whose function is to switch to stack allocation (via ������g ) before calling

&=H)H'I c
V)die .

Heap allocation is resumed upon return from

&=H*H0I c
V*dfe .

3 Two Source Languages

To further illustrate the advantages of this system we consider the problem of trans-
lating into RL two source languages (Figure 2): a language HL with control operators
( ���	�
���#� and "%Z�[]\*^ ), implemented using heap-based allocation of activation records, and
a language SL which always uses stack allocation. HL also allows declaring at the top
of a program the identifiers of entities imported from SL code. The type systems of
these languages are assumed monomorphic for simplicity, since polymorphism in types
is largely orthogonal to the effect polymorphism of RL.

SL TYPES � SL

�a� 	I- � � SL
9 � SL

SL TERMS
T

SL

�a� 	�H ��Q � SOQ �
� SL

F(T
SL

� T
SL

T
SL

� Y [m\ Q 	]T
SL

^a`�T
SL

HL TYPES � HL

�a� 	I- � � HL
9 � HL

� � HL

; =&>@?
HL TERMS

T
HL

�a� 	�H ��Q � SOQ �
� HL

F T
HL

� T
HL

T
HL

� Y [2\ Q 	]T
HL

^a`�T
HL��k l YnY kmk T

HL

� \rq&s twv V � HL

WOT
HL

T
HL

HL PROGRAMS � HL

�a� 	ZT
HL

� [��m\ [ws ` l Y g
SL

h Q �
� SL

^a`
� HL

Fig. 2. Syntax of the source languages SL and HL

The resource annotations in RL provide information about handling of the stack and
heap resources, necessary in the following situations:

– when calling from HL a function written in SL, which may require switching from
heap allocation of activation records to allocation on the stack used by SL; the heap
resource must be preserved for use upon return from SL code.

– when calling an HL function from SL code, which is only semantically sound when
the evaluation of the function does not capture a continuation, since part of the
continuation data is stack-allocated; the type system maintains information about
the possible effects of the evaluation, in this case whether ���	�
����� might be invoked.

– when selecting an allocation strategy for HL functions called (directly or indirectly)
from within SL code; either their activation records must be allocated on the SL
stack, or the latter must be preserved and restored upon return to SL.

– when selecting an allocation strategy for HL code invoking SL functions but not���	�
����� , in order to optimize resource handling.

Example 2. Consider a program consisting of a �
&
�
1

fragment in HL invoking the���#":��[ Y �	� SL function

&)(*()+ ,=-�.'/>1?3
with the HL function

&=H)H'I
as an argument; the call

is meaningful because

&=H*H0I
does not invoke ���	�
�
��� . Only the SL type of the external

function is given to the HL program which is separately compiled without access to the
detailed effect annotations inferred from the code of the SL fragment.



SL fragment

&)(*()+ ,�-�.0/2143
:9	; <

/>1?3 A />1?3
7=T%V M?M � ;OD*E#�

The result of its separate compilation into RL, which uses stack allocation (for details
of the translation we refer the reader to Section 5) is&)(*()+ ,�-�.0/2143 5

6
3
� �O7:9 g ;�<

/2143 g@A 3 /2143
7����#" g K

5
Ba; D*E W>Y BUT!V M%M K

<=G
3
� �O7��

/>1?3 g@A 3 />1?3
� g@A 3 /2143

HL fragment �
&
�
1
:���#":��[ Y �	�f� SL �

&)(*()+ ,�-�.0/2143
< �

/>1?3 A />1?3
� A

/2143
W>Y � �*"

&=H*H0I 5
9 K <

/2143
7=T!V M%M KW>Y

&)()()+ ,�-�.0/2143`&=H*H0I

The result of its separate compilation into RL is

�
&
�
1U5

9�$
&)()(*+ ,=-�.'/>1?3

<kG
3
�0��74�

/>143 g@A 3 /2143
� g@A h />1?3

7
� �*" $ &)()(*+ ,=-�.'/>1?3 �

5
� 6
3
� �O7
9O$C;4<

/2143 $@A 3 />1?3
7

� �#" $ ; �
5

�J9 g`K <
/2143

7=�	��� $ �JBa; K �F� $
W>Y �	���*gL��BS�

&)(*()+ ,=-�.'/>1?3

3
� � ; �'� �F$

: G
3
�0��74�

/>143 $@A 3 /2143
� $@A h /2143

&=H)H'I 5
��9�$ K <

/>1?3
74BUT!V M%M K �F$

:

/2143 $@Aih />1?3

W>Y B
&)()(*+ ,=-�.'/>143

�C ���
&=H)H'I

<
�
G
3
� �O74�

/2143 g@A 3 />1?3
� g@A h /2143�� $@A h /2143

The translation infers polymorphic effect types using a simplified version2 of standard
effect inference [23]. The resource annotations are fixed by the source language; the
type of an external SL function in an HL program is annotated with the SL resources.
In the code produced after translation the external functions are coerced to match the
resources of HL using automatically generated wrappers. In the above code, the param-
eter ; of

&)()(*+ ,=-�.'/>1?3
� is wrapped to ; � before passing it to

&)(*()+ ,=-�.'/>1?3
; the function

of the wrapper is to switch from the stack allocation discipline used by SL to heap allo-
cation before invoking the code for ; , and resume stack allocation upon return. Dually,
the call to

&)(*()+ ,�-�.0/2143
itself is wrapped to enable stack allocation inside HL code.

2 As presented here our system does not keep track of regions associated with effects.



Since the full RL type of the SL fragment is not available to it, the effect inference
must conseratively approximate the effects of the SL functions. It treats the external&)(*()+ ,�-�.0/2143

in the HL fragment as an effect-polymorphic parameter in order to allow
its invocations with arguments with different effects. The price we pay for inference
with this polymorphism in the case of separate compilation is that we assume that the
effects of these invocations are the maximal allowed with the resources shared between
the languages (in Example 2 we lose no precision since SL has no effects, but the ap-
proximation is reflected in the effect annotation � of the type of the parameter of �

&
�
1
).

The following code, constructed mechanically given the inferred and expected types
of

&)()(*+ ,=-�.'/>143
, coerces the actual type of

&)(*()+ ,=-�.'/>1?3
to the approximation used in the

typing of �
&
�
1

and performs the top-level application, thus linking the modules.

� �#"%$N&)(*()+ ,=-�.'/>1?3 � +
V4e

5
� 6
3
� �O7�9'g�;�<

/>1?3 g@A 3 />143
7)��B

&)(*()+ ,=-�.'/>1?3

3
��;�� h �F$

: G
3
�0��74�

/>143 g@A 3 /2143
� g@A h />143

W>Y B �
&
�
1 &)()(*+ ,=-�.'/>1?3 � +

V�e
More precise inference of the resulting effects is possible when the external function
is a pre-compiled library routine whose RL type (with its precise effect annotations)
is available when compiling �

&
�
1
. In those cases we can take advantage of the let-

polymorphism in inferring a type of �
&
�
1

(in a setting similar to that of Example 1).
However even the approximated effects obtained during separate compilation carry in-
formation that can be exploited for the optimization of inter-language calls, observing
that the range of effects of a function is limited by the resources of its source language.
In Example 2, after inlining and applying results of Section 4.4 (Theorem 2), the code
for �

&
�
1

can be optimized to eliminate the unnecessary switch to heap allocation in the
instance of ; � . This yields

�
&
�
1 5

�J9O$
&)(*()+ ,�-�.0/2143

<kG
3
� �O7��

/>1?3 g@A 3 />1?3
� g@Aih /2143

7
� �#"%$ &=H*H0I 5

��9�$ K <
/>143

7�BaT%V M?M K � $ (* now dead code *)&=H*H0I
�
5
��90g K <

/2143
7�BUT!V M%M K � $

W>Y �	���*g8��BS�
&)(*()+ ,=-�.'/>1?3

 ���k�
&=H*H0I

�'�F�F$
Thus the HL function

&=H*H0I
has been effectively specialized for the stack allocation

strategy used by SL.

Example 3. Another optimization is merging of regions with the same resource require-
ments, illustrated on the following HL code fragment.

���*" ��[ Y �	�f� SL � �
1?3��'1

<
/>143 A />143

W>Y �
143���1

� �
1?3��'1

D)E#�
which is naively translated to the RL function (shown after inlining of the parameter
wrapper)



6
3
� �O7�9O$ �

143���1
<
/>143 g@A 3 /2143

7
���#"?$ K

5
� �����)g8�JB �

143���1
D)E#� � $

WiY �	���*g �JB �
143���1

K �
After combining the two �	����g ����� constructs the equivalent RL term is

6
3
� �O7�9O$ �

143���1
<
/>143 g@A 3 /2143

7
�	���*gL�O���#"�g K

5
�JB �

143���1
D)E*� g WiY B �

1?3��'1
K �

A generalization of this transformation makes possible lifting of ����� � ����� constructs
out of a loop when the resources � are sufficient for all effects of the loop. Since in
general a resource wrapper must restore resources upon return, a tail call moved into
its scope effectively becomes non-tail; thus lifting a wrapper’s scope over a recursive
tail call is only useful when the wrapper is lifted out of the enclosing function as well,
i.e. out of the loop.

4 Semantics of RL

4.1 Static Semantics

Correctness of resource use is ensured by the type system shown in Figure 3, which
keeps track of the resources necessary for the evaluation of a term and a conservative
estimate of the effects of the evaluation.

An effect environment
�

specifies the resource bounds of effect variables intro-
duced by effect abstractions and effect-polymorphic types. The rules for effect sequents
reflect the dependence of effects on resources (in this language this boils down to the
dependence of the call/cc effect ��� on the heap allocation resource � ) and form the
basis of effect polymorphism. The function �����	��
 yields the maximal effect possible
with a given resource; in this system we have ����	��
 � ���

5
� and �����	��
 �r� �

5
� � .

Rule ������� �
&
K�� effectively states that the resource ��� can be used instead of resource �

if � � provides for all effects possible under � .
In the sequents assigning types to values and terms the type environment � maps

free variables to types. Type judgments for values associate with a value � and a pair of
environments

�
and � only a type � , since values have no effects and therefore their

evaluation requires no resources of the kind we control. The function � maps constants
to their predefined types.

Sequents for terms have the form �)l � l����! � <  � , where � represents the avail-
able allocation resource, � is the type of � , and � represents the effects of its evaluation.
Rules ��� K

(
�
+
e
3
� and ��� K

(
�#"
&)+
� establish the correspondence between the resource an-

notations in these constructs and the currently available allocation resource; the effect
of lifting a value to a term is none, while the effect of sequencing two computations via� �#" is the union of their effects. Any effect allowed with the current resource may be
added to the effects of a term using rule ��� K

(
�JT
(
V*d �
.
V�T � .

The central novelty is the ��������$	�%�
� construct for resource manipulation; its typing
rule ��� K

(
� V4TFe � imposes the crucial restriction that the effect � of the term � must be
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� ��� � � � � � D � 3 � � 4 G � +
�3 � ��4 U��ED �2F G � AC�ED �mF +
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� g Q h�	 AC�ED �2F + � ��% � D �

�3 � ��4 Q�V ��W�� V �	; � W +
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Fig. 3. The RL type system



supported by the resource � available before the alternative resource ��� is selected. This
ensures the correctness of the propagation of � outside the scope of the �	���'� $	����� .

The rules for application and ���	�
����� set the correspondence between the available re-
source and the resource required by the invoked function. In addition, ��� K

(
� M
&)+�+ M%M � and

��� K
(
�
3��
d
. � � specify that the continuation type is annotated with the same resource,

which is needed by the context captured in the continuation and therefore must be
matched when it is reactivated. The effect of evaluating a ���	�
�
��� includes ��� , while
the effect of a "%Z�[]\*^ is that of the rest of the computation, which we estimate as the
maximal possible with the current resource.

By induction on the structure of a typing derivation it follows that if a term has a type
in a given environment, it has exactly one type, and the presence of type annotations
allows its effective computation, i.e. there exists a function ��
������
	��� such that

��
�������	���_�k��� � ���������
5

�k�����`� if and only if �)l � l�� �  �Q<  �O7
We will also use the function �����
	��� with the same arguments, returning the type �
only.

4.2 Dynamic Semantics

The operational semantics of RL (Figure 4) is defined by means of a variant of the
tail-call-safe C � EK machine (Flanagan et al. [4]). The machine configuration is a tuple� ��������������� where � is the current term to be evaluated, � is the environment mapping
variables to machine values, � is a heap of objects (closures), and � is a tuple of machine
resources. Depending on the allocation strategy used, � is either a continuation stack � ,
recording (as in the original C � EK machine) the context of the evaluation as a sequence
of activation records, or a pair of a current continuation � and a continuation heap  .
In the latter form � is a continuation handle and  is a mapping from !�"$#�%'& �$#�(�)*	�+ to
activation records which offers non-sequential access. In neither case does a function
application �

&)()(
� perform additional allocations of activation records, so both strategies

are tail-call safe.
Machine values are either small constants or pointers into other structures where

larger objects are allocated. All closures are allocated on the heap (the function , at the
bottom of the figure shows the details).

The activation records created when evaluating a ���#"?� -expression may be allocated
either on the continuation heap  (transition rule �

+
e
3
$ � ) or on the continuation stack �

(rule �
+
e
3
g � ). An activation record represents a continuation, and in our small language

there are only three possibilities: the computation either halts or continues by binding a
variable to a computed value or by restoring a resource. Rules � "

&)+
$ � and � "

&)+
g � perform

the binding, depending on the allocation mode.
The evaluation of �	���)� ���=� selects the activation record allocation strategy for � , e.g.�����*g8� �=� selects stack-based allocation for � (transition rule � V�T e�g � ). When the current

allocation resource is already � we define ������� ����� as a no-op; if a change of resource
is performed, an activation record is pushed on (the top of) the new allocation resource.
Correspondingly, heap-based allocation is restored by transition rule � dfe%T%V � e)$ � after
the evaluation of � .
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Fig. 4. Semantics of RL



Another no-op is the increase of effect sets �%�
�  which only serves type-checking
purposes.

4.3 Soundness of the Type System

The type system maintains the property that the effects of well-typed programs are
possible with their available resources, formalized in the following statement, proved
by induction on the typing derivation.

Lemma 1. If �*l � l�� �  � <  � is a valid typing judgment, then
� � % � � � .

Semantically this behavior of well-typed programs is expressed as soundness with
respect to resource use, extending the standard soundness for safety of the type system,
in the following theorem.

Theorem 1. If �)l<��l@� �� �� <  � , then the configuration ����� � � ��� �
&)+ 3 � � either diverges

or evaluates to the configuration � � ��� ����������� �(�
&)+ 3 � � � (for some � , � and � ), where

�
&)+ 3 g��5 �(�

&)+ 3
� , and �

&)+ 3 $��5 � ���� � for some � and  such that  � ���
5

�
&)+ 3

.

This result is a corollary of the standard properties of progress and subject reduction
of the system, the proofs of which we sketch below. To simplify the proofs, we introduce
a type-annotated version of the semantics, which maintains type information embedded
in the runtime representation. Thus the representation of an abstraction in the type-
annotated version is

,N�J9 � �C<#�O7=���������Q�
5

�
c03
d � ���  ���A �

+ .
T%V*dfe � � ���0�������O���
��� �	��
�������*� �k�

In addition, the runtime environment � is extended to keep the type of each value in its
codomain; the value component of � is denoted by � � and the type component by � � .

The following definitions are helpful in defining typability of configurations.

Definition 1. The bottom � "�%!� ��� of an allocation resource � is defined as follows:

1. if �
5

� � � , then � "�%!� �	�
5
� "�%!� � �i� , if �

5��
�
1�H

� � � � �!� � � � � � �f� , and � "�%!� ���
5

�
otherwise;

2. if �
5

� ���  � , then � "�%!� ���
5
� "�%!�F� � � �� � � , if  � ���

5��
�
1=H

� � � � �!� ��� � � � �f� , and� "�%!� ���
5
 � ��� otherwise.

Definition 2. The outermost continuation heap "���% 	��$! "�#�%!� ��� reachable from alloca-
tion resource � is

1.  if �
5

� ���� � and ��"�%!� �	�
5

�
&)+ 3

;
2. "���% 	��$!�"$#�%!� � � � � if �

5
� ���� � and ��"�%!� �	�

5��
e?T!V � e � ;

3. � , if �
5

� � � and � "�%!� ���
5

�
&)+ 3

;
4. "���% 	��$!�"$#�%!� � ���� � � if �

5
� � � and ��"�%!� �	�

5��
e?T!V � eQ� ���  � .

Definition 3. A configuration closed in type environment � is typable under resource� with a result type � and an effect � , written �*l�� �! a� �����������
���Q<  � , if for some
� � , � �



1. � "�� � � ������"�� � �_�
5

� ; and
2. �*l@��l���� � � �  �S<  $ � � ; and

3. � ��� � ���������Q�
	 � � �� @A  $ � ; and

4. for each ��	�� "�� � �_� ,
(a) if � � � �0�

5
�
.�1
T
3
 , then � � � �O�

5
�0�  � ;

(b) if � � ���0�
5 c03

d � and � � � �
5

�
+ .
T%V*dfe �`�k�����'��������� �O���������%� , then��l � ��� � 4 9'��� ���O< ���=7?��� < ��� � �O� , and similarly for type abstractions;

(c) if � � � �0�
5

�
.�143

� , then ��� ���0�
5
� � � � M

.'1?3
and

� � � � ��� "���% 	��$! "�#�%!� ���F� � ��� ��	 ��� ���� @A � � ��
and �

5
� ��� � � � , for some � �� and � � � ,

and � � � � �
� ��� �Q��	 � � �� @A  � if

1. �
5

� and �
5
�r�
&)+ 3
� (i.e. an empty stack) and �

5
� � and �

5
� ; or

2. �
5

� and �
5

�
�
�
1=H

� ���$� ��� � ���$� ���%� � and ��l ���O��� < � � �  �������
���$���������!�8<  � ;
or

3. �
5

� and �
5
�
�
e%T!V � eS� � � �� �i�F� and � ���U�F� � � �� �i���������Q�
	 � � $� @A  � ,

and similarly for �
5

� .

Note that the environment may contain reachable variables bound to continuations
even when the current allocation resource is a stack. Type correctness of these continua-
tions cannot be verified with the stack resource, instead we have to find the correspond-
ing continuation heap. However in this case the type system guarantees that the only
continuation heap to which there are references in the environment is the outermost
continuation heap, if such exists. The reason is that although it is possible to switch
to heap allocation after executing in stack allocation mode, there are no invocations of���	�
����� allowed since they would introduce the ��� effect, which is not possible under
the stack resource (cf. typing rule ��� K

(
� V�T e � in Figure 3).

We can now formulate the progress and subject reduction properties.

Lemma 2 (Progress). If �)l � �  �������������
�	� <  � where � corresponds to � (i.e.�
5

� if �
5

� � � , �
5

� if �
5

� ���� � ), and ���
5

�
&)+ 3 � , then there exists � such that� ��������������� �A � � .

Lemma 3 (Subject reduction). If �
5

���������������	� and �)l � �  � <  � where �
corresponds to � , and � �A � � �

5
� �!� ��� � ��� � �����f� , then �	��l � �  �� �Q<  $ � where� � corresponds to � � , �

5
� � � � � � , and the rule for this transition is � M

&)+�+ M%M � only if�
5

� � � � � � , for some � � � and � � � .
In brief, in the case when � �

5
� �	�F� , the proofs proceed by examining the structure

of the typing derivation for �)l<�	l�� � � � �  � <  $ � � ; together with condition 4 of Defi-
nition 3 this yields that the values in the environment and on the heaps have the correct
shape for the appropriate transition rule. In the case when � has the form � �	��� the proofs

inspect the structure of the derivation of � � � � ���������Q�!	 � � �� @A  � , which parallels the

decision tree for the transition rules � "
&)+
� and �Fdie?T!V � e � and the halting state.



4.4 Resource Transformations

Effect inference and type correctness with respect to resource use allow the compiler
to modify the continuation allocation strategy of a program fragment and preserve its
meaning. The following definitions adapt the standard notions of ordering and observa-
tional equivalence of open terms to the resource-based system.

Definition 4. A context � is a term with a hole � ; the result of placing a term � in the
hole of � is denoted by �  �?� and may result in capturing effect and lambda variables
free in � . The hole of a context � is of type �k��� � ��� � �  � if �  �?� is typeable whenever�*l � l�� �  �S<  � .

Definition 5. �Ol � l�� �  ��� �!��<  � if for all contexts � with hole of type � ��� � ��� � �
 � , all typed environments � closing �  �%� and heaps � closing � , and continuation
stacks � , the configuration � �  ���
� ��������� � � �F� converges if � �  �?� ��������� � � � � con-
verges. Furthermore, �Ol � l�� �  ��� � � <  � if �Ol � l�� �  ��� � � <  � and

�Ol � l�� �  � � � �S<  � .

One possible optimization is the conversion of heap-allocating code to stack-based
strategy provided the code does not invoke ���	�
���#� or "%Z�[]\*^ , as per the following theo-
rem.

Theorem 2. If �8l � l�� �  �Q< h � , then �Ol � l�� �  �����	$ � �=���	��%�
�!�"�#�%� � �*l � �8< h � ,
where ��%�
�!�"$#�% is the transformation defined as follows.

��%�
�! "�#�% � � � ��� $`l � �
5
� �	� g

��%�
�!�"$#�% � � � �=�  l � �
5
����%�
�!�"$#�% � ���*l � �F�  

��%�
�!�"$#�% � � �����	$Q� �=��l � �
5
��%�
�! "�#�% � � �*l � �

��%�
�!�"$#�% � � �����*gL� �=��l � �
5
�

��%�
�!�"$#�% � �JB ���L���#l � �
5
� �*":ga� � �

5
�J9'g � �� <#�X� ���4��7=�����	$ ��B ���C� �� �F� gW>Y B � � � ���

��%�
�!�"�#�% � ��� �*"%$_�
5
��� W>Y ����l � �

5
� �*":ga�

5
��%�
�! "�#�% � � ����l � �W>Y ��%�
�!�"$#�% � ������l � � � �C<������
	���X�(� � � �����:���4� �

5 Translation from HL to RL

Programs in language ��	�� HL � SL � are translated into RL by an algorithm shown in
Figure 5. The algorithm infers the effect and resource annotations of a term using fairly
standard techniques. It is presented in the form of an inference system for judgments of
the form

� l�� ��� � HL
� � � � � <  � , where � HL,

�
, and � are inputs corresponding

respectively to the � term to translate (also overloaded to HL top-level programs) and
the inherited effect and type environments, initially empty. The outputs of the translation
are � , � � , � , and � , which stand for the translated term, the inferred effect environment,
and the effect and type of � in environments

� � and � ; thus the output of the algorithm
satisfies � l � � l�� �  � <  � . The function � maps a language name to the resources
available to a program in this language: � � HL �

5
� and � � SL �

5
� .
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Fig. 5. Typed translation from HL to RL



Several auxiliary functions are shown in the figure, and the definitions of several
simpler functions are as follows. The lub of two resources is defined by ��� �

5
� and��� �

5
� . The function � for merging two effect environments is defined as � � � �� �4�!��� �

5 � ����� ��� � �)��� � if � 	 ��"�� � � �?� � � "�� � � �4� , and � � ��� � ���!��� �
5 ��	 ��� � on

the rest of � "�� � � �?��
 ��"�� � � ��� . The free effect variables of a type � are denoted by 	��� �`� ; the function !�)*"$+ 	�� ��� � ��� � returns the pair �fG � 	 � � ��� 	 �!7���� ����� ����� � , where
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 	��� �`� .

Separately compiled ���*":�)[ Y ��� functions are treated as parameters of the compiled
HL fragment and are wrapped to convert the HL resources (continuation heap) to SL
resources (continuation stack). The wrapping is performed by an auxiliary function
invoked as ��� � � ��$� � � �O� � �`� , which produces a term coercing � from type � to type
! "�#��$	�� %�������	 ��$� � �`� with resource annotations ��� in place of � , and places it in context
� . When compiling separately, the effects of an � �#":�)[ Y �	� function are approximated
conservatively by applying ���� � to the effect-annotated declared type of the function;
by definition ����� � � �`� is � � �@�@�@�@'@ A�����! #" 
 � � ����� � � � � � when �

5
� � �@A  � � , and � otherwise.

This allows the view of external functions as effect-polymorphic without restricting
their actual implementations.

6 Related Work and Conclusions

The work presented in this paper is mainly inspired by recent research on effect infer-
ence [6, 10, 11, 23, 24], efficient implementation of first-class continuations [2, 8, 22, 1],
monads and modular interpreters [30, 12, 29, 13], typed intermediate languages [7, 26,
20, 17, 16, 3], and foreign function call interface [9, 18]. In the following, we briefly
explain the relationship of these work with our resource-based approach.

– Effect systems. The idea of using effect-based type systems to support language
interoperation was first proposed by Gifford and Lucassen [5, 6]. Along this direc-
tion, many researchers have worked on various kinds of effect systems and effect
inference algorithms [10, 11, 23, 24, 28]. The main novelty of our effect system is
that we imposed a “resource-based” upper-bound to the effect variables. Effect vari-
ables in all previous effect systems are always universally quantified without any
upper bounds, so they can be instantiated into any effect expressions. Our system
limits the quantification over a finite set of resources—this allows us to take advan-
tage of the effect-resource relationship to support advanced compilation strategies.

– Efficient call/cc. Many people have worked on designing various strategies to sup-
port efficient implementation of first-class continuations [2, 8, 22, 1]. To support
a reasonably efficient call/cc, compilers today mostly use “stack chunks” (a linked
list of smaller stacks) [2, 8] or they simply heap allocate all activation records [22].
Both of these representations are incompatible with those used by traditional lan-
guages such as C and C++ where activation records are allocated on a sequential
stack. First-class continuations thus always impose restrictions and interoperabil-
ity challenges to the underlying compiler. In fact, many existing compilers choose
not to support call/cc, simply because call/cc is not compatible with standard C



calling conventions. The techniques presented in this paper provide opportunities
to support both efficient call/cc and interoperability with code that use sequential
stacks.

– Threads. Implementing threads does not necessarily require first-class continua-
tions but only an equivalent of one-shot continuations [1]. A finer distinction be-
tween these classes of continuations is useful, however the issues of incorporating
linearity in the type system to ensure safety in the presence of one-shot continua-
tions are beyond the scope of this paper.

– Monads and modular interpreters. The idea of using resources and effects to
characterize the run-time configuration of a function is inspired by recent work on
monad-based interactions and modular interpreters [30, 12, 29, 13]. Unlike in the
monadic approach, our system provides a way of switching the runtime context
“horizontally” from one to another via the �����	� ���=� construct.

– Typed intermediate languages. Typed intermediate languages have received much
attention lately, especially in the HOT (i.e., higher-order and typed) language com-
munity. However, recent work [7, 14, 21, 17, 3, 16, 15] has mostly focused on
the theoretical foundations and general language design issues. The type system in
this paper focused on the problem of compiling multiple source languages into a
common typed intermediate format. We plan to incorporate the resource and effect
annotations into our FLINT intermediate language [21].

– Foreign function call interface. The interoperability problem addressed in this
paper has much in common with frameworks for multi-lingual programming, such
as ILU, CORBA [27], and Microsoft’s COM [19]. It also relates to the foreign
function call interfaces in most existing compilers [9, 18]. Although these work do
address many of the low-level problems, such as converting data representations be-
tween languages or passing information to remote processes, their implementations
do not provide any safety guarantees (or if they do, they would require external pro-
grams run in a separate address space). The work presented in this paper focuses on
interfacing programs running in the single address space with much higher perfor-
mance requirements. We emphasize building a safe, efficient, and robust interface
across multiple HOT languages.

We believe what we have presented in this paper is a good first-step towards a fully
formal investigation on the topic of safe fine-grain language interoperations. We have
concentrated on the issues of first-class continuations in this paper, but the framework
presented here should also apply to handle other language features such as states, ex-
ceptions, and non-termination. The effect system described in this paper is also very
general and useful for static program analysis: because it supports effect polymorphism,
effect information is accurately propagated through high-order functions. This is clearly
much more informative than the single one-bit (or N-bit) information seen in the simple
monad-based calculus [16, 25].

There are many hard problems that must be solved in order to support a safe and
fine-grained interoperation between ML and safe-C, for instance, the interactions be-
tween garbage collection and explicit memory allocation, between type-safe and unsafe
language features etc. We plan to pursue these problems in the future.
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