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Abstract. The design and implementation of a correct system can be-
nefit from employing static techniques for ensuring that the dynamic
behaviour satisfies the specification. Many programming languages in-
corporate types for ensuring that certain operations are only applied to
data of the appropriate form. A natural extension of type checking te-
chniques is to enrich the types with annotations and effects that further
describe intensional aspects of the dynamic behaviour.
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1 Introduction

Static analysis of programs comprises a broad collection of techniques for pre-
dicting safe and computable approximations to the set of values or behaviours
arising dynamically during computation; this may be used to validate program
transformations, to generate more efficient code or to increase the understanding
of the software so as to demonstrate that the software satisfies its specification.
We shall find it helpful to divide the techniques into the following two approaches.
The flow based approach includes the traditional data flow analysis techniques
for mainly imperative and object-oriented languages; it also includes the con-
straint based control flow analysis techniques developed for functional and object
oriented languages; finally, it includes the use of mathematical modelling in the
abstract interpretation of imperative, functional, concurrent and logic langua-
ges. The inference based approach includes general logical techniques touching
upon program verification and model checking; it also includes type and effect
systems developed for functional, imperative and concurrent languages and it is
this latter group of techniques that we consider here.

We shall suppose that a typed programming language is given. In soft typing
all programs can be typed because a “top” type can be used in the absence
of meaningful “ordinary” types; this perspective is similar to that of the flow
based approach and is quite useful for analysing the behaviour of programs but
is less useful for enforcing the absence of dynamic errors. In this paper we focus
on strong typing where no “top” type is around and where certain erroneous



programs are rejected by the type system; in this way types are not only used
for analysing the behaviours of programs but also for enforcing the absence of
certain kinds of dynamic errors.

The overall approach of type systems is to associate types to programs; normally
the types merely describe the form of the data supplied to, and produced by,
programs. The association of types to programs is done by a set of inference rules
that are largely syntax-directed; since subprograms may contain free variables
this needs to be relative to a type environment that maps the free variables
to their types. We express the typing by means of a typing judgement that
is usually a ternary relation on type environments, programs and types; it is
frequently written I' - p : 7 where p is the program, 7 is the type, and I" is the
type environment. The main challenges of devising type systems is (i) to ensure
that they are semantically correct (with respect to some dynamic semantics), (%)
to ensure that they are decidable so that types can be checked by an algorithm,
and (44) to ensure that there always is a “best” type, called a principal type, so
that an algorithm can produce the intended type automatically.

Type and effect systems refine the type information by annotating the types so
as to express further intensional or extensional properties of the semantics of the
program [18-21]. In Section 2 this takes the form of annotating the base types
or the type constructors. In Section 3 we study effect systems where the anno-
tations describe certain intensional aspects of the actions taking place during
evaluation. In Section 4 we further enrich the expressivenes of effects so as to
obtain causal information in the manner of process algebras. We then expose the
overall methodology behind type and effect systems in Section 5 and indicate
those combinations of features that challenge state-of-the-art.

Further Reading. A more thorough development of the techniques of static ana-
lysis can be found in [30] (particularly in Chapter 5 that deals with type and
effect systems) as well as in the references given.

2 Annotated Type Systems

Many programming languages incorporate types as a static technique for en-
suring that certain operations are only applied to data of the appropriate form,;
this is useful for ensuring that the dynamic behaviour satisfies the specification.

Example 1. A Typed Language.

We shall use the following simple functional language to illustrate the develop-
ment; constructs for iteration, recursion and conditionals present no obstacles
and have only been left out in the interest of brevity. We shall later extend the
language with side effects (as in Standard ML) and communication (as in Con-
current ML) thereby suggesting that type and effect systems apply equally well
to imperative and concurrent languages.



The language has expressions (or programs) e and types 7 given by:
ex=clz|fn, z=>ep|e1 e -
Tu=dint|bool| -+ | T — T

Here ¢ denotes a family of constants (each of type 7.), x denotes a family of
variables, and 7 is an identification of the function abstraction to be used in the
control flow analysis to be presented in Example 2.

The typing judgements of the underlying or original type system have the form
I' by e : 7 where the type environment I” maps variables to types; the definition
is as follows:

Iz — 72] FuL eo : 1o

I'bFyLc:
¢ I'Fy o fn, x =>e€eg: 7 — 79

'+ : '+ :
FI—ULx:F(x) UL €1 -T2 — Tp UL €2 - T2

I'FyLerea:mg

That a function has type 71 — 7o means that given an argument of type 7 it
will return a value of type 7o in case it terminates. a

Perhaps the simplest technique for extending the expressiveness of types is to add
annotations to the type constructors or base types. One popular class of analyses
that can be expressed using this technique consists of interprocedural control
flow analyses which track the origins of where functions might have been defined
[7,8,11]; this can be extended with components for tracking where functions
are applied and thus has strong similarities to the classical use-definition and
definition-use analyses of data flow analysis.

Example 2. Control Flow Analysis.

To obtain a control flow analysis we shall annotate the function type 7 — 7
with information, ¢, about which function it might be:

pu=A{n}|o1Ups |0

Fu=idnt |bool | - | 7| - T

So ¢ will be a set of function names — describing the set of function definitions
that can result in a function of a given type.

The typing judgements of the control flow analysis have the form I Fcrae: T
where the type environment I' maps variables to annotated types. The jud-
gements are defined in Table 1; note that the clause for function abstraction
annotates the arrow of the resulting function type with the information that the
abstraction named 7 should be included in the set {7} Uy of functions that could
be returned. In the presence of conditionals it is essential that we use {w} U ¢
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Table 1. Control Flow Analysis: r Fcra e : 7 (Example 2).

rather than {7} because the latter choice does not give rise to a conservative
extension of the underlying type system: this means that there will be expres-
sions that are typed in the underlying type system but that have no analysis in
the control flow analysis; (this point is related to the issue of subeffecting to be
discussed in Section 3.)

We should point out that we allow to replace 71 2% 75 by 71 —£% 7, whenever
1 and @9 are “equal as sets”. More generally we allow to replace 71 by 75 if they
have the same underlying types and all annotations on corresponding function
arrows are “equal as sets”. To be utterly formal this can be axiomatised by a
set of axioms and rules expressing that set union has a unit and is idempotent,
commutative, and associative, together with axioms and rules ensuring that
equality is an equivalence relation as well as a congruence; the abbreviation
UCAI is often used for these properties. a

Subtyping and Polymorphism

Another popular class of analyses that can be expressed by annotations is the
binding time analyses (e.g. [13]) which distinguish data as to whether they are
static (available at compile-time) or dynamic (available at run-time); these ana-
lyses form the basis of partial evaluation and can also be used as the basis for
security analyses (e.g. [12]) that distinguish between secret and public informa-
tion.

Example 3. Binding Time Analysis.

For binding time analysis we extend the language of Examples 1 and 2 with a
let-construct:
en=---|let x =e; in ey

(In fact let & = e; in ey is semantically equivalent to (fn = => e3) e1.) The
annotations of interest for the binding time analysis are:

ou=3]S|D
T o= 1int? | bool¥ |-+ |71 B T
o=Vl 0n)TI|T



The annotation S is used to model data that is available statically, D is used to
model data that is available dynamically, and § is an annotation variable that
can take its values among S and D.

A partial ordering on annotations ¢ C ¢’ may be defined by:
Ly SCD

Types contain annotations on the type constructors as well as on the base types;
a static function operating on dynamic integers will thus have the annotated
type int® = intP. This type system is motivated by applications to partial
evaluation and this suggests imposing a well-formedness condition on types so
as to rule out types like int> 25 int> that are regarded as being meaningless.
This is performed by the auxiliary judgement 7 > ¢ that additionally extracts

the top-level annotation ¢ from the annotated type 7:
int? > @ bool? > ¢

TID @1 T2 b @2
?1—‘w—>7/:21>30

if pC 1 and ¢ C pg

In short, a static function is allowed to operate on dynamic data but not vice
versa. Since we have annotation variables we can express a limited form of an-
notation polymorphism and we use & to denote the corresponding type schemes;
for simplicity we do not incorporate type variables or type polymorphism.

The typing judgements have the form r FgTA € : 0 where the type environment
I’ maps variables to type schemes (or types) and & is the type scheme (or type)
for the expression e. The analysis is specified by the axioms and rules of Table 2
and is explained in the sequel. The first five axioms and rules are straightforward;
note that the rule for function abstraction checks that the type is well-formed
and that the rule for let makes use of type schemes.

The next rule is a subtyping rule that allows to weaken the information contained
in an annotated type. The subtype ordering 7 < 7’ is given by:

int? < int? if o C ¢/
bool? < bool? if p C ¢’
< T<T)
LR <T R

if T AT = Ty

This ensures that only well-formed types are produced and that the ordering is

reversed for arguments to functions; we say that 71 & 7, is contravariant in

71 but covariant in ¢ and T». (Think of the annotated type 7 25 7 as being
analogous to the logical formula 7 = ¢’ A 7 and use that the inference rule
expresses the monotonicity of logical implication.)

The final two rules are responsible for the polymorphism. The first rule is the ge-
neralisation rule that is used to construct type schemes: we can quantify over any



fFBTACZ?c fFBTAx:f(x)

r o F T T ~ ~
[z — To] FBTA €0 : T0 if(TxLTo)Dgp

[Fetafn. € =>e0:7p & 79
FFBTA el T2 2, T0 FFBTA €2 1 T2

r FBTA €1 €2 I To

I'Fgta€1:01 F[ZE*—>O'1] FBTA €2 : T2

I'Fgralet x =e1 ines: 1o

FI—BTAEZT

FFBTASIT/

itr<7
I/“\}—BTAe:?
fl_BTAC’:V(ﬁl:"':ﬂn)'?
fFBTAEIV(ﬂl,"yﬁn)A?
fFBTAe:(H 5'\)

if B1,- -+, Bn do not occur free in f

if dom(0) C {B1,---,Bn} and Jp: (0 7) > ¢

Table 2. Binding Time Analysis: r Feta e : T & ¢ (Example 3).

annotation variable that does not occur free in the type environment; this rule is
usually used immediately before the rule for the let-construct. The second rule
is the instantiation rule that can be used to turn type schemes into annotated
types: we just apply a substitution in order to replace the bound annotation
variables with other annotations; this rule is usually used immediately after the
axiom for variables. O

References for type systems with subtyping include [9, 10, 23] as well as the more
advanced [16,37,38] that also deal with Hindley/Milner polymorphism (as fo-
und in Standard ML). To allow a general treatment of subtyping, these papers
generally demand constraints to be an explicit part of the inference system and
this is somewhat more complex than the approach taken here; such considera-
tions are mainly motivated by the desire to obtain principal types and in order
to develop syntactically sound and complete type inference algorithms as will be
discussed in Section 5. Indeed, our formulation of subtyping only allows shape
conformant subtyping, where the underlying type system does not make use of
any form of subtyping, and is thus somewhat simpler than atomic subtyping,
where an ordering is imposed upon base types, and general subtyping, where an
ordering may be imposed between arbitrary types.

Strictness analyses and classical data flow analyses can also be expressed as
annotated type systems but to be useful they may require the type system to
be extended with conjunction or disjunction types [4,5, 14, 15] thereby touching



upon the logical techniques. In annotated type systems, as well as in the type
and effect systems considered below, the annotations are normally sets of some
kind, but linking up with abstract interpretation it should be possible to allow
more general annotations that are elements of a complete lattice (that is possibly
of finite height as in the “monotone frameworks” of data flow analysis); however,
this possibility is hardly considered in the literature except in the case of binding
time analysis where the binding times (e.g. static and dynamic) are partially
ordered, c.f. [13,24].

3 Type and Effect Systems

The typing judgements of type systems take the following general form: a type
is associated with a program (or an expression or a statement) relative to a type
environment providing the type (or type scheme) for each free variable; this also
holds for the typing judgements used for the annotated type systems presented
above. Effect systems can be viewed as an outgrowth of annotated type system
where the typing judgements take the following more elaborate form: a type and
an effect is associated with a program relative to a type environment. Formally,
effects are nothing but the annotations already considered, but conceptually,
they describe intensional information about what takes place during evaluation
of the program unlike what was the case above.

Subeffecting and Subtyping

The literature has seen a great variation in the uses to which effects have been
put: collecting the set of procedures or functions called [41], collecting the set of
storage cells written or read during execution [40], determining what exceptions
can be raised during evaluation, and collecting the regions in which evaluation
takes place [44] to mention just a few. We begin by considering an analysis for
collecting the set of storage cells written or read during execution.

Example 4. Adding Imperative Constructs.

To facilitate the side effect analysis we shall add imperative constructs (resem-
bling those of Standard ML) for creating reference variables and for accessing
and updating their values:

enx=---|new, x :=ej ines | x|z 1= ¢

The idea is that new,; z:= e; in ey creates a new reference variable z for use in
e and initialises it to the value of eq; as above we use 7 to identify the creation
point. The value of the reference variable x can be obtained by writing !z and
it may be set to a new value by the assignment x := ey. The type of a reference



cell for values of type 7 is 7 ref and the underlying type system of Example 1
is extended with the rules:

byt 7 if I'(z) =7 ref

FI—ULGZT

—— ifI'(z) = f
FFUL:E:=6:TI () =7 re

I'tyrer:m Te— 1 ref]byLes:n

I'FyLnew, z :=e1 ines : 7

Example 5. Side Effect Analysis.

In the side effect analysis a reference variable is represented by a set g of program
points where it could have been created; this set is called a region and has the
general form {m} U--- U {m,} which we write as the set {m,---,m,}. The
annotations of interest are:

pu={tm}[{m:=} [ {newr} [ @1 Uwpa [0
eu={r}tlearUe |0
7u=int | bool |-+ |7y — 7 |7 ref g

Here T ref p is the type of a location created at one of the program points in
the region p; the location is used for holding values of the annotated type 7. The
annotation !7 means that the value of a location created at m is accessed, 7:=
means that a location created at 7 is assigned, and newn that a new location
has been created at .

The typing judgements have the form Thsge:7& . This means that under the
type environment I, if the expression e terminates then the resulting value will
have the annotated type 7 and ¢ describes the side effects that might have taken
place during evaluation. As before the type environment I" will map variables
to annotated types; no effects are involved because the semantics is eager rather
than lazy.

The analysis is specified by the axioms and rules of Table 3; these rules embody
the essence of effect systems. In the clauses for constants and variables we record
that there are no side effects so we use ) for the overall effect. The premise of
the clause for function abstraction gives the effect of the function body and this
effect is used to annotate the arrow of the function type whereas we use 0 as
the overall effect of the function definition itself: no side effects can be observed
by simply defining the function. In the rule for function application we see how
the information comes together: the overall effect is what can be observed from
evaluating the argument e;, what can be observed from evaluating the argument
eo, and what is obtained from evaluating the body of the function called.

Turning to the rules involving reference variables we make sure that we only
assign a value of the appropriate type to the reference variable. Also, in each of
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Table 3. Side Effect Analysis: Theee:T& ¢ (Examples 5, 6 and 7).

the rules we make sure to record that a location at the relevant program point
might have been created, referenced or assigned.

The purpose of g in the rule for new in Table 3, and the purpose of the last rule in
Table 3, is to ensure that we obtain a conservative extension of the underlying
type system. The last rule is called a subeffecting rule and is essential in the
presence of conditionals. The notation ¢ C ¢’ means that ¢ is “a subset” of ¢’
(modulo UCAI). O

Ezxample 6. Subtyping for Side Effect Analysis.

The last rule in Table 3 can be augmented with a rule for subtyping:
Lhsee:Tly pn o
I'Fspe: 7T & ¢

The ordering 7 < 7' on annotated types is derived from the ordering on annota-
tions as follows:

PN <
T<T —
= ef o <7 ref o

[a]

Here ¢ C ¢’ means that ¢ is “a subset” of ¢’ (modulo UCAI) and similarly
0 C ¢’ means that g is “a subset” of ¢’ (modulo UCAI); as before 77 & 75 is



contravariant in 71 but covariant in ¢ and T5. Also T ref ¢ is both covariant
in 7 (when the reference variable is used for accessing its value as in 'z) and
contravariant in 7 (when the reference variable is used for assignments as in
x := ---) whereas it is only covariant in p. This form of subtyping amounts
to shape conformant subtyping because 71 < T, implies that the two annotated
types have the same underlying types. O

Subeffecting alone suffices for obtaining a conservative extension of the under-
lying type system — provided that we regard the use of p in the rule for new
as being an integral part of subeffecting; the general idea is that subeffecting
allows to “enlarge” the effects at an early point so that they do not conflict
with the demands of the type and effect system. This reduces the usefulness of
the effects but by incorporating subtyping we can “enlarge” the types at a later
point; hence more informative types and effects can be used in subprograms.
Coming back to our treatment of control flow analysis in Example 2 we note
that basically it is a subeffecting analysis.

Polymorphism and Polymorphic Recursion

Subtyping is one of the classical techniques for making a type more useful by
allowing to adapt it to different needs. Another classical technique is Hind-
ley /Milner polymorphism as found in Standard ML and other functional langu-
ages. Both techniques are useful for increasing the precision of the information
obtainable from type and effect systems.

Example 7. Polymorphism for Side Effect Analysis.

We now once more extend the language of Examples 5 and 6 with a polymorphic
let-construct:

ex=---|let x =e; in ey
We also allow types to contain type variables «, effects to contain annotation
variables (8 and regions to contain region variables p:
?:::.c.|a (P:::.q.|ﬂ Q:::.«.|p

We can then define type schemes: a type scheme is a type where a (possible
empty) list (1,---,(, of type, effect and region variables has been quantified
over:

o=V, Gn) T
If the list is empty we simply write 7 for V().7.

The typing judgements will be of the form r Fse e : 0 & ¢ where the type
environment I” now maps variables to type schemes (or types) and 7 is a type



scheme (or type). The clauses are as in Table 3 with the addition of the following
rules:

fI—SEelia\'l&(pl f[xH&l]I—SEeg:?g&gog
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The second and third rules are responsible for the polymorphism and are exten-
sions of the last two rules of Table 2. The second rule is the generalisation rule:
we can quantify over any type, annotation or region variable that does not occur
free in the assumptions or in the effect. The third rule is the instantiation rule:
we just apply a substitution in order to replace the bound type, annotation and
region variables with other types, annotations and regions. O

if dom(0) C {C1,--+,¢n}

Both subtyping and polymorphism improve subeffecting by giving finer control
over when to “enlarge” the types; we already explained the advantage: that more
informative types and effects can be used in subprograms. Since the mechanisms
used are incomparable it clearly makes sense to combine both. However, as di-
scussed in Section 5, it may be quite challenging to develop a type and effect
inference algorithm that is both syntactically sound and complete.

Ezxample 8. Region Inference.

The let-construct can be used to give polymorphic types to functions. But in the
Hindley /Milner approach a recursive function can only be used polymorphically
outside of its own body — inside its own body it must be used monomorphically.
The generalisation to allow recursive functions to be used polymorphically also
inside their own bodies is known as polymorphic recursion but gives rise to an
undecidable type system; this means that no terminating type inference algo-
rithm can be both syntactically sound and complete. This insight is a useful
illustration of the close borderline between decidability and undecidability that
holds for the inference based approach to the static analysis of programs.

Even though we abstain from using polymorphic recursion for ordinary types
there is still the possibility of using polymorphic recursion for the effects an-
notating the ordinary and possibly polymorphic types given to recursive fun-
ctions. In this way, distinct uses of a recursive function inside its body can still
be analysed in different ways. This approach is taken in an analysis known as
region inference [44] that is used when implementing functional languages in a
stack-based regime rather than a heap-based regime. More precisely, the memory
model is a stack of regions of data items, and the analysis facilitates determining
at compile-time in which region to allocate data and when to deallocate a region
(rather than using a garbage collector at run-time).



The use of polymorphic recursion for effect and region annotations allows the
inference system to deal precisely with the allocation of data inside recursive
functions. Furthermore, the inference system implicitly incorporates a notion of
constraint between annotation variables and their meaning (via a dot notation
on function arrows); as discussed in Section 5 this is a common feature of sy-
stems based on subtyping as otherwise principal types may not be expressible.
To obtain effects that are as small as possible, the inference system uses “effect
masking” [21, 39, 40] for removing internal components of the effect: effect com-
ponents that only deal with regions that are not externally visible. It is unclear
whether or not this system is decidable but nonetheless it has proved quite useful
in practice: a syntactically sound inference algorithm has been devised and it
is sufficiently accurate that a region-based implementation of Standard ML has
turned out to compete favourably with a heap-based implementation. a

Mutually Recursive Types and Effects

So far the annotations and effects have not included any type information; as
we shall see in Section 5 this is essential for being able to develop type and
effect inference algorithms using a two-stage approach where first the types are
determined and next the effects annotating the types. It is possible to be more
permissive in allowing effects to contain type information and in allowing even
the shape of types and type schemes to be influenced by the type information
contained in the effects; as will be explained in Section 5 this calls for a more
complex one-stage approach to type and effect inference algorithms.

Ezxample 9. Polymorphic Typing in Standard ML.

The Hindley /Milner approach to polymorphism was originally conceived only for
pure functional languages. Extending it to deal with side effects in the form of
reference variables has presented quite a few obstacles. As an example consider
the following program fragment in an ML-like language:

let x = new nil in (--- x:=cons(7,x) --- x:=cons(true,x) ---)

Here x is declared as a new cell whose contents is initially the empty list nil
and it might be natural to let the type of x be something like Va. (o 1ist) ref;
but then both assignments will typecheck and hence the type system will be
semantically unsound as Standard ML only permits homogeneous lists where all
elements have the same type.

Several systems have been developed for overcoming these problems (see e.g. [42]).
One approach is to restrict the ability to generalise over “imperative” type vari-
ables: these are the type variables that may be used in an imperative manner. It
is therefore natural to adapt the side effect analysis to record the imperative type
variables and to prohibit the generalisation rule from generalising over impera-
tive type variables. In this way the shape of type schemes is clearly influenced



by the effect information. This idea occurred already in [39,40,48] in the form
of an extended side effect analysis with polymorphism and subeffecting. a

4 Causal Type Systems

So far the annotations and effects have had a rather simple structure in that
they have mainly been sets. It is possible to be more ambitious in identifying
the “causality” or temporal order among the various operations. As an example,
we now consider the task of extracting behaviours (reminiscent of terms in a
process algebra) from programs in Concurrent ML by means of a type and effect
system; here effects (the behaviours) have structure, they may influence the type
information (as in Example 9), and there are inference rules for subeffecting and
shape conformant subtyping. These ideas first occurred in [27,29] (not involving
polymorphism) and in [2,33,34] (involving polymorphism); our presentation is
mainly based on [33, 34] because the inference system is somewhat simpler than
that of [1] (at the expense of making it harder to develop an inference algorithm);
we refer to [1, Chapter 1] for an overview of some of the subtle technical details.
An application to the validation of embedded systems is presented in [32] where
a control program is shown not to satisfy the safety requirements.

Ezxample 10. Adding Constructs for Communication.

To facilitate the communication analysis we shall add constructs for creating
new channels, for generating new processes, and for communicating between
processes over typed channels:

e = ---| channel, | spawn ¢; | send e; on es | receive ¢

Here channel, creates a new channel identifier, spawn e generates a new parallel
process that executes e, and send v on ch sends the value v to another process
ready to receive a value by means of receive ch. We shall assume that there is
a special constant () of type unit; this is the value to be returned by the spawn
and send constructs. O

Example 11. Communication Analysis.

Turning to the communication analysis the annotations of interest are:

pu=F Al @102 | w1+ 2| recf.p| T chan o |spawn ¢ | o7 | 077
ou=pl{r}lo1Upa]|0
Tu=a|int |bool |- |unit |73 & T2 | T chan o

2=V(CG, o, Cn) T

Q)

The behaviour A is used for atomic actions that do not involve communication;
in a sense it corresponds to the empty set in previous annotations although it
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Table 4. Communication Analysis: Theome:7T & ¢ (Example 11).

will be more intuitive to think of it as the empty string in regular expressions or
as the silent action in process calculi. The behaviour ;o says that ¢, takes
place before @9 whereas 1 + @9 indicates a choice between ¢; and o; this is
reminiscent of constructs in regular expressions as well as in process algebras.
The construct rec.p indicates a recursive behaviour that acts as given by ¢
except that any occurrence of § stands for rec(.y itself.

The behaviour 7 chan o indicates that a new channel has been allocated for
communicating entities of type 7; the region p indicates the set of program
points {71, -, m,} where the creation could have taken place. The behaviour
spawn ¢ indicates that a new process has been generated and that it operates as
described by . The construct o!7 indicates that a value is sent over a channel of
type T chan p, and 077 indicates that a value is received over a channel of that

type; this is reminiscent of constructs in most process algebras (in particular
CSP).



The typing judgements have the form r Fcom e : 0 & ¢ where the type environ-
ment I” maps variables to type schemes (or types), 7 is the type scheme (or type)
for the expression e, and ¢ is the behaviour that may arise during evaluation of
e. The analysis is specified by the axioms and rules of Tables 4 and have many
points in common with those we have seen before; we explain the differences
below.

The axioms for constants and variables differ from the similar axioms in Table
3 in that A is used instead of (). A similar remark holds for the rule for function
abstraction. In the rule for function application we now use sequencing to express
that we first evaluate the function part, then the argument and finally the body
of the function; note that the left-to-right evaluation order is explicit in the
behaviour.

The axiom for channel creation makes sure to record the program point in the
type as well as the behaviour, the rule for spawning a process encapsulates the
behaviour of the spawned process in the behaviour of the construct itself and the
rules for sending and receiving values over channels indicate the order in which
the arguments are evaluated and then produce the behaviour for the action
taken. The rules for generalisation and instantiation are much as before.

The rule for subeffecting and subtyping is an amalgamation of the rules in Table
3 and Example 6. Also note that there is no ¢ in the axiom for channel unlike
in the axiom for new in Table 3; this is because the presence of subtyping makes
it redundant. The ordering 7 < 7/ on types is given by

H<h Rm<H Ly PSP F<F ecd

<7 !
- ~ ~ ~ ~ = = /
A A S 7 chan p <7’ chan p

and is similar to the definition in Example 6: 7, & 75 is contravariant in 7
but covariant in ¢ and 75, and 7 chan p is both covariant in 7 (for when a value
is sent) and contravariant in 7 (for when a value is received) and it is covariant
in g. As before, the ordering ¢ C ¢’ means that g is “a subset of” of ¢’ (modulo
UCAI). However, the ordering ¢ C ¢’ on behaviours is more complex than what
has been the case before because of the rich structure possessed by behaviours.
The definition is given in Table 5 and will be explained below. Since the syntactic
categories of types and behaviours are mutually recursive also the definitions of
7 <7 and ¢ C ¢ need to be interpreted recursively.

The axiomatisation of ¢ T ¢’ ensures that we obtain a preorder that is a con-
gruence with respect to the operations for combining behaviours. Furthermore,
sequencing is an associative operation with A as identity and we have a distri-
butive law with respect to choice. It follows that choice is associative and com-
mutative. Next the axioms for recursion allow us to unfold the rec-construct. The
final three rules clarify how behaviours depend upon types and regions: 7 chan g
is both contravariant and covariant in 7 and is covariant in ¢ (just as was the
case for the type 7 chan p); o!T is covariant in both ¢ and 7 (because a value
is sent) whereas ¢?7 is covariant in ¢ and contravariant in 7 (because a value is
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received). There is no explicit law for renaming bound behaviour variables as we

Table 5. Ordering on behaviours: ¢ C ¢’ (Example 11).

shall regard rec(3.¢ as being equal to recs’.¢’ when they are a-equivalent.

5

So far we have illustrated the variety of type and effect systems that can be
found in the literature. Now we turn to explaining the individual steps in the

The Methodology

overall methodology of designing and using type and effect systems:

Each of these phases have their own challenges and open problems that we
now consider in some detail; many of these issues are rather orthogonal to the

devise a semantics for the programming language,

develop a program analysis in the form of a type and effect system (this is

what Sections 2, 3 and 4 have given numerous examples of),
prove the semantic correctness of the analysis,
develop an efficient inference algorithm,

prove that the inference algorithm is syntactically sound and complete, and
utilise the information for applications like program transformations or im-

proved code generation.



more syntactic differences used to distinguish between the formulations used in
Sections 2, 3 and 4.

Semantics. Semantics is a rather well understood area. In principle both deno-
tational and operational semantics can be used as the foundations for type and
effect systems but most papers in the literature take an operational approach.
This is indeed very natural when the analysis needs to express further intensional
details than are normally captured by a denotational semantics. But even when
taking an operational approach one frequently needs to devise it in such a man-
ner that it captures those operational details for which the analysis is intended.
The term instrumented semantics [17] has been coined for a class of denotational
or operational semantics that are more precise about low-level machine detail
(say concerning pipe-lining or the number and nature of registers) than usual.
It is therefore wise to be cautious about the precise meaning of claims stating
that an analysis has been proved correct with respect to “the” semantics.

The inference system. Previous sections have illustrated some of the va-
riations possible when developing type and effect systems as well as some of
the applications for which they can be used. However, it would be incorrect to
surmise that the selection of components are inherently linked to the example
analysis where they were first illustrated.

At the same time we illustrated a number of design considerations to be taken
into account when devising a type and effect system. In our view the major
design decisions are as follows:

— whether or not to incorporate
o subeffecting,
e subtyping,
e polymorphism, and
e polymorphic recursion,
— whether or not types are allowed to be influenced by effects (as was the case
in Example 9 and Section 4), and
— whether or not constraints are an explicit part of the inference system (unlike
what simplicity demanded us to do here).

The choices made have a strong impact on the difficulties of obtaining a synta-
ctically sound and complete inference algorithm; indeed, for some combinations
it may be beyond state-of-the-art (or even impossible) and in particular it may
be hard (or impossible) to deal with subtyping without admitting constraints to
the inference system. An important area of further research is how to identify
those features of the annotated type and effect systems that lead to algorithmic
intractability.

Often the type and effect system is developed for a typed programming language.
It is then important to ensure that whenever a program can be typed in the



original type system then there also exists a type in the type and effect system,
and whenever there exists a type in the type and effect system then the program
can also be typed in the original type system. This is established by proving
that the type and effect system is a conservative extension of the original or
underlying type system. It is also possible to investigate whether or not the type
and effect system admits principal types and effects; luckily this will always
be the case if a syntactically sound and complete inference algorithm can be
developed.

Further studies are needed to understand the interplay between type and effect
systems and the other approaches to static analysis of programs. It is interesting
to note that the existence of principal types is intimately connected to the no-
tion of Moore families used in abstract interpretation: a principal type roughly
corresponds to the least solution of an equation system.

Semantic correctness. Many of the techniques needed for establishing se-
mantic soundness (sometimes called type soundness) are rather standard. For
operational semantics the statement of correctness generally take the form of
a subject reduction result: if a program e has a type 7 and if e evaluates to €’
then also €’ has the type 7; this approach to semantic correctness has a rather
long history [24,25,49] and applies both to small-step Structural Operational
Semantics and to big-step Natural Semantics [36]. It is important to stress that
the correct use of covariance and contravariance (in the rules for subtyping) is
essential for semantic correctness to hold.

For more complex situations the formulation of “has a type” may have to be
defined coinductively [42], in which case also the proof of the subject reduction
result may need to exploit coinduction (e.g. [30]), and the notions of Kripke
relations and Kripke-logical relations (see e.g. [28]) may be useful when using a
denotational semantics [26]. We refer to [3, 39,40, 45] for a number of applications
of these techniques.

The inference algorithm. The development of a syntactically sound and com-
plete inference algorithm may be based on the ideas in [20,41]. The simplest ap-
proach is a two-stage approach where one first determines the underlying types
and next determines the (possibly polymorphic) effects on top of the explicitly
typed programs. The basic idea is to ensure that the type inference algorithm
operates on a free algebra by restricting annotations to be annotation variables
only (the concept of “simple types”) and by recording a set of constraints for the
meaning of the annotation variables. This suffices for adapting the established
techniques for polymorphic type inference, by means of the classical algorithm
W developed in [6, 22] for Hindley/Milner polymorphism, to the setting at hand.
In this scheme one might have W(I',e) = (5, 7, ¢, C) where e is the program to
be typed, 7 is the form of the resulting type and ¢ summarises the overall effect
of the program. In case e contains free variables we need preliminary information



about their types and this is provided by the type environment I'; as a result
of the type inference this preliminary information may need to be modified as
reported in the substitution S. Finally, C is a set of constraints that record the
meaning of the annotation variables. For efficiency the algorithmic techniques
often involve the generation of constraint systems in a program independent
representation.

In the case of polymorphic recursion decidability becomes an issue. Indeed, po-
lymorphic recursion over type variables makes the polymorphic type system
undecidable. It is therefore wise to restrict the polymorphic recursion to an-
notation variables only as in [44]. There the first stage is still ordinary type
inference; the second stage [43] concerns an algorithm S that generates effect
and region variables and an algorithm R that deals with the complications due
to polymorphic recursion (for effects and regions only). The inference algorithm
is proved syntactically sound but is known not to be syntactically complete;
indeed, obtaining an algorithm that is syntactically sound as well as complete,
seems beyond state-of-the-art.

Once types and effects are allowed to be mutually recursive, the two-stage ap-
proach no longer works for obtaining an inference algorithm because the effects
are used to control the shape of the underlying types (in the form of which type
variables are included in a polymorphic type). This suggests a one-stage appro-
ach where special care needs to be taken when deciding the variables over which
to generalise when constructing a polymorphic type. The main idea is that the
algorithm needs to consult the constraints in order to determine a larger set
of forbidden variables than those directly occurring in the type environment or
the effect; this can be formulated as a downwards closure with respect to the
constraint set [31,48] or by taking a principal solution of the constraints into
account [39,40].

Adding subtyping to this development dramatically increases the complexity of
the development. The integration of shape conformant subtyping, polymorphism
and subeffecting is done in [3, 31, 35] that develop an inference algorithm that is
proved syntactically sound; these papers aimed at integrating the techniques for
polymorphism and subeffecting (but no subtyping) from effect systems [39, 40,
48] with the techniques for polymorphism and subtyping (but no effects) from
type systems [16,37,38]. A more ambitious development where the inference
system is massaged so as to facilitate developing an inference algorithm that is
also syntactically complete is described in [1]; the inference system used there
has explicit constraints in the inference system (as is usually the case in type
systems based on subtyping).

Syntactic soundness and completeness. The syntactic soundness and com-
pleteness results to be established present a useful guide to developing the infe-
rence algorithm. Formulations of syntactic soundness are mostly rather straight-
forward: the result produced by the algorithm must give rise to a valid inference



in the inference system. A simple example is the following: if W(I',e) = (S, 7, ¢)
then S(I') F e : 7& ¢ must hold; here it is clear that the substitution produ-
ced is intended to refine the initial information available when first calling the
algorithm. A somewhat more complex example is: if W(I',e) = (S, 7, ¢, C) then
S'(S(IN) Fe: S'(1)& S’ (p) must hold whenever S’ is a solution to the con-
straints in C. The proofs are normally by structural induction on the syntax of
programs.

The formulations of syntactic completeness are somewhat more involved. Given
a program e such that I's F e : 7, & ., the main difficulty is to show how this
can be obtained from W(I',e) = (S, 7, ) or W(I',e) = (S, T, ¢, C). The solution
is to formally define when one “typing” is an instance of another; the notion of
lazy instance [9] is very useful here and in more complex scenarios Kripke-logical
relations (see e.g. [28]) may be needed [1]. The proofs are often challenging and
often require developing extensive techniques for “normalising” deductions made
in the inference system so as to control the use of non-syntax directed rules. For
sufficiently complex scenarios syntactic completeness may fail or may be open
(as mentioned above); luckily soundness often suffices for the inference algorithm
to be of practical use.

Exploitation. Exploitation is a rather open-ended area although it would seem
that the integration of program analyses and program transformations into an
inference based formulation is quite promising [46]. Indeed, inference-based for-
mulations of analyses can be seen as an abstract counterpart of the use of at-
tribute grammars when developing analyses in compilers, and in the same way
inference-based formulations of analyses and transformations can be seen as an
abstract counterpart of the use of attributed transformation grammars [47].

6 Conclusion

The approach based on type and effect systems is a promising approach to the
static analysis of programs because the usefulness of types has already been wi-
dely established. The main strength lies in the ability to interact with the user:
clarifying what the analysis is about (and when it may fail to be of any help)
and in propagating the results back to the user in an understable way (which
is not always possible for flow based approaches working on intermediate rep-
resentations). The main areas of further research concern the expressiveness of
the inference based specifications, the complexity and decidability of the infe-
rence algorithms and the interplay with the other approaches to static analysis
of programs.
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