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Abstract

Programming computers is a notoriously error-prone process. It is the job of the program-
ming language designer to make this process more reliable. One approach to this is to
impose some sort of typing discipline on the programs. In doing this, the programming
language designer is immediately faced with a tradeoff: if the type system is too simple, it
cannot accurately express important properties of the program; if it is too expressive, then
mechanically checking or inferring the types becomes impractical. This thesis describes
a type system called refinement types, which is an example of a new way to make this
tradeoff, as well as a potentially useful system in itself.

Refinement type inference requires programs to have types in two type systems: an
expressive type inference system (intersection types with subtyping) and a relatively simple
type system (basic polymorphic type inference). Refinement type inference inherits some
properties from each of these: as in intersection types with subtyping, we can use the type
system to do abstract interpretation; as in basic polymorphic type inference, refinement type
inference is decidable (preliminary experiments suggest refinement type inference may be
practical as well).

We have implemented refinement type inference for a subset of Standard ML to test these
ideas. We have added new syntax, called rectype declarations, to allow the programmer
to specify relevant domains for the abstract interpretation. A prototype implementation of
refinement type inference can do some interesting case analysis for Standard ML programs;
for example, if the programmer uses a rectype declaration to declare interest in whether
a boolean expression is in conjunctive normal form (CNF), refinement type inference
can efficiently prove that a function for converting boolean expressions to CNF does
indeed always return a boolean expression in CNF. Rectype declarations and refinement
type inference seem flexible and efficient enough to practically enforce many other useful
program properties as well.
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Chapter 1

Introduction

In this chapter we use examples to illustrate what refinement type inference can and cannot
do. We also describe the context in which this thesis exists, and give an overview of the
rest of the thesis.

1.1 Introductory Examples of Refinement Types

The examples in this chapter are in Standard ML. The first example defines a Standard ML
function that returns the last cons cell in a list:

��� � � �	���
�������
	����������� ������������� �!�����
	��
�#"#�$� � � �
�������&%'� � � � � � �#�(���)%+* �-, ���.��/0/12� � � �
� � � � �
�������&% �#�(���)%+* �-, �3�#/4/56� � � �
������� �3�

Readers unfamiliar with Standard ML will benefit from some explanation of this: The first
line is a

�7� � � ���	�
� declaration that defines the ML type constructor ���
	�� to mean LISP-like
lists where all elements have the same type. The type of the elements is the argument to the
type constructor; for example, since �98�� is the type of integers, �98#�:���
	�� is the type of lists
of integers. (The type is not written ���
	��;�98�� ; unlike function application, type application
is written in postfix.) This declaration also states that the constructors �#����� and ����� can be
used to construct lists.

The second and third lines are the definition of the function � � � � �#����� . A function
definition in Standard ML consists of the keyword �#"�� followed by one or more cases
consisting of a function name, a pattern, an “  ”, and an expression. Each time the function
is called, the first pattern that matches the actual argument is selected and used to bind
variables, the corresponding expression is evaluated, and the resulting value is returned.
The first pattern %'� � � � � � �#�(���)%+* �<, �����#/4/ binds the variable � � � � to the argument
and also matches the pattern �������)%=* �-, �����#/ against the argument; this checks that the
outermost constructor is ������� and the second argument to �#�(��� is ���.� . If this is so, then

1



CHAPTER 1. INTRODUCTION 2

we bind * � to the first element of the list �#����� and return � � � � . The second pattern% �#�����)%=* �-, � �#/4/ matches any nonempty list. Since the first pattern matched lists of length
one, the expression corresponding to this pattern will only be evaluated when the list has
two or more elements.

The empty list ���.� is not matched by any pattern. This causes SML compilers to
generate a warning during type inference that not all cases are accounted for, and an error at
run time if the value ���.� is passed to � � � �
������� . With refinement types, we can do better by
making a declaration that distinguishes empty lists from nonempty lists. Then refinement
type inference will always generate a warning when � � � � �#�(��� is used and the missing
case is reachable, and it will often remain silent when the missing case of � � � �
������� is
unreachable. Assuming we eliminate the warning generated by SML type inference for the
missing case, the net result is fewer and more specific warnings.

Standard ML also allows matching against patterns without making a function call. For
example, the expression

� � � �)� � � �
������� � �(�
�������)%�� , �����#/ �� � �3� �	���

prints the unique element of the list returned by � � � � �#�(��� . This expression gets a compiler
warning for the same reason as the definition of � � � �
������� : the compiler sees that not all
cases are dealt with. Once again, we can use refinement types to do better. If we make
a declaration distinguishing singleton lists from other lists, refinement type inference will
infer that � � � �
�#�(��� always returns a singleton list and that the missing branches of this
� � � � statement are unreachable.

Attempting to take such refined type information into account at compile time can very
quickly lead to undecidable problems. The key idea which makes our type system decidable
is that subtype distinctions (such as singleton lists as a subtype of arbitrary lists) must be
made explicitly by the programmer in the form of recursive type declarations. Since the
programmer makes a finite number of recursive type declarations, we have a finite number
of distinctions to search over during type inference.

In the example above, we can declare the refinement type of singleton lists as

��� � � �	��� � �����
	�� )������� �#���������2�1�!��� �
	��
���	� ���	�
�����	��
 ��  ���.�

� � � � 	 �98��(��� ���.8  �������)% � , ���.�#/
� � � �����.8��  �������)% � , �������)% � , ����� ����� /4/
� � � ����� �����  � ����� �"!6%4���
	�� /

This � ��������� � declaration instructs type inference to distinguish lists of length 0, 1, and 2 or
more from each other. If we think of refinement types as sets, then � corresponds to set union.
In this context, the value constructors �#����� and ���.� operate on sets; the type expression ���.�
stands for the set # ���.�%$ and ��������%�&('*) / stands for # �������(%+,'.-�/0/�+212& and -31()4$ . The
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expression �3� ���3� ! % ������� / corresponds to the empty set of lists, and � � ����� a refinement type
identifier defined by this declaration to stand for an empty set of lists. (In the implementation,
all identifiers are ASCII, so we cannot use the name � � � ��� as an identifier directly; instead
we use � ���	��� �#� � . In the text of this thesis we are not limited to ASCII, so we use the name� � � ��� for this identifier.) As a convenience, the system also provides a catch-all refinement
type � � ����� that includes all lists. This means that � ��� �	��� � declaration above is treated as
though the clause

. . .
� � � � � � ����� ����.� � �������)% � � � � � ��� /

were added. (The implementation uses �3� �
�#� ��� � instead of � � ����� .)
One way to think of the refinement type inference algorithm is that it performs abstract

interpretation over programmer-specified finite sets of refinement types (plural here, since
each ML type has its own set of refinement types). Finiteness is important, since it is
necessary for the decidability of refinement type inference. With the above declaration,
abstract interpretation works over this set of refinements of � � �
	�� :

� � � �����

� � ��
 �� � 	 �98��(��� ���.8 � � �.8��

� � � �����

����������

� � � � � � � � � �
� � � � � � � � � �

����������

The system ensures that the intersection of any two refinement type constructors is also a
refinement type constructor, so if we omitted the declaration of � � � ��� the lattice would look
the same, except the position of � � � ��� would be occupied by an automatically generated
name instead.

To perform the abstract interpretation, the type system needs to know the behaviors of
�#�(��� and ����� on this abstract domain. This can be expressed through refinement types
given to the constructor. For example, �#�(��� applied to anything of type � and ���.� will
return a singleton list:

������� : % � � � � ��
 ���/� � 	 �98������ ���.8

The constructor ������� also has other types, such as:

������� : % � � � 	 �98��(��� ���.8 /� � � �.8��
������� : % � � � � �.8���/  � � �.8��

In the refinement type system, we express the principal type for �#����� by using the intersec-
tion operator “ � ” to combine all these types, resulting in:
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������� : % ��� � �	��
 ���/  � 	 �98��(� � ��.8 �% ��� � 	 �98��(��� ���.8 /	 � � �.8�� �% ��� � ���.8��3/  � � �.8��
This type for ������� is generated automatically from the ���������	�
� declaration above.

We can also use refinement types to analyze polymorphic functions. For example, we
can define the usual function for applying a function to each element of a list and making a
list of the results as follows:

��"#��! � �)�2�����&)���.�
� ! � �)� % �#�����)% � , �3/0/1 �������)%+� � , ! � � � � /

This function has the polymorphic ML type � % � '�� / � % � �� /  �����
	�� �� ���
	�� . With the
refinement type declarations listed above in effect, it has the refinement type

� % � '�� / � % � �� /� % � �	��
 �� �� � ��
 ��� �� 	 �98��(� � ��.8 ��1	 �98��(��� ���.8 �� � �.8�� �� � �.8���/
�

In Chapter 4, we give examples where polymorphism interferes with refinement type
inference. This is not one of them; expressions using polymorphic ! � � always get
as precise a refinement type as similar expressions using a monomorphic version of! � � . For example, the best refinement type for �������)%+����� , ���.�#/ is ��� ��
 ���5	 �98��(� � ��.8 ,
and the best refinement type for ! � � %+�#� �� � �#�(��� %�� , ���.��/0/ % �������)%=���.� , ���.��/0/ is� �	��
 �� 	 �98��(��� ��.8 	 �98������ ���.8 . Since the value of this expression is

�������)% �������)%+����� , ���.�#/ , �����#/ '
this is the best type we could hope for.

We can also use refinement types to prove that certain parts of a program do not use some
datatype constructors. Consider a compiler for a toy language with only � � statements,
� � � � statements, and variables, where � � statements are syntactic sugar for �

� � � statements
that operate on the booleans. It is possible to separate a compiler for this language into
three sections: a parser, a desugarer that rewrites the � � statements to � � � � statements, and
the rest of the compiler. Since the rest of the compiler is only given desugared code, it does
not need to be prepared for � � statements.

To formalize this, we first define the abstract syntax for this toy language:

��� � � �	��� � 
��(� 
	�����������������
��� � � �	��� �&	 �(8 

� ���$���$	������98��
����� �(� 	 �(8 � 	 �(8 � 	 �(8
��������� ���$	 ��8 �;%�
��(� � 	 �(8�/ ���
	��
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We can use a � ��������� � declaration to distinguish desugared abstract syntax:

���	� �	���
��� �4	��"� ���*��� 
� ��� % � ����������	 /
����� � � %
� �4	�� ����� ��� �;% ��������� �4	�� �����.����/(� � � ��� /

We omit the code for the parser. The code for the desugarer is straightforward:

�#"�� � ��� "�� � � %�� � %4��� , ��� , ���7/0/1
��� � �2% � � � "�� � � ��� ,�� % 	����� , � ��� "�� � � ����/ , % ����� � � , � ��� "�� � � ���7/��7/
� � ��� "�� � � % � ��� �./1 � ��� �
� � ��� "�� � � %�� �����2%0� , �#/4/ 
��� � �2% � � � "�� � � � , ! � � %=��� % � � � , ��� /5���% � � � ,1� ��� "�� � � ��� /0/ �#/

This gives
� � � "�� � � the refinement type � �! "� #� �4	�� �����	��� . For the purposes of this

example, our only concern about the rest of the compiler is to show that refinement type
inference can verify that it does not need to deal with the ��� constructor if it is only passed
desugared code for input. It is possible to write and typecheck a caricature of the rest of the
compiler by first defining a stub datatype for the output of the compiler:

��� � � �	���
� �#� � �  �%$�& �

Then we define the rest of the compiler to covert all syntax it expects to encounter into a
�%$'&�� :

�#"#� ����� � % � ��� ��/  �($�&��
� ����� � % �������2%0� , ��/0/1
% � � � � ��)
! � � %+�#� % � � � , �*� /1 � � � � � ��� / �+)
�%$'&���/

In this case refinement types can verify that the missing � � case of � � � � is never reached
if its argument has the type � �4	�� ����� ��� .

If we do not use refinement types, a dilemma arises as we write this code. Either we can
have separate datatypes for the input and output of functions like

� � � "�� � � , or we can have
one datatype and add unreachable cases to ��� � � to keep the ML compiler from complaining.
The first option is awkward because the datatypes defined tend to be redundant, and functions
for printing out these datatypes (among others) must have redundant implementations. The
second option is unattractive as well because the compiler does not check that the added
cases are unreachable, and because we have forced the programmer to write unnecessary
code.
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1.2 Practical Examples of Refinement Types

Refinement type inference is practical only if, in a reasonable amount of time, it can infer
useful information that is not immediately obvious to a human programmer. The examples
in this section are practical in that sense; the prototype implementation needs 22 seconds
elapsed time to verify them on a SPARCstation iPX and the examples are complex enough
that refinement type inference found an error. This implementation is not particularly
efficient; an improvement in speed by a factor of 10 would not be surprising.

We illustrate the practicality of refinement types with some code for manipulating
boolean expressions. We will present this code as Standard ML syntax; it is a simple matter
to translate this into the restricted language described in the theory or the language of the
prototype. The assertions below about the behavior of refinement type inference are based
on the behavior of the implementation; to the best of my knowledge, they are also consistent
with the theory in the following chapters.

First, we can define boolean expressions with the declaration

��� � � �	���
���.� �(�����.
  �#� � �����.� �(�����.
 ���.� �(�����.

� $ �2�(���.� �(�����.
 ���.� �(�����.

�
	3� �2�(���.� �(�����.

� 	��." �
� � � ��� �
� �3� � �(� 	���� �98��

For example, the expression %�+ � -�/��� %�+ � -�/ is represented as the value

$ � % �#� � % � � ��� ��� ,�� � ��� ��(/ , 	 � � % �#� � % � � ��� ��� , �3� ��� ��(/4/0/

One simple operation we can do with a boolean expression is evaluate it, if it is ground
(that is, it has no variables). It is easy to write a function to do this:

�#"�� ��� � � % �#� � %�� � , � �#/4/1 ��� � � � � � � ��� � �.� ��� � � � �
� ��� � � %�$ �$% � � , � �#/4/5 ��� � � � ��� � �#��� � ��� � � � �
� ��� � � %�	 ��� � �(/  � ��� % ��� � � � �(/
� ��� � � 	��." �& � ��"
�
� ��� � � � � ��� �&)� � ��� �

Unfortunately, presenting this definition to a Standard ML system yields a warning that the
function is missing a case for the

�3� � constructor. This is reasonable, since we did not tell
the compiler that we only intend to evaluate ground boolean expressions. With refinement
types, we can tell the compiler this, and it can check that ���

� � is missing no cases required
to evaluate ground boolean expressions. Refinement types can also ensure at compile time
that all expressions passed to ��� � � are ground.

To make this happen, we define ground boolean expressions with a ���	� ���	�
� declaration:
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� ��������� � ��� ���#8%�  	 ��"
� � � � ��� � � 	3� � %���� ����8�� / �
�#� � %���� ���#8%� � � � ���#8%�3/ � $ � %��� ���#8%� � ��� ���#8%�3/

This declaration defines a refinement type � � ���#8%� . Every refinement type is entirely
contained within some ML type; we say the refinement type refines the ML type. In this
case, ground refines boolexp. The � ��� �	��� � statement can be read as a description of all
the ways of constructing a value with refinement type ��� ���#8%� ; for instance, because the
���	� �	���
� statement includes the clause �#� � %���� ����8%� � ��� ���#8%�3/ , it is possible to construct
a value with refinement type ground by applying the constructor �#� � to a value with
refinement type ��� ����8%� � � � ���#8%� ; this is equivalent to saying the argument to �#� � must be
a pair of values, each with refinement type ��� ���#8%� .

A refinement type called � ����� ����� � containing all values of ML type �.� �(�����.
 is implicitly
declared. Without this there would be no refinement type for non-ground boolean expres-
sions, which would essentially mean that the

�3� � constructor would cause a refinement
type error whenever it is used.

With the declaration of ground, refinement type inference will infer that ���
� � has the

refinement type ��� ����8%�  � �	�
� � , where � �	�
� � is the refinement of �.� �(� that includes both
� ��"
� and � � � � � . As long as refinement type inference can infer that the argument passed
to ��� � � each time it is called has refinement type ground, there will be no warning and no
need for a warning because the missing case in ��� � � will not be reached.

Refinement types can also be used to infer useful things about the result of substituting
values for variables in boolean expressions. This requires manipulating substitutions; we
will represent a substitution as a value with the type %'	���� �98�� � �.� �(�����.
 / � �
	�� ,where the first
element of each pair in the list is the name of the variable and the second is the corresponding
value. An elementary operation on substitutions is looking up a value in a substitution,
which can be implemented with the code:

�#"��2�#�#���#"	� % �������)%4%4� � � , � / , �3�#/4/�� � �&
� � � � �  � � � �#* ����� �#��� �)�#�����"�� � ��� � �

� �#�#���#"	� � � �) � ����� �2% /

If we assume � �	��� � has the ML type � �� , then �#����#"	� gets the ML type % � �
� / ���
	��
 � �� , where we underline type variables for which polymorphic equality must
be defined. The refinement type inferred for it is similar: % � � � / � � �����  �  � .

When we instantiate the ML type variables � and � , the corresponding refinement
type variables can be instantiated to any refinement of the ML type substituted for the
corresponding ML type variable. For example, consider the instantiation mapping � to
string and � to boolexp. Instantiating the ML type % � � � / ���
	��  � �� yields the ML
type %'	���� �98��<� �.� �(�����.
 / ���
	��	�	���� �98��  �.� �(�����.
 . We will suppose that � ��� ��� ��	 refines string;
since � ����� � ��� � refines �.� �(� ���.
 , instantiating the refinement type % � � � / � � �����  �  � yields

%4% � ����������	 � � ����� � ��� � / ���
	��
 � ����������	  � �	�
� � ��� �
�
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Since ��� ����8%� also refines � � �(�����.
 , instantiating it also yields

% � ����������	 � ��� ����8%��/ ���
	��  � ����������	  ��� ����8%�
�

We can combine multiple refinement types of an expression with � , so ���#���"�� also has the
refinement type

% � ��� ��� ��	 � � � ���#8%�3/-���
	��	�� ����������	  ��� ���#8%� � % � ������� ��	 � � ����� ����� � /-���
	��	 � ��� ��� ��	  � ����� ����� �
�

Now we can use ���#���"�� to implement a function for applying a substitution:

�#"�� � ��� " ��� �2% �#� � %�� � , � �#/4/���
��� � % � ��� " ��� � � ��� , � ��� "%��� � � ����/

� � ��� " ��� �2%�$ � %�� � , � ��/0/ �&
$ � % � ��� "%��� � � ��� , � ��� "%��� � � ����/

� � ��� " ��� �2%�	 � ��� �(/ �& 	 ��� % � ��� "%��� � � �)��/
� � ��� " ��� �2% � � �2� � / �&$�#�����"��2� � �
� � ��� " ��� � � �) �

and with refinement types we can infer that this function has the type

� ����� ����� �  % � ��� ��� ��	 � ��� ���#8%� / � � � ���  ��� ���#8%�,'

which means that applying a ground substitution to any boolean expression yields a ground
boolean expression (or raises an exception).

We can also use refinement types to reason about boolean expressions in conjunctive
normal form (CNF). We can distinguish these with the following � ��� �	��� � declaration:

� ��������� ��� 8�� 
��� � %�� 8�� ��� 8�� / � �.�
	�� � 	 ��"
�
� � � �.�
	��2�$ �$% �.�
	�� � �.�
	��#/ � ��� � � ���(� � � � ��� �
� � � ��� � � � �(�  	 ��� % �(�� � /2� �(��� �
� � � �(�� �  �3� �2% � ����������	 /

As an example of the use of this ���	� ���	�
� statement, we can write a function to convert
boolean expressions into CNF, and use refinement types to verify that it always returns an
expression in CNF. We define the function in two steps; the first step is to transform the
disjunction of two expressions in CNF into an expression in CNF:

�#"#� � ���	�����#����% ��� � % � � , � ��/0/ �  ��� � % � �#�
�����#��� � � � , � �#�
�����#��� � � ��/
� � ���	�����#��� 	 ��"
� � 
	��."
�
� � ���	�����#���(� % ��� � % �(� , ����/0/ 

��� � % � �#�
�����#��� � � � , � �#�
�����#��� � ���#/
� � ���	�����#���(� 	 �." �&
	��."
�
� � ���	�����#���(� � �$ � %�� , �#/
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Type inference infers that
� ���	�����#��� has the refinement type � 8��  � 8��  � 8�� , among

others.

An earlier version of this had an error that was found when the earlier definition did not
have the correct refinement type. The version with the error was

�#"#� � ���	�����#����% ��� � % � � , � ��/0/ �  ��� � % � �#�
�����#��� � � � , � �#�
�����#��� � � ��/
� � ���	�����#��� 	 ��"
� � 
	��."
�
� � ���	�����#����% � � � $ � ��/ % ��� � % �(� , ����/0/ 

��� � % � �#�
�����#��� � � � , � �#�
�����#��� � ���#/
� � ���	�����#����% � � � $ � ��/ 	 ��"
�&
	��." �
� � ���	�����#���(� � �$ � %�� , �#/

An example of the error is
� �#�
���.����� � � ��� � % �#� � % � � ��� � , � � � � �#/4/ ; this evaluates to

$ � % � � � � � , ��� � % � � � � � , � � � � ��/0/ ,

which is not in CNF, even though both of the arguments to
� �#�
���.����� are in CNF. The

prototype implementation detected the error when it was told to check the assertion that� ���	���.�#��� has the type � 8��  � 8��  � 8�� ; the command to do this is written as

� � � �  � �#�	���.����� � � 8��  � 8��  � 8��

(Actually, the prototype implementation only takes ASCII characters for input, so it is really
written

� � � �  � �#�
���.��������� �(�#��� � �(�#���%� �����

However, since the implementation is a research prototype rather than a practical tool at this
point, readability is more important than gritty realism, so we will typeset all discussion of
the implementation.)

After we can convert the disjunction of two CNF boolean expressions to CNF, it is easy
to convert arbitrary boolean expressions to CNF:

�#"#� � ���.�#� % �#� � % � � , � �#/4/  �#� � % �3� ���#��� � , �3� �.��� � �#/
� � ���.�#� %�$ �$% � � , � �#/4/5 � �#�
�����#����% � � ���#��� �(/ % � ���.�#��� �#/
� � ���.�#� %�	 ��� % ��� � % � � , � ��/0/4/1 � ���.��� %�$ � %�	 � ��� � , 	 � ��� �#/4/
� � ���.�#� %�	 ��� %�$ � %�� � , � ��/0/4/  � ���.����% �#� � %�	 � ��� � , 	 � ��� �#/4/
� � ���.�#� %�	 ���
	 ��"
�#/  � � ��� �
� � ���.�#� %�	 ���
� � � � ��/ 
	��." �
� � ���.�#� %�	 ��� % �3� �$�./4/5 	 � � % �3� �2��/
� � ���.�#�
	 
	

The prototype implementation can infer that � � ���#� has the refinement type � ����� ����� �  � 8�� .
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1.3 Related Work

The main features of refinement type inference – basic polymorphic type inference, sub-
typing, intersection types, and � ��� �	��� � declarations – are all derived from features of
languages that have appeared in the literature.

1.3.1 Basic Polymorphic Type Inference

A dynamically typed language like LISP can have one function that can append any kinds of
lists, whether those lists contain integers, booleans, or other lists. Parametric polymorphism
provides some of this flexibility to statically typed languages. In this example, we start
by assuming all elements of the lists have the same type; we will name this type with
a parameter, say � . Then, for all � , the function that appends lists (call it

� ��� ��� � ) can
have the type � ���
	��
 �2���
	��  �$� �
	�� . We can see that this function can append lists
of booleans by first instantiating � to �.� �(� , to conclude that

� �	�
�(� � also has the type
�.� �(� ���
	��  �.� �(� � �
	��  �.� �(� ���
	�� .

Standard ML is a language with parametric polymorphism that has been developed for
at least 15 years [Mil78, MTH90, MT91b, Har86, HMM

�

88, Tof87, Tof88, DM82, Mac88];
practical implementations are freely available. Standard ML has the added advantage that
the polymorphism is implicit, which means that no types need be mentioned in the definition
of functions such as

� �	�
��� � ; instead, they can all be inferred.

Refinement type inference simply uses polymorphic type inference with minimal
changes. Ultimately, we hope to have a dialect of Standard ML that will accept all existing
SML programs, as well as SML programs with ���	� ���	�
� declarations added. Since a large
body of SML code already exists, this may lead to widespread use of refinement types fairly
soon after good implementations of refinement types are available.

1.3.2 Subtyping

Roughly speaking, one type is a subtype of another if all values with the first type also
have the second type. For example, in mathematics, all integers are real numbers, so
programming languages often have the type of integers (which we shall call �98�� ) as a
subtype of the type of real numbers (which we shall call � ���(� ). Since integers are often
implemented differently from real numbers, the simple notion of subtyping as containment
is not necessarily true at the implementation level; instead, we may have to use some
non-trivial function to coerce elements of the subtype into elements of the supertype. In
this example, the coercion function maps the machine representations of integers into the
machine representations of reals.

Subtyping at a base type leads naturally to subtyping at higher types; for example, if �98��
is a subtype of � ���(� , then we would expect % �98�� � �98�� / to be a subtype of %�� ���(� � � ���(� / . We
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also have the slightly counter-intuitive assertion that �*���(�  �.� �(� is a subtype of �98��
 �.� �(� ;
this is the case because any element of the former can be converted to an element of the
latter by first coercing the argument of the function from �98#� to � ���(� .

Subtyping also has a natural interpretation when used with records. Any record with,
say, both

� � � and � � ! � fields has an
� �
� field; if we rephrase this in terms of subtyping

and standard notation for record types, and assuming that the
� �
� field is an �98#� and the� � ! � field is a 	���� �98�� , we say that # � � � : �98�� '4� � ! � : 	������98�� $ is a subtype of # � � � : �98�� $ .

Several approaches to clean interaction between this kind of subtyping and polymorphism
are [JM88, Jat89, R8́9, LW91, HP91, HL94]. These are all type inference systems that
in some sense extend the type inference of Standard ML; making a version of refinement
types that is based on one of these instead of Standard ML is potential future work.

Two papers by Fuh and Mishra [FM89, FM90] describe an interesting system that deals
simultaneously with polymorphism and subtyping. Like refinement types, their system
permits a user-defined subtyping relation, but unlike refinement types their system has no
intersection operator. In their system the result of type inference is a pair, consisting of
a type and a set of constraints that may stipulate that some free type variables appearing
in the type must be subtypes of one another. It is not clear how to extend this system to
include intersections.

Subtyping in refinement types is simpler than subtyping in general because with refine-
ment types, the coercion function is always the identity function.

1.3.3 Intersection Types

Intersection types record multiple pieces of information about an expression. For example,
consider a unary negation operator that applies to both integers and reals. It will therefore
have both of the types �98#�  �98#� and � ���(�  � ���(� . Therefore, if we have intersection types
in our language, we can say it has the type % �98��
 �98�� / � %�� ���(�  � ���(�+/ . When the type
system uses the type of unary negation, it will have to select an appropriate type from the
ones intersected.

These types can quickly become too expressive; type inference becomes undecidable
[CDCV80]. There are restrictions that yield a decidable system [CG92], but it is not clear
what subtyping means in this system.

Another variant of this is Forsythe [Rey88]. This language has intersection types and
subtyping, but no polymorphism. This language has a different approach to records from
the polymorphic one mentioned above: the intersection of the two record types # � �
� : �98�� $
and # � � ! � : 	���� �98�� $ is # � �
� : �98�� '4� � ! � : 	������98�� $ .

Yet another option is
���

[Pie91b]. This language has intersection types, subtyping,
and polymorphism, and its type system can encode any of the abstract interpretations that
refinement type inference can. However, it has explicit types, and type checking in this
system is undecidable.
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1.3.4 ���������
	�� Declarations

�����������
declarations essentially define finite automata that recognize when a value is in a

refinement type. In fact, as long as there are no function types, a � ����������
declaration has

exactly the same descriptive power as a regular tree automaton [GS84]. Similar automata
have been used to define types for logic programs; most of the papers in [Pfe92] deal with
some aspect of this. For example, [YFS92, page 68] uses the example

��������� �"!�#%$'&
1 ( &

2 ) :: *,+.- ; + & 1 /103242 � �"!�#�$'&
1 ( &

2 ) -'5
03242 � �"!�#�$'&

1 ( &
2 ) :: *6+ & 2 / ��������� �"!�#%$7&

1 ( &
2 ) -'5

which is remarkably similar to (and probably derived independently from) the example we
will use in the next chapter:

8:9��9������;�=< � �"!�#?>A@CB4DFE ��G @CH G�IJ<LK%K �:M < � �"!�#
� ����������A< ���A> ��G @1HN$LOQPSRTRVU4M <WK 2;) E�@1BXDY$

runit )9 @ 8Z<WK 2 > ��G @1HN$LOQPSRTR'UXM < ��� )
The operations needed to determine the meaning of a � ���������;�

declaration can be
computed exactly for regular tree automata [GS84]. The algorithms given for regular tree
automata in [DZ92] seem practical, and assuming they are sound, they are more accurate
than the type system given in Chapter 3. An example where the current specification is
weak is on page 193. Finding a practical algorithm that works well in the general case and
is exact in the case when there are no function objects is future work.

1.4 Claims of the Thesis

The central claim of this thesis is:

Refinement types provide a sound, practical, declarative, and unobtrusive way
to express and effectively verify some reasoning by cases about Standard ML
programs and potentially programs in other functional programming languages.

This has several parts:

[ Refinement types can express reasoning by cases about Standard ML programs. This
requires subtyping (because some cases include others) and intersection types (to
describe the behavior of functions on multiple possible inputs).

[ Refinement types can be effectively verified. This means that type inference is
decidable; we ensure this by only distinguishing cases in which the programmer has
declared interest and by requiring expressions with a refinement type to always have
an ML type.
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[ Refinement type inference is practical. This thesis demonstrates this by describing a
prototype implementation of it that has tolerable performance.

[ Refinement type inference is sound. We exhibit a soundness proof.

[ Refinement type inference is declarative. Refinement type inference can be described
with a declarative type inference system. See Figure 2.6 on page 60.

[ Refinement type inference is unobtrusive. If � ���������;�
declarations and “ � ” are not

used in a program, then that program has a refinement type if and only if it has an ML
type. Refinement types are also unobtrusive in the sense that they do not necessarily
have any effect on execution. Given a program that checks refinement types, it is
easy to construct a compiler for a variant of Standard ML that has refinement types:
the compiler could simply check refinement types, remove all � ���������;�

declarations
and uses of “ � ” from the given source code, and then pass the resulting source code
to a Standard ML compiler.

1.5 Outline of the Work

This thesis starts with a careful formal description of monomorphic refinement type infer-
ence. Chapter 2 centers around the inference rules in Figure 2.6 that describe refinement
type inference for expressions in terms of explicit assumptions about properties of the in-
formation from � ���������;�

statements. The rest of that chapter consists of proofs that this
type inference system is sound, has principal types, and is decidable.

Chapter 3 deals with � ���������;�
statements. The central inference systems are Figure 3.6,

which describes how to infer a subtyping relation from a � ���������;�
declaration, and Fig-

ure 3.8, which describes how to infer the splitting relation. The rest of the chapter consists
of proofs that the assumptions made in Chapter 2 are satisfied, and a proof that refinement
type inference for values is consistent with a semantics we give for � ���������;�

statements.

Chapters 4 and 5 describe how to add polymorphism to this. Chapter 4 simply adds
type variables such as � , and is fairly simple. Chapter 5 add type constructors that take
type arguments, such as �

� �"!�#
. This is more complex because we have to decide whether,

for example,
$ < ����� <WK 2;) ! �S����� �W# K ��� < � � ! �S����� �W# K �

. There are four possible ways a
refinement type constructor can change when we replace its argument by a larger argument:
either it gets larger, gets smaller, stays the same, or the new type is incomparable with the
old. We call these type arguments positive, negative, ignored, and mixed, respectively.
It is possible to create examples of all of these behaviors, and the theory has to deal with
them. Chapter 5 describes the changes necessary to the reasoning in Chapters 2 and 3 to
accommodate this.

Chapter 6 describes how to add the coercion operator � to the language. This is very
straightforward, provided one erases all coercion operators from terms before evaluating
them.
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Chapter 7 describes the prototype implementation. The fundamental decision made
in the implementation was to implicitly represent refinements of functional ML types as
functions. Memoization is used extensively. We find fixed points by using pending analysis
[Jag89, Dix88], and we instantiate polymorphic refinement types using a novel unproven
strategy that appears to yield correct answers in practice.



Chapter 2

Refinement Type Inference

2.1 Introduction

This chapter gives a formal description of a simple, monomorphic form of refinement types
that includes only primitives for functional programming and assumes that the programmer
has already declared which distinctions he is interested in. In Chapter 3, we describe� ����������

statements, which allow the programmer to declare interest in specific distinctions.
The soundness results of this chapter depend on several assertions that are proved in
Chapter 3. These assertions are labeled as “Assumptions”; for example, the first one
below is Assumption 2.2 (Constructors have Unique ML Types) on page 26. Chapter 4
expands the type inference in this chapter to include type variables, and then Chapter 5 adds
polymorphic constructors.

Perhaps the simplest example of refinement types is being able to reason about the
booleans. If the programmer has declared interest in the distinction between

� ��� �
andI9 D H �

, refinement type inference can determine that the function

I @��6>�� G � $���� @ G�� � )
always returns

� �	� �
regardless of its input. To express this formally, we say


 I @��6>�� G �� ��� @ G�� ���
:

OQPSRTRVU�� # # 5
Here

O P R R'U
,
# #

, and
O PSRTRVU�� # #

are all refinement types. Informally we can think of refinement
types as standing for sets of values. The refinement type

O P R R'U
is the set of all boolean

values, or � � �	� � ( I9 D H ���
;

#T#
is the set � � ��� ���

; and
O PSRTR'U�� #T#

is the set of all functions
with ML type

<WK%K ��� <WK K �
that map all values in

O PSRTR'U
to values in

#T#
.

If we think of refinement types as sets of values, each value in the set must have the
same ML type; we say that the refinement type refines the ML type. For example,

O P R R'U
refines

<WK%K �
and

O PSRTR'U � #T#
refines

<WK%K �	� <WK K �
. For the purposes of the examples in this

15
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chapter, the refinements of
<WK K �

areO P R R'U
, corresponding to the set � � ��� � ( I;9 D H ���# #
, corresponding to the set � � ��� ���

�
, corresponding to the set � I;9 D H ���

� P R R'U
, corresponding to the set � �

where the symbol
� P R R'U

is a typeset version of the name � G���� � G�G D
. The symbols “

�
” and

“
O

” by themselves have no meaning in this thesis.

This example has some special features that will not hold in general. Although there is
always a least refinement of every ML type, in general there may be values of that refinement
type, unlike this example where there are no values of type

� PSRTR'U
. The simplest instance

of this arises when the programmer has not asked for any refinement type distinctions;
when this happens, there is exactly one refinement of each ML type, and there are always
values with that refinement type. Since we want the programmer to have the option of
ignoring refinement types, and having multiple refinements of an ML type slows down type
inference, we should only have multiple refinements of an ML type when the programmer
asks for it.

In this example, there is a maximal refinement
O PSRTR'U

. In Chapter 5 we will mention
examples involving polymorphism where there is no maximal refinement type.

In Forsythe [Rey88], there is a maximal type called “ ��� ”. Every Forsythe expression
has this type, possibly among others; when the type system detects that an expression is
ill-behaved, it has only the type ��� . We do not take this approach. Instead, the refinement
type system takes the more conventional approach of ensuring that ill-behaved expressions
have no type. This begins to be inconvenient in Section 2.9, where to simplify the statement
of some theorems we introduce the notion of “generalized refinement types”, each of which
is either a refinement type or ��� . Even then, ��� is not the refinement type of any expression.

The meaning of ��� is entirely different from the meaning of
O PSRTR'U

. There are perfectly
well-behaved expressions with the refinement type

O PSRTRVU
; however, ��� is not a refinement

type, and it is not used to describe the behavior of well-behaved expressions.

According to the above list of the refinements of
<WK K �

, the intersection of two refinements
of

<WK K �
is a refinement of

<LK%K �
. This is a desirable property, but we need to add an operator to

make it continue to hold for refinements of other ML types; for example, with the notation
introduced so far, we cannot write a refinement type that is the intersection of

# # � �
and� � #T#

. We will call this operator “
�

”. For example, here are some of the refinements of<WK K ��� <WK�K �
and some of the elements of the set corresponding to each one:OQPSRTRVU�� # #

contains the elements
I @ � > � � ��� �

and
I @ � > � G � $ ��� @ G�� � )#T# � � � � � # #

contains the elements
@ G��

and
I @ � > � G � $ @ G�� ��� @ G�� � )O PSRTRVU � O PSRTR'U

contains all values with ML type
<WK%K � � <WK K �# # � O PSRTR'U �?O PSRTRVU � # #

is equivalent to
O PSRTRVU � # #
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Two refinement types are equivalent if they correspond to sets with the same elements,
otherwise they are distinct. For instance, the refinement type

#T# � � � #T#
is equivalent

to
� P R R'U

. A largest set of distinct refinements of
<WK%K �

is � O P R R'U ( #T# ( � ( � PSRTR'U �
, so

<WK K �
has

only finitely many distinct refinements. It turns out that all ML types only have finitely
many distinct refinements; this is true for datatypes because the programmer only has time
to specify a finite number of distinctions, and it is true for other ML types because the
operators “

�
” and “

M
” we use to construct ML types from other ML types do not introduce

infinite numbers of distinct refinements where there were none before. This is the crucial
property that makes refinement type inference decidable; we prove it in Section 2.9.

Refinement types become more interesting and useful when we use them with recursive
datatypes. A simple example of this is representing nonnegative integers as strings of bits:

8:9��9������;� < � #S!�#��N>�� � � GNG�IJ< � #S!�#�� E���@ �AG�IJ< � #S!�#��FE��	� �����
Suppose the least significant bits are outermost, so that

� � � G $
��@ � �	� ����� ) represents
the integer 2. Every nonnegative integer has multiple representations in this system;
for example, another representation of 2 is

� � � G $���@ � $�� � � G �	� ����� ) ) . Every positive
integer, however, does have exactly one representation that does not have

� � � G
as the most

significant bit; call this “normal form”. We can define a refinement type
��

containing just
the positive integers in normal form, and we can prove that straightforward functions for
doing arithmetic such as

I � @ 948�8 $
��@ � ��� ) $���@ � ��� ) >�� � � G $ 9 8�8 $ 948�8 $���@ � �	� ����� ) ��� ) ��� )E 948�8 $
��@ � ��� ) $�� � � G ��� ) >���@ � $ 9 8�8 ��� ��� )E 948�8 $�� � � G ��� ) $
��@ � ��� ) >���@ � $ 9 8�8 ��� ��� )E 948�8 $�� � � G ��� ) $�� � � G ��� ) >�� � � G $ 948�8 ��� ��� )E 948�8 �	� ����� � > �E 948�8 � �	� ����� > ���

return values of type
��

when passed values of type
��

.

Refinement type inference determines the type of an expression by first finding types
for the subexpressions. Thus, we can only discover that

��@ � �	� �����
has the type

��
if we

first have a type for
�	� �����

. We will call that type
���

. We shall assume that
< � #S!�#��

has the
following refinements:

� P���� ���"!
corresponds to the empty set���
corresponds to � Empty

���
corresponds to positive integers that are in normal formO P���� ���"!
corresponds to the set of all bitstrings

In this case the set of values of type nf is clearly infinite. This makes it clear that any
implementation must use some representation of refinement types other than sets of values.
In both the implementation and the formal description of refinement types, we assign
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refinement types to constructors instead of representing refinement types as sets of values.
Since, in this formalism, values are expressions, we can use refinement type inference to
determine which values are in which refinement types; for example, the assertion

� � � G $���@ � �	� ����� )�� ��

becomes 
 � � � G � ��@ � �	� ����� �
:

�� 5
In this chapter, we start by formally defining our object language in Section 2.2. We

also describe an alternative, more concise syntax in Section 2.3. A formal semantics is
in Section 2.4. To provide background for the description of refinement types, we define
a restricted version of the usual ML type system in Section 2.5. A simple version of
refinement types is defined in Section 2.6. We prove that it is compatible with ML type
inference in Section 2.7, and sound in Section 2.8. We show that each ML type has finitely
many refinement types in Section 2.9, and use this fact to give a decision procedure for
refinement types in Section 2.10.

2.2 The Formal Language

Each language we define in this thesis will have two kinds of types. The more familiar kind
resembles the one commonly used for SML; we shall call these ML types. In later sections
of this chapter we will be defining more informative types with an intersection operator
“
�

”; we shall call these refinement types.

We shall use the metavariables � and � to stand for ML types throughout this thesis.
The metavariable

#��
stands for an ML type constructor, so we can define the language of

ML types with the grammar

� :: * #�� / � M
. . .

M � / #���� � # / � � ��5
In SML the type of a zero-way tuple is called

���:� #
. Here we call it

#����:� #
instead to

distinguish the ML type for empty tuples from the refinement type for empty tuples that we
will introduce later.

We could slightly simplify the presentation in this chapter by replacing the arbitrary-
length tuple types here with binary and nullary tuples. However, when we introduce
polymorphic constructors in Chapter 5, tuples will become a polymorphic data type very
similar to other polymorphic data types, and at that point arbitrary length tuples will add
little to the complexity of the theory. Thus we will use arbitrary length tuples here to
simplify the analogy between the system described in this chapter and the system described
in Chapter 5.

We use � , 	 , and 
 as metavariables to stand for object language variables, � to stand
for constructors, and � to stand for expressions. The metavariables � , 	 , and 
 that appear
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often in the mathematics should not be confused with the object language variables
�

,
�

,
and

I
that appear often in the examples. Expressions have the following grammar:

� :: * � / I @ � � � > � � / � � / � � /��9 H � � G�I � > � � E
. . .

E � > � � � @ 8 � � /$ � � . . .
� � )3/ $ )�/ � D ����� ��� � /I B�� 
 � � > � I @ � � � >�� �

Notice that this grammer uses the “ / ” operator as meta-syntax to describe a language
containing the character

E
in the syntax of

��9 H �
statements. This language is roughly a

monomorphic version of Mini-ML [CDDK86].

As the grammar says, all constructors take exactly one argument, which may be a tuple.
We use

$ ) to mean a tuple of zero elements. Common constructors include
� ��� �

and
I9 D H �

;
thus

� �	� �
is not a syntactically valid expression in itself, but

� ��� � $ ) is.

There are explicit types appearing at several places in the grammar. The ML types after
each variable binding in abstractions and fixed points ensure that each expression has at
most one ML type derivation; the need for this is discussed in the next section. The ML
type at the close of each

��9 H �
statement prevents obscure pathological behavior that would

prevent Theorem 2.54 (Inferred Types Refine) on page 68 from being true; see page 68 for
a discussion.

As in Standard ML [MTH90, MT91b], the fixed point operator can only apply to
functions. This outlaws oddities such as

I B�� I >�� @ G��AI
. It is possible that the theory

below could be adjusted to permit recursive values, but they seem troublesome and not
particularly useful, so we shall avoid them.

2.2.1 Explicit or Implicit ML Types

One of the major features of SML is that it is implicitly typed. This frees the programmer
from most of the burden of type declarations. Since our goal is to analyze Standard ML,
the language our implementation starts with must also be implicitly typed. However, since
ML type inference is well understood, we have the option of assuming that the expressions
analyzed by the refinement type system described here have already had explicit types
inserted by ML type inference. The purpose of this section is to explain why we take this
option.

The problem with implicit ML types is that there are sometimes multiple derivations of
an ML type for an expression. For example, consider the SML declaration

� 9 D I;G�G >Z$ I @ � > � $ I @��A>��	� ) ) $ I @ �Z> � � )
and suppose

IG�G
has the ML type

<WK K ��� <WK%K �
. Even though we know the type of

IG�G
, there

are still many different ways to derive this type because we can give the subexpression
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I @��Y>�� �
the ML type

<WK K �	� <WK%K �
or

$ <WK K ��M <WK K � ) �A$ <WK K ��M <WK K � ) or, in general, � � � for
any ML type � . Once we add polymorphic type variables to the system in Chapter 4, we will
be able to give examples where different ML type derivations lead to different refinement
types for the expression.

However, it seems that without polymorphism, the refinement type assigned to an
expression depends only on the ML type assigned to the expression, not on how that type
is derived. For instance,

I;G�G
has the ML type � � � for any � . If we choose an ML type forIG�G

by choosing � to be
<WK K �

, then the expression has a principal refinement type

#T# � #T# � � � � �?OQPSRTR'U�� O P R R'U � � PSRTRVU � � PSRTRVU
that does not depend on which ML type we assign to the

I @��Y> � �
subexpression. It

seems that the ML type of an expression uniquely determines its principal refinement type in
general, since if the

I @��Y>�� �
subexpression were used, its ML type would be constrained.

Since this property will not continue to hold when we add polymorphism, it seems better
to add explicit types to the terms now to ensure a unique ML type derivation than to prove
that knowing the ML type is sufficient in the special case of monomorphic expressions. To
ensure a unique ML type derivation, we write the ML type for each bound variable. For
example, the two derivations mentioned above of an ML type for

IG�G
correspond to these

translations of the definition of
I;G�G

into monomorphic expressions:

$ I @ � � <LK%K � � <WK�K � > � $ I @�� � < K K � >��	� ) )$ I @ � � <LK K � >�� � )
and

$ I @ � � $ < K%K ��M <WK%K � ) �A$ <WK�K �:M <WK%K � ) >��Y$ I @ � � <WK K � > � � )L)$ I @ � � < K K �;M <WK K � >�� � ) �

2.3 The Concise Language

For brevity, we will want to have implicit types in our examples. Thus we shall also have
an informal, concise syntax where we omit the types with the understanding that the real
expression has some consistent ML types inserted. This notation is only unambiguous
when the concise expression has a unique type derivation. Roughly speaking, our concise
language is the subset of SML that can be easily translated to fit the grammar for expressions
on page 19. We will have the following differences between the concise language and the
formal language:

[ The concise language has constant value constructors, but in the formal language
all constructors take one argument. Eliminating constant value constructors from
the formal language decreases the number of cases that have to be considered in the
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proofs. Since we can always encode a constant value constructor as a function one
that takes an argument of ML type

#����:� #
, this does not decrease the expressiveness

of the language.

[ The concise language uses destructuring in
I @

expressions to extract an element from
a tuple, but the formal language uses the

� D � ��� ���
primitive to extract the

�
th

element from a tuple of
�

elements. Eliminating destructuring from
I @

expressions
simplifies the proofs. Encoding the length of the tuple in the operator for extracting
elements eliminates some ambiguity; for example, in SML the expression

� � by itself
is not valid because it is not clear whether to give it the type �

M�� �
� or the type

�
M�� M�� �

� or one of the infinitely many other possibilities. In the formal language,
this sort of ambiguity does not arise.

[ The concise language has
��9 H �

statements that bind variables, but the formal language
does not; in the formal language, the only constructs that bind a value to a variable
are abstractions and fixed points. For instance, if we assume that lists of booleans
have been defined with the datatype

8�9��;9�������A< � �"!�#?>=@1B4D E ��G @1H G�IJ<WK%K ��M < � �"!�#

the concise expression

��9 H �N��G @1HN$ � �	� � � @1B4D ) G�I��G @1HN$ ��� � ) >�� �E @1BXD > � @CB4D
corresponds to the formal expression

��9 H �N��G @CHN$ � ��� � $ ) � @CB4DA$ ) ) G�I��G @1H >�� I @ � � < K K �;M < � �"!�# >�� � D � � � � � �E @1BXD > � I @,B���@ G � �48 � #����:� # >�� @1B4D $ )� @ 8 � < � �"!�#
[ The concise language has only enough type declarations to uniquely determine the

type derivation, whereas the formal language has type declarations throughout the
code.

[ The concise language has
D ���

statements, but the formal language does not. Since
the formal language does not have polymorphism, each statement of the form

D ��� � > � 1
B�@ � 2

� @ 8

can be interpreted as the expression

$ I @ � � � > � � 2 ) � 1
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in the formal language, for some appropriate � .
[ The concise language freely uses many of SML’s convenient syntactic features that

are omitted from the formal language, such as let statements and abstraction operators
that take cases, destructure tuples, and define curried functions.

For example, the concise language expression

D ���NI � @ 8�G � � D � I �Y> I $ I � )I � @A@ G��N� �	� � > I9 D H �E @ G��NI9 D H � > � �	� �B�@
8:G � � D � @ G��N� �	� �� @ 8

corresponds to exactly one formal expression:

$ I @ 8�G � � D � � $ < K K ��� <WK K � ) � <WK�K ��� <WK K � >��$ $ I @ @ G�� � <LK K ��� <WK K � > �
8:G � � D � @ G�� $ � ��� � $ )L) )$ I @ � � <LK%K � >��

��9 H � � G�I� ��� � >�� I @ZB ��@ G � � 8 � #���� � # >�� I;9 D H � $ )E I;9 D H � >�� I @,B ��@ G � � 8 � #����:� # >�� � ��� � $ )� @ 8 � < K%K � )L)$ I @ I � < K%K �	� <WK K � > � I @�� � <LK%K � >�� I $ I � )L) )

2.4 Semantics

This section describes how to evaluate closed expressions. We will call the result of
evaluation a value; every value is a closed expression of the form

� :: * � � / $
�
�

. . .
�

� ) / $ ) / I @ � � � >�� ��5
Since our values are expressions, we can apply the same type systems to both. This makes
a simple notion of soundness possible: a type system is sound if, whenever an expression
evaluates to a value, the value always has all of the types that the expression has.

There are reasonable notions of soundness that are stronger than this. We could follow
[Mil78] and require that evaluation of a well-typed expression never “goes wrong”, in the
sense that semantic errors do not happen during evaluation. This would make the already
tiresome proofs of soundness in this thesis even longer, so we shall instead stay with the
weaker notion of soundness.
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Evaluation will require substituting closed expressions for variables in expressions, so
we need to define substitution before we define evaluation. Since we only allow substitution
of a closed expression for a variable, we do not need to be concerned about variable capture.

Definition 2.1 Substitution of an expression � for an object language variable � in an
expression � � (written as + � � �:- � � ) is the expression consistent with the following rules:

+ � � �:- � * �+ � � �:- 	 * 	 if 	��* �
+ � � �:- I @ � � � > � � � * I @ � � � > � � �+ � � �:- I @ 	 � � > � � � * I @ 	 � � >�� + � � ��- � � if 	��* �+ � � �:- I B�� � � � >�� I @ 	 � � >�� � � *I B�� � � � > � I @ 	 � � >�� � �+ � � �:- I B�� 
 � � > � I @ � � � > � � � *I B�� 
 � � > � I @ � � � > � � �+ � � �:- I B�� 
 � � > � I @ 	 � � >�� � � *I B�� 
 � � > � I @ 	 � � > � + � � �:- � � if 	��* � and 
��* �+ � � �:- � 1 � 2 *,+ � � �:- � 1 + � � �:- � 2+ � � �:- $ � 1

�
. . .
� ��� ) * $ + � � ��- � 1

�
. . .
� + � � �:- ��� )+ � � �:- $ ) * $ )+ � � �:- � D � ��� � � � � * � D ����� ��� + � � �:- � �+ � � �:- � � � * �N+ � � �:- � �+ � � �:- ��9 H � � 0

G�I � 1
>�� � 1

E
. . .

E �	� > � ��� � @ 8 � � *��9 H � + � � �:- � 0
G�I � 1

> � + � � �:- � 1
E

. . .
E �	� >�� + � � ��- ��� � @ 8 � �

For example, evaluating the expression

$ I @ 8�G � � D � � <'K K ��� <WK%K � > �$ 8�G � � D � $ I @ � � <LK%K � > � � ) $ � ��� � $ )L) )L)$ I @ I � <LK K �	� <WK%K � >�� I @�� � <WK K � >�� I $ I � )L)
would require computing the substitution

+ I @ I � <LK K ��� <WK K � > � I @ � � <WK K � > � I $ I � ) � 8:G � � D � -$ 8:G � � D � $ I @�� � < K%K � > � � ) $ � �	� � $ ) )L)
which yields

$ I @ I � <LK K �	� <WK%K � >�� I @�� � <WK K � >�� I $ I � )L)$ I @ � � < K�K � > � � )$ � ��� � $ )L) �

We will define evaluation only for closed expressions. This is convenient because it
eliminates the need for an environment mapping variables to values.
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ABS-SEM: I @ � � � >�� ��� I @ � � � >�� �

APPL-SEM:

� 1 � I @ � � � >�� � 3

� 2 � �

2+ �

1
� �:- � 3 � �

3

� 1 � 2 � �

3

CONSTR-SEM:
��� �

� ��� � �

CASE-SEM:
for some � we have � 0 � ��� � �

� � � � � ���9 H � � 0
G�I � 1

>�� � 1
E

. . .
E �	� > � ��� � @ 8 � ��� �

TUPLE-SEM:
for � � 1 . . .

�
we have ����� � �$ � 1

�
. . .
� ��� ) � $

�

1
�

. . .
�

� � )
ELT-SEM:

�	� $
�

1
�

. . .
�

� � )� D � ��� ��� ��� ��


FIX-SEM:
I B�� 
 � � > � I @ � � � > � ���+ I B�� 
 � � >�� I @ � � � >�� � � 
C- I @ � � � > � �

Figure 2.1: Monomorphic Semantics Rules

Our evaluation relation is written
��� �

which means that the closed expression � evaluates to the value � . The definition of the
relation is in Figure 2.1. In some of the inference rules, we use the notation

�
. . .
�

to mean
the set of integers between

�
and

�
.

For example, if we use � to abbreviate the derivation

+ TUPLE-SEM -$ ) � $ ) + CONSTR-SEM-� �	� � $ ) � � ��� � $ )
then the following is a valid evaluation, except to make the derivation fit on the page we
omit the types after each variable binding and the -SEM suffix on the name of each semantics
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rule:

+ ABS-$ I @ �Y>�� � ) � $ I @ � > � � ) � � + APPL -$ I @��Z> � � ) $ � �	� � $ ) ) � $ � ��� � $ ) )
+ TUPLE -$ ) � $ ) + CONSTR-@CB4DA$ ) � @CB4DY$ ) + TUPLE -$L$ I @��6>�� � ) $ � �	� � $ ) ) � @CB4DY$ )L) � $ � ��� � $ ) � @CB4D $ )L) + CONSTR-��G @CHA$L$ I @��6>�� � ) $ � �	� � $ ) ) � @CB4DY$ )L) � ��G @1HN$ � �	� � $ ) � @1BXDA$ )L)

The CASE-SEM rule differs slightly from the closest analogy available in our syntax to
true SML. In SML,

��9 H �
statements always evaluate the first case that applies. In this

language, the order of the cases makes no difference; if multiple cases apply, then this
semantics says the choice is made nondeterministically. For example, the expression

��9 H � � ��� � $ ) G�I� ��� � >�� I @ � >�� � ��� � $ )E � ��� � >�� I @ � >�� I;9 D H � $ )� @ 8 � < K K �
evaluates to both

� �	� � $ ) and
I9 D H � $ ) . This oddity could be avoided by requiring all of

the constructors appearing in a
��9 H �

statement to be distinct, but we will have no need to
require this.

This semantics does not formalize everything one might want to say about evaluation. A
more stringent notion of soundness would allow evaluation of well typed expressions to fail
to terminate, but it would not permit evaluation to get an error. Unfortunately expressions
that do not terminate and expressions that get an error are not distinguished from each other
by our semantics. Both kinds of expression have no value.

This could be repaired by adding a new value “wrong” along with rules that ensure that
code with a type error evaluates to “wrong”. As mentioned earlier, we will not take this
route because of the added tedium.

2.5 ML Typing

The system described in this section checks that the ML types embedded in an expression
are consistent with each other, and it determines an ML type for the expression as a whole.
The ML type of an expression depends on the assumptions we make about the ML types of
constructors used in the expression, so we shall discuss that first.

If � is a value constructor, we say that � maps values of type � to elements of the datatype#��
by writing

� def
:: ��� � #�� 5

For example, the effect of the SML datatype declaration
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8�9��;9�������A< � �"!�#?>=@1B4D G�I #����:� # E ��G @CH G�IJ<WK�K �:M < � �"!�#
on the SML environment would be analogous to adding these assumptions to the environ-
ment: @CB4D def

::
#����:� #

�
� < � �"!�#

��G @1H def
::

<WK K �;M < � �"!�#
�
� < � �"!�#

The examples in this chapter will also make these assumptions:
� ��� � def

::
#����:� #

�
� <WK K �

I;9 D H � def
::

#����:� #
�
� <WK K �

In general, for a type system that uses assumptions about value constructors to make
sense, we need the assumptions to be consistent in certain ways. For the type system
described in this section, all we need to know is that we have exactly one assumption about
each constructor:

Assumption 2.2 (Constructors have Unique ML Types) For each � , there are unique �
and tc such that

� def
:: � � � tc

The ML type of an expression depends on the ML types we assign to the free variables
appearing in the expression, so our typing relation will describe the type of an expression
given a partial function VMVM from variables to ML types.

The name VM is an example of a naming convention that will be used for all of the
partial functions used as environments in this thesis. Each name has two letters. The first
letter stands for the domain (V stands for “variable”) and the second letter stands for the
codomain (M stands for “ML type”). In later chapters, M will sometimes stand for “ML
type scheme”, but since the formal language is monomorphic, it just stands for “ML type”
here.

We use the notation VM + � : * � - to mean the partial map identical to VM everywhere
except at � , which it maps to � . The notation � means the partial map that is undefined
everywhere.

The ML typing relation is written as

VM

 � :: �

which means that assuming that all free variables � in � have the type VM
$ � ) , then � has

the ML type � . The definition of this relation is in Figure 2.2. These rules are similar to
the rules in Mini-ML [CDDK86], except we have no polymorphism and we separate the
operator for destructuring tuples from the operator for forming abstractions.

If this type system is sound, then we would expect that a closed expression has a type
and it evaluates to a value then the value has the same type. We can formally state this as
follows:
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VAR-VALID:
VM

$ � ) * �
VM


 � :: �

ABS-VALID:
VM + � : * � 1 - 
 � :: � 2

VM

 $ I @ � � � 1

>�� � ) :: � 1
� � 2

APPL-VALID:
VM


 � 1 :: � 2
� � 1 VM


 � 2 :: � 2

VM

 � 1 � 2 :: � 1

CONSTR-VALID: � def
:: � � � #��

VM

 � :: �

VM

 � � ::

#��

CASE-VALID:

VM

 � 0 ::

#��
for all � we have � � def

:: � � � � #��
for all � we have VM


 � � :: � � � �
VM


 $ ��9 H � � 0
G�I � 1

>�� � 1
E

. . .
E �	� > � ��� � @ 8 � � ) :: �

TUPLE-VALID:
for all � we have VM


 ��� :: � �
VM


 � � 1
�

. . .
� � 
 � :: � 1

M
. . .

M � 


ELT-VALID:
VM


 � :: � 1
M

. . .
M � �

VM

 � D � ��� ��� � :: � 


FIX-VALID:
VM + 
 : * � 1

� � 2 - 
 $ I @ � � � 1
> � � ) :: � 1

� � 2

VM

 $ I B�� 
 � � 1

� � 2
>�� I @ � � � 1

> � � ) :: � 1
� � 2

Figure 2.2: Monomorphic ML Typing Rules

Fact 2.3 (ML Type Soundness) If �


 � :: � and ��� � then �



� :: � .

We will not prove this. A partially mechanically verified proof of this theorem for a
similar language is in [MP91].

We intend our ML type system to be an unambiguous framework that supports the
refinement type system. The following theorem states that it is unambiguous. Theorem
2.54 (Inferred Types Refine) on page 68 states in what sense the refinement type system is
supported by the ML type system.

Lemma 2.4 (Unique Inferred ML Types) If VM

 � :: � and VM


 � :: � � then � * � � .

Proof: By straightforward induction on � .
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Case: � * � Then the last inference in both of our hypotheses is VAR-VALID, with the

premises VM
$ � ) * � and VM

$ � ) * � � . Thus � * � � .
Case: � * I @ � � � 1

>�� � � Then the last inference in both of our hypotheses is ABS-VALID.

Since the ML type � 1 is explicit in the syntax, we must have � * � 1
� � 2 and � � * � 1

� � �2.
The premises of the two uses of ABS-VALID must be

VM + � : * � 1 - 
 � � :: � 2

and
VM + � : * � 1 - 
 � � :: � �2 5

The induction hypothesis gives � 2 * � �2, so we must have ��* � � .
Case: � * � 1 � 2 Then the last inference in our hypotheses must be APPL-VALID with the

premises
VM


 � 1 :: � 2
� �

and
VM


 � 1 :: � �2 � � � (
among others. The induction hypothesis applied to these gives � 2

� � * � �2 � � � , which
implies � * � � .
Case: � * � � Then the last inference in our hypotheses must be CONSTR-VALID with the

premises

� def
:: � � � #��

and
� def

:: � � � � #�� � (
among others, where � * #��

and � � * #�� �
. Assumption 2.2 (Constructors have Unique ML

Types) on page 26 gives
#�� * #�� �

, which implies � * � � .
Case: � * ��9 H � � 0

G�I � 1
>�� � 1

E
. . .

E � � > � � � � @ 8 � �
The last inference of both of our hypotheses must be CASE-VALID, which immediately gives
��* � and � � * � , so � * � � .
Case: � * $ � 1

�
. . .
� ��� ) Then the last inference in the derivation of each of our hy-

potheses must be TUPLE-VALID with the premises

for all � we have VM

 � � :: � �

and
for all � we have VM


 � � :: � ��
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where � * � 1
M

. . .
M � � and � � * � �1 M

. . .
M � �� . Our induction hypothesis gives � �
* � �� for all

� , so � * � � .
Case: � * � D � ��� ���J���

Then the last inference in the derivation of each of our conclu-

sions must be ELT-VALID with the premises

VM

 � � :: � 1

M
. . .

M � �
and

VM

 � � :: � �1 M

. . .
M � ��

where � * � 
 and � � * � �
 . Our induction hypothesis gives � 1
M

. . .
M � � * � �1

M
. . .

M � �� , so
we must have � * � � .
Case: � * I B�� 
 � � 1

� � 2
>�� I @ � � � 1

> � � � Then the last inference in the derivation

of each of our conclusions must be FIX-VALID. This immediately gives � * � 1
� � 2 and

� � * � 1
� � 2, which implies � * � � . �

If an expression has an ML type, then all of its free variables must be bound to an
ML type in the environment. This will be important later on when we are proving things
about the refinement type system because the refinement type rule for

��9 H �
statements has

a premise requiring the
��9 H �

statement to have an ML type. To put it formally,

Fact 2.5 (ML Free Variables Bound) If VM

 � :: � and � is free in � , then VM

$ � ) is
defined.

Proof of this would be by induction on the derivation of VM

 � :: � .

One step along the path to proving Fact 2.3 (ML Type Soundness) on page 27 is
showing that there is a natural kind of substitution on ML type derivations that preserves
soundness. We will use this once in Lemma 2.70 (Value Substitution) on page 93, which is
the refinement type analogue of this fact. The use is in the CASE-TYPE case of that lemma.

Fact 2.6 (ML Value Substitution) If VM

 � 1 :: � 1 and VM + � : * � 1 - 
 � 2 :: � 2 then

VM

 + � 1

� �:- � 2 : � 2.

Proof of this would be a straightforward induction on the derivation of VM + � : * � 1 - 
 � 2 ::
� 2.

2.6 Monomorphic Refinement Types

Now that we have given our version of the ML type system, we can give an analogous
description of refinement types for the same expressions. We shall use � ,

�
, and � as

metavariables standing for refinement types.
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Syntactically, refinement types have an intersection operator “
�

”. This is the only
difference in structure between the syntax for refinement types and the syntax for ML types,
so we can define the syntax for refinement types with the grammar

� :: * �
�
� / � � � / � � / � M

. . .
M
� / � ���:� # 5

Once again we have a special name for the empty tuple type; this time it is
� ��� � #

. Because
we give different names to

#����:� #
and

� ���:� #
, inspecting a type tells us immediately whether

it is an ML type or a refinement type.

In our concrete syntax we shall adopt the convention that
�

binds tighter than
�

. This
makes it easy to write types consisting of an intersection of many arrow types. Since
the principal type of each function has this form, being able to write these concisely is
convenient. For instance, the type of boolean negation is

$L#T# � � ) � $ � � # # ) , which we
can write as

# # � � � � � #T#
.

The set of refinement types an expression may have depends on its ML type. For
instance, an expression with ML type

<WK K ��� <WK K �
may have refinement type

# # � #T#
orO P R R'U�� �

, but not
#T#

. We write this as# # � #T# � <WK%K �	� <WK K �OQPSRTR'U�� � � <WK K ��� <WK K �
but not # # � <WK K ��� <WK%K � 5
The assertion � � � can be read aloud as “ � refines � ”; hence the name “refinement types”.
We will call a refinement type that refines no ML type “malformed”.

Before we can formally define the � relation between refinement types and ML types,
we have to make some assumptions about which refinement type constructors refine which
ML type constructors. We shall write the assumption that a refinement type constructor

� �
refines an ML type constructor

#��
as

� � def� #�� 5
For example, after we formally define � , our derivation of

O PSRTR'U�� � � <WK%K �	� <WK K �
will

use the assumptions O P R R'U def� <WK K �
and � def� <WK K � 5
The examples below will also use these assumptions:

# # def� <WK K �
� PSRTRVU def� <WK K �

For our soundness proof to go through, we will need the
def� relation to be well-behaved

in the following sense:
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AND-REF:
� 1

� � � 2
� �

� 1
�
� 2

� �

ARROW-REF:
� 1

� � 1 � 2
� � 2

� 1
�
� 2

� � 1
� � 2

RCON-REF:
� � def� #��
� � � #��

TUPLE-REF:
for � in 1 . . .

�
we have ��� � � �

� 1
M

. . .
M
��� � � 1

M
. . .

M � �

Figure 2.3: Monomorphic Refinement Rules

Assumption 2.7 (Unique Predefined Refinements) For all rc there is a unique tc such

that rc
def� tc.

Also, for there to be any hope of manipulating refinement types with an algorithm, the
set of refinements of any ML type constructor must be finite:

Assumption 2.8 (Finite Predefined Refinements) For all tc, the set � rc / rc
def� tc

�
is

finite.

We formally define the � relation in Figure 2.3.

TUPLE-REF implies
� ���:� # � #����:� #

because we can choose
� * 0, and

� ���:� #
and

#����:� #
are our names for the empty tuples of refinement types and ML types, respectively.

Refinement types that refine some ML type are generally easier to reason about than
refinement types that do not:

Definition 2.9 (Well-formed Refinement Type) We say that a refinement type � is well-
formed if there is an ML type � such that � � � . Otherwise we say it is ill-formed.

From the rule defining � , it follows that each refinement type refines at most one ML
type. Stating this formally,

Lemma 2.10 (Unique ML types) If � � � and � � � then ��* � .

The proof of this is straightforward.

Proof: By induction on � .
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Case: � * � �
� The only way to derive � � � is to use AND-REF where one of the

premises is
� � ��5 Similarly, the only way to derive � � � is to use AND-REF where one

of the premises is
� � � . Applying the induction hypothesis to these two premises gives

��* � , which is our conclusion.

Case: � * � �
Assumption 2.7 (Unique Predefined Refinements) on page 31 gives our

conclusion directly.

Case: � * � 1
M

. . .
M
� � We can only derive � � � by using TUPLE-REF. Thus � must have

the form � 1
M

. . .
M � � , and from the premises of TUPLE-REF we know

for � between 1 and
�

we have ��� � � � .
Similarly, � � � tells us that � has the from � 1

M
. . .

M � � and

for � between 1 and
�

we have � � � � � .
Using the induction hypothesis gives

for � between 1 and
�

we have � � * � � .
Thus � * � .

Case: � * � ���:� #
Then the only way to derive our hypotheses is by using UNIT-REF, and

��* � * #���� � #
.

Case: � * � 1
�
� 2 Then the last premise of the derivation of � � � must be ARROW-REF,

so � must have the form � 1
� � 2 and the premises of ARROW-REF must be � 1

� � 1 and
� 2

� � 2. Similarly, � � � tells us that � has the form � 1
� � 2 and � 1

� � 1 and � 2
� � 2.

The induction hypothesis tells us that � 1 * � 1 and � 2 * � 2, so � * � .
�

Since each refinement type refines at most one ML type, we can define a partial function
that maps each refinement type to the corresponding ML type, if there is one.

Definition 2.11 If � � � then we say � * rtom
$
� ) . If there is no � such that � � � , then

rtom
$
� ) is undefined.

The name rtom stands for “Refinement to ML”. We extend this in the natural way to
work on environments: rtom

$
VM ) $ � ) * rtom

$
VM

$ � )L) .
As one would expect, if we know which ML type is refined by a refinement type, that

heavily constrains the form of the refinement type. For example, we have

Fact 2.12 (Tuple Refines) If � � � 1
M

. . .
M ��� then � has the form

� 11
M

. . .
M
��� 1

�
. . .
�
� 1 � M

. . .
M
��� �:5
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Proof of this would be a trivial induction on the derivation of � � � 1
M

. . .
M � � . We will use

this in Lemma 2.26 (Tuple Subtyping) on page 42.

2.6.1 Subtyping

If two refinement types refine the same ML type, then it makes sense to compare them. Our
comparison operator is written

�
. For instance, in the presence of reasonable assumptions

about our refinement type constructors, the following assertions are true:

#T# �ZO PSRTR'U# # � � � � PSRTRVU
� PSRTR'U �Z# # � �$ # #�M � ) �?$ � M # # ) �Z$ � P R R'U M � P R R'U )#T# � � � � � # # �Z#T# � O P R R'U

and these assertions are false: � �Z#T## # � � � � � # # 5
The rules defining

�
must take into account some assumptions about how the refinement

type constructors behave. We need to know that some refinement type constructors are
subtypes of others, which we shall write as

� �
1

def� � �
2 5

We also need to be able to compute intersections of refinement type constructors, if they

both refine the same ML type constructor. We write this as a partial binary operation
def�

on
refinement type constructors. For example, the definition of

�
we will give below allows

us to derive # # � #T# �?OQPSRTR'U�� � � � PSRTR'U � � PSRTR'U (
and the derivation uses these assumptions:

� PSRTR'U def� #T#
� PSRTR'U def� OQPSRTR'U

#T# def� � def� � P R R'U 5

For our definition of subtyping to make sense, we need
def�

and
def�

to be consistent in

certain ways. First we need transitivity and reflexivity of
def�

:

Assumption 2.13 (reflex-
def�

) For all rc we have rc
def�

rc.
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Assumption 2.14 (trans-
def�

) If rc1

def�
rc2 and rc2

def�
rc3 then rc1

def�
rc3.

If two refinement type constructors are comparable, they must refine the same ML type
constructor:

Assumption 2.15 (Refines
def�

) If rc
def�

kc then rc
def� tc if and only if kc

def� tc.

We need to know
def�

is defined for refinements of the same ML type constructor, and it
is a greatest lower bound in the set of those refinements:

Assumption 2.16 (
def�

-defined) If rc
def� tc and kc

def� tc then rc
def�

kc is defined.

Assumption 2.17 (
def�

Elim) If rc
def�

kc is defined, then rc
def�

kc
def�

rc and rc
def�

kc
def�

kc.

Assumption 2.18 (and-intro-
def�

) If rc
def�

kc and rc
def�

pc then rc
def� $

kc
def�

pc ) .
Our subtyping operator

�
is defined by the rules in Figure 2.4. Several of these rules

need to be explained:

Since
� ���:� #

is our name for the empty tuple, we interpret the rule for dealing with tuples
so they apply to

� ���:� #
also.

Some of the rules resemble each other. The rules ARROW-SUB, TUPLE-SUB, and RCON-
SUB are similar, as are ARROW-AND-ELIM-SUB, TUPLE-AND-ELIM-SUB, and RCON-AND-ELIM-
SUB. In Chapter 5 we will change the syntax for refinement types so that arrows, tuples, and
monomorphic refinement type constructors are all a special case of polymorphic refinement
type constructors. After we do that, each triplet of similar rules will collapse to one rule.

The rule ARROW-SUB is conventional for systems with subtypes, although it is often
surprising to the uninitiated. As the type on the right side of the arrow gets larger, the
entire type gets larger. However, as the type on the left side gets larger, the entire type
gets smaller. Another way to say this is that arrow is contravariant in its first argument and
covariant in its second argument.

To understand this it helps to think of refinement types as sets and to read “
�

” as subset.
An arrow type � 1

�
� 2 means the set of all functions that map all elements of the set � 1 to

elements of � 2. If
�S��#

is the set of all integers and
���

is the set of all even integers, then the
following subtype relations are true in our model:

��� � �S��#
� � � ��� � � � � �S��#

�S��# � ��� � � � � ���
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SELF-SUB:
�

� �
�
�
�

AND-ELIM-R-SUB:
�

� � � � �
�
� � �

�

AND-ELIM-L-SUB:
�

� � � � �
�
� � � �

AND-INTRO-SUB:
�
� �

1 �
� �

2

�
� �

1
� �

2

TRANS-SUB:
�
�
� �

� �

�
� �

ARROW-SUB:
�

1
�
� 1 � 2

� �
2

� 1
�
� 2
� �

1
� �

2

ARROW-AND-ELIM-SUB:
� 1
�A$

� 2
�
� 3 ) � �

� 1
�
� 2
�
� 1
�
� 3
�
� 1
�N$

� 2
�
� 3 )

RCON-SUB:
� � def� � �
� � � � �

RCON-AND-ELIM-SUB:
� �

1
def� � �

2
� �

� �
1
� � �

2
� � �

1
def� � �

2

TUPLE-SUB:
for all � we have ��� � � �
� 1

M
. . .

M
��� � �

1
M

. . .
M � �

TUPLE-AND-ELIM-SUB:
$
� 1
�
�
�
1 ) M

. . .
M $
��� � � �� ) � �$

� 1
M

. . .
M
��� ) � $

�
�
1

M
. . .

M
�
�
� ) �Y$

� 1
�
�
�
1 ) M

. . .
M $
��� � � �� )

Figure 2.4: Monomorphic Subtyping Rules
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Thus the intuitive model is consistent with the inference rule.

Following [Pie91b], we use subtyping inference rules to express the fact that intersection
is a greatest lower bound. The rules AND-ELIM-L-SUB and AND-ELIM-R-SUB ensure that
intersection is a lower bound and AND-INTRO-SUB guarantees that it is a greatest lower
bound. Since intersection is a greatest lower bound, it is commutative, associative, and
monotone in both arguments. The usual proofs that any greatest lower bound has these
properties translate directly into uses of the inference rules. For example, here is a proof
that intersection is monotone in its first argument:

Lemma 2.19 If � 1
�
� 2 and � 1

�
� 2
�
� 3

� � , then � 1
�
� 3
�
� 2
�
� 3.

Proof: The only way to derive � 1
�
� 2
�
� 3

� � is by repeatedly using AND-REF, so we must
have � 1

� � and � 2
� � and � 3

� � . The rule AND-ELIM-R-SUB gives � 1
�
� 3
�
� 1. Applying

TRANS-SUB to this and our hypothesis gives � 1
�
� 3
�
� 2. The rule AND-ELIM-L-SUB gives

� 1
�
� 3
�
� 3. The previous two assertions and AND-INTRO-SUB give � 1

�
� 3
�
� 2
�
� 3, which

is what we wanted to show.
�

Once we have a subtying relation, we can define a natural notion of equivalence:

Definition 2.20 We say that � 1 is equivalent to � 2, or in symbols � 1 � � 2, if � 1
�
� 2 and

� 2
�
� 1.

This relation is an equivalence relation on the refinements of any ML type, but it is only a
partial equivalence relation on refinement types as a whole because some refinement types
refine no ML type. For example, the refinement type

# # � # # � # #
is not equivalent to itself

according to this definition.

The subtyping rules in Figure 2.4 ensure that the types involved are well behaved in the
following sense:

Theorem 2.21 (Subtypes Refine) If �
� �

, then there is a unique ML type � such that
�

� � and
� � � .

Proof: By Lemma 2.10 (Unique ML Types) on page 31, there is at most one � such that
�

� � and
� � � , so all we need to show here is that there is at least one such � . We do this

by induction on the derivation of �
� �

.

Case: SELF-SUB Then � * �
and the premise of SELF-SUB gives a � such that � � � .

Case: AND-ELIM-R-SUB Then � has the form
� �

� and the premises of AND-ELIM-R-SUB

must be � � � $
2 5 1 )
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and
�

� ��5 $
2 5 2 )

Applying AND-REF to these gives � �
�

� � 5 $
2 5 3 )

Our conclusions are (2.1) and (2.3).

Case: AND-ELIM-L-SUB Similar to AND-ELIM-R-SUB.

Case: AND-INTRO-SUB Then
�

has the form
�

1
� �

2 and the premises of AND-INTRO-SUB

must be
�
� �

1
$
2 5 4 )

and
�
� �

2
$
2 5 5 )

Using the induction hypothesis on (2.4) gives a � such that

�
� � $

2 5 6 )
and �

1
� ��5 $

2 5 7 )
Using the induction hypothesis on (2.5) gives a � such that

�
� � $

2 5 8 )
and �

2
� � $

2 5 9 )
Lemma 2.10 (Unique ML Types) on page 31 applied to (2.6) and (2.8) gives � * � , so we
can use AND-REF to combine (2.7) and (2.9) to get

�
1
� �

2
� ��5

This and (2.6) are our conclusions.

Case: TRANS-SUB Then the premises of TRANS-SUB are �
�
� and �

� �
. Applying the

induction hypothesis to both of these gives � and � such that all of the following hold:

�
� �

�
� �

�
� �� � � 5

Unique ML Types applied to the middle two gives us � * � , so the first and the last are
our conclusions.
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Case: RCON-SUB Then � * � �
and

� * � �
and the premise of RCON-SUB is

� � def� � �
.

Assumption 2.7 (Unique Predefined Refinements) on page 31 gives a
#��

such that
� � def� #��

.

By Assumption 2.15 (Refines
def�

) on page 34 and
� � def� � �

we have
� � def� #��

. RCON-REF

gives
� � � #��

and
� � � #��

, which are our conclusions.

Case: RCON-AND-ELIM-SUB Then � * � �
1
� � �

2 and
� * � �

1
def� � �

2. The premise of

RCON-AND-ELIM-SUB is � �
1

def� � �
2

� ��5 $
2 5 10 )

By Assumption 2.17 (
def�

Elim) on page 34 and Assumption 2.15 (Refines
def�

) on page 34,� �
1

def� � and
� �

2
def� � . Because “

def� ” only relates refinement type constructors to ML

type constructors, � must have the form
#��

. By Assumption 2.17 (
def�

Elim) on page 34,

we know
� �

1
def� � �

2

def� � �
1 5 By Assumption 2.15 (Refines

def�
) on page 34, it follows that

� �
1

def� � �
2

def� #��
. By RCON-SUB,

� �
1

def� � �
2

� #�� 5
This and (2.10) are our conclusions.

Case: ARROW-SUB Then � * � 1
�
� 2 and

� * �
1
� �

2 and the premises of ARROW-SUB

are �
1
�
� 1

and
� 2
� �

2 5
Applying the induction hypothesis to both of these gives � 1 and � 2 such that:

�
1

� � 1

� 1
� � 1

� 2
� � 2�

2
� � 2 5

Applying ARROW-REF to these gives

� 1
�
� 2

� � 1
� � 2

and �
1
� �

2
� � 1

� � 2 (
which are our conclusions.

Case: ARROW-AND-ELIM-SUB Then � * � 1
� $

� 2
�
� 3 ) and

� * � 1
�
� 2
�
� 1
�
� 3. The

premise of ARROW-AND-ELIM-SUB is

� 1
�A$

� 2
�
� 3 ) � ��5 $

2 5 11 )
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The last inferences of the derivation of this must be ARROW-REF and AND-REF, so we must
have

��* � 1
� � 2

� 1
� � 1

� 2
� � 2

� 3
� � 2

Applying ARROW-REF and AND-REF to these in a different order gives

� 1
�
� 2
�
� 1
�
� 3

� � 1
� � 2

This and (2.11) are our conclusions.

Case: TUPLE-SUB Then � * � 1
M

. . .
M
� � and

� * �
1
M

. . .
M � � and the premise of TUPLE-SUB

is � � � � � for all � between 1 and
�

. Applying the induction hypothesis to this gives, for
each � between 1 and

�
, a � � such that ��� � � � and

� � � � � . TUPLE-REF gives

� 1
M

. . .
M
��� � � 1

M
. . .

M � �
and �

1
M

. . .
M � � � � 1

M
. . .

M � � (
which are our conclusions. If we take

� * 0, this conclusion tells us
� ��� � # � #����:� #

, which
is true and unremarkable.

Case: TUPLE-AND-ELIM-SUB Then � * $
� 1

M
. . .

M
� � ) � $

�
�
1

M
. . .

M
�
�
� ) and

� * $
� 1
�
�
�
1 ) M

. . .
M $
��� � � �� ) 5 The premise of TUPLE-AND-ELIM-SUB is

$
� 1
�
�
�
1 ) M

. . .
M $
��� � � �� ) � � 5 $

2 5 12 )
The only way to derive this is with TUPLE-REF, so we must have � * � 1

M
. . .

M � � and

$
� � � � �� ) � � �

for � between 1 and
�

. Each of these assumptions must follow from AND-REF, so for all �
we must have

� � � � �
and

�
�
� � � �T5

Applying TUPLE-REF to these gives

� 1
M

. . .
M
��� � �

and
�
�
1

M
. . .

M
�
�
� � ��5
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Applying AND-REF to these gives

$
� 1

M
. . .

M
��� ) �?$

�
�
1

M
. . .

M
�
�
� ) � ��5

This and (2.12) are our conclusions. If we take
� * 0, our conclusions are

� ���:� # � � ���:� # � �
and

� ���:� # � � , both of which are true and uninteresting.
�

Some uses of
�

are inessential. We do not need to be able to take intersections of tuples
or of refinement type constructors; every intersection of tuples can be simplified to a tuple
of intersections, and every intersection of refinement type constructors can be simplified to
a refinement type constructor. These simplifications are necessary in many places in the
proofs appearing later in this chapter, so we will prove that they are valid now.

For example, $L#T#
M O P R R'U ) �?$ � M � ) �
� PSRTR'U;M �

and #T# � O PSRTR'U
�

#T# 5
We will prove that simplifications like this are possible in the general case.

Lemma 2.22 (Tuple Intersection) If � 1
M

. . .
M
��� � � and

�
1

M
. . .

M � � � � then

$
� 1

M
. . .

M
��� ) �?$ �

1
M

. . .
M � � ) �

$
� 1
� �

1 ) M
. . .

M $
��� � � � ) 5

Proof of
$
� 1

M
. . .

M
��� ) � $ �

1
M

. . .
M � � ) � $

� 1
� �

1 ) M
. . .

MQ$
��� � � � ) : Immediate from

TUPLE-AND-ELIM-SUB.

Proof of
$
� 1
� �

1 ) M
. . .

M3$
��� � � � ) � $

� 1
M

. . .
M
��� ) � $ �

1
M

. . .
M � � ) : Use AND-ELIM-L-SUB

and AND-ELIM-R-SUB to get

for
�

in 1 . . .
�

we have � �
� �

�
�
���

and
for

�
in 1 . . .

�
we have � �

� �
�
� �

�45
Then TUPLE-SUB gives

$
� 1
� �

1 ) M
. . .

M $
� � � � � ) � � 1

M
. . .

M
� �

and $
� 1
� �

1 ) M
. . .

M $
� � � � � ) � �

1
M

. . .
M � � 5

Finally AND-INTRO-SUB gives

$
� 1
� �

1 ) M
. . .

M $
��� � � � ) � $

� 1
M

. . .
M
��� ) � $ �

1
M

. . .
M � � ) (

which is our conclusion.
�
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In a moment, we will present a simple algorithm that simplifies tuple refinement types.
Since this is the first algorithm we present at the meta-level (that is, it manipulates refinement
types as objects), we need to describe the notation we will use for these algorithms first.

The notation is basically Standard ML, except we allow free use of set notation and
ellipses “. . .”, provided the meaning is unambiguous. Since sets in mathematics and records
in SML are both written with braces, we must give up one or the other to avoid ambiguity;
we give up records. Our meta-level algorithms will also occasionally lapse into English or
mathematics. As an example, we can give the simple algorithm for simplifying tuples:

I � @ � � � D � H�B � � $
� 11

M
. . .

M
��� 1

�
. . .
�
� 1 � M

. . .
M
��� � ) >$

� 11
�

. . .
�
� 1 � ) M

. . .
M $
��� 1

�
. . .
�
��� � )

This algorithm uses SML’s destructuring convention with ellipses to simultaneously bind
�

and
�

to nonnegative integers and the variables � ��� to refinement types for � between 1 and
�

and � between 1 and
�

. Then it uses ellipses again to construct a refinement type that is a
rearranged form of the given refinement type.

This notation has advantages and disadvantages. Since it is based on a real program-
ming language, it tends to remain comprehensible as the algorithms we describe get more
complex. Since it is based on Standard ML, it is likely to be understandable to people
reading this thesis. However, basing the metalanguage on SML also invites confusion
between the metalanguage and the object language, and this form of metalanguage is not
necessary for simple algorithms like

� � � D � H�B � �
that will appear early in this chapter. On

the whole, the advantages seem more important, and we will use this notation throughout.

By repeatedly using Lemma 2.22 (Tuple Intersection) on page 40, it is easy to show
that

� � � D � H�B � �
is sound:

Fact 2.23 (Tuplesimp Sound) If � � � 1
M

. . .
M � � then

� � � D � H�B � �
� terminates and has

the form � 1
M

. . .
M
��� , and � �

� � � D � H�B � �
� .

We can show similar properties for refinements of any ML type constructor, and a
similar simplification procedure emerges.

Lemma 2.24 (Refinement Constructor Intersection) If rc1
�

. . .
�

rc � � � then

rc1
�

. . .
�

rc � � rc1
def�

. . .
def�

rc � 5
Proof: By repeated use of RCON-AND-ELIM-SUB,

� �
1
�

. . .
� � � � � � �

1
def�

. . .
def� � � ��5

To show
� �

1
def�

. . .
def� � � � � � �

1
�

. . .
� � � � , repeatedly use Assumption 2.17 (

def�
Elim) on

page 34 to get

for all
�

in 1 . . .
�

we have
� �

1
def�

. . .
def� � � � def� � �

� .
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Then RCON-SUB gives

for all
�

in 1 . . .
�

we have
� �

1
def�

. . .
def� � � � � � �

�

and repeated use of AND-INTRO-SUB gives

� �
1

def�
. . .

def� � � � � � �
1
�

. . .
� � � ��5

The first and last displayed formulae imply our conclusions.
�

Just as we did with
� � � D � H�B � �

, we can define a function that simplifies refinement
types that is justified by Lemma 2.24 (Refinement Constructor Intersection) on page 41.

I � @ � ��G @CH�B � � $�� �
1
�

. . .
� � � � ) >

� �
1

def�
. . .

def� � � �

Soundness of this follows from one use of Lemma 2.24 (Refinement Constructor Intersec-
tion) on page 41:

Fact 2.25 (Rconsimp Sound) If � � tc then � ��G @CH�B � �
� terminates and has the form rc,

and � ��G @1H�B � �
� � � .

TUPLE-SUB tells us that one product refinement type is a subtype another if corresponding
components are subtypes. It turns out that the converse is also true, although to prove it we
must first strengthen the induction hypothesis as shown in the following theorem.

After we introduce polymorphic refinement type constructors, this will be a trivial
consequence of properties of the � operator that we use to prove that each refinement type
has finitely many distinct refinements; until then, we need a direct proof.

Lemma 2.26 (Tuple Subtyping) If

� 11
M

. . .
M
��� 1

�
. . .
�
� 1 � M

. . .
M
��� � � �

11
M

. . .
M �

� 1
�

. . .
� �

1

 M

. . .
M �

�



then for all � between 1 and
�

we have

� � 1
�

. . .
�
� � � � � � 1

�
. . .
� � � 
 5

Proof: By induction on the derivation of our hypothesis.

Case: SELF-SUB Then
� * �

and

for � in 1 . . .
�

and � in 1 . . .
�

we have � � � * � � � .
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and there is a � such that

� 11
M

. . .
M
��� 1

�
. . .
�
� 1 � M

. . .
M
��� � � � 5 $

2 5 13 )
The only way to derive (2.13) is by using AND-REF with the premises

for � in 1 . . .
�

we have � 1 � M
. . .

M
��� � � � .

and this can only be derived by using TUPLE-REF when � has the form � 1
M

. . .
M � � and the

premises of TUPLE-REF are

for � in 1 . . .
�

and � in 1 . . .
�

we have � � � � � � .

Then AND-REF gives

for � in 1 . . .
�

we have � � 1
�

. . .
�
� � � � � �

and then SELF-SUB gives

for � in 1 . . .
�

we have � � 1
�

. . .
�
� � � � � � 1

�
. . .
�
� � �

which is our conclusion.

Case: AND-ELIM-R-SUB Then
� � � and

� 11
M

. . .
M
� � 1

�
. . .
�
� 1

 M

. . .
M
� � 
 * �

11
M

. . .
M �

� 1
�

. . .
� �

1

 M

. . .
M �

�

 5

Thus
for � in 1 . . .

�
and � in 1 . . .

�
we have � � � * � � � .

Thus AND-ELIM-L-SUB and AND-ELIM-R-SUB give

for � in 1 . . .
�

we have � � 1
�

. . .
�
� � � � � � 1

�
. . .
� � � 
 ,

which is our conclusion.

Case: AND-ELIM-L-SUB Similar.

Case: AND-INTRO-SUB Then there is an � in 1 . . .
���

1 such that the premises of AND-

INTRO-SUB are

� 11
M

. . .
M
��� 1

�
. . .
�
� 1 � M

. . .
M
��� � � �

11
M

. . .
M �

� 1
�

. . .
� �

1 � M
. . .

M �
� �

and

� 11
M

. . .
M
��� 1

�
. . .
�
� 1 � M

. . .
M
��� � � �

1 � ��� 1 �
M

. . .
M �

� � ��� 1 �
�

. . .
� �

1

 M

. . .
M �

�

 5
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Two uses of the induction hypothesis give

for � in 1 . . .
�

we have � � 1
�

. . .
�
� � � � � � 1

�
. . .
� � � � .

and
for � in 1 . . .

�
we have � � 1

�
. . .
�
� � � � � � � ��� 1 �

�
. . .
� � � 
 .

Combining these with AND-INTRO-SUB gives

for � in 1 . . .
�

we have � � 1
�

. . .
�
� � � � � � 1

�
. . .
� � � 
 ,

which is our conclusion.

Case: TRANS-SUB For the duration of this case, we will give � 11
M
. . .

M
��� 1
�

. . .
�
� 1 � M

. . .
M
��� �

the name � . There is a � such that the premises of TRANS-SUB are

�
�
�

and
�
� �

11
M

. . .
M �

� 1
�

. . .
� �

1

 M

. . .
M �

�

 5

By Theorem 2.21 (Subtypes Refine) on page 36, there is a � such that both � and � refine � .
By the form of � we know that � has the form � 1

M
. . .

M � � , so by Fact 2.12 (Tuple Refines)
on page 32 we know that � has the form � 11

M
. . .

M
� � 1

�
. . .
�
� 1 �

M
. . .

M
� � � .

Two uses of the induction hypothesis give

for � in 1 . . .
�

we have � � 1
�

. . .
�
� � � � � � 1

�
. . .
�
� � �

and
for � in 1 . . .

�
we have � � 1

�
. . .
�
� � �

� � � 1
�

. . .
� � � 
 .

Then we can use TRANS-SUB to get

for � in 1 . . .
�

we have � � 1
�

. . .
�
� � � � � � 1

�
. . .
� � � 
 ,

which is our conclusion.

Case: ARROW-SUB

Case: ARROW-AND-ELIM-SUB

Case: RCON-SUB

Case: RCON-AND-ELIM-SUB

None of these cases can arise because they are not consistent with the form of our hypothesis.

Case: TUPLE-SUB Then
� * 1 and

� * 1 and the premises of TUPLE-SUB are our

conclusion.
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Case: TUPLE-AND-ELIM-SUB Then
� * 2 and

� * 1 and our hypothesis has the form

$
� 1

M
. . .

M
� � ) �?$

�
�
1

M
. . .

M
�
�
� ) �Z$

� 1
�
�
�
1 ) M

. . .
M $
� �
�
�
�
� ) 5

SELF-SUB gives
for � in 1 . . .

�
we have � � � � �� � � � � � �� ,

which is our conclusion.
�

From this it trivially follows that if a valid subtyping inference looks like it could have
been inferred by using TUPLE-SUB, then it can be inferred by using TUPLE-SUB:

Corollary 2.27 (TUPLE-SUB Inversion) If

� 1
M

. . .
M
���
� �

1
M

. . .
M �

�

then
for � in 1 . . .

�
we have ��� � � � .

Proof: Use Lemma 2.26 (Tuple Subtyping) on page 42 with
� * � * 1.

�

The only use we ever make of Lemma 2.26 (Tuple Subtyping) on page 42 is in the
proof of Corollary 2.27 (TUPLE-SUB Inversion) on page 45. It is tempting to conjecture that
we could eliminate Tuple Subtyping by using

� � � D � H�B � �
to prove TUPLE-SUB Inversion

directly. Unfortunately, this does not work. The attempted proof of TUPLE-SUB Inversion
has the same shape as the proof of Tuple Subtyping, except many cases vanish because
the hypothesis has such a special form. The TRANS-SUB case remains, though, and that is
where the proof goes wrong. To get the weaker induction hypothesis to apply, we must
first use

� � � D � H�B � �
on the premises of TRANS-SUB. But then we have no guarantee that the

induction makes progress, since using
� � � D � H�B � �

makes the type derivation larger.

Similar reasoning to Lemma 2.26 (Tuple Subtyping) on page 42 gives analogous facts
about refinement type constructors:

Fact 2.28 (Refinement Constructor Subtyping) If

rc1
�

. . .
�

rc � � kc1
�

. . .
�

kc 


then

rc1
def�

. . .
def�

rc � def�
kc1

def�
. . .

def�
kc 
 5

Fact 2.29 (RCON-SUB Inversion) If
rc
�

kc

then

rc
def�

kc 5
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After we introduce polymorphic refinement type constructors, both monomorphic re-
finement type constructors and tuples will be special cases of polymorphic refinement type
constructors. Then we will introduce Corollary 5.13 (Arbitrary Constructor Subtyping) on
page 250, which generalizes both Fact 2.29 (RCON-SUB Inversion) on page 45 and Corollary
2.27 (TUPLE-SUB Inversion) on page 45.

2.6.2 Splitting

Under appropriate assumptions about the refinement types of
G � and

@ G��
, we should expect

the expression

I @ � � <WK K � >�� G � $���� @ G�� � )
to have the refinement type

O P R R'U � # #
. The reasoning that leads to the conclusion that

the above function always returns a value of type
# #

relies upon the assumption that all
boolean values have one of the types

# #
or
�

. This section formalizes this assertion asO P R R'U�� � #T# ( � � ; this assertion is used in type inference in the SPLIT-TYPE rule in Figure 2.6
on page 2.6.

To see why we need to use the fact that
O PSRTR'U�� � #T# ( � � , suppose we made the

assumption false by adding a new constructor
� 9�� � �

with refinement type
� ���:� # � O PSRTR'U 5

What is the best type we could expect from
@ G��

if it is passed an argument with type
O P R R'U

?

At the type level, the behavior of
@ G��

must be monotone. Since
# # �ZO P R R'U

and
@ G��

has
the type

# # � �
, the type we get from

@ G��
must be at least

�
. A similar argument leads to

the conclusion that it must be at least
# #

, so the type must be
O PSRTR'U

.

We can repeat this argument for
G � instead of

@ G��
and conclude that if we pass something

of type
$ O PSRTRVU M O PSRTR'U ) to

G � , then all we can know about the result is that it has the typeO P R R'U
. Thus the expression

G � $ � 9�� � � $ ) � @ G�� $�� 9�� � � $ )L)L) has the best type
O PSRTRVU

, so as
long as we have the

� 9�� � �
constructor, we cannot give the expression

I @�� � <LK%K � >�� G � $ ��� @ G�� � )
the type

O PSRTRVU � #T#
.

2.6.2.1 Definition of Splitting

Therefore our type system has to reason about when a refinement type can be split into a
union of other refinement types. We write the assertion that all values of type � have one
of the types in the set � as

�
�
�45
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For example, we have O PSRTR'U � � #T# ( � �
and O PSRTRVU M O PSRTRVU � � # #
M #T# ( #T#
M � ( � M #T# ( � M � � 5
We say the elements of � are fragments of � and that � splits up into � .

The definition of the splitting relation
�

for expressions in general relies upon assump-
tions about how the refinement type constructors behave. We will need to assume that
certain refinement type constructors have splits to show that some refinement types have
splits. We write the assumption that

� �
splits up into constructors in the set

! �
as

� � def� ! � 5
For instance, starting with the assumption

O P R R'U def� � #T# ( � �
about the refinement type constructors

O PSRTRVU
,

#T#
, and

�
, we can reach the insipid conclusion

O PSRTR'U � � #T# ( � �
about the refinement types

O PSRTR'U
,

# #
,
�

. We can also reach more interesting conclusions,
such as O P R R'U�M O P R R'U�� � O P R R'U�M # # ( OQPSRTRVU4M � � 5
An important property of

�
is that if a value has a refinement type � and �

�
� then the

value has some element of � as its type. We will have to postpone proof of this until after
we define refinement type inference.

We define the
�

relation in Figure 2.5.

The RCON-SPLIT rule is self-explanatory; it simply allows us to make use of our assump-
tions.

TUPLE-SPLIT allows us to split up a tuple if we can split any of its components. SML
represents functions that take multiple arguments either as curried functions or as functions
that take one argument, which is a tuple. Without this rule, type inference for the curried
functions would be much stronger than type inference for the functions that take a tuple as
an argument.

The TRANS-SPLIT rule lets us use the other rules multiple times to split up a refinement
type. Without this, there would be no clear “best” split of some refinement types; for
example, TUPLE-TYPE gives

O P R R'UM O P R R'U � � OQPSRTRVUCMQ#T# ( O PSRTR'U;M � �
and

O P R R'U;M O P R R'U �
� #T# M O P R R'U ( � MQOQPSRTRVU �

, and neither of these splits is clearly better than the other. With
TRANS-SPLIT, we can use TUPLE-TYPE to split the fragments of either of these splits to get

OQPSRTRVU�M OQPSRTRVU�� � # #
M #T# ( #T#
M � ( � M #T# ( � M � � (
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RCON-SPLIT:
� � def� ! �
� � �Z! �

TUPLE-SPLIT:

� � � �
�

1
M

. . .
M � � � 1

M � � M � ��� 1
M

. . .
M � 
 �

� � 1
M

. . .
M � � � 1

M
�

M � ��� 1
M

. . .
M � 
 / � � � �

TRANS-SPLIT:
�
�
� 1

� � � � � �
� 2

�
�
� 1

�
� 2

EQUIV-SPLIT-L:
� �

� � �
�

�
�
�

EQUIV-SPLIT-R:
� �

�
�
�
�

� � � �
�
�
�

� � � �

ELIM-SPLIT:
�
�
�

� � � ( � � � �
�

�
�
�

� � � �

SELF-SPLIT:
�
� � � �

Figure 2.5: Definition of Splitting

which is in some sense a better split than either of the two splits given earlier. See
Subsubsection 2.6.2.2 for a discussion of principal splits.

EQUIV-SPLIT-L and EQUIV-SPLIT-R ensure that the splitting relation is invariant under
equivalence. For example, Lemma 2.43 (Split Intersection) on page 54 allows us to start
with the premise O PSRTR'U � � #T# ( � �
and use that to conclude O PSRTR'U � � � � #T# � � ( � � � � 5
Without EQUIV-SPLIT-L, the best we would be able to conclude is that for some type �
equivalent to

O PSRTR'U � �
we have

�
� � # # � � ( � � � � 5

If we had EQUIV-SPLIT-L but not EQUIV-SPLIT-R, the best we could conclude is that for some
� 1 equivalent to

#T# � �
and some � 2 equivalent to

� � �
,

OQPSRTR'U � � � � � 1 ( � 2
� 5
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ELIM-SPLIT allows us to eliminate unimportant elements from splits. For example, givenO P R R'U � � #T# ( � ( � PSRTR'U �
, we can use ELIM-SPLIT and

� PSRTR'U � #T#
to infer

O PSRTR'U � � # # ( � � . If
we read the assertion

O PSRTRVU�� � # # ( � ( � PSRTRVU �
as “All values with type

O PSRTR'U
have one of the

types
# #

,
�

, or
� PSRTRVU

,” it becomes intuitively clear that
� PSRTR'U

can be eliminated from the
split without losing any information.

If we did not have ELIM-SPLIT, then principal splits would not be unique because the
unimportant elements could differ. We could still generate a unique minimal set that
contained all the information from all of the splits, but without ELIM-SPLIT, that set would
not be a split. Since this set would be usable as a split, the distinction between it and the true
splits would be formal but not practical. It seems better to erase the unimportant distinction
by keeping the ELIM-SPLIT rule.

SELF-SPLIT ensures that each refinement type has at least one split. This simplifies some
of the reasoning to come; in particular, Assumption 2.50 (Split Constructor Consistent) on
page 66 is flexible enough only because we have SELF-SPLIT.

Now we can prove several lemmas about how
�

interacts with
�

and � . First we will
assume that the fragments of a refinement type constructor are smaller than the refinement
type constructor itself:

Assumption 2.30 (Split Subtype Consistent) If rc
def�
� and kc � � then kc

def�
rc.

A straightforward induction lets us lift Split Subtype Consistent from a statement about

“
def�

” and “
def�

” to a statement about “
�

” and “
�

”:

Theorem 2.31 (Splits Are Subtypes I) If �
�
�

� � � � and � � � then
� �

� .

Proof: By induction on the derivation of �
�
�

� � � � .
Case: RCON-SPLIT Then � has the form

� �
and

�
has the form

� �
and the premise of

RCON-SPLIT is � � def� ! � � � � � � 5
By Assumption 2.30 (Split Subtype Consistent) on page 49, this implies that

� � def� � �
.

Using RCON-SUB on this gives
� � � � �

, which is our conclusion.

Case: TUPLE-SPLIT Then � has the from
�

1
M

. . .
M � � � 1

M � � M � ��� 1
M

. . .
M � 
 and

�
has the

form
�

1
M

. . .
M � � � 1

M
�

M � ��� 1
M

. . .
M � 
 , and the premise of TUPLE-SPLIT is
� � � � � � � � � 5

The only way we could have inferred � � � is by using TUPLE-REF where � has the form
� 1

M
. . .

M � 
 and one of the premises of TUPLE-REF is

for � in 1 . . .
�

we have
� � � � � 5
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This is true for � * � as well, so we can use the induction hypothesis to give

�
� � �75

By SELF-SUB,
for � in 1 . . .

�
we have

� � � � � (
and TUPLE-SUB gives

�
1

M
. . .

M � � � 1
M
�

M � ��� 1
M

. . .
M � 
 � �

1
M

. . .
M � � � 1

M � � M � ��� 1
M

. . .
M � 
 (

which is our conclusion.

Case: TRANS-SPLIT Then �
� � � � * � 1

�
� 2 where the premises of TRANS-SPLIT are

�
�
� 1

� � � �
and

�
�
� 2 5

If
� � � 1, then our induction hypothesis gives

� �
� , and we are done.

If
� � � 2, then we reach our conclusion less directly. Our induction hypothesis gives

�
�
� , and Theorem 2.21 (Subtypes Refine) on page 36 gives a � such that � � � . Then

we can use our induction hypothesis again to get
� �

� , and then TRANS-SUB gives
� �

� ,
which is our conclusion.

Case: EQUIV-SPLIT-L Then the premises of EQUIV-SPLIT-L are � � � and �
�
� . Theorem

2.21 (Subtypes Refine) on page 36 gives � � � , and our induction hypothesis gives
� �

� .
TRANS-SUB then gives

� �
� , which is our conclusion.

Case: EQUIV-SPLIT-R Then we must have �
� � � � * �

� � � � � where the premises of

EQUIV-SPLIT-R are � � �
�

and �
�
�
� � � � � � .

If
� � � � , then

� � � � � � � � � , so we can use our induction hypothesis immediately to get� �
� .

If
� * � , then our induction hypothesis only gives �

� �
� . Since � � �

�
, TRANS-SUB

gives �
�
� , which is our conclusion.

Case: ELIM-SPLIT Then �
� � � � * �

� � � � � and the premises of ELIM-SPLIT are �
�

�
� � � � � ( � � and �

� �
� . Since

�
must be in �

� � � � � ( � � , our induction hypothesis gives� �
� .

Case: SELF-SPLIT Then
� * � , and SELF-SUB gives our conclusion.

�

It is a trivial consequence of this show that
�

and � interact reasonably:
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Corollary 2.32 (Split Types Refine I) If �
�
� and

� � � and � � � then
� � � .

Proof: Let
�

in � be given. By Theorem 2.31 (Splits Are Subtypes I) on page 49,
� �

� .
By Theorem 2.21 (Subtypes Refine) on page 36,

� � � . �

The following fact similar to Theorem 2.31 (Splits Are Subtypes I) on page 49 is
provable, but the proof is too similar to the proof of Theorem 2.31 (Splits Are Subtypes I)
on page 49 for it to be worthwhile to include it here.

Fact 2.33 (Splits Are Subtypes II) If �
�
�

� � � � and
� � � then

� �
� .

We have an immediate corollary to Fact 2.33 (Splits Are Subtypes II) on page 51 that is
completely analogous to Corollary 2.32 (Split Types Refine I) on page 51:

Fact 2.34 (Split Types Refine II) If �
�
� and

� � � and
� � � then � � � .

Refinements of an ML type of the form � 1
� � 2 all have a simple form. If � � � 1

� � 2,
we can use SELF-SPLIT to infer �

� � � � , and we can use EQUIV-SPLIT-R to replace the
element of that split by arbitrarily many equivalent elements. A simple induction on the
derivation of �

�
� for any � tells us nothing more interesting than this can happen. This is

important in the SPLIT-TYPE case of Lemma 2.70 (Value Substitution) on page 93.

Fact 2.35 (Splits of Arrows are Simple) If � � � 1
� � 2 and �

�
� and

� � � then � �
�

.

It is possible to imagine a refinement type having an empty split. This would be
consistent with the intuitive meaning of splitting if there were no way to construct a value
having that type; for instance, we might expect

� PSRTRVU
to split into the empty set. However,

allowing empty splits causes type inference to behave strangely; see the discussion of the
SPLIT-TYPE rule on page 62. We will outlaw refinement types with empty splits; thus
possible splits of

� P R R'U
are � � P R R'U �

and trivial variants of this such as � � P R R'U � � PSRTR'U �
. First

we outlaw empty splits for refinement type constructors:

Assumption 2.36 (Refinement Constructor Splits are Nonempty) If rc
�

sc then sc is
nonempty.

From this it is easy to show that no refinement type can have an empty split:

Fact 2.37 (Splits are Nonempty) If �
�
� then � is nonempty.

This could be proved by induction on the derivation of �
�
� .
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2.6.2.2 Principal Splits

The definition of the
�

relation gives infinitely many splits of each refinement type. For
example,

# #
has the splits � # # �

, � #T# � #T# �
, � #T# ( # # � # # �

, and infinitely many others. A
practical type inference algorithm will only have time to consider a finite number of these.
In this Subsubsection we will add an assumption that makes it possible for type inference
to consider only one split. This split will be a principal split in the sense we will define
below. If we identify two splits when there is a one-to-one correspondence between them
where equivalent elements correspond, then any well-formed refinement type has exactly
one principal split.

First, we shall make a distinction between splits with fragments that could be eliminated
by using ELIM-SPLIT and splits without such fragments. The unnecessary fragments add
complexity.

Definition 2.38 (Irredundant Splits) We say a split � is redundant if any two elements of
� are comparable. Otherwise we say it is irredundant.

A given refinement type will have many splits, and some of them are more informative
than others. A split is informative because it introduces smaller refinement types into the
environment. Thus one irredundant split is more informative than another if the former has
types smaller than the types in the latter; to put it formally,

Definition 2.39 (Informative Splits) Given two splits � 1 and � 2 of � , we say that � 1 is more
informative than � 2 if each element of � 1 is less than some element of � 2.

Our goal is to have unique most informative irredundant splits:

Definition 2.40 (Principal Splits) We say that � is a principal split of � if � is an irredundant
split of � that is more informative than any other irredundant split of � .

Once we have one principal split, we need not worry about looking for another because
there are no other principal splits that are different in any interesting way.

Theorem 2.41 (Unique Principal Splits) Given any two principal splits of a well-formed
refinement type, there is a one-to-one correspondence between them in which the corre-
sponding refinement types are equivalent.

Proof: Suppose � and �
�
are principal splits of � , and � is in � . By symmetry, it is sufficient

to find a �
�
in �

�
such that � � �

�
.

Since � is more informative than �
�
, there is a �

�
in �

�
such that �

�
�
�
. Since �

�
is more

informative than � , there is a �
� �

in � such that �
� �

�
� �
. By TRANS-SUB, these imply �

�
�
� �
.
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Since � is irredundant, we must have �?* �
� �
. Using this to rewrite �

� �
�
� �

gives �
� �

� .
This and �

�
�
�

imply � � �
�
, which implies our conclusion.

�

Generally speaking, refinement types that are not well-formed may not have principal
splits. For example, suppose O PSRTR'U � � #T# ( � �
and OQPSRTRVU�� � # # ( � ( � PSRTRVU � 5
In this case the malformed type

$ # # � � ���:� # ) M O PSRTRVU
would have the splits

� $L#T# � � ���:� # ) M #T# ( $ # # � � ���:� # ) M � �
and

� $L#T# � � ���:� # ) M #T# ( $L#T# � � ��� � # ) M � ( $L#T# � � ��� � # ) M � P R R'U � (
among others. These splits are both irredundant because ill-formed refinement types are
incomparable, and for the same reason neither split is more informative than the other.
By similar reasoning, no splits of

$L#T# � � ���:� # ) MQO PSRTRVU
will be redundant or more or less

informative than any other splits. Thus we only will be interested in principal types for
well-formed refinement types.

If we want to have unique most informative splits, we need to have a split more
informative than any two given splits. Thus, if we have splits � 1 and � 2 of a well-formed
refinement type � then we need to be able to find an � 3 such that

�
�
� 3

and
for all

�
3 � � 3 there is a

�
1 � � 1 such that

�
3
� �

1

and
for all

�
3 � � 3 there is a

�
2 � � 2 such that

�
3
� �

2.

This will be true if splitting interacts in a natural way with intersection: whenever �
�
�

and � and �
�

refine the same ML type, we need to ensure that �
�
�
� � � � � � � � � / � � � � � � .

This is intuitively plausible because if a value is in �
�
�
�
is in both � and �

�
. Since it is in �

it must be in some �
� � � � , and since it is in both �

� �
and �

�
it must be in �

� � �
�
�
.

This property allows us to construct an � 3 more informative than both � 1 and � 2. Let

� 3 * � � 1
� �

2 / � 1 � � 1 and
�

2 � � 2
� 5

The property mentioned in the previous paragraph guarantees that

for all
�

1 in � 1 we have
�

1
� � � 1

� �
2 / � 2 � � 2

�
and then we can repeatedly use TRANS-SPLIT to get

�
� � � 1

� �
2 / � 1 � � 1 and

�
2 � � 2

� (



CHAPTER 2. REFINEMENT TYPE INFERENCE 54

which means that � 3 has the properties we want.

What is the best way to ensure that splitting and intersection interact this way? It is
sufficient to assume that predefined splitting and predefined intersection interact this way
for refinement type constructors:

Assumption 2.42 (Predefined Split Intersection) If rc
def� tc and kc

def� tc and

rc
def�

sc

then
rc

def�
kc

def� � rc � def�
kc / rc

� � sc
� 5

Now we are in a position to prove that the analogous property holds for refinement types
in general:

Lemma 2.43 (Split Intersection) If � � � and
� � � and

�
�
�

then
�
� � � � � � � � / � � � � � 5

Proof: By induction on the derivation of �
�
� .

Case: RCON-SPLIT Then � has the form
� �

and � has the form
#��

and � has the form
! �

and the premise of RCON-SPLIT is � � def� ! � 5
Since

� � #��
, we know that

�
has the form

� �
1
�

. . .
� � � � . Let

� � * � �
1

def�
. . .

def� � � � . By
Lemma 2.24 (Refinement Constructor Intersection) on page 41,

� � � �
�

� � def� � � 5
By Assumption 2.42 (Predefined Split Intersection) on page 54,

� � def� � � def� � � � � def� � � / � � � � ! � � 5
RCON-SPLIT and EQUIV-SPLIT-L give

� � � � � � � � � def� � � / � � � � ! � � 5
By Lemma 2.24 (Refinement Constructor Intersection) on page 41 we know that for

� � � � ! �
we have

� � � � �
�

� � � def� � �
. Thus repeated use of EQUIV-SPLIT-R gives

� � � � � � � � � � � / � � � � ! � �
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which is our conclusion.

Case: TUPLE-SPLIT Then � has the form � 1
M

. . .
M
��� and there is an � such that the premise

of TUPLE-SPLIT is � � � � � where

� * � � 1
M

. . .
M
� � � 1

M
�
� � M

� ��� 1
M

. . .
M
� � / � � � � � � � 5

Since � � � , we know that � has the form � 1
M

. . .
M � � . Since

� � � , we know that
�

has a
form that allows us to repeatedly use Lemma 2.22 (Tuple Intersection) on page 40 to find�

1 through
� � such that �

�
�

1
M

. . .
M � ��5

By induction hypothesis,
� � � � � � � � � � � � � / � � � � � � �

and TUPLE-SPLIT gives

$
� 1
� �

1 ) M
. . .

M $
��� � � � ) �� $

� 1
� �

1 ) M
. . .

M $
� � � 1

� � � � 1 ) M $
�
� � � � � ) M $

� ��� 1
� � ��� 1 ) M

. . .
M $
� � � � � ) / � � � � � � � 5

All that remains to do is to simplify this until it looks like our conclusion. Lemma 2.22
(Tuple Intersection) on page 40 gives

$
� 1

M
. . .

M
� � ) �?$ �

1
M

. . .
M � � ) �

$
� 1
� �

1 ) M
. . .

M $
� � � � � )

and trivial reasoning about
�

then gives

�
� �

�
$
� 1
� �

1 ) M
. . .

M $
� � � � � ) 5

EQUIV-SPLIT-L gives

�
� � � � $

� 1
� �

1 ) M
. . .

M�$
� � � 1

� � � � 1 ) M $
�
� � � � � ) M3$

� ��� 1
� � ��� 1 ) M

. . .
M3$
� � � � � ) / � � � � � � � 5

Lemma 2.22 (Tuple Intersection) on page 40 gives for �
� �

in �
�
we have

$
� 1

M
. . .

M
� � � 1

M
�
� � M

� ��� 1
M

. . .
M
��� ) � $ �

1
M

. . .
M � � ) �$

� 1
� �

1 ) M
. . .

M $
� � � 1

� � � � 1 ) M $
�
� � � � � ) M $

� ��� 1
� � ��� 1 ) M

. . .
M $
��� � � � )

Trivial reasoning about
�

gives

$
� 1

M
. . .

M
� � � 1

M
�
� � M

� ��� 1
M

. . .
M
� � ) � $ �

1
M

. . .
M � � ) �$

� 1
M

. . .
M
� � � 1

M
�
� � M

� ��� 1
M

. . .
M
��� ) � �

so for �
� �

in �
�

we have
$
� 1

M
. . .

M
� � � 1

M
�
� � M

� ��� 1
M

. . .
M
��� ) � � �$

� 1
� �

1 ) M
. . .

M $
� � � 1

� � � � 1 ) M $
�
� � � � � ) M $

� ��� 1
� � ��� 1 ) M

. . .
M $
��� � � � ) 5
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Repeated use of EQUIV-SPLIT-R gives

�
� � � � $

� 1
M

. . .
M
��� � 1

M
�
� � M

� ��� 1
M

. . .
M
��� ) � � / � � � � � � �

and by simple manipulation and the definition of � this implies

�
� � � � � � � � / � � � � � (

which is our conclusion.

Case: TRANS-SPLIT Then � has the form � 1
�
� 2 where the premises of TRANS-SPLIT are

�
�
� 1

� � � �
and

�
�
� 2 5

By induction hypothesis,

�
� � � � � � � � / � � � � 1

� � � ���
and by set theory this is equivalent to

�
� � � � � � � � / � � � � 1

� � � � � � � 5
By Corollary 2.32 (Split Types Refine I) on page 51, � � � . By induction hypothesis,

�
� � � � � � � � / � � � � 2

� 5
Then TRANS-SPLIT gives

�
� � � � � � � � / � � � � 1

�
� 2
� (

which is our conclusion.

Case: EQUIV-SPLIT-L Then the premises of EQUIV-SPLIT-L are

� � �

and
�
�
�45

By Theorem 2.21 (Subtypes Refine) on page 36, � � � , so we can use the induction
hypothesis to get

�
� � � � � � � � / � � � � � 5

Trivial reasoning about
�

gives �
� �

� �
� �

, so we can use EQUIV-SPLIT-L to get

�
� � � � � � � � / � � � � � (
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which is our conclusion.

Case: EQUIV-SPLIT-R Then � has the form �
� �
� where the premises of EQUIV-SPLIT-R are

� � �
�

and
�
�
�
� �

�
� 5

By induction hypothesis,

�
� � � � � � � � / � � � � � � � � � � � � � 5

Trivial reasoning about
�

gives �
� � �

� �
� �

, so we can use EQUIV-SPLIT-R to get

�
� � � � � � � � / � � � � � � � � � � � � (

which is our conclusion.

Case: ELIM-SPLIT Then � has the form �
� � � � � where the premises of ELIM-SPLIT are

�
�
�
� � � � � ( � �

and
�
� �

�15
By induction hypothesis,

�
� � � � � � � � / � � � � � � � � � � � ( � � � � � 5

Trivial reasoning about
�

gives �
� � � �

�
� �

, so ELIM-SPLIT gives

�
� � � � � � � � / � � � � � � � � � � � � (

which is our conclusion.

Case: SELF-SPLIT Then � * � � � , so our conclusion is �
� � � � � � � � , which follows

from SELF-SPLIT.
�

Just as some splits are more informative than others, some splits have no information
at all. For example, the split

#T# � � # # ( � P R R'U �
is useless because the meaning of it is a

truism: all values of type
#T#

have one of the types
# #

or
� P R R'U

. In general, if a fragment in a
split is equivalent to the type we started with, that split is useless. Formally, we have this
definition:

Definition 2.44 If �
�
� and there is a

� � � such that � �
�

, then we say that � is a useless
split of � . Otherwise we say it is useful.
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A simple argument tells us that elements of a principal split cannot themselves have
useful splits.

Lemma 2.45 (Principal Split Implies Useless Splitting Fragments)
Fragments of a principal split only have useless splits.

Proof: Suppose that an irredundant split of a well-formed refinement type � is �
� � � � ,

where
�

has a useful split �
�
. Then by TRANS-SPLIT, �

�
�

�
�
�
. By definitions of

“informative” and “useful”, �
�
�
�

is more informative than �
� � � � . By Theorem 2.31

(Splits Are Subtypes I) on page 49, �
�
�
�

is irredundant. Thus �
� � � � is not a principal

split of � .
�

We also have the converse:

Lemma 2.46 (Fragments of Principal Split have Useless Splits) An irredundant split of
a well-formed refinement type is principal if all of its fragments only have useless splits.

Proof: Suppose � is an irredundant split of a well-formed refinement type � , and �
�
�
�

and � is in � . We need to show that there is a �
�

in �
�
such that �

�
�
�
.

By assumption, there is a � such that � � � . By Theorem 2.31 (Splits Are Subtypes I) on
page 49, this implies �

�
� , which means that � � �

�
� . Lemma 2.43 (Split Intersection)

on page 54 gives
�
�
�
� � � � � � / � � � � � � (

and then EQUIV-SPLIT-L gives

�
� � � � � � / � � � � � � 5

By assumption, this split of � is useless. Thus there is a �
�
in �

�
such that � � �

� �
� , which

implies �
�
�
�
, which is our conclusion.

�

We will use these two lemmas to build an algorithm for finding principal splits in
Subsection 2.10.2.

2.6.3 Refinement Type Inference

Given the subtype relation described above, we can define refinement type inference. The
notation is entirely analogous to the ML case. We write

VR

 � : �

to mean that if we assume each free variable � in � has the refinement type VR
$ � ) , then �

has the refinement type � .
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If an expression has a refinement type, then it has an ML type, and the refinement type
refines the ML type; this is an informal statement of Theorem 2.54 (Inferred Types Refine)
on page 68. Since each expression with an ML type has only one ML type, all refinement
types for an expression refine the same ML type. If this is not true in general, then not all
terms would have principal refinement types. For example, if � has the refinement types

# #
and

� ���:� #
, then � has no principal type because

#T#
,

� ���:� #
, and the malformed type

# # � � ��� � #
are all incomparable.

Inferring refinement types for expressions requires making assumptions about the re-
finement types of constructors. We write the assumption that the constructor � maps values
of refinement type � to values of refinement type

� �
as

� def
: � �

� � � 5
For example,

� �	� � def
:

� ���:� #
�
� # #

. We will describe in detail the properties we assume for

the
def
: relation in Subsection 2.6.4 on page 64.

The rules for refinement type inference are in Figure 2.6. They are similar to the rules
for ML; we have made only the following changes:

We added the AND-INTRO-TYPE rule for introducing intersections. This allows us to
infer one type for a function that describes its behavior for several different inputs. For
example, since �


 I @ � � < K K � >�� �
:

#T# � #T#
and �


 I @�� � < K%K � > � �
:
� � �

, we have
�


 I @�� � <LK%K � >�� �
:

#T# � # # � � � �
. We do not need a corresponding AND-ELIM-TYPE

rule because we can use WEAKEN-TYPE and either AND-ELIM-L-SUB or AND-ELIM-R-SUB to
eliminate components from an intersection type.

The AND-INTRO-TYPE rule does not need to assume that � and
�

refine the same ML
type because Theorem 2.54 (Inferred Types Refine) on page 68 guarantees this.

We have added the WEAKEN-TYPE rule. This rule ensures that if an expression has a
type, then it also has any larger type. For example, since �


 I @�� � <WK K � > � �
:

# # � #T#
,

and
# # � #T# � # # � O P R R'U

, we can infer �


 I @ � � <LK K � > � �
:

#T# � O PSRTR'U
.

One would hope that if the environment VR has appropriate types for
@ G��

and
G � , we

would be able to infer

VR

 I @�� � <WK K � >�� G � $ @ G�� ��� � ) :

O PSRTRVU � # # (
since this function looks simple and it does indeed return

� ��� � $ ) for any input. The
SPLIT-TYPE rule allows this. We can derive

VR + � : * # # - 
 G � $T@ G�� ��� � ) :
# #

and
VR + � : * � - 
 G � $ @ G�� ��� � ) :

#T#
and then combine these with SPLIT-TYPE and

O P R R'U � � #T# ( � � to get

VR + � : * O PSRTR'U - 
 G � $ @ G�� ��� � ) :
#T#
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AND-INTRO-TYPE:
VR


 � : �
VR


 � :
�

VR

 � : �

� �

WEAKEN-TYPE:
VR


 � : � �
� �

VR

 � :

�

SPLIT-TYPE:

� �
�

for all � in � we have VR + � : * ��- 
 � : �
VR + � : * � - 
 � : �

VAR-TYPE:
VR

$ � ) * � �
� �

VR

 � : �

ABS-TYPE:
VR + � : * � - 
 � :

�
�

� �
VR


 I @ � � � > � � : �
� �

APPL-TYPE:
VR


 � 1 :
� �

� VR

 � 2 :

�

VR

 � 1 � 2 : �

CONSTR-TYPE: � def
: � �

� � �
VR


 � : �
VR


 � � :
� �

CASE-TYPE:

VR

 � 0 :

� �
�

� �
for all � in 1 . . .

�
and all

�
, if � � def

:
�
�
� � �

then VR

 � � :

� �
�

rtom
$
VR ) 
 $ ��9 H � � 0

G�I � 1
>�� � 1

E
. . .

E �	� > � ��� � @ 8 � � ) :: �
VR


 $ ��9 H � � 0
G�I � 1

> � � 1
E

. . .
E �	� >�� ��� � @ 8 � � ) : �

TUPLE-TYPE:
for � in 1 . . .

�
we have VR


 � � : � �
VR


 $ � 1
�

. . .
� ��� ) : � 1

M
. . .

M
���

ELT-TYPE:
VR


 � : � 1
M

. . .
M
���

VR

 � D � ��� ��� � : � 


FIX-TYPE:
�

� � 1
� � 2

VR + 
 : * � - 
 $ I @ � � � 1
>�� � ) : �

VR

 $ I B�� 
 � � 1

� � 2
> � I @ � � � 1

>�� � ) : �

Figure 2.6: Monomorphic Refinement Typing Rules



CHAPTER 2. REFINEMENT TYPE INFERENCE 61

and then use ABS-TYPE to get

VR

 I @�� � <WK K � >�� G � $ @ G�� ��� � ) :

OQPSRTRVU�� # # (
which is what we want.

We could get the same result by deleting the SPLIT-TYPE rule and adding the rule

SPLIT-SUB:
�
� � � 1 ( . . . ( � � � �

� � � �
� 1
� � �

. . .
�
��� � � �

�
� �

to the subtyping relation. In this case, we would again start by deriving

VR + � : * # # - 
 G � $T@ G�� ��� � ) :
# #

and
VR + � : * � - 
 G � $T@ G�� ��� � ) :

# # 5
Then we would apply ABS-TYPE to each of these to get

VR

 I @�� � <LK K � > � G � $T@ G�� ��� � ) :

#T# � #T#
and

VR

 I @ � � <WK K � > � G � $ @ G�� ��� � ) :

� � #T# 5
Combining these with AND-INTRO-TYPE gives

VR

 I @�� � <WK K � > � G � $ @ G�� ��� � ) :

� � #T# � #T# � #T# (
and then WEAKEN-TYPE and

� � #T# � #T# � #T# � O P R R'U � # #
(from SPLIT-SUB) give

VR

 I @�� � <WK K � >�� G � $ @ G�� ��� � ) :

OQPSRTRVU�� # # (
which is our conclusion.

If have SPLIT-TYPE but not SPLIT-SUB, then the types
� � #T# � #T# � #T#

and
O P R R'U�� #T#

are
not equivalent, even though all values with one type also have the other type. If instead we
have SPLIT-SUB but not SPLIT-TYPE, this anomaly does not happen. In this sense, SPLIT-SUB

is cleaner than SPLIT-TYPE. It is an open question whether adding SPLIT-SUB would cause
inequivalent types to always have different inhabitants.

However, after we add
D ���

statements in Chapter 4, SPLIT-TYPE becomes stronger than
SPLIT-SUB. For example, if we assume the best type for the expression

� � G48�� >��
isO P R R'U

, we would still like the statement

D ��� �Y> $ � � G 8�� >�� )B�@
G � $ @ G�� ��� � )� @ 8
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to have the refinement type
#T#

. SPLIT-TYPE can do this, but SPLIT-SUB cannot because there
is no subexpression of the

D ���
statement with an appropriate arrow type.

We could still have a strong system with SPLIT-SUB if we defined
D ���

statements as
macros; for example, the above

D ���
statement would be an abbreviation for

$ I @ � � <WK K � > �
G � $ @ G�� ��� � )L)$ � � G48�� > � ) �

Taking this approach when the
D ���

statement introduces polymorphism requires first-class
polymorphism, which is beyond the scope of this thesis.

At this point we need to combine all the above considerations into a decision. We will
keep SPLIT-TYPE because we want the proofs in this chapter to be a special case of the
proofs in Chapter 4. We will omit SPLIT-SUB for brevity, since there is no harm in having
inequivalent types with identical inhabitants.

TheSPLIT-TYPE rule leads to at least two problems if we allow empty splits. The first
problem is that empty splits can be used to infer a malformed refinement type for an
expression. For example, if we suppose that

� PSRTR'U � � � , then we can use SPLIT-TYPE to infer

+ � : * � P R R'U - 
 $ ) :
# # �?$L#T# � # # ) 5

This problem can be fixed by adding a premise � � � to the SPLIT-TYPE rule. The revised
rule would read � �

�
for all � in � we have VR + � : * ��- 
 � : �

�
� �

rtom
$
VR ) 
 � :: �

VR + � : * � - 
 � : ��5
By explicitly requiring the resulting refinement type to refine the ML type for the expression,
we outlaw malformed types.

Another problem with empty splits is more difficult to solve. Empty splits cause
variables in the environment that appear nowhere in an expression to affect the type of the
expression. For example, still assuming that

� PSRTR'U � � � , we can use SPLIT-TYPE to prove

+ � : * � PSRTR'U - 
 � �	� � $ ) :
� 5

This conclusion is reasonable in an eager language because there are no values of type� P R R'U
. However, it is strange because if we changed the environment to + � : * � - , we would

no longer be able to prove
� �	� � $ ) :

�
. Since we assume in many places that changing

types in the environment for unused variables does not affect the refinement type of an
expression, this would invalidate many of the proofs below. To make it clear where we
assume this, we will state it as a fact now, and make explicit reference to this fact when we
assume it is true.
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Fact 2.47 (Non-free Variables are Ignored) If � is not free in � , then VR + � : * � - 
 � :
�

if and only if VR

 � :

�
.

Proof of this is by two trivial inductions, one on the derivation of VR + � : * � - 
 � :
�

and
one on the derivation of VR


 � :
�

. In both cases, we have to use Fact 2.37 (Splits are
Nonempty) on page 51 in the case where the root inference is SPLIT-TYPE and the type of
� is being split. In logic, the “only if” case of this theorem is called “weakening” and the
“if” case is called “strengthening”.

VAR-TYPE is analogous to VAR-VALID rule except we add the premise �
� � . This

ensures that all types we use from the environment are well formed. We state this formally
and sketch the proof in Fact 2.48 (Free Variables Refine) on page 64. If this were not true,
for many of the theorems below we would have to add an assumption that all variables in
the environment are well formed.

The differences between CASE-TYPE and CASE-VALID have two causes. First, there is
always exactly one � and

#��
such that � def

:: � � � #��
, but in general there may be many � ’s

and
� �

’s such that � def
: � �

� � �
. This causes the added quantification on

�
in the CASE-TYPE

rule.

Second, we do not want to require unreachable cases to have a refinement type. If a case
is never reachable, we do not require it to have a refinement type, so it would not necessarily
have an ML type unless we explicitly required it to. The last premise of CASE-TYPE requires
the case statement as a whole to have an ML type, and by CASE-VALID, this requires the
unreachable cases to have ML types.

There is a natural analogy between instantiating a polymorphic ML type and weakening
a refinement type, since both operations replace the type by a less informative type. The
analogy is not perfect; in particular, although there are infinite sequences of increasingly
instantiated polymorphic types, such as

� ( � � � ( $ � ��� ) � � ( . . . (
straightforward reasoning tells us there are no infinite sequences of increasingly weak
refinement types: because the refinement types are increasingly weak, they must be com-
parable, so Theorem 2.21 (Subtypes Refine) on page 36 tells us they all refine the same
ML type; by Theorem 2.90 (Finite Refinements) on page 115, there are only finitely many
distinct refinements of any ML type, so the chain must be finite.

Unfortunately, standard notation obscures this analogy. If the refinement type � 2 is
weaker than the refinement type � 1, we write � 1

�
� 2. But in [DM82], among other places,

if the type scheme � 2 is an instance of the type scheme � 1, we write � 1
� � 2. We make no

use of the instantiation ordering in this thesis, so we are not faced with a choice between
internal inconsistency and external inconsistency.

The original Damas-Milner type inference system [DM82] disallows instantiating the
type of the recursion variable in a fixed point immediately before using it, and that system
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is decidable. The Milner-Mycroft type inference system [Myc84] is a variant that permits
instantiating the type of the recursion variables in fixed points, and that change is sufficient
to make the type system undecidable [KTU89]. None of these questions arise for the ML
type inference we use in this chapter, because there is no polymorphism. But the following
question does arise: which of these systems is refinement types analogous to, and how does
that affect decidability?

Both the Damas-Milner and the Milner-Mycroft type systems distinguish type schemes
(which can be instantiated) from types (which cannot). In the refinement type system,
WEAKEN-TYPE can be applied anywhere, so all refinement types are analogous to the type
schemes in polymorphic type inference. In particular, the refinement type of the recursion
variable in a fixed point can be weakened before it is used. In this sense, refinement type
inference is analogous to the Milner-Mycroft system. However, refinement type inference
is decidable because there the ML type of the recursion variable is uniquely determined,
and this tightly constrains the search.

If an expression has a refinement type, then the variables it uses have well-formed types
in the variable environment. This is the refinement type analogue of Fact 2.5 (ML Free
Variables Bound) on page 29. To state it formally,

Fact 2.48 (Free Variables Refine) If VR

 � : � and � is free in � , then there is a � such

that VR
$ � ) � � .

Proof of this is by induction on the derivation of VR

 � : � .

2.6.4 Properties of Constructors

This subsection describes the properties of value constructor that are directly used by
refinement type inference. As we mentioned earlier, we say that a constructor maps values
of type � to values of type

� �
by writing

� def
: � �

� � � 5
For example, this assumption about

� �	� �
fits its ordinary meaning:

� ��� � def
:

� ��� � #
�
� #T#

as does this assumption about
I;9 D H �

:

I9 D H � def
:

� ��� � #
�
� � 5

If a constructor has a refinement type, it also has larger refinement types, so these assump-
tions are also reasonable: � �	� � def

:
� ���:� #

�
� O PSRTRVU

I;9 D:H � def
:

� ���:� #
�
� O P R R'U 5
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Thus for any � we may have many � ’s and
� �

’s such that � def
: � �

� � �
. This contrasts with

the unique � and
#��

such that � def
:: � � � #��

.

For another example, we have these types for the bitstring constructor
� � � G

:

� � � G def
:
� P����"��� !

�
� � P � �"���"!

� � � G def
:
� P����"��� !

�
� �����#��

� � � G def
:
� P����"��� !

�
� ��

� � � G def
:
� P����"��� !

�
� OQP � �"���"!

� � � G def
:

�����#��
�
� O P���� ���"!

� � � G def
:

��
�
� ��

� � � G def
:

��
�
� O P�� �"���"!

� � � G def
:

OQP � �"���"!
�
� OQP � �"���"!

Now we will describe the properties
def
: that are used by refinement type inference. We

constrain how
def
: interacts with the refines relation “ � ”,the splitting relation “

�
”, and the

subtyping relation “
�

”.

Constructors and Refines First, we need
def
: to be consistent with

def
:: .

Assumption 2.49 (Constructor Type Refines) If

� def
: � �

�
rc

and
� def

:: � � � tc

then � � � and rc
def� tc.

By Lemma 2.10 (Unique ML Types) on page 31, for each constructor � there are � and
#��

such that � def
:: � � � #��

. Therefore Assumption 2.49 (Constructor Type Refines) on page 65
constrains the refinement type of all constructors.

Constructors and Splits The property of
�

that makes it useful is Theorem 2.69 (Splitting
Value Types) on page 89, which says that if a value has a type that splits, then the value has
one of the fragment types. Suppose the value has the form � � and it has the type

� �
that

splits into � � �
1 ( . . . ( � � � � . The derivation that gives a type to � � will first infer a type for

� ; call this type � , and we will assume that � def
: � �

� � �
. We need some way to conclude

that � � has one of the
� � � ’s as its type.

A natural criterion is to require � def
: � �

� � � � for some � . This requirement is too strong
to deal with many natural examples. For example, if we distinguish even length and odd
length lists of booleans with the declarations

8:9��9������;�=< � �"!�#?>N@1BXD E ��G @CH G�I <WK K �;M < � �"!�#
� ����������A< ���A> ��G @CHN$ O PSRTR'U M <LK 2 E @CB4DA$

runit )9 @ 8 <WK 2 > ��G @CHN$ O P R R'U M < ��� )
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we have ��G @1H def
:

OQPSRTR'U�M OQP U �����
�
� O PTU � ���

and O P U ����� def� � < ��� ( <WK 2 �
but neither ��G @1H def

:
O P R R'U4M OQP U �����

�
� < ���

nor ��G @1H def
:

O P R R'U M O P U �����
�
� <WK 2 5

Instead, we require for each split of � , there is a split of
� �

such that � maps each fragment
of � to some fragment of

� �
. This seems to work well for many ordinary examples. In the

above example, � is
O PSRTRVU4M O PTU � ���

and we have the following:

O PSRTRVU M O P U ����� � � O P R R'U M < � � ( O PSRTR'U M <LK 2 ���G @CH def
:

O P R R'U M < � �
�
� <WK 2��G @CH def

:
O P R R'U M <WK 2 � � < � �

This approach only makes sense if a refinement type splits whenever it refines some
ML type. For instance, consider the ML datatype

8�9��9������� � �L� 2 >�� G�IJ<WK�K � � <LK%K �E�� G�IJ<WK�K � � <LK%K �
and the refinement type declaration

� ������������ >�� $ <WK K ��� <WK K � )9 @ 8Z< >��,$ <WK K ��� <WK K � )
The types for the value constructors arising from this are

� def
:

$LOQPSRTRVU�� O PSRTR'U ) � � �

and
� def

:
$LOQPSRTRVU�� O PSRTR'U ) � � < 5

At this point it seems reasonable to have
O�� !
	�� � � � ( < �

. This would fail our criterion if
SELF-SPLIT did not ensure that

O P R R'U�� OQPSRTR'U
splits.

Putting this formally,

Assumption 2.50 (Split Constructor Consistent) If

� def
: � �

�
rc
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and
rc

def� � rc1 ( . . . ( rc � �
then there is some provable assertion of the form

�
� � � 1 ( . . . ( � 
 �

such that for all � between 1 and
�

there is an � between 1 and
�

such that

� def
: � � � � rc � 5

Constructors and Intersection We will need

Assumption 2.51 (Constructor And Introduction) If � def
: � �

�
rc and � def

: � �
�

kc then

� def
: � �

� $
rc

def�
kc ) .

Any use of CONSTR-TYPE that uses a
def
: property that only exists because of Assumption 2.51

(Constructor And Introduction) on page 67 could be replaced by two uses of CONSTR-TYPE

followed by an AND-INTRO-TYPE and then a WEAKEN-TYPE to convert
� � � � �

to
� � def� � �

.
We use Assumption 2.51 (Constructor And Introduction) on page 67 when we do not want
the derivation to have WEAKEN-TYPE at the root; this is in the RCON-AND-ELIM-SUB case of
Lemma 2.67 (Piecewise Intersection) on page 84.

Constructors and Subtyping We need the assumed types for constructors to be con-
sistent with the subtyping relation on the left and the assumed subtyping relation on the
right.

Assumption 2.52 (Constructor Argument Strengthen) If � def
: � �

�
rc and

� �
� then

� def
:
�
�
�

rc.

Assumption 2.53 (Constructor Result Weaken) If � def
: � �

�
rc and rc

def�
kc, then � def

:
� �
�

kc.

Neither of these rules change the set of types that can be inferred using CONSTR-TYPE.

Any use of CONSTR-TYPE that uses a
def
: property that exists only because Assumption 2.52

(Constructor Argument Strengthen) on page 67 requires it could be replaced by a use of
WEAKEN-TYPE followed by a use of CONSTR-TYPE. Similarly, any use of CONSTR-TYPE that

uses a
def
: property that exists only because Assumption 2.53 (Constructor Result Weaken) on

page 67 requires it could be replaced by a use of CONSTR-TYPE followed by WEAKEN-TYPE.

However, without these assumptions, the CASE-TYPE rule would have to use “:” where

it presently uses “
def
: ”. This would make several of the proofs below much more complex,

since the behavior of the constructors in CASE-TYPE would depend on the results of type
inference rather than depending simply upon our assumptions.
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2.7 Compatibility With ML

In this section describe in what sense refinement type inference is compatible with ML
type inference. Under very general conditions, all terms with a refinement type have an
ML type. Also, under special conditions corresponding to complete absence of � ����������
statements, all terms with an ML type have a refinement type.

The first property ensures that simple modifications to existing ML compilers will
allow them to compile programs that have been checked with refinement types. The second
property ensures that substituting a compiler that checks refinement types for one that
checks ML types will not disorient naive users or break existing code.

2.7.1 Inferring an ML type Given a Refinement Type

The statement of the theorem we intend to prove here is very straightforward. It uses the
rtom function defined on page 32:

Theorem 2.54 (Inferred Types Refine) If

VR

 � : �

then there is a t such that
�

� �
and

rtom
$
VR ) 
 � :: ��5

The proof of this is an entirely straightforward induction on the refinement type deriva-
tion. Explicit provision had to be made in the CASE-TYPE rule to make the proof succeed.
The problem is that ML type inference for

��9 H �
statements requires all subterms of the��9 H �

statement to have an ML type, but refinement type inference for
��9 H �

statements does
not require subterms that are obviously unreachable to have a refinement type.

This arrangement is necessary if we want refinement type inference to formalize simple
case-based reasoning humans routinely do when they think about a program. For instance,
if we assume that the function

I
is well-behaved when passed

� ��� � $ ) as an argument but
not

I;9 D H � $ ) , then we would expect the expression

��9 H � � G�I� �	� � > � I @ B ��@ G � � 8 � <'K%K � >�� I �E I9 D H � > � I @,B���@ G � �48 � <'K K � > � � �	� � $ )� @ 8 � < K K �
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to be well-behaved whether
�

is
� ��� � $ ) or

I;9 D:H � $ ) . We can formalize this reasoning in
refinement types by giving

I
a type which specifies no behavior when passed an argument

of type
�

; one such type for
I

would be
#T# � �

. Then our assertion is that the
��9 H �

statement above should have a refinement type even if we give
�

the type
�

. Under these
assumptions, the expression

I �
has no refinement type, so the rule for

��9 H �
statements

must not require unreachable cases to have a refinement type.

If refinement type inference completely ignored the unreachable cases in
��9 H �

state-
ments, then we could make terms that have a refinement type but no ML type. For example,
if we assume that

�
has the refinement type

�
, then the statement

��9 H � � G�I� �	� � > � I @ B ��@ G � � 8 � <'K%K � >��Y$ ) $ )E I9 D H � > � I @,B���@ G � �48 � <'K K � > � � �	� � $ )� @ 8 � < K K �
would have a refinement type but no ML type. To solve this problem, the CASE-TYPE

explicitly requires the
��9 H �

statement to have an ML type.

There is at least one other way to solve the problem. We could allow some expressions
to have a refinement type but no ML type. In that case the best we could do here would be
to prove that if an expression has both a refinement type and an ML type, the refinement
type refines the ML type. Many of the theorems we prove below would need to have a
hypothesis added to ensure that some expression has an ML type. The extra hypotheses
would add bulk but no insight, so we shall use the CASE-TYPE rule as it stands.

If we eliminated the ML type after the
� @ 8

keyword that determines an ML type for
the

��9 H �
statement some case statements would have malformed refinement types. For

example, the refinement type assigned to a case statement where none of the cases were
reachable, such as

��9 H � $ I B�� I � <LK%K � � <WK�K � > � I @ � � <LK K � >�� I � ) $ ) G�I
� ��� � > � I @,$ ) � #���� � #?>�� � �	� � $ )E I;9 D:H � > � I @ $ ) � #����:� #?> � I9 D H � $ )� @ 8

could be a malformed refinement type such as
# # � $ # # � #T# ) . If we took out the premise

�
� � from the CASE-TYPE rule, we could infer this type directly; if we left that premise in,

but omitted � from the syntax, then we would still be able to use AND-INTRO-TYPE to infer
this malformed refinement type for the

��9 H �
statement.

Without further ado, we will prove Theorem 2.54 (Inferred Types Refine) on page 68.

Proof: By induction on the derivation of VR

 � : � .

Case: AND-INTRO-TYPE Then � has the form � 1
�
� 2 and the premises of AND-INTRO-TYPE

are
VR


 � : � 1
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and
VR


 � : � 2 5
Applying our induction hypothesis to each of these gives � 1 and � 2 such the following hold:

� 1
� � 1

rtom
$
VR ) 
 � :: � 1

� 2
� � 2

rtom
$
VR ) 
 � :: � 2 5

Lemma 2.4 (Unique Inferred ML Types) on page 27 gives � 1 * � 2, so AND-REF gives

� 1
�
� 2

� � 1 5
This and rtom

$
VR ) 
 � :: � 1 are our conclusions.

Case: WEAKEN-TYPE The premises of WEAKEN-TYPE must be

VR

 � :

�

and � �
� 5

By induction hypothesis, there is a � such that
� � � and

rtom
$
VR ) 
 � :: ��5

By Theorem 2.21 (Subtypes Refine) on page 36,

�
� ��5

The last two are our conclusion

Case: SPLIT-TYPE Then VR must have the form VR
� + � : * � - where the premises of

SPLIT-TYPE are � �
�

and
for all � in � we have VR

� + � : * ��- 
 � : ��5
By Fact 2.37 (Splits are Nonempty) on page 51, � is nonempty; let � be any element of � .
By induction hypothesis,

�
� �

and
rtom

$
VR

� + � : * ��- ) 
 � :: ��5
If rtom

$ � ) is defined, then Corollary 2.32 (Split Types Refine I) on page 51 gives
rtom

$ � ) * rtom
$
� ) so we have

rtom
$
VR

� + � : * � - ) 
 � :: ��5
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This and � � � are our conclusions.

If rtom
$ � ) is undefined, then by a contrapositive of Fact 2.34 (Split Types Refine II) on

page 51, rtom
$
� ) must be undefined also. By definition of rtom applied to functions, this

implies rtom
$
VR

� + � : * � - ) * rtom
$
VR

� + � : * ��- ) . Thus rtom
$
VR

� + � : * � - ) 
 � :: � ; this
and � � � are our conclusions.

Case: VAR-TYPE Then � has the form � . The premises of VAR-TYPE are � * VR
$ � ) and

�
� � . By definition of rtom for functions, rtom

$
VR ) $ � ) * � , so VAR-VALID immediately

gives rtom
$
VR ) 
 � :: � , which is our conclusion.

Case: ABS-TYPE Then � has the form
I @ � � � 1

>�� � � and � has the form � 1
�
� 2 and the

premises of ABS-TYPE are
� 1

� � 1

and
VR + � : * � 1 - 
 � � : � 2 5

Our induction hypothesis gives a � 2 such that

� 2
� � 2

and
rtom

$
VR + � : * � 1 - ) 
 � � :: � 2 5

Since � 1
� � 1, we have

rtom
$
VR + � : * � 1 - ) * rtom

$
VR ) + � : * � 1 -

so ABS-VALID gives
rtom

$
VR ) 
 I @ � � � 1

>�� � � :: � 1
� � 2 5

From � 1
� � 1 and � 2

� � 2 we can use ARROW-SUB to get

� 1
�
� 2

� � 1
� � 2 5

The last two displayed formulae are our conclusions.

Case: APPL-TYPE Then � has the form � 1 � 2 and the premises of APPL-TYPE are

VR

 � 1 :

� �
�

and
VR


 � 2 :
� 5

Applying induction hypothesis to each of these gives the following:
� �

�
� �

rtom
$
VR ) 
 � 1 :: �� � � �1

rtom
$
VR ) 
 � 2 :: � �1
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The only way to infer
� �

�
� � is by using ARROW-REF where � * � 1

� � and the premises
of ARROW-REF are

� � � 1 and � � � .
By Lemma 2.10 (Unique ML Types) on page 31, from

� � � 1 and
� � � �1 we can infer

� 1 * � �1. Thus we can use APPL-VALID to get

rtom
$
VR ) 
 � 1 � 2 :: � 5

This and � � � are our conclusions.

Case: CONSTR-TYPE Then � has the form � � � and � has the form
� �

where the premises

of CONSTR-TYPE are
� def

:
�
�
� � �

and
VR


 � � :
� 5

By Assumption 2.2 (Constructors have Unique ML Types) on page 26, there are unique �
and

#��
such that

� def
:: � � � #�� 5

By Assumption 2.49 (Constructor Type Refines) on page 65,
� � � and

� � def� #��
.

Our induction hypothesis gives a � � such that
� � � � and

rtom
$
VR ) 
 � � :: � � 5

Since
� � � and

� � � � , Lemma 2.10 (Unique ML Types) on page 31 tells us that � * � � .
Thus we can use CONSTR-VALID to get

rtom
$
VR ) 
 � � � ::

#�� 5
Choose � * #��

. Since
� � def� #��

, we can use RCON-REF to get

� � � #�� 5
The last two displayed equations are our conclusions.

Case: CASE-TYPE

Then � has the form
��9 H � � 0

G�I � 1
> � � 1

E
. . .

E � � > � ��� � @ 8 � � . Two of the
premises of CASE-TYPE are

�
� �

and
rtom

$
VR ) 
 � :: � (

which are our conclusions.
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Case: TUPLE-TYPE Then � has the form � 1
M

. . .
M
� � and � has the form

$ � 1
�

. . .
� � � )

and the premises of TUPLE-TYPE are

for � in 1 . . .
�

we have VR

 � � : � � 5

Applying the induction hypothesis to each of these gives ML types � 1 through � � such that

for � in 1 . . .
�

we have � � � � �
and

for � in 1 . . .
�

we have rtom
$
VR ) 
 � � :: � �T5

By TUPLE-REF,
� 1

M
. . .

M
��� � � 1

M
. . .

M � �
and by TUPLE-VALID,

rtom
$
VR ) 
 � � 1 � . . . � ��� � :: � 1

M
. . .

M � �:5
If we choose ��* � 1

M
. . .

M � � , this is our conclusion.

Case: ELT-TYPE Then � has the form
� D � ��� ��� � � and the premise of ELT-TYPE is

VR

 � � : � 1

M
. . .

M
���

where � * � 
 . By induction hypothesis, there is a � such that

� 1
M

. . .
M
��� � �

and
rtom

$
VR ) 
 � � :: � 5

We can only infer � 1
M

. . .
M
��� � � by using TUPLE-REF where � has the form � 1

M
. . .

M � �
and

for � in 1 . . .
�

we have ��� � � �75
Since � has this form, we can use ELT-VALID to get

rtom
$
VR ) 
 � D ����� ��� � � :: � 
 5

If we choose ��* � 
 , the last two displayed formulae are our conclusions.

Case: FIX-TYPE Then � has the form
I B�� 
 � � 1

� � 2
> � I @ � � � 1

>�� � � and the premises

of FIX-TYPE are
�

� � 1
� � 2

and
VR + 
 : * � - 
 I @ � � � 1

>�� � � : � 5
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By induction hypothesis, there is a � such that

�
� �

and
rtom

$
VR + 
 : * �%- ) 
 I @ � � � 1

> � � � :: ��5 $
2 5 14 )

Since � � � and � � � 1
� � 2, Lemma 2.10 (Unique ML Types) on page 31 gives � * � 1

� � 2.
Since �

� � 1
� � 2, the definition of rtom gives rtom

$
VR + 
 : * ��- ) * rtom

$
VR ) + 
 : *

� 1
� � 2 - . Thus we can use FIX-VALID on (2.14) to get

rtom
$
VR ) 
 I B�� 
 � � 1

� � 2
>�� I @ � � � 1

>�� � � :: � 1
� � 2

This and � � � 1
� � 2 are our conclusions.

�

Because of this, if a value has a refinement type, the form of the refinement type gives
us information about the form of the value. We will use this in Lemma 2.67 (Piecewise
Intersection) on page 84. For example,

Lemma 2.55 (Value Arrow Type) If VR



� : � 1
�
� 2 then � has the form

I @ � � � >�� � .

Proof: By Theorem 2.54 (Inferred Types Refine) on page 68, there is a � such that � 1
�
� 2

� �
and rtom

$
VR ) 
 � :: � . Since � 1

�
� 2

� � , we know � has the form � 1
� � 2. From the ML

type inference rules and the possible forms of � , the last inference of rtom
$
VR ) 
 � :: �

must be ABS-VALID and � must have the form
I @ � � � > � � . �

Similar reasoning gives results for value constructors and tuples:

Fact 2.56 (Value Constructor Type) If VR



� : rc then � has the form � �
�
.

Fact 2.57 (Value Tuple Type) If VR



� : � 1
M

. . .
M
� � ) then � has the form

$
�

1
�
. . .
�

� � ) .

2.7.2 Inferring a Refinement Type Given an ML Type

Some pieces of ML code fail to have a refinement type in the presence of remarkably few� ����������
statements. For example, consider this program in the formal language:

8:9��9������;�
d

>�� G�IJ<WK K ��� <WK�K �
��9 H � � $ I @ � � <LK K � > � � ) G�I
�Y>�� I @ � � <WK K �	� <WK K � > � $ � $ � ��� � $ )L)L)� @ 8 � <LK K �

The
��9 H �

statement has the ML type
<WK K �

. In the absence of any � ����������
statements, the

ML type
<WK K �

has only one refinement, which we can call
O P R R'U

. The type of the
��9 H �

statement is
O PSRTR'U

.

However, if we insert this � ����������
statement before the

8:9��9������;�
declaration:
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� ���������;� # # > � �	� � $�� ���:� # )9 @ 8 � > I9 D H � $ � ���:� # )
the following argument tells us the

��9 H �
statement no longer has a refinement type.

Informally, the problem is that the constructor
�

loses all information about its argument.
Thus type inference has to make the assumption that 	 can have any refinement type
whatsoever. The worst case is a function that cannot be called legitimately with any value.
Since we call 	 with a value, we fail.

The reader may object at this point that we cannot construct any function that cannot
be called with any value. This is true, but in Chapter 6 when we introduce the explicit
refinement type declaration operator � , we will be able to write such expressions. One of
them is:

I @ � � <LK K � > � $��
� � PSRTR'U ) �

We can also give a formal argument that the
��9 H �

statement has no type. Let us suppose
that the

��9 H �
statement had the refinement type � , and try to construct the type derivation.

The conclusion would clearly be

 ��9 H �

. . .
� @ 8

: �%5
Since � is arbitrary, we might as well assume the last inference in the derivation is CASE-
TYPE rather than AND-INTRO-TYPE or WEAKEN-TYPE. If we use

O �
as the name for the

unique refinement of 2 , the first premise of CASE-TYPE must have the form

 � � I @�� � <WK K � > � ���

:
O � 5

The second premise is O � � 2C(
which is trivial. The third premise says that whenever � def

:
�
�
� O �

, we must have

 I @ � � <WK K �	� <WK K � > � � � � � �	� � � � ��� :

� �
� 5

Choose
� * � PSRTRVU�� O PSRTR'U

. By Lemma 2.68 (Subtype Irrelevancy) on page 88, if we can
derive this we can do it with ABS-TYPE as the root inference. The premise of ABS-TYPE

must be �
:
� PSRTR'U � OQPSRTR'U 
 � � � �	� � � � � : �

and this requires using APPL-TYPE with the premise

�
:
� PSRTRVU�� O PSRTR'U 
 � �	� � � � :

� P R R'U
which is not derivable.

We can get the
��9 H �

statement to typecheck by adding a � ���������;�
statement so

�
does

not lose all information about its argument. One possible addition would be



CHAPTER 2. REFINEMENT TYPE INFERENCE 76

� ����������
total

> � $ O PSRTR'U�� O P R R'U ) �

With this addition, there are now two refinements of the ML type 2 , namely
O �

and# K # � �
. A principal type of

� $ I @ � � <LK%K � > � � ) is
# K # � �

. (It also has the principal type# K # � � � # K # � �
, among infinitely many others; we will eventually show that all principal types

are equivalent.) The
��9 H �

statement gets the type
O P R R'U

.

Generalizing from this example, if we allow the programmer to specify any refinement
type distinctions, there may be expressions with an ML type but no refinement type. Thus
we shall assume for the duration of this subsection that the programmer has made no
refinement type distinctions, and we shall prove that any expression with an ML type also
has a refinement type. More formally, our temporary assumption is that each ML type

constructor
#��

has exactly one refinement, and we will call that refinement
def

mtor
$L#�� ) .

Assumption 2.58 (
def

mtor Refines) For all tc we have
def

mtor
$
tc ) def� tc.

Assumption 2.59 (Only
def

mtor Refines) (assumed for this subsection only) For all tc and

all rc, if rc
def� tc then rc * def

mtor
$
tc ) .

We then lift this construction in the natural way to refinements of general ML types:

Definition 2.60 We define mtor as the function mapping ML types to refinement types that
is consistent with the following equations:

mtor
$
tc ) * def

mtor
$
tc )

mtor
$ � 1
� � 2 ) * mtor

$ � 1 ) � mtor
$ � 2 )

mtor
$ � 1

M
. . .

M � � ) * mtor
$ � 1 ) M

. . .
M

mtor
$ � � ) 5

We extend mtor pointwise to operate on environments such as VM.

Trivial inductions on � give:

Fact 2.61 (mtor Refines) For all � we have mtor
$ � ) � � .

Fact 2.62 (Unique Refinement) If � � � then � � mtor
$ � ) .

Now we have enough notation to state that the value constructors behave properly:

Assumption 2.63 (Constructor mtor Consistent) If

� def
:: � � � tc

then
� def

: mtor
$ � ) � � def

mtor
$
tc ) 5
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In the absence of any of the type declarations introduced in the next chapter, these con-
ditions are satisfied trivially because each ML type constructor has exactly one refinement.
Each value constructor maps the unique refinement of its domain to the unique refinement
of its range.

Under these assumptions, we can show that each program with an ML type � has the
refinement type mtor

$ � ) :
Theorem 2.64 (ML Compatibility) If

VM

 � :: �

then
mtor

$
VM ) 
 � : mtor

$ � ) 5
Proof: Straightforward, by induction on the derivation of the hypothesis.

Case: VAR-VALID Then � * � and � * VM
$ � ) . Using VAR-TYPE gives mtor

$
VM ) 
 � :

mtor
$ � ) , which is our conclusion.

Case: ABS-VALID Then � * I @ � � � 1
> � � � and � * � 1

� � 2. The premise of ABS-VALID

must be
VM + � : * � 1 - 
 � � :: � 2 5

Fact 2.61 (mtor Refines) on page 76 gives

mtor
$ � 1 ) � � 1 5

Our induction hypothesis gives

mtor
$
VM + � : * � 1 - ) 
 � � : mtor

$ � 2 ) 5
Since mtor

$
VM + � : * � 1 - ) * mtor

$
VM ) + � : * mtor

$ � 1 ) - , we can use ABS-TYPE to get

mtor
$
VM ) 
 I @ � � � 1

> � � � : mtor
$ � 1 ) � mtor

$ � 2 ) 5
Since mtor

$ � 1 ) � mtor
$ � 2 ) * mtor

$ � 1
� � 2 ) , this is our conclusion.

Case: APPL-VALID Then � * � 1 � 2 and the premises of APPL-VALID are

VM

 � 1 :: � � �

and
VM


 � 2 :: ��5
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Applying the induction hypothesis to each of these gives

mtor
$
VM ) 
 � 1 : mtor

$ � � � )
and

mtor
$
VM ) 
 � 2 : mtor

$ � ) 5
Since mtor

$ � � � ) * mtor
$ � ) � mtor

$ � ) , we can use APPL-TYPE to get

mtor
$
VM ) 
 � 1 � 2 : mtor

$ � ) (
which is our conclusion.

Case: CONSTR-VALID Then � * � � � and � * #��
and the premises of CONSTR-VALID are

� def
: � � � #��

and
VM


 � � :: ��5
Assumption 2.63 (Constructor mtor Consistent) on page 76 gives

� def
:: mtor

$ � ) � � def
mtor

$ #�� )
and our induction hypothesis gives

mtor
$
VM ) 
 � � : mtor

$ � ) 5
Using CONSTR-TYPE gives

mtor
$
VM ) 
 � � � :

def
mtor

$ #�� ) 5
Since mtor

$L#�� ) * def
mtor

$ #�� ) , this is our conclusion.

Case: CASE-VALID Then � * ��9 H � � 0
G�I � 1

> � � 1
E

. . .
E �	� >�� ��� � @ 8 � � and the

premises of CASE-VALID are
VM


 � 0 ::
#�� (

for all � we have � � def
:: � � � � #�� (

and
for all � we have VM


 � � :: � � � � 5
The induction hypothesis gives the first premise of CASE-TYPE:

mtor
$
VM ) 
 � 0 : mtor

$L#�� )
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Fact 2.61 (mtor Refines) on page 76 gives the second premise of CASE-TYPE:

mtor
$ � ) � �

Suppose � and
�

are given, and that � � def
:
�
�
� def

mtor
$ #�� ) . Then Assumption 2.49 (Constructor

Type Refines) on page 65,
� � � � , and Fact 2.62 (Unique Refinement) on page 76 give�

� mtor
$ � � ) . Our induction hypothesis gives

mtor
$
VM ) 
 � � : mtor

$ � � � � ) 5
By the definition of mtor, we have

mtor
$
VM ) 
 � � : mtor

$ � � ) � mtor
$ � ) 5

By ARROW-SUB and
�

� mtor
$ � 1 ) we have

� �
mtor

$ � ) � mtor
$ � � ) � mtor

$ � ) . Thus
WEAKEN-TYPE gives

mtor
$
VM ) 
 � � :

� �
mtor

$ � ) 5
Since this argument works for any � and

�
, the third premise of CASE-TYPE holds, so we

have our conclusion:

mtor
$
VM ) 
 $ ��9 H � � 0

G�I � 1
>�� � 1

E
. . .

E �	� > � ��� � @ 8 � � ) : mtor
$ � )

Case: TUPLE-VALID Then � has the form
$ � 1

�
. . .
� ��� ) and � has the form � 1

M
. . .

M � � .
The premise of TUPLE-VALID must be

for all � we have VM

 � � :: � �'5

Our induction hypothesis gives

for all � we have mtor
$
VM ) 
 � � : mtor

$ � � ) 5
TUPLE-TYPE then gives

mtor
$
VM ) 
 � � 1

�
. . .
� ��� � : mtor

$ � 1 ) M
. . .

M
mtor

$ � � )
which is our conclusion since mtor

$ � 1 ) M
. . .

M
mtor

$ � � ) * mtor
$ � 1

M
. . .

M � � ) .
Case: ELT-VALID Then � has the form

� D ����� ��� � � and � * � 
 , where the premise of

ELT-VALID is
VM


 � � :: � 1
M

. . .
M � ��5

Our induction hypothesis gives

mtor
$
VM ) 
 � � : mtor

$ � 1
M

. . .
M � � ) 5
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Since mtor
$ � 1

M
. . .

M � � ) * mtor
$ � 1 ) M

. . .
M

mtor
$ � � ) , we can use this as the premise to

ELT-TYPE to get
mtor

$
VM ) 
 � D � ��� ��� � � : mtor

$ � 
 ) (
which is our conclusion.

Case: FIX-VALID Then � has the form
I B�� 
 � � 1

� � 2
> � I @ � � � 1

>�� � � and � has the

form � 1
� � 2. The premise of FIX-VALID is

VM + 
 : * � 1
� � 2 - 
 $ I @ � � � 1

>�� � � ) :: � 1
� � 2 5

Fact 2.61 (mtor Refines) on page 76 gives

mtor
$ � 1
� � 2 ) � � 1

� � 2 5
Our induction hypothesis gives

mtor
$
VM + 
 : * � 1

� � 2 - ) 
 $ I @ � � � 1
> � � � ) : mtor

$ � 1
� � 2 ) 5

Since mtor
$
VM + 
 : * � 1

� � 2 - ) * mtor
$
VM ) + 
 : * mtor

$ � 1
� � 2 ) - , we can use FIX-TYPE to

get
mtor

$
VM ) 
 I B�� 
 � � 1

� � 2
> � I @ � � � 1

>�� � � : mtor
$
VM )

which is our conclusion.
�

2.8 Simple Soundness Proof

Now we are almost in a position to prove that this type system is sound in an appropriate
sense. But first we must prepare the way with some lemmas.

First we will show that as the assumptions in the environment get stronger, the set of
types we can infer gets no smaller. At first glance this seems fairly straightforward: Pick
a type derivation that we can infer in the weaker environment; to rewrite it to work in the
stronger environment, just replace all uses of VAR-TYPE by a use of VAR-TYPE followed
by WEAKEN-TYPE, and leave the rest of the derivation the same. Unfortunately, this proof
sketch does not handle uses of the SPLIT-TYPE rule in the original derivation. Dealing with
SPLIT-TYPE is possible though; see that case of the following proof.

The refinement type inference rules AND-INTRO-TYPE, WEAKEN-TYPE, and SPLIT-TYPE

have the same expression in their premise that they have in their conclusion. All of the
other refinement type inference rules have smaller expressions in the premises than they
have in their conclusion. We say that the latter rules make “syntactic progress”. It is often
useful to know that the root inference of a derivation of a refinement type for an expression
makes syntactic progress because then the form of the expression uniquely determines
which refinement type inference rule was used. Therefore we define this special notation
to say that the root inference of a type derivation makes syntactic progress:
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Definition 2.65 If VR

 � : � and there is a derivation of this that has a rule other than

AND-INTRO-TYPE, WEAKEN-TYPE, or SPLIT-TYPE at the root, then we say VR

 
 � : � .

We can think of Lemma 2.66 (Environment Modification) on page 81 as an algorithm
that maps a type derivation in the weaker environment to a type derivation in the stronger
environment. This algorithm is more useful if the output is a type derivation that makes
syntactic progress at the root whenever possible. This is when the original type derivation
makes syntactic progress and the expression is not a variable. This optimization is reflected
in the theorem by the additional hypotheses and conclusion after the phrase “Also, if in
addition”.

Lemma 2.66 (Environment Modification) If

VR

 � : �

and
VR

�
has the same domain as VR

and
for � free in � we have VR

� $ � ) � VR
$ � )

then
VR

� 
 � : �%5
Also, if in addition

VR

 
 � : �

and
� is not a variable

then
VR

� 
 
 � : � 5
Proof: By induction on the derivation of VR


 � : � . Some cases apply only if VR

 � : � ;

other cases apply if either VR

 � : � or VR


 
 � : � . We will put the cases that apply only
if VR


 � : � first.

Case: SPLIT-TYPE Then there is a 	 such that VR * VR1 + 	 : * � - and the premises of

SPLIT-TYPE are � �
�

and
for � in � we have VR1 + 	 : * ��- 
 � : ��5

We take cases on whether 	 is free in � .
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SubCase: 	 not free in � Thus VR
� * VR

�
1 + 	 : * � � - where

for all � free in � we have VR
�
1
$ � ) � VR1

$ � ) .
Therefore, trivially,

for all � free in � we have VR
�
1 + 	 : * � - $ � ) � VR1 + 	 : * � - $ � ) .

Our induction hypothesis gives

VR
�
1 + 	 : * � - 
 � : � 5

Fact 2.47 (Non-free Variables are Ignored) on page 63 gives

VR
�
1


 � : � (
and then Fact 2.47 (Non-free Variables are Ignored) on page 63 again gives

VR
�
1 + 	 : * � � - 
 � : � (

which is our conclusion.

SubCase: 	 free in � Thus VR
� * VR

�
1 + 	 : * � � - where

� � � �

and
for � other than 	 free in � we have VR

�
1
$ � ) � VR1

$ � ) 5
By Lemma 2.43 (Split Intersection) on page 54,

� � � � � � � � � � � / � � � � � 5
Since

� � � �
, we know that

� � � �
�
� �

. Thus EQUIV-SPLIT-L gives

� � � � � � � � � / � � � � � 5
Since �

� � � �
is always a subtype of �

�
when �

�
is in � , it follows that, for all �

�
in � and all

� free in � ,
VR

�
1 + 	 : * �

� � � � - $ � ) � VR1 + 	 : * �
� - $ � ) 5

Thus we can use our induction hypothesis to conclude

for all �
�

in � we have VR
�
1 + 	 : * �

� � � � - 
 � : �

Then we can use SPLIT-TYPE to get

VR
�
1 + 	 : * � � - 
 � : � (
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which is our conclusion.

Case: VAR-TYPE Then � has the form � , and VR
$ � ) * � . Since � is free in � , we must

have VR
� $ � ) � � . VAR-TYPE gives

VR
� 
 � : VR

� $ � )
and then WEAKEN-TYPE gives

VR
� 
 � : � (

which is our conclusion.

Case: AND-INTRO-TYPE

Case: WEAKEN-TYPE

Since neither of these rules use or modify the variable environment, these cases are trivial.

Now we will give the cases that apply when � is not a variable and VR

 
 � : � .

Case: ABS-TYPE Then � has the form
I @ � � � 1

>�� � � and � has the form � 1
�
� 2. The

premises of ABS-TYPE must be
� 1

� � 1

and
VR + � : * � 1 - 
 � � : � 2 5

SELF-SUB gives � 1
�
� 1, so we can use our induction hypothesis to get

VR
� + � : * � 1 - 
 � � : � 2 5

Then ABS-TYPE gives
VR

� 
 
 I @ � � � 1
> � � � : � 1

�
� 2 (

which is our conclusion.

Case: FIX-TYPE Then � has the form
I B�� 
 � � 1

� � 2
>�� I @ 	 � � 1

>�� � � and the premises

of FIX-TYPE are
�

� � 1
� � 2

and
VR + 
 : * � - 
 I @ 	 � � 1

> � � � : � 5
SELF-SUB gives �

�
� , so we can use the induction hypothesis to get

VR
� + 
 : * � - 
 I @ 	 � � 1

>�� � � : �

and then FIX-TYPE gives

VR
� 
 I B�� 
 � � 1

� � 2
> � I @ 	 � � 1

>�� � � : � (
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which is our conclusion.

Case: any other inference rule The remaining inference rules do not reference or modify

the variable environment, so all remaining cases are trivial.
�

We already explicitly take the subtype relation into account in the WEAKEN-TYPE rule.
Our next lemma tells us that the subtype relation also describes the behavior of derivations
that do not end with WEAKEN-TYPE. This will allow us to eliminate uses of WEAKEN-
TYPE from the root of type derivations for values in Lemma 2.68 (Subtype Irrelevancy) on
page 88.

Lemma 2.67 (Piecewise Intersection) If for all � in 1 . . .
�

we have

�


 

� :

� �

and �
1
�

. . .
� � � � � 1

�
. . .
�
� 


and none of the ��� ’s or
� � ’s are themselves intersections of other types, then for all � in

1 . . .
�

we have
�


 

� : � � 5

Proof: By induction on the derivation of
�

1
�

. . .
� � � � � 1

�
. . .
�
� 
 .

Case: SELF-SUB Then our hypothesis is our conclusion.

Case: AND-ELIM-R-SUB Then
� � � and for � in 1 . . .

�
we must have � ��* � � , so our

hypothesis immediately implies our conclusion.

Case: AND-ELIM-L-SUB Then
� � � and for � in 1 . . .

�
we have � � * � � �


 � � , so once

again our hypothesis immediately implies our conclusion.

Case: AND-INTRO-SUB Then there is an
�

such that the premises of AND-INTRO-SUB are

�
1
�

. . .
� � � � � 1

�
. . .
�
� �

and �
1
�

. . .
� � � � ��� � 1

�
. . .
�
����5

Using the induction hypothesis on each of these gives

for � in 1 . . .
�

we have �


 

� : � �

and
for � in

$ ���
1 ) . . .

�
we have �


 

� : � �%5
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Together these are our conclusion.

Case: TRANS-SUB Then the premises of TRANS-SUB have the form

�
1
�

. . .
� � � � � 1

�
. . .
�
� �

and
� 1
�

. . .
�
� �
�
� 1
�

. . .
�
� 
 5

Using our induction hypothesis on the first of these gives

for
�

in 1 . . . � we have �


 

� : � �

and then using it on the second gives

for � in 1 . . .
�

we have �


 

� : � �

which is what we wanted to show.

Case: ARROW-SUB Then
� * � * 1 and

�
1 has the form

� � � �
and � 1 has the form

�
�
�
�
. By Lemma 2.55 (Value Arrow Type) on page 74, � has the form

I @ � � � >�� � .
Thus the last inference of �


 

� :

� � � �
is ABS-TYPE, where the premises of ABS-TYPE are

+ � : * � - 
 � :
� �

and � � � 5
Lemma 2.66 (Environment Modification) on page 81 and �

� �
gives

+ � : * ��- 
 � :
� �

and WEAKEN-TYPE gives + � : * � - 
 � : �
� 5

Then we can use ABS-TYPE to get

�


 I @ � � � >�� � : �
�
�
� (

which is our conclusion.

Case: ARROW-AND-ELIM-SUB Then
� * 2 and

� * 1. The form of ARROW-AND-ELIM-

SUB tell us
�

1
� �

2 has the form � 1
�
� 2
�
� 1
�
� 3 and � 1 has the form � 1

�A$
� 2
�
� 3 ) . Our

hypothesis tells us
�


 

� : � 1

�
� 2

$
2 5 15 )

and
�


 

� : � 1

�
� 3 5 $

2 5 16 )
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By Lemma 2.55 (Value Arrow Type) on page 74, � has the form
I @ � � � > � � , so the last

inference of both (2.15) and (2.16) must be ABS-TYPE with the following premises:

� 1
� �+ � : * � 1 - 
 � : � 2+ � : * � 1 - 
 � : � 3

Using AND-INTRO-TYPE on the last two of these gives

+ � : * � 1 - 
 � : � 2
�
� 3 (

and then ABS-TYPE gives

�


 I @ � � � > � � : � 1
�A$

� 2
�
� 3 )W(

which is our conclusion.

Case: RCON-SUB Then
� * � * 1 and � 1 has the form

� �
and

�
1 has the form

� �
. The

premise of RCON-SUB must be
� � def� � �

. By Fact 2.56 (Value Constructor Type) on page 74,
� has the form � �

�
, so the last inference in our hypothesis must be CONSTR-TYPE. The

premises of CONSTR-TYPE must be

� def
: �

�
�
� � �

and
�



�
�

: �
� 5

Assumption 2.53 (Constructor Result Weaken) on page 67 gives

� def
: �

�
�
� � �

and then CONSTR-TYPE gives
�


 
 � �
�

:
� �

which is our conclusion.

Case: RCON-AND-ELIM-SUB Then
� * 2 and

� * 1. The shape of RCON-AND-ELIM-

SUB tells us that
�

1
� �

2 has the form
� �

1
� � �

2, and � 1 is
� �

1
def� � �

2. By Fact 2.56
(Value Constructor Type) on page 74, � has the form � �

�
, so the last inference of the

type derivations in our hypothesis must be CONSTR-TYPE. The premises of the uses of
CONSTR-TYPE must be

� def
: �

�
1 �
� � �

1
�



�
�

: �
�
1

� def
: �

�
2 �
� � �

2
�



�
�

: �
�
2 5
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AND-INTRO-TYPE gives
�



�
�

: �
�
1
�
�
�
2 5

Two uses of Assumption 2.52 (Constructor Argument Strengthen) on page 67 give

� def
:

$
�
�
1
�
�
�
2 ) � � � �

1

and
� def

:
$
�
�
1

�
�
�
2 ) � � � �

2 (
and then using Assumption 2.51 (Constructor And Introduction) on page 67 on these gives

� def
:

$
�
�
1
�
�
�
2 ) � � $ � �

1
def� � �

2 ) 5
Then CONSTR-TYPE gives

�


 
 � �
�

:
� �

1
def� � �

2 (
which is our conclusion.

Case: TUPLE-SUB Then
� * � * 1 and

�
1 has the form

� �
1

M
. . .

M � �
� and � 1 has the form

�
�
1

M
. . .

M
�
�

� . The premises of TUPLE-SUB are

for
�

in 1 . . . � we have
� �
�
�
�
�
� 5

By Fact 2.57 (Value Tuple Type) on page 74, � has the form
$

�

1
�
. . .
�

�

� ) . Thus the last
inference of �


 

� :

�
1 must be TUPLE-TYPE and the premises of TUPLE-TYPE are

for
�

in 1 . . . � we have �



�
� :

� �
� 5

Then WEAKEN-TYPE gives

for
�

in 1 . . . � we have �



�
� : �

�
�

and TUPLE-TYPE gives
�


 
 $
�

1
�

. . .
�

�

�W) : �
�
1

M
. . .

M
�
�
� (

which is our conclusion.

Case: TUPLE-AND-ELIM-SUB Then
� * 2 and

� * 1. By the shape of TUPLE-AND-ELIM-

SUB,
�

1
� �

2 must have the form
$ � �

1
M

. . .
M � �

� ) � $ � � �
1

M
. . .

M � � �
� )

and � 1 is $ � �
1

� � � �
1 ) M

. . .
M $ � �

�

� � � �
� ) 5

By Fact 2.57 (Value Tuple Type) on page 74, � must have the form
$

�

1
�

. . .
�

�

�L) and the
last inference of the type derivations in our hypothesis must be TUPLE-TYPE. The premises
of the uses of TUPLE-TYPE must be

for
�

in 1 . . . � we have �



�
� :

� �
�
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and
for

�
in 1 . . . � we have �



�
� :

� � �
� 5

Using AND-INTRO-TYPE on these gives

for
�

in 1 . . . � we have �



�
� :

� �
�
� � � �

� (
and then TUPLE-TYPE gives

�


 
 $
�

1
�

. . .
�

�

� ) :
$ � �

1

� � � �
1 ) M

. . .
M $ � �

�

� � � �
� ) (

which is our conclusion.
�

The previous lemma told us that we can eliminate WEAKEN-TYPE from the root of
derivations of a type for a value in an empty environment. The next lemma makes the
simple observation that we can eliminate AND-INTRO-TYPE also, if the type is not an
intersection. SPLIT-TYPE cannot arise because the environment is empty, so we can always
make syntactic progress at the root of a derivation of a non-intersection type for a value.

Lemma 2.68 (Subtype Irrelevancy) If

�



� : � 1

�
. . .
�
� �

where none of the � � ’s are intersections then for all � in 1 . . .
�

we have

�


 

� : � � 5

Proof: By induction on the derivation of our hypothesis.

Case: AND-INTRO-TYPE Then there must be an
�

such that the premises of AND-INTRO-

TYPE are
�



� : � 1

�
. . .
�
���

and
�



� : ��� � 1

�
. . .
�
���:5

Applying the induction hypothesis to the first of these gives, for � in 1 . . .
�

,

�


 

� : � � 5

The induction hypothesis applied to the second of these gives the same for � in
$ � �

1 ) . . .
�

,
so the two of these are our conclusion.

Case: WEAKEN-TYPE For some �
�
, the premises of WEAKEN-TYPE must be

�



� : �

�
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and
�
� �

� 1
�

. . .
�
����5

Any �
�

must have the form �
�
1
�

. . .
�
�
�
 , where none of the �

�
� are intersections. By our

induction hypothesis, for � in 1 . . .
�

we have

�


 

� : �

�
� 5

Then Lemma 2.67 (Piecewise Intersection) on page 84 gives, for � in 1 . . .
�

,

�


 

� : � � (

which is our conclusion.

Case: SPLIT-TYPE This inference rule requires a nonempty variable environment, which

we do not have. Thus this case cannot happen.

Case: VAR-TYPE

Case: APPL-TYPE

Case: CASE-TYPE

Case: ELT-TYPE

Case: FIX-TYPE

All of these rules only apply to non-values, and � is a value. Thus these cases cannot
happen.

Case: ABS-TYPE

Case: CONSTR-TYPE

Case: TUPLE-TYPE

In these cases,
� * 1 and the last inference of our hypothesis is neither AND-INTRO-TYPE

nor WEAKEN-TYPE. Thus our hypothesis is

�


 

� : � 1 (

which is our conclusion.
�

Now we will show that the
�

relation behaves as one would intuitively expect: If a
value has a type that splits, then it has one of the fragments as a type. Formally, we have
the following theorem:

Theorem 2.69 (Splitting Value Types) If
� �

� and �



� :

�
, then there is an � in � such

that �



� : � .
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Proof: By induction on the derivation of
� �

� .

Case: RCON-SPLIT Then
�

has the form
� �

and all elements of � are refinement type

constructors. The only possible form for � is � �
�
. By Lemma 2.68 (Subtype Irrelevancy)

on page 88,
�


 
 � �
�

:
� � 5

The last inference of this must be CONSTR-TYPE with the premises

� def
: � �

� � �

and
�



�
�

: �C5
By Assumption 2.50 (Split Constructor Consistent) on page 66, there is an �

�
such that

�
�
�
�
, and for all �

� � �
�

there is a
� � � � � such that � def

: �
�
�
� � � �

. Since �
�
�
�
, our

induction hypothesis gives a �
� � � � such that

�



�
�

: �
� 5

Let
� � �

be an element of � such that � def
: �

�
�
� � � �

. Then CONSTR-TYPE gives

�


 � �
�

:
� � � (

which is our conclusion.

Case: TUPLE-SPLIT Then there must be an
�

and a � such that
�

has the form
�

1
M

. . .
M

�
� � 1

M �
�

M �
� � 1

M
. . .

M �
� and

�
�
�
�
�
and

� * � � 1
M

. . .
M �

� � 1
M
�

M �
� � 1

M
. . .

M �
� / � � � � � 5

By Lemma 2.68 (Subtype Irrelevancy) on page 88,

�


 

� :

�
1

M
. . .

M �
� � 1

M �
�

M �
� � 1

M
. . .

M �
� 5 $

2 5 17 )
By Fact 2.57 (Value Tuple Type) on page 74, � has the form

$
�

1
�

. . .
�

�
� � 1

�
�
�
�

�
� � 1

�
. . .
�

�

�L)
and the last inference of (2.17) must be TUPLE-TYPE. The premises of TUPLE-TYPE must be

for � in 1 . . . � we have �



� � :

� � .

By induction hypothesis, there is a � is �
�
such that

�



�
� : �C5
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Then TUPLE-TYPE gives

�



� :

�
1

M
. . .

M �
� � 1

M
�

M �
� � 1

M
. . .

M �
��(

which is our conclusion.

Case: TRANS-SPLIT Then our hypothesis is
� �

� 1
�
� 2 where the premises of TRANS-

SPLIT are
� �

� 1
� � � � and �

�
� 2. By our induction hypothesis, there is a

� �
in � 1

� � � �
such that

�



� :

� � 5
If
� � � � 1 this is our conclusion; otherwise

� � * � and another use of our induction
hypothesis gives a

� � � � � 2 such that

�



� :

� � � (
which is our conclusion.

Case: EQUIV-SPLIT-L The premises of EQUIV-SPLIT-L must be
�

� � and �
�
� for some

� . WEAKEN-TYPE gives �



� : � , and then our induction hypothesis gives an � in � such

that
�



� : � (

which is our conclusion.

Case: EQUIV-SPLIT-R Then there is a � such that � * �
� � � � � and the premises of EQUIV-

SPLIT-R are � � �
�

and
� �

�
� � � � � � for some �

�
. By induction hypothesis, there is some �

in �
� � � � � � such that

�



� : �%5

If � is in �
�
then we are done; otherwise, � * �

�
and � � � . Thus WEAKEN-TYPE gives

�



� : � (

which is our conclusion.

Case: ELIM-SPLIT Then � * �
� � � � � where the premises of ELIM-SPLIT are

� �
�
� � � � � ( � �

and �
� �

� . By induction hypothesis, there is an � in �
� � � � ( � � such that

�



� : �%5

If � is in �
� � � � , we are done. Otherwise � * �

�
, and WEAKEN-TYPE gives

�



� : � (

which is our conclusion.
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Case: SELF-SPLIT Then � * � � � , so we can choose � * �
, so our hypothesis �



� :

�
is

our conclusion.
�

We need to establish one more lemma, Lemma 2.70 (Value Substitution) on page 93.
This lemma says that substitution for expressions has a natural analogue that works for
refinement type derivations. We use this lemma to prove soundness for the semantics
rules that use substitution. These rules are APPL-SEM and FIX-SEM, so we only have to be
concerned with substituting values or fixed point expressions. It turns out that we cannot
do much better than this; in particular, we cannot substitute refinement type derivations for
arbitrary expressions into each other.

Since we prove this lemma constructively, the proof of the lemma can be read as an
algorithm for doing substitution for derivations. For example, if we perform the substitution

+ $ I @ � � <LK%K � >�� I9 D H � $ ) ) � �:- $ �,$ �,$ � �	� � $ )L) ) )
we get

$ I @ � � < K%K � > � I;9 D:H � $ ) ) $ $ I @ � � < K%K � > � I;9 D:H � $ ) ) $ � ��� � $ )L) ) 5
Lemma 2.70 (Value Substitution) on page 93 will tell us that, since

�


 I @ � � <LK K � > � I9 D H � � � :
#T# � � � � � � $

2 5 18 )
and + � : * # # � � � � � #T# - 
 � $�� $ � ��� � $ )L) ) :

� ( $
2 5 19 )

we can perform a corresponding substitution on the derivations to get

�


 $ I @ � � <LK%K � >�� I;9 D H � $ )L) $ $ I @ � � <LK%K � >�� I;9 D H � $ )L) $ � ��� � $ )L) ) :
� 5 $

2 5 20 )
The strategy for doing this is simple: the constructed derivation has the same shape as the
derivation of (2.19), except wherever that derivation examines the type of

�
, the constructed

derivation incorporates a copy of the derivation of (2.18). For example, if we choose this
derivation for (2.18):

. . .�
:

#T# 
 I9 D H � $ ) :
�

�


 I @ � � <LK K � > � I;9 D:H � $ ) :
#T# � �

. . .�
:
� 
 I;9 D H � $ ) :

�
�


 I @ � � < K%K � > � I;9 D:H � $ ) :
� � �

�


 I @ � � < K�K � > � I9 D:H � $ ) :
#T# � � � � � �

and this derivation for (2.19) (using � as an abbreviation for
#T# � � � � � �

):

�
: �


 �
: � �

� � � �
�

: �

 �

:
� � �

�
: �


 �
: � �

�Z#T# � �
�

: �

 �

:
#T# � � . . .�

: �

 � �	� � $ ) :

#T#
� : �


 � $ � ��� � $ )L) :
�

� : �

 �,$ � $ � ��� � $ )L) ) :

�
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then (where we abbreviate
I @ � � <LK K � >��Y$ I9 D H � $ ) ) as 
 and replace all copies of the

derivation of (2.18) with “. . .”)

. . .
�


 
 : � �
� � � �

�


 
 :
� � �

. . .
�


 
 : � �
� #T# � �

�


 
 :
# # � � . . .

�


 � ��� � $ ) :
#T#

�


 
 $ � ��� � $ )L) :
�

�


 
 $ $ I @ � � < K%K � > �Y$ I9 D H � $ ) )L) $ � ��� � $ )L)L) :
�

Unlike Fact 2.6 (ML Value Substitution) on page 29, we cannot allow substituting
arbitrary expressions in a derivation. For instance, suppose we have a function called�� H%@ G

that asks the user a question to which she can answer yes or no. Our environment
VR should assert that

�� H%@ G
has the refinement type

� ���:� # � O P R R'U
. Assuming VR also has

appropriate types for
G � and

@ G��
, we can use SPLIT-TYPE to infer

VR + � : * O P R R'U - 
 G � $T@ G�� ��� � ) :
# #

and we can infer
VR


 �;� H%@ G $ ) :
O PSRTR'U

but doing the substitution to get

VR

 G � $ @ G�� $ �� H�@ G $ )L) � �;� H�@ G $ )L) :

# # $
2 5 21 )

would lead to unsoundness, since the user could cause the expression to evaluate to
I9 D H �

by saying “yes” to
�� H�@ G $ ) the first time and “no” the second time. Even if use the fact that

the semantics says the language is completely functional and deterministic so the expression�� H%@ G $ ) must either always evaluate to
� �	� �

or always evaluate to
I9 D H �

, the refinement
type system cannot infer (2.21). Incidentally, this example shows that refinement types do
not rely upon determinacy.

The problem is that the type of
�� H�@ G $ ) has the split � #T# ( � � , but

�;� H%@ G $ ) has neither
of the types

#T#
nor

�
. Thus Lemma 2.70 (Value Substitution) on page 93 does not hold for

general expressions. Fortunately, it does hold for values and for fixed point expressions,
which is all we need.

Lemma 2.70 (Value Substitution) If VR

 � 1 : � 1, where � 1 is a value or a closed

expression of the form
I B�� 
 � � 1

>�� I @ � � � 2
> � � � � , and VR + � : * � 1 - 
 � 2 : � 2, then

VR

 + � 1

� ��- � 2 : � 2.

Proof: We prove this by induction on the derivation of VR + � : * � 1 - 
 � 2 : � 2.

Case: AND-INTRO-TYPE Then � 2 must have the form � 3
�
� 4 where the premises of

AND-INTRO-TYPE are
VR + � : * � 1 - 
 � 2 : � 3
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and
VR + � : * � 1 - 
 � 2 : � 4 5

Applying the induction hypothesis to each of these gives

VR

 + � 1

� ��- � 2 : � 3

and
VR


 + � 1
� �:- � 2 : � 4 5

Using AND-INTRO-TYPE to combine these last two gives

VR

 + � 1

� �:- � 2 : � 3
�
� 4

which is what we wanted to show.

Case: WEAKEN-TYPE The premises of WEAKEN-TYPE must be

VR + � : * � 1 - 
 � 2 : � 3
$
2 5 22 )

and
� 3
�
� 2 5 $

2 5 23 )
Applying the induction hypothesis to (2.22) gives

VR

 + � 1

� ��- � 2 : � 3

and applying WEAKEN-TYPE to this and (2.23) gives

VR

 + � 1

� ��- � 2 : � 2

which is the desired conclusion.

Case: SPLIT-TYPE Either we are splitting � or some other variable.

SubCase: Splitting type of � Then the premises of SPLIT-TYPE must be

� 1
�
�

and
for all �

�
in � we have VR + � : * �

� - 
 � 2 : � 2 5 $
2 5 24 )

SubSubCase: � 1 is a closed fixed point By Theorem 2.54 (Inferred Types Refine) on

page 68 and FIX-VALID, � 1 must refine an arrow type. Let �
�

be any element of � ; by
Fact 2.35 (Splits of Arrows are Simple) on page 51, �

�
� � 1. WEAKEN-TYPE gives

VR

 � 1 : �

�
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and then our induction hypothesis gives VR

 + � 1

� �:- � 2 : � 2, which is our conclusion.

SubSubCase: � 1 is a value Then Theorem 2.69 (Splitting Value Types) on page 89 tells

us that there is an �
�
in � such that �


 � 1 : �
�
. By Fact 2.47 (Non-free Variables are Ignored)

on page 63, this implies VR

 � 1 : �

�
. Our induction hypothesis applied to this and (2.24)

then gives VR

 + � 1

� �:- � 2 : � 2, which is our conclusion.

SubCase: Not splitting type of � Then VR has the form VR
� + 	 : * � - , where we are

splitting the type of 	 . SPLIT-TYPE gives

� �
�

and
for

� �
in � we have VR

� + 	 : * � � ( � : * � 1 - 
 � 2 : � 2 5
For each

� �
in � , our induction hypothesis gives

VR
� + 	 : * � � - 
 + � 1

� �:- � 2 : � 2 5
Then SPLIT-TYPE gives

VR
� + 	 : * � - 
 + � 1

� �:- � 2 : � 2 (
which is our conclusion.

Case: VAR-TYPE We take subcases depending on whether � 2 * � .

SubCase: � 2 * � By VAR-TYPE, � 1 * � 2 and + � 1
� �:- � 2 * + � 1

� �:- � * � 1. Thus the

conclusion is one of the hypotheses.

SubCase: � 2 * 	 and 	 �* � Then + � 1
� �:- � 2 * � 2. One of the hypotheses is

VR + � : * � 1 - 
 	 : � 2 5
By Fact 2.47 (Non-free Variables are Ignored) on page 63, this implies

VR

 	 : � 2 (

which is our conclusion.

Case: ABS-TYPE Then � 2 must have the form
I @ 	 � � >�� � � . We take cases on whether

� * 	 .

SubCase: � * 	 Then + � 1
� �:- � 2 * + � 1

� �:- I @ � � � >�� � � * I @ � � � > � � � * � 2, so the

conclusion is one of the hypotheses.
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SubCase: 	��* � From ABS-TYPE we know that � 2 must have the form � 3
�
� 4. For some

� , the premises of ABS-TYPE must be

VR + � : * � 1 ( 	 : * � 3 - 
 � � : � 4
$
2 5 25 )

and
� 3

� � $
2 5 26 )

Thus
+ � 1
� �:- � 2 * I @ 	 � � > � + � 1

� �:- � � 5
Applying the induction hypothesis to (2.25) gives

VR + 	 : * � 3 - 
 + � 1
� �:- � � : � 4

and applying ABS-TYPE to this and (2.26) gives

VR

 I @ 	 � � >�� + � 1

� �:- � � : � 3
�
� 4

which is our conclusion.

Case: APPL-TYPE The conclusion of APPL-TYPE tells us that � 2 has the form � 3 � 4 and

the premises of APPL-TYPE have the form

VR + � : * � 1 - 
 � 3 : � 3
�
� 2

and
VR + � : * � 1 - 
 � 4 : � 3 5

Applying the induction hypothesis to each of these gives

VR

 + � 1

� �:- � 3 : � 3
�
� 2

and
VR


 + � 1
� �:- � 4 : � 3 5

Using APPL-TYPE on the last two gives

VR

 $ + � 1

� ��- � 3 ) $ + � 1
� ��- � 4 ) : � 2 (

and since
$ + � 1

� �:- � 3 ) $ + � 1
� �:- � 4 ) *,+ � 1

� �:- $ � 3 � 4 ) , this is our conclusion.

Case: CONSTR-TYPE Then � 2 has the form � � � and � 2 has the form
� �

. The premises of

CONSTR-TYPE must be
� def

: � �
� � �

and
VR + � : * � 1 - 
 � � : �%5
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The induction hypothesis gives
VR


 + � 1
� �:- � � : �

and then CONSTR-TYPE gives
VR


 � + � 1
� �:- � � :

� � 5
Since �N+ � 1

� �:- � � *,+ � 1
� �:- $ � � � ) , this is our conclusion.

Case: CASE-TYPE Then � 2 has the form
��9 H � � �0 G�I � 1

>�� � �1 E
. . .

E � � >�� � �� � @ 8 � �
and the premises of CASE-TYPE are

VR + � : * � 1 - 
 � �0 :
� � (

� 2
� � (

for all � in 1 . . .
�

and all
�

, whenever

� � def
:
�
�
� � �

we have
VR + � : * � 1 - 
 � �� :

� �
� 2 (

$
2 5 27 )

and
rtom

$
VR + � : * � 1 - ) 
 � 2 :: ��5 $

2 5 28 )
Our induction hypothesis gives

VR

 + � 1

� �:- � �0 :
� � 5 $

2 5 29 )
Suppose

��� def
:
�
�
� � � 5 $

2 5 30 )
Then by (2.27), we have

VR + � : * � 1 - 
 � �� :
� �

� 2 (
and our induction hypothesis gives

VR

 + � 1

� �:- � �� :
� �

� 2 5 $
2 5 31 )

Theorem 2.54 (Inferred Types Refine) on page 68 and VR

 � 1 : � 1 gives

rtom
$
VR ) 
 � 1 :: rtom

$
� 1 ) 5

Fact 2.6 (ML Value Substitution) on page 29 applied to this and (2.28) gives

rtom
$
VR ) 
 + � 1

� ��- � 2 :: � $
2 5 32 )

Now we can use CASE-TYPE on (2.29), � 2
� � , (2.30) implies (2.31), and (2.32) to get

VR

 $ ��9 H � + � 1

� �:- � �0 G�I � 1
> � + � 1

� ��- � �1 E
. . .

E �	� > � + � 1
� �:- � �� � @ 8 � � : ) � 2

Since ��9 H � + � 1
� �:- � �0 G�I � 1

> � + � 1
� ��- � �1 E

. . .
E � � > � + � 1

� �:- � �� � @ 8 � � *+ � 1
� ��- $ ��9 H � � �0 G�I � 1

> � � �1 E
. . .

E � � > � � �� � @ 8 � � ) (
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this is our conclusion.

Case: TUPLE-TYPE Then � 2 has the form
$ � 1

�
. . .
� ��� ) and � 2 has the form �

�
1

M
. . .

M
�
��

and the premises of TUPLE-TYPE must be

for � in 1 . . .
�

we have VR + � : * � 1 - 
 � �� : �
�
� .

By induction hypothesis,

for � in 1 . . .
�

we have VR

 + � 1

� ��- � �� : �
�
� .

Then TUPLE-TYPE gives

VR

 �%+ � 1

� �:- � �1 � . . .
� + � 1

� �:- � �� � : �
�
1

M
. . .

M
�
�
� 5

Since
$ + � 1

� �:- � �1 � . . .
� + � 1

� ��- � �� ) * + � 1
� �:- $ � �1 � . . .

� � �� ) and � 2 * �
�
1

M
. . .

M
�
�� , this is our

conclusion.

Case: ELT-TYPE Then � 2 has the form
� D ����� ��� � � and the premise of ELT-TYPE must be

VR + � : * � 1 - 
 � � : �
�
1

M
. . .

M
�
�
�

where � 2 * �
�
 . Our induction hypothesis gives

VR

 + � 1

� �:- � � : �
�
1

M
. . .

M
�
�
�

and ELT-TYPE then gives
VR


 � D � ��� ��� + � 1
� �:- � � : � �
 5

Since � 2 * �
�
 and

� D ����� ��� + � 1
� ��- � � *Z+ � 1

� ��- � D � ��� ��� � � , this is our conclusion.

Case: FIX-TYPE Thus � 2 has the form
I B�� 
 � � 1

� � 2
> � I @ 	 � � 1

> � � � . If � * 	 or

� * 
 , then our conclusion is trivial because + � 1
� �:- � 2 * � 2. Otherwise, the premises of

FIX-TYPE are
� 2

� � 1
� � 2

$
2 5 33 )

and
VR + 
 : * � 2 - 
 I @ � � � 1

> � � � : � 2 5
Our induction hypothesis gives

VR + 
 : * � 2 - 
 + � 1
� �:- I @ 	 � � 1

> � � � : � 2 5
Since � �* 	 , this is

VR + 
 : * � 2 - 
 I @ 	 � � 1
>�� + � 1

� �:- � � : � 2 5
Applying FIX-TYPE to this and (2.33) gives

VR

 I B�� 
 � � 1

� � 2
>�� I @ 	 � � 1

> � + � 1
� �:- � � : � 2 5
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Since � �* 	 and � �* 
 , this is our conclusion.
�

Now that we have established all of the lemmas we need for the soundness proof, we
are in a position to show that this version of the system is sound. So we come to the
question: What does it mean for the refinement type system to be sound? It turns out
that until we introduce explicit type declarations or references, all expressions that have an
ML type will also have a refinement type. Thus the notion of ML type soundness used in
Fact 2.3 (ML Type Soundness) on page 27 is trivially true for refinement types, so it is not
interesting here. The most interesting thing we can claim at this point is that if we evaluate
an expression, the value has the same type as the expression:

Theorem 2.71 (Refinement Type Soundness) If ��� � and �


 � : � , then �



� : � .

We could prove this by induction on the derivation of ��� � . At each step in the proof,
there would be three inference rules that could have been used to derive �


 � : � . They
are WEAKEN-TYPE, AND-INTRO-TYPE, and one inference rule that deals specifically with the
outermost syntax of � . (SPLIT-TYPE cannot happen here because it requires a nonempty
variable environment.) For example, if � has the form � 1 � 2, the last inference rule in
the derivation of � � � must be APPL-SEM and the possible inference rules at the root
of �


 � 1 � 2 : � are WEAKEN-TYPE, AND-INTRO-TYPE, and APPL-TYPE. The step of the
proof dealing with APPL-SEM would have to have another induction on the derivation of

�


 � 1 � 2 : � to strip off the outermost uses of WEAKEN-TYPE and AND-INTRO-TYPE, before
we could use the outer induction to make more progress on the evaluation trace. Since each
step of the proof would have to have this nested induction, the proof would be too large to
manage.

It would not work to prove the theorem by induction on the type derivation. The
substitution in the APPL-SEM rule can make the expression larger, and therefore it can make
the type derivation larger. Thus induction on the type derivation is invalid.

There are two kinds of ways to make progress in the above procedure: We can use
AND-INTRO-TYPE or WEAKEN-TYPE to make the type derivation smaller while leaving the
evaluation derivation constant, or we can use any of the semantics rules to make the
evaluation derivation smaller while possibly making the type derivation larger. All of
these possibilities make the ordered pair

$
evaluation trace ( type derivation ) lexicograph-

ically smaller. Since any decreasing chain in the lexicographic ordering on the pair is
finite, proof by induction on the pair is a valid induction principle, and this is the induction
principle we shall use.

The base cases of this induction are the minimal elements in the lexicographic ordering.
These consist of a use of a semantics rule that requires no premise paired with a use of a
refinement type rule other than WEAKEN-TYPE, AND-INTRO-TYPE, or SPLIT-TYPE. It turns
out that there are three base cases: $

ABS-SEM ( ABS-TYPE )$
TUPLE-SEM ( TUPLE-TYPE ) for a tuple of zero elements$

FIX-SEM ( FIX-TYPE )
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Proof: The proof is by induction on the pair
$
derivation of � � � ( derivation of �


 � : � ) .
We shall label each case with the with an indication of the pairs to which it applies. The
label will either be “any” if the case applies to pairs with any value for that component,
or the name of an inference rule if the case applies only to pairs where that component of
the pair has that inference rule at the root of the derivation. The most interesting case is$
APPL-SEM ( APPL-TYPE ) , since that case uses the machinery developed earlier in this chapter.

There is an example after this proof on page 103.

Case:
$
any ( AND-INTRO-TYPE ) Then � has the form � 1

�
� 2. The premises of AND-INTRO-

TYPE must be �


 � : � 1 and �


 � : � 2. Applying the induction hypotheses to each of these
gives �



� : � 1 and �



� : � 2. Combining these with AND-INTRO-TYPE gives

�



� : � 1

�
� 2

which is our conclusion.

Case:
$
any ( WEAKEN-TYPE ) The premises of WEAKEN-TYPE must be

�


 � : �
� $

2 5 34 )
and

�
� �

� 5 $
2 5 35 )

Applying the induction hypothesis to (2.34) gives

�



� : �

� 5
Applying WEAKEN-TYPE to this and (2.35) gives

�



� : � (

which is our conclusion.

Case:
$
any ( SPLIT-TYPE ) This case is unreachable because SPLIT-TYPE assumes the envi-

ronment is nonempty, but the hypothesis of this theorem assumes it is empty.

Case:
$
ABS-SEM ( ABS-TYPE ) By ABS-SEM, � * � . Thus our hypothesis �


 � : � is our

conclusion.

Case:
$
APPL-SEM ( APPL-TYPE ) Then � must have the form � 1 � 2 and the premises of

APPL-SEM must be

� 1 � I @ � � � > � � 3 (2.36)

� 2 � �
�

(2.37)

+ �
� � �:- � 3 � � (2.38)
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and the premises of APPL-TYPE must be

�


 � 1 : �
� �

� (2.39)
�


 � 2 : �
� 5 (2.40)

Applying the induction hypothesis to (2.36) and (2.39) gives

�


 I @ � � � >�� � 3 : �
� �

�

and Lemma 2.68 (Subtype Irrelevancy) on page 88 tells us

�


 
 I @ � � � >�� � 3 : �
� �

� 5
The last inference of this must be ABS-TYPE with the premise

� : �
� 
 � 3 : �%5 $

2 5 41 )
Applying the induction hypothesis to (2.37) and (2.40) gives

�



�
�

: �
�

and using Lemma 2.70 (Value Substitution) on page 93 to substitute this into (2.41) gives

�


 + �
� � �:- � 3 : ��5

Applying the induction hypothesis to this and (2.38) gives

�



� : �

which is our conclusion.

Case:
$
CONSTR-SEM ( CONSTR-TYPE ) Then � must have the form � � � and � must have the

form
� �

and � must have the form � �
�

where the premise of CONSTR-SEM is � � � �
�

and
the premises of CONSTR-TYPE are

� def
:
�
�
� � �

and
�


 � � :
� 5

Our induction hypothesis gives
�



�
�

:
�

and then CONSTR-TYPE gives
�


 � �
�

:
� � (

which is our conclusion.

Case:
$
CASE-SEM ( CASE-TYPE ) The � must have the form

��9 H � � 0
G�I � 1

> � � 1
E

. . .
E � � > � ��� � @ 8 � �;5
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The premises of CASE-SEM must be

for some � we have � 0 � � � � �

and
� � � � � �

and the premises of CASE-TYPE must include

�


 � 0 :
� � (

�
� � (

and
for all � in 1 . . .

�
and all

�
, if

� � def
:
�
�
� � �

then
�


 � � :
� �

�

$
2 5 42 )

Using the induction hypothesis on � 0 gives

�


 ��� � � :
� � 5

Lemma 2.68 (Subtype Irrelevancy) on page 88 then gives

�


 
 � � � � :
� � 5

The last inference of this must be CONSTR-TYPE with the premises

� � def
:
�
�
� � �

and
�



� � :

� 5
By (2.42), we have

�


 � � :
� �

� 5
Using APPL-TYPE on these gives �


 � � � � : � . Using the induction hypothesis on this gives
�



� : � , which is our conclusion.

Case:
$
TUPLE-SEM ( TUPLE-TYPE ) Then � has the form

$ � 1
�

. . .
� ��� ) and � has the form

� 1
M

. . .
M
��� and � has the form

$
�

1
�

. . .
�

� � ) . The premises of TUPLE-SEM are

for � � 1 . . .
�

we have � ��� � �

and the premises of TUPLE-TYPE are

for � � 1 . . .
�

we have �


 � � : � �'5
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The induction hypothesis gives

for � � 1 . . .
�

we have �



� � : � � (

and then TUPLE-TYPE gives

�


 � �

1
�

. . .
�

� � � : � 1
M

. . .
M
��� (

which is our conclusion.

Case:
$
ELT-SEM ( ELT-TYPE ) Then � must have the form

� D � ��� ��� � � . The premise of

ELT-SEM must be
� � � $

�

1
�

. . .
�

� � )
where � * ��
 , and the premise of ELT-TYPE must be

�


 � � : � 1
M

. . .
M
���

where � * � 
 . Our induction hypothesis gives

�


 � �

1
�

. . .
�

� � � : � 1
M

. . .
M
� � 5

By Lemma 2.68 (Subtype Irrelevancy) on page 88, this implies

�


 
 � �

1
�

. . .
�

� � � : � 1
M

. . .
M
� ��5

The last inference of this must be TUPLE-TYPE, and one of the premises must be

�



� 
 : � 
 (

which is our conclusion.

Case:
$
FIX-SEM ( FIX-TYPE ) The � has the form

I B�� 
 � � � > � I @ � � � � � >�� � � . By FIX-

TYPE, � � has the form � 1
� � 2 and � � � * � 1. The premises of FIX-TYPE must be � � � 1

� � 2

and
+ 
 : * �%- 
 I @ � � � 1

>�� � � : �%5
Using Lemma 2.70 (Value Substitution) on page 93 on this and

�


 � : �

gives
�


 + � � 
- $ I @ � � � 1
>�� � � ) : �

$
2 5 43 )

By FIX-SEM, � is + � � 
- $ I @ � � � 1
>�� � � ) , so (2.43) is our conclusion.

�

The role of SPLIT-TYPE in these theorems is interesting, since it can appear at a non-
root position in the type derivation in the hypothesis of Theorem 2.71 (Refinement Type
Soundness) on page 99, but none of the cases in that proof deal with that rule. The
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resolution to this paradox is that the proof of Lemma 2.70 (Value Substitution) on page 93
never constructs a derivation with SPLIT-TYPE at the root.

This can be most easily understood by walking through the reasoning in the APPL-SEM

case of Theorem 2.71 (Refinement Type Soundness) on page 99 for a carefully chosen
example. For the purposes of this example, let or stand for

I @ �;9 B � � < K%K �:M <WK�K � > �
��9 H � � � � � �9 B � G�I� ��� � >�� I @ � � #���� � #?>�� � ��� � $ )E I;9 D H � > � I @ � � #����:� # >�� � � � � �;9 B �� @ 8 � <LK K �

and not stand for

I @ � � <WK K � > �
��9 H � � G�I

� �	� � > � I @ � � #����:� #?> � I9 D H � $ )E I9 D H � > � I @ � � #����:� # > � � �	� � $ )� @ 8 � < K K �
�

We shall choose � * $ I @�� � <WK K � >��
or

$
not

��� � )L) $ � ��� � $ )L) and � * #T#
, so we need

� * � �	� � $ ) . We will abbreviate or
$
not

��� � ) as � � and
� ��� � $ ) as tr when necessary

to get the following derivations to fit on a page. The derivation of ��� � is

I @�� � <LK K � >�� � � � I @ � � <LK%K � >�� � �
$ ) � $ )
tr � tr

. . .

or
$
not tr

�
tr ) � tr$ I @�� � < K%K � > � � � ) tr � tr

and a derivation of �


 � : � is

. . .

� :
� 
 � � :

#T# . . .

� :
#T# 
 � � :

# # O PSRTR'U � � # # ( � �
� :

O P R R'U 
 � � :
#T#

�


 I @�� � <LK%K � >�� � � :
O P R R'U � #T#

. . .
�


 � �	� � $ ) :
#T# #T# �ZO P R R'U

�


 � �	� � $ ) :
O P R R'U

�


 $ I @�� � < K%K � > � � � ) $ � ��� � $ )L) :
#T# 5

Notice the use of SPLIT-TYPE in this; it is the rule with the premise
O PSRTR'U � � # # ( � � .

This example would be less than ideal if we had no size constraint because it is also
possible to derive our conclusion without ever using SPLIT-TYPE; we could simply start
with � :

#T# 
 � � :
#T#

, use ABS-TYPE to infer �


 I @ � � <WK K � >�� � � :
#T# � # #

, and then use
APPL-TYPE and �


 � �	� � � � :
# #

to infer our conclusion. For a more serious but larger
example, we could replace the

� �	� � $ ) by an expression with the principal type
O PSRTR'U

, thus
requiring the use of SPLIT-TYPE to reach the strongest conclusion.
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However, let us instead show how the theorem manipulates the example as it stands.
First the theorem trivially applies the induction hypothesis to

I @ � � < K�K � > � $
or

$
not

��� � )L) � I @ � � < K K � >��Y$
or

$
not

��� � ) )
and

�


 I @ � � <LK K � > �Y$
or

$
not

��� � )L) :
O P R R'U�� #T#

to get
�


 I @ � � <LK K � >��A$
or

$
not

��� � )L) :
O PSRTR'U � #T# 5

Then it uses Lemma 2.68 (Subtype Irrelevancy) on page 88 on this to get

�


 
 I @�� � < K%K � > �Y$
or

$
not

��� � )L) :
O P R R'U�� #T# (

Since the last inference of this must be APPL-TYPE, we must have

+ � : * O P R R'U - 
 $
or

$
not

��� � ) ) :
# # 5 $

2 5 44 )
Another trivial use of the induction hypothesis uses

� �	� � $ ) � � ��� � $ ) and �


 � ��� � $ ) :O P R R'U
to infer

�


 � ��� � $ ) :
OQPSRTRVU 5 $

2 5 45 )
Then we eliminate the use of SPLIT-TYPE by substituting (2.45) into (2.44) to get

�



or

$
not

$ � ��� � $ )L) � $ � ��� � $ )L) ) :
#T# 5

Using the induction hypothesis on this and or
$
not

$ � ��� � $ )L) � $ � �	� � $ ) )L) � � ��� � $ )
yields �


 � �	� � $ ) :
#T#

, which is our conclusion.

This concludes the soundness proof of the monomorphic version of refinement types.
This proof has roughly the same shape as the proofs of soundness for polymorphic refine-
ment types and refinement types with declarations and references.

2.9 Finite Refinements, Principality

Now we shall give several lemmas leading up to the proof that, roughly speaking, each ML
type has only finitely many distinct refinements.

This proof below is slightly more complex than necessary. A simpler proof would show
by induction on the ML type that each ML type has finitely many distinct refinements. In
this proof, the interesting induction case would happen when the ML type has the form
� � � ; if � has

�
distinct refinements and � has

�
distinct refinements, then there are at most

� M �
distinct refinements of the form �

� �
where � � � and

� � � . Every refinement
of � � � is equivalent to an intersection of some subset of these, so there are at most 2 ���




refinements of � � � .
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The problem with this simple approach is that it overestimates the number of refinements
of many ML types. For example, the refinement types

O P R R'U � # # � # # � #T#
and

O PSRTR'U�� # #
are equivalent, but they are both counted in the enumeration implied in the argument above.
The implementation sometimes has to enumerate the refinements of an ML type, so it is
worthwhile to explore a more conservative enumeration in the finiteness proof.

The strategy behind the proof below is to interpret a refinement of � � � as a monotone
function from equivalence classes of � to equivalence classes of � . Two refinement types
are equivalent if and only if their interpretations are equal, and we can enumerate without
repetition all refinements of a functional ML type by enumerating all monotone functions
with an appropriate domain and codomain, as we shall describe below.

For any � refining a functional ML type, we will define the interpretation
�:$
� ) of � in

terms of a simpler function � $ � ) that maps refinement types to refinement types instead of
equivalence classes to equivalence classes.

There is a natural way to read the interpretation � $ � ) : If 
 has the type � and � has
the type

�
, then the best type we can infer for 
 � is � $ � ) $ � ) . Our plan is to set up some

machinery that allows us to define � in terms of the subtype relation, and then to show that
two types

�
and

� �
are equivalent if and only if � $ � ) and � $ � � ) are suitably similar. Then we

will define
�

to be � lifted in a natural way to operate on equivalence classes of refinement
types. It will turn out that any types

�
and

� �
are equivalent if and only if

�$ � ) and
�:$ � � )

are equal. Then we finish the proof by showing that there are only finitely many distinct
values for

�;$ � ) .
To make the proof more regular, we will use the symbol ��� as the result of � $ � ) $ � )

when the corresponding expression would have no type. For example, � $L#T# � � ) $ � ) * ��� .
Adding ��� requires us to introduce notation for metavariables that can be either a refinement
type or ��� . We will write these metavariables as � ?,

�
? or � ? and call the values of these

metavariables generalized refinement types. Comparing them is straightforward:

Definition 2.72 We define the binary relation � on generalized refinement types by the
following cases:

��� �
if and only if �

� �

��� ns always
ns � �

never
ns � ns 5

We can base a natural notion of equivalence on � :

Definition 2.73 We say � ? � �
? if � ? � �

? and
�

? � � ?.

We could get the same effect by defining � ? � �
? to mean that either � ? �

�
? or � ? * �

? *
��� .

We can also define intersection on generalized refinement types:
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Definition 2.74 We define the binary operation � mapping pairs of generalized refinement
types to generalized refinement types by the equations:

��� � * �
� �

��� ns * ns � � * �
ns � ns * ns 5

The � operation inherits commutativity, associativity, and idempotence from
�

.

The big advantage of � over
�

is that � has an identity, specifically ��� . Thus we can
define � to work on a finite set of refinement types even if the set is empty:

Definition 2.75 If � is a finite set of refinement types, then � � is the following generalized
refinement type:

If � is empty, then � � * ns.

If � * � � 1 ( . . . ( ��� � , then � � * � 1
�

. . .
�
��� .

We shall continue to use � as a finite set of refinement types for the rest of this section.

This definition is slightly ambiguous, since the order of the elements in a set is not
determined and

�
is only commutative if we ignore the difference between equivalent

refinement types that are not equal. For example, � � # # ( � � could be
# # � �

as well as� � # #
. This ambiguity makes no difference to the reasoning below, and we shall ignore it.

When all refinement types in � refine the same ML type � , the generalized refinement
type � � either refines � or is ��� . We extend the notion of refinement to include sets of
refinement types and generalized refinement types, so we can simply say that if � � � , then
� � � � . In this extension of the meaning of � , both the empty set � � and ��� both refine all
ML types.

The � operator has several properties that follow from analogous properties of
�

,
commutativity and associativity of

�
, and trivial induction arguments:

Fact 2.76 ( � Elim Sub) If ��� �
�
and � � � then

� � ��� �
� 5

Fact 2.77 ( � Intro Sub) If � 1, � 2, and � 3 all refine � and

� � 1 ��� � 2

and
� � 1 ��� � 3

then
� � 1 ���

$
� 2

�
� 3 ) 5
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Fact 2.78 (Transitivity of � ) If � ? � �
? and

�
? � � ? then � ? � � ?.

Now we have enough machinery to define � $ � ) and prove some simple properties of it:

Definition 2.79 Suppose
�

? � � � � � and � � � . If
�

? has the form
�

1
� � �

1
�

. . .
� � � � � �� ,

we define
� $ � ? ) $

� ) *�� � � �� / � is between 1 and
�

and �
� � � � 5

Otherwise
�

? * ns and we define � $ � ? ) $
� ) * ns.

For example, if � * # # � O P R R'U � O P R R'U � � � � � #T#
then

� $ � ) $ # # ) * OQPSRTRVU � �
�
�

� $ � ) $ � ) * � � # #
�
� PSRTRVU

� $ � ) $LO P R R'U ) * �
� $ � ) $ � P R R'U ) * OQPSRTRVU � � � # #

�
� PSRTR'U 5

In this example, as � gets larger, � $ � ) $
� ) also gets larger. This property is true in general.

Lemma 2.80 ( � Monotone in Second Argument) If � � � and
�

? � � � � � and

�
�
�
�

then
� $ � ? ) $

� ) � � $ � ? ) $
�
� ) 5

Proof: If
�

? * ��� , then our result follows directly from the definitions of � and � . Otherwise�
? has the form

�
1
� � �

1
�

. . .
� � � � � �� . As in the definition of � , let

� * � � �� / � between 1 and
�

and �
� � � �

and
�
� * � � �� / � between 1 and

�
and �

� � � � � 5
Since �

�
�
�

and
�

is transitive, we have � � �
�
. Since

� � � � � � , all of the
� �
� ’s must

refine � � , so � � � � . Thus we can use Fact 2.76 ( � Elim Sub) on page 107 to get

� � ��� �
� 5

According to the definition of � , this is our conclusion.
�

It is also true that as
�

? gets larger, � $ � ? ) $
� ) gets larger, but the proof is somewhat more

involved:
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Lemma 2.81 ( � Monotone in First Argument) If � � � and
�

? � � � � � and

�
? � � ?

then
� $ � ? ) $

� ) � � $ � ? ) $
� ) 5

Proof: By induction on the derivation of
�

? � � ?.

Case: � ? * ��� Then � $ � ? ) $
� ) * ��� , and our result follows from the definition of � .

Case:
�

? * ��� Then � ? * ��� , so the previous case holds.

Case: SELF-SUB Trivial.

Case: AND-ELIM-R-SUB Since
�

? � � � � � we know that
�

? has the form
�

1
� � �

1

�
. . .
�

�
�
� � �

� . The shape of AND-ELIM-R-SUB tells us there is some
�

less than � such that

� ? * �
1
� � �

1
�

. . .
� � � � � �� 5

Let
� * � � �� / � between 1 and � and �

� � � �
and

�
� * � � �� / � between 1 and

�
and �

� � � � 5
Since

� � � we have ��� � � . Thus Fact 2.76 ( � Elim Sub) on page 107 gives

� � ��� �
� (

and by definition of � , this is our conclusion.

Case: AND-ELIM-L-SUB Similar.

Case: AND-INTRO-SUB Then � ? has the form � 1
�
� 2, where the premises of AND-INTRO-

SUB are �
?
�
� 1

and �
?
�
� 2 5

Applying our induction hypothesis to these gives

� $ � ? ) $
� ) � � $ � 1 ) $

� )
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and
� $ � ? ) $

� ) � � $ � 2 ) $
� ) 5

Since � ? * � 1
�
� 2, the definition of � tells us that � $ � ? ) $

� ) * � $ � 1 ) $
� ) � � $ � 2 ) $

� ) . Thus
Fact 2.77 ( � Intro Sub) on page 107 gives � $ � ? ) $

� ) � � $ � ? ) $
� ) , which is our conclusion.

Case: TRANS-SUB Then the premises of TRANS-SUB must be

�
?
�
�
�

and
�
� �

� ? 5
Applying the induction hypotheses to these gives

� $ � ? ) $
� ) � � $ � � ) $

� )
and

� $ � � ) $
� ) � � $ � ? ) $

� ) 5
Using Fact 2.78 (Transitivity of � ) on page 108 on these gives our conclusion.

Case: ARROW-SUB Then
�

? has the form
�

1
� � �

1 and � ? has the form � 1
�
�
�
1 and the

premises of ARROW-SUB are
� 1
� �

1

and � �
1

�
�
�
1 5

If � $ � ? ) $
� ) * ��� then our conclusion follows immediately, so instead suppose that � $ � ? ) $

� )
is a refinement type. From the definition of � we must have �

�
� 1 and � $ � ? ) $

� ) * �
�
1.

TRANS-SUB and � 1
� �

1 give �
� �

1, and the definition of � gives � $ � ? ) $
� ) * � �

1. Thus� �
1
�
�
�
1 is our conclusion.

Case: ARROW-AND-ELIM-SUB Then
�

? must have the form
�

1
� � �

1
� �

1
� � �

2 and � ? must

have the form
�

1
�A$ � �

1

� � �
2 ) . If � $ � ? ) $

� ) * ��� then the definition of � gives our conclusion
immediately. Otherwise the definition of � gives �

� �
1 and

� $ � ? ) $
� ) * � �

1

� � �
2

and
� $ � ? ) $

� ) * � �
1

� � �
2 5

Before we use SELF-SUB to get our result we must find a � � such that
� �

1
� � �

2
� � � . The

premise of ARROW-AND-ELIM-SUB is

�
1
�A$ � �

1
� � �

2 ) � ��5
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This can only be derived by using ARROW-REF, so � must have the form � � � � and the
premises of ARROW-REF must be �

1
� �

and � �
1
� � �

2
� � � 5

The latter and SELF-SUB give our conclusion.

Case: RCON-SUB, RCON-AND-ELIM-SUB, TUPLE-SUB, TUPLE-AND-ELIM-SUB

None of these cases can happen because we assume that
�

? and � ? refine a functional ML
type.

�

This has a simple corollary:

Corollary 2.82 (Bound on Argument to � Gives Bound on � )
If
� �

�
�
� then � $ � ) $

� ) � � .

Proof: The definition of � gives � $ � � � ) $
� ) * � . By Lemma 2.81 ( � Monotone in First

Argument) on page 109, � $ � ) $
� ) � � $ � � � ) $

� ) , and rewriting � $ � � � ) $
� ) to � gives our

result.
�

We will call � 1 ( . . . ( � � the components of the refinement type � 1
�

. . .
�
��� .

From the definition of � , it is clear that if �
�
�
�

is one of the components of
�
, then

� $ � ) $
� ) � �

�
. The converse of this is false; for example, if

� * # # � � � #T# � # #
and � * # #

,
then � $ � ) $

� ) * � � #T#
but

#T# �A$ � � #T# ) is not one of the components of
�

. However, we
do have

� � # # � $ � � # # ) , and this sort of assertion is true in general.

Lemma 2.83 ( � Gives an Upper Bound) If
�

? � � � � � and � � � 1 and

� $ � ? ) $
� ) � �

�

then �
?
�
�
�
�
� 5

Proof: We know that
�

? �* ��� , because if
�

? were ��� then � $ � ? ) $
� ) would be ��� and our

hypothesis would be false.

Since
�

? � � � � � , we know that
�
? has the form

�
1
� � �

1
�

. . .
� � � � � �� . Let

� * � � between 1 and
� / � � � � � 5

We know that � $ � ? ) $
� ) is not ��� because ��� � �

�
cannot be true, so

�
is not empty. Let

� � *�� � � � � � �
� / � � � � 5
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Since all components of
� �

appear in
�

?, we have

�
?
� � � 5

Let � � � *�� � � � � �
� / � � � � 5

Since each component of
� �

is a subtype of the corresponding component of
� � �

, we have

� � � � � � 5
Let � � � � * �

� � � � �� / � � � � 5
Repeated use of ARROW-AND-ELIM-SUB gives

� � � � � � � � 5
Since � � � �� / � � � � * � $ � ? ) $

� ) � �
�

is a hypothesis of this lemma, RCON-SUB gives

� � � � �
�
�
�
� 5

Repeated use of TRANS-SUB gives
�

?
�
�
�
�
�
, which is our conclusion.

�

If we have two functions 
 1 and 
 2 with common domain and codomain, and we can
compare elements in the codomain, then we can naturally compare 
 1 and 
 2 pointwise.
That is, 
 1 is greater than 
 2 if for all � in their common domain, 
 1

$ � ) is greater than 
 2
$ � ) .

It turns out that this ordering when used on � $ � ) is the same as the subtype ordering on
�

.

Lemma 2.84 (Ordering on � ) If
�

? and � ? refine � � � � and for all � refining � we have

� $ � ? ) $
� ) � � $ � ? ) $

� )
then �

? � � ? 5
Proof: If

�
? * ��� , then for all � refining � we have � $ � ? ) $

� ) * ��� , so � $ � ? ) $
� ) * ��� .

This can only be the case if � ? * ��� , so by definition of � we have
�

? � � ?, which is our
conclusion.

If � ? * ��� then we immediately get
�
? � � ? by definition of � .

Otherwise, since � ? � � � � � , we know that � ? has the form � 1
�
�
�
1

�
. . .
�
� 
 � �

�
 .
By the definition of � , for all � between 1 and

�
we have

� $ � ? ) $
� � ) � � �� 5

By our hypothesis
� $ � ? ) $

� � ) � � $ � ? ) $
� � ) 5
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TRANS-SUB gives
� $ � ? ) $

� � ) � � �� 5
Lemma 2.83 ( � Gives an Upper Bound) on page 111 gives

�
?
�
� � � �

�
� 5

Since this is true for all � , we can repeatedly use AND-INTRO-SUB to get

�
?
�
� ? (

which is our conclusion.
�

Now we can show that � preserves all the information about its first argument. This is
our main result about � ; the remainder of the argument after the following lemma is little
more than repackaging � to get our interpretation function

�
, and translating the following

lemma to a statement about
�

.

Lemma 2.85 ( � Preserves Information) Suppose � ? and � ?
�
both refine � � � � . Then

for all
�

and
� �

refining � we have
�

�
� �

implies � $ � ? ) $ � ) � � $ � ? � ) $ � � ) $
2 5 46 )

if and only if
� ? � � ?

� 5 $
2 5 47 )

Proof of (2.46) implies (2.47): From (2.46) we get

for all
�

and
� �

refining � we have
�

�
� �

implies � $ � ? ) $ � ) � � $ � ? � ) $ � � )
Since

� � � , we can choose
� � * �

and we have
�

�
�

. Thus

for all
�

refining � we have � $ � ? ) $ � ) � � $ � ? � ) $ � )
and Lemma 2.84 (Ordering on � ) on page 112 gives

� ?
�
� ?
� 5

A symmetric argument gives
� ?
� �

� ? (
and together these imply our conclusion.

Proof of (2.47) implies (2.46): From (2.47) we get

� ?
�
� ?
� (

and we can then use Lemma 2.81 ( � Monotone in First Argument) on page 109 to get

� $ � ? ) $ � ) � � $ � ? � ) $ � ) 5
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The premise of the implication in (2.46) gives
� � � � (

and Lemma 2.80 ( � Monotone in Second Argument) on page 108 gives

� $ � ? � ) $ � ) � � $ � ? � ) $ � � ) 5
Fact 2.78 (Transitivity of � ) on page 108 gives

� $ � ? ) $ � ) � � $ � ? � ) $ � � ) 5
A symmetric argument gives

� $ � ? � ) $ � � ) � � $ � ? ) $ � ) (
and together these are our conclusion.

�

Now we will repackage � as a function mapping equivalence classes to equivalence
classes. First we must define some notation for manipulating equivalence classes:

Definition 2.86 If � ? is a generalized refinement type, then the equivalence class � $
� ? )

containing � ? is the set � � ? � / � ? � � � ?
�
.

Definition 2.87 If � is an ML type, then EC
$ � ) is the set of equivalence classes of generalized

refinements of � , or in symbols, � � $
� ? ) / � ? � � � .

We shall use � as a metavariable standing for the equivalence class of a refinement type,
and � ? as a metavariable standing for the equivalence class of a generalized refinement type.

Now we have the machinery to define the interpretation of refinement types as a mapping
from equivalence classes to equivalence classes:

Definition 2.88 If � ? � � EC
$ � � ) and � � EC

$ � ) and � ? � � � � � , then we write

� ? � * �;$
� ? ) $ � )

if there is a
� � � such that � ? � * � $ � $ � ? ) $ � )L) .

By Lemma 2.80 ( � Monotone in Second Argument) on page 108, we know that � $ � ? )
is a function that maps equivalent refinement types to equivalent refinement types. Thus�:$
� ? ) is a function. We can also show that

�
maps equivalent refinement types to equal

functions:

Lemma 2.89 (
�

Preserves Equivalence) Suppose
�

? and � ? refine � � � � . Then
�:$ �

? ) * �$
� ? )

if and only if �
? � � ? 5
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Proof: By definition of equality for functions we have
�:$ �

? ) * �$
� ? ) if and only if for

all � in
��� $ � ) we have

�:$ �
? ) $ � ) * �:$

� ? ) $ � ) . By definition of
�
, this is true if and only if

whenever � � �
�

we have � $ � ? ) $
� ) � � $ � ? ) $

�
� ) . By Lemma 2.85 ( � Preserves Information)

on page 113, this is equivalent to
�

? � � ?.
�

Theorem 2.90 (Finite Refinements) For each ML type � we have EC
$ � ) is finite.

Proof: By induction on � .

Case: u=uc By Assumption 2.8 (Finite Predefined Refinements) on page 31,
� �

has only

finitely many refinements, so it can have only finitely many equivalence classes.

Case: � * � 1
M

. . .
M � � Any refinement of � must have the form

$
� 1

1
M

. . .
M
� 1� ) � . . .

� $
�


1

M
. . .

M
�


� ) 5

By Fact 2.23 (Tuplesimp Sound) on page 41, this is equivalent to a refinement type of the
form

�
1

M
. . .

M � � . By TUPLE-SUB, two refinements of � of this form are equivalent if and
only if they are equivalent componentwise. Since our induction hypothesis tells us that
there are only finitely many equivalence classes for each component, there are only finitely
many equivalence classes of tuples without a toplevel

�
. Since each refinement of � is

equivalent to one without a toplevel
�

, there are only finitely many equivalence classes of
refinements of � .

Case: ��* � � � � By our induction hypothesis,
��� $ � ) and

��� $ � � ) are both finite. By

Lemma 2.89 (
�

Preserves Equivalence) on page 114, for all � refining � we have � $
� ) is

uniquely determined by
�:$
� ) . Since

�;$
� ) maps elements of

��� $ � ) to elements of
���Q$ � � ) ,

there are only finitely many distinct values for
�:$
� ) , and therefore only finitely many values

of � $
� ) and only finitely many values in

��� $ � ) . �

Finite Refinements straightforwardly gives us principal refinement types. Later on we
prove that there is an algorithm that computes principal refinement types; this proof can
also be interpreted as a proof that principal types exist, but it has the disadvantage of being
much more complex than the simple proof we give here.

Corollary 2.91 (Principal Refinement Types) If

VR

 � : �

then there is a
�

such that
VR


 � :
�

and for all � we have
VR


 � : � implies
� �

� .
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We prove this by choosing
�

to be the intersection of all refinement types such that
VR


 � :
�

, with suitable perturbations to ensure that this intersection is finite.

Proof: By Theorem 2.54 (Inferred Types Refine) on page 68, there is a � such that � � �
and

rtom
$
VR ) 
 � :: ��5 $

2 5 48 )
Let ! � * � � � ��� $ � ) / for some � in � we have VR


 � : �
� 5

and for � in
! �

let
���

be an arbitrary but fixed element of � . By Theorem 2.90 (Finite
Refinements) on page 115,

��� $ � ) is finite. Thus
! �

is finite and we can choose
� * � � ��� / � � ! � �

without creating an infinite syntactic object. Now we have to prove that
�

has the two
properties required by our conclusions.

Proof of VR

 � :

�
: By construction of

! �
, for each

� �
there is a

� ��
such that

� �
�
� ��

and

VR

 � :

� �� 5
WEAKEN-TYPE immediately gives VR


 � :
���

, and repeated use of AND-INTRO-TYPE gives

VR

 � :

� 5
Proof of VR


 � : � implies
� �

� : Suppose VR

 � : � . By Theorem 2.54 (Inferred

Types Refine) on page 68, there is a � such that � � � and rtom
$
VR ) 
 � :: � . By Lemma

2.4 (Unique Inferred ML Types) on page 27, we must have �?* � . Thus, by construction
of

! �
, � must be in some equivalence class � in

! �
. Since � is an equivalence class,

���
� �15

By repeated use of AND-ELIM-L-SUB and AND-ELIM-R-SUB, we have
� �

�C5
Since this argument is valid whenever VR


 � : � , we have

VR

 � : � implies

� �
� ,

which is our second conclusion.
�

2.10 Decidability

This section will describe an algorithm for finding the principal refinement type of an
expression. This requires being able to list one representative of each equivalence class
of refinements of an ML type and being able to decide whether one refinement type is a
subtype of another. These last two algorithms are mutually recursive, so we will describe
them together in Subsection 2.10.1. Then we will give an algorithm for finding the principal
split of a refinement type in Subsection 2.10.2. A notion of least upper bound for refinement
types is defined in Subsection 2.10.3, then we use all of these in an algorithm for deciding
refinement types in Subsection 2.10.4.
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2.10.1 Deciding Subtyping and Enumerating Refinements

Now we will describe procedures for determining whether one refinement type is a subtype
of another and for enumerating the refinements of an ML type. The strategies for doing both
of these are very straightforward except when we are dealing with functional ML types.

To determine whether �
� �

when both � and
�

refine a functional ML type � 1
� � 2, we

check whether, for all � refining � 1, we have � $ � ) $
� ) � � $ � ) $

� ) . If this condition is true for
all � , then �

� �
.

To enumerate all refinements of a functional ML type � 1
� � 2, we enumerate all possible

monotone functions � $ � ) mapping refinements of � 1 to generalized refinements of � 2, and
convert each function to a refinement type. Converting these functions to refinement types
is the job of the

I @ �G � ��I
procedure described below; this procedure is the inverse of � ,

since when we only specify the first argument of � , it maps a refinement type to a monotone
function from refinement types to generalized refinement types.

We will describe the algorithms for computing this in stages. In this introduction we
will briefly list the functions and give an intuitive idea of what they should do. Then
in Subsubsection 2.10.1.1 we will give a formal specification of the functions along with
pseudocode implementing them. Finally, in Subsubsection 2.10.1.2 we will prove each
function satisfies its specification.

The functions involved are:

� I @
� Computes the intersection of refinement types in � .

� G���I @ � Computes the least refinement of � .
9 D�D � ��I H � Returns a set containing one representative from each equivalence class of

refinements of � .
H � � ��������

� ?
�

? � Determines whether � ? � �
?, assuming both � ? and

�
? refine � .

B I @
� ? � � Computes � $ � ? ) $

� ) , assuming � � � and for some � we have � ? � � � � .
I @ �;G � ��I 
 � If 
 is a monotone function from refinements of � to generalized refinements

of some � , and � refines � , then 
 $
� ) � � $ I @ �;G � ��I 
 ) $

� ) .

2.10.1.1 Specifications and Definitions

We will describe the algorithm by using a mixture of SML and mathematical notation. In
this notation, we use braces ( � � ) to denote mathematical sets, not SML records. We will
also freely use ellipses (. . .) and set comprehensions ( � / � ) when the meaning is obvious
and obviously computable. We will assume an infix operator � takes the cross product of
several sets of refinement types and combines them into tuples; for example,

� # # ( � � � � O P R R'U � � � � ���:� # � * � # # M O PSRTR'UXM � ���:� # ( � M OQPSRTR'U�M � ���:� # � 5



CHAPTER 2. REFINEMENT TYPE INFERENCE 118

� I @
First we have a trivial utility procedure to compute � and give an example of our

notation for algorithms. If � is a finite set of refinement types, the function call � I @
� must

return � � . For example,
� I @ � #T# ( � � * #T# � � 5

We define � I @
as follows:

I � @ � I @ � � > ���E � I @ � � � >
�E � I @Z$ � � ( � � �
� ) >

�
� $ � I @Z$ � � � �

� )L)
The last case may be a little confusing because we are using SML’s destructuring notation to
destructure a mathematical object. It means “whenever the argument to � I @

has the form
� � ( � � �

� , the result is �
� $ � I @Z$ � � � �

� ) ) ”. This notation is vague about which elements
of � we choose to name � and

�
; this vagueness (and similar vagueness in algorithms that

follow) makes no important difference, and we shall ignore it.

The above function is the only one that does not participate in the mutual recursion to
come.

� G���I @
The function call � G���I @ � returns the least refinement of � . That is, if � � � , then$ � G���I @ � ) � � . The code for � G���I @

is:

I � @ � G���I @ � > � $ 9 D�D � ��I H � )
Note that there may be values of ML type � with the refinement type � G���I @ � ; for example,
if have a datatype d and with no declared refinements, there will be only one refinement of
d; call it

O �
. Then � G���I @ 2 * O �

, which will be inhabited by all values with ML type 2 .

9 D�D � ��I H
The function call

9 D�D � ��I H � returns a list of one representative of each equiv-
alence class of refinements of � the refinements of � . If � � � , then there must be a� � 9 D�D � ��I H � such that � �

�
. Also, for all � we must have

9 D�D � ��I H � is finite.

For example, 9 D�D � ��I H <WK K � * � #T# ( � ( O P R R'U ( � P R R'U � 5
It would be consistent with the specification for

9 D�D � ��I H <WK%K �
to return � #T# � #T# ( � �O P R R'U ( O PSRTR'U ( # # � � �

. The code for
9 D�D � ��I H

follows. As in Standard ML, when we have
multiple mutually recursive procedures, we introduce all but the first with the

9 @ 8
keyword

instead of the
I � @

keyword.
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9 @ 8 9 D�D � ��I H $ � 1
M

. . .
M � � ) > 9 D�D � ��I H � 1

� . . . � 9 D�D � ��I H � �E 9 D�D � ��I H $ � � � ) >
� I @ �;G � ��I 
 � /


 is a function from
9 D�D � ��I H � to

$ 9 D�D � ��I H � ) � � ��� �9 @ 8 
 $ � G���I @ � ) �* ���9 @ 8
for all � and

�
in

9 D�D � ��I H � we haveH � � �����;���
�
� � implies

H � � �����;��� $ 
 � ) $ 
 � ) � �E 9 D�D � ��I H #�� > � ��� / � � def� #�� �
H � � ��������

The function call
H � � �����;���

� ?
�

? � determines whether � ? � �
?, assuming

that both � ? and
�

? refine � . For example,
H � � �������� # # � <WK�K � * � �	� � 5

The code for
H � � �����;�

follows; note that it uses the
� � � D � H�B � �

and � ��G @1H�B � �
functions,

which are defined on pages 41 and 42, respectively.

9 @ 8 H � � �������� � ��� � > � ��� �E H � � �������� ����� � > I9 D:H �E H � � ��������
�
� $ � 1

M
. . .

M � � ) >D ��� � 9 D
� 1

M
. . .

M
� �

> � � � D � H�B � �
�

� 9 D �
1

M
. . .

M �
�

> � � � D � H�B � � �
B�@

for � in 1 . . .
�

we have
H � � ��������

� � � � � �� @ 8E H � � ��������
�
� $ � 1

� � 2 ) >
for all � � 9 D�D � ��I H � 1 we have

H � � �������� $LB I @
� � � 1 ) $LB I @ �

� � 1 ) � 2E H � � ��������
�
� � � >

D ��� � 9 D � � > � ��G @CH�B � �
�

� 9 D � � > � ��G @CH�B � � �
B�@

� � def� � �
� @ 8

We could make the � 1
� � 2 case more efficient by replacing it with

E H � � �����;���
�
� $ � 1

� � 2 ) >D ��� $ �
1
� � �

1
�

. . .
� � � � � �� ) > �

B%@
for all � in 1 . . .

�
we have

H � � �����;��� $ B I @
�
� � � 1 ) � �� � 2� @ 8

but this would be slightly more difficult to prove, and it does not work for the representation
of refinement types used in the serious exploration of efficiency in Chapter 7. Thus we will
stay with the simpler but less efficient version.
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B I @
The function call

B I @
� ? � � computes � $ � ? ) $

� ) , assuming that for some � we have
� ? � � � � and � � � . For example,

B I @Z$ # # � #T# � � � � ) � PSRTR'U <WK K � * #T# � �
and B I @,$L#T# � #T# ) � <WK K � * ����5
The code for

B I @
is:

9 @ 8 B I @
� ? � � >B I

� ?
> ��� ���� @ ���� D:H � D ��� � 9 D

� 1
�
�
�
1

�
. . .
�
��� � �

�� >
� ?B�@ � I @ � � �� / � � 1 . . .

�
and

H � � ��������
� ��� � �� @ 8

I @ �G � ��I
The function

I @ �G � ��I
is an inverse of sorts to

B I @
. If 
 maps refinements of �

to generalized refinements of some other ML type, and 
 is monotone, and 
 $ � G���I @ � ) is
not ��� , then

I @ �G � ��I 
 � is a refinement type and for all
�

refining � we have


 $ � ) � � $ I @ �;G � ��I 
 � ( � ) 5
We need to require 
 to be monotone because � is monotone in its second argument, so

the equivalence just displayed could not possibly be true if 
 is not monotone. We need

 $ � G���I @ � ) to be something other than ��� to ensure

I @ �;G � ��I 
 � is always a refinement
type. The code for

I @ �G � ��I
is:

9 @ 8 I @ �G � ��I 
 � >
� I @ � � � 
 $

� ) / � � 9 D�D � ��I H � and 
 $
� ) �* ��� �

2.10.1.2 Soundness

To prove these algorithms sound, we need to prove they always terminate and they fit their
specifications. First we will show partial correctness, then we will give an informal proof
of termination.

Theorem 2.92 (Subtype Decidability) All of the functions discussed in Subsubsec-
tion 2.10.1.1 fulfill their specification when they terminate.

Proof: By induction on the evaluation of the function.
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� I @
meets its specification Trivial.

� G���I @
meets its specification We need to show that if � � � , then � G���I @ � � � . By

induction hypothesis, we can assume that
9 D�D � ��I H

is sound; thus there is a
�

in
9 D�D � ��I H �

such that � �
�

. By repeated use of AND-ELIM-L-SUB and AND-ELIM-R-SUB we have� $ 9 D�D � ��I H � ) � �
. Then TRANS-SUB gives

� $ 9 D�D � ��I H � ) � � , which is our conclusion.

9 D�D � ��I H
meets its specification We need to show that for all � we have

9 D�D � ��I H � is
finite, and that if � � � , there is a

� � 9 D�D � ��I H � such that � �
�

.

Case:
9 D�D � ��I H $ � 1

M
. . .

M � � ) The code for this case is

I � @ 9 D�D � ��I H $ � 1
M

. . .
M � � ) > 9 D�D � ��I H � 1

� . . . � 9 D�D � ��I H � �

Suppose �
� � 1

M
. . .

M � � . Then
� � � D � H�B � �

� must be defined and have the form
� 1

M
. . .

M
� � , and soundness of

� � � D � H�B � �
gives

� � � D � H�B � �
� � � 1

M
. . .

M
� � . By induction

hypothesis, for
�

in 1 . . .
�

there is a � � in
9 D�D � ��I H � � such that � � � � � . Then TUPLE-SUB

gives
� 1

M
. . .

M
� � � � 1

M
. . .

M
� �

and TRANS-SUB gives
� � � 1

M
. . .

M
� � 5

The definition of � then gives

� 1
M

. . .
M
� � � 9 D�D � ��I H � 1

� . . . � 9 D�D � ��I H � ��5
Thus � 1

M
. . .

M
� � is the member of

9 D�D � ��I H � that we seek. Since the cross product of a
finite number of finite sets is finite,

9 D�D � ��I H � is a finite set, so we are done.

Case:
9 D�D � ��I H � � � The code for this case is

E 9 D�D � ��I H $ � � � ) >
� I @ �;G � ��I 
 � /


 is a function from
9 D�D � ��I H � to

$ 9 D�D � ��I H � ) � � ��� �9 @ 8 
 $ � G���I @ � ) �* ���9 @ 8
for all � and

�
in

9 D�D � ��I H � we haveH � � ��������
�
� � implies

H � � �������� $ 
 � ) $ 
 � ) � �

Suppose � � � � � . Then � has the form � 1
�
�
�
1
�

. . .
�
��� � �

�� . Define


 *�� � 5
� ��� if � $ � ( � ) * ���

any � in
9 D�D � ��I H � such that � � � $ � ( � ) otherwise.
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We will show that
I @ �G � ��I 
 � is in

9 D�D � ��I H � � � , and that � �
I @ �G � ��I 
 � .

By definition of � , we know that 
 $ � G���I @ � ) is �
�
1
�

. . .
�
�
�� , which is certainly not ��� .

Since � $ � ( � ) is monotone in
�

we know that 
 is monotone. Thus the code for this case of9 D�D � ��I
tells us I @ �G � ��I 
 � is in

9 D�D � ��I H $ � � � ) .
Let �

� * I @ �G � ��I 
 � . Since
I @ �G � ��I

is sound, we know that

for all
�

refining � we have 
 $ � ) � � $ � � ( � ) .
By definition of 
 we have

for all
�

refining � we have 
 $ � ) � � $ � ( � ) .
By transitivity of � , these imply

for all
�

refining � we have � $ � � ( � ) � � $ � ( � ) .
By Lemma 2.85 ( � Preserves Information) on page 113, this implies �

�
� � .

We know that
9 D�D � ��I H � � � is finite because by induction

9 D�D � ��I H � and
9 D�D � ��I H �

are finite, and there are finitely many functions from a finite set to a finite set.

Case:
9 D�D � ��I H #��

The code for this case is

E 9 D�D � ��I H #�� > � � � / � � def� #�� �
By Assumption 2.8 (Finite Predefined Refinements) on page 31,

9 D�D � ��I H #��
is finite.

Suppose � � #��
. Then � must have the form

� �
1
�

. . .
� � � � , where for all � , � � � � #��

.
Then Lemma 2.24 (Refinement Constructor Intersection) on page 41 gives

� �
� �

1
def�

. . .
def� � � ��5

By Theorem 2.21 (Subtypes Refine) on page 36,
� �

1
def�

. . .
def� � � � � #��

; this can only be

inferred by using RCON-REF with the premise
� �

1
def�

. . .
def� � � � def� #��

. Thus
� �

1
def�

. . .
def� � � � �9 D�D � ��I H #��

, which is what we wanted to show.

H � � ��������
meets its specification We need to show that if both � ? and

�
? refine � , thenH � � ������

� ?
�

? � returns true if and only if � ? � �
?.

Case:
H � � ��������

� ? ��� �
The code for this case is

9 @ 8 H � � �����;��� � ��� � > � �	� �
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The definition of � gives � ? � ��� , which is what we wanted to show.

Case:
H � � �������� ��� �

?
�

The code for this case is

E H � � �����;��� ��� � � > I9 D:H �

The definition of � tells us that ��� � �
? is false, which is what we wanted to show.

Case:
H � � ��������

�
� � � 1

M
. . .

M � � � The code for this case is

E H � � ��������
�
� $ � 1

M
. . .

M ��� ) >D ��� � 9 D
� 1

M
. . .

M
���

> � � � D � H�B � �
�

� 9 D �
1

M
. . .

M �
�

> � � � D � H�B � � �
B%@

for � in 1 . . .
�

we have
H � � �����;���

� � � � � �� @ 8
Since � and

�
both refine � 1

M
. . .

M � � , � � � D � H�B � �
� and

� � � D � H�B � � �
are defined and

� � � D � H�B � �
� has the form � 1

M
. . .

M
� �

and � � � D � H�B � � �
has the form

�
1

M
. . .

M �
�45

By soundness of
� � � D � H�B � �

,
� � � 1

M
. . .

M
� �

and �
�
�

1
M

. . .
M �

�45
Suppose

�
� � 5 $

2 5 49 )
By TRANS-SUB, this is equivalent to

� 1
M

. . .
M
� �
� �

1
M

. . .
M �

�45
By TUPLE-SUB and Corollary 2.27 (TUPLE-SUB Inversion) on page 45, this is equivalent to

for � in 1 . . .
�

we have � � � � � .

By induction hypothesis,
H � � ��������

is sound, so this is equivalent to

for � in 1 . . .
�

we have
H � � �����;���

� � � � � � �

$
2 5 50 )

Summarizing the above argument, (2.49) is equivalent to (2.50). By definition of
H � � �����;�

,
this is our conclusion.

Case:
H � � ��������

�
� � � 1

� � 2
�

The code for this case is
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E H � � ��������
�
� $ � 1

� � 2 ) >
for all � � 9 D�D � ��I H � 1 we have

H � � �����;��� $ B I @
� � � 1 ) $ B I @ �

� � 1 ) � 2

Suppose
�
� � $

2 5 51 )
By Lemma 2.84 (Ordering on � ) on page 112 and Lemma 2.81 ( � Monotone in First
Argument) on page 109, this is equivalent to

for all �
� � � 1 we have � $ � ) $

�
� ) � � $ � ) $

�
� ) . $

2 5 52 )
Since we can assume by induction that recursive calls to

9 D�D � ��I H
are sound, for all �

� � � 1

there is a � in
9 D�D � ��I H � 1 such that � � �

�
. This and Lemma 2.81 ( � Monotone in First

Argument) on page 109 give

for all �
� � � 1 there is a � in

9 D�D � ��I H � 1 such that
� $ � ) $

� ) � � $ � ) $
�
� ) and � $ � ) $

� ) � � $ � ) $
�
� ) .

We can use this with Fact 2.78 (Transitivity of � ) on page 108 on (2.52) to get

for all � in
9 D�D � ��I H � 1 we have � $ � ) $

� ) � � $ � ) $
� ) .

By induction, we can assume that recursive calls to
H � � ��������

and
B I @

are sound, so this is
equivalent to

for all � in
9 D�D � ��I H � 1 we have

H � � �������� $LB I @
� � � 1 ) $LB I @ �

� � 1 ) � 2
$
2 5 53 )

Summarizing the argument so far, (2.51) is equivalent to (2.53). This is our conclusion.

Case:
H � � ��������

�
� #��

The code for this case is
E H � � �����;���

�
� #�� >D ��� � 9 D � � > � ��G @1H�B � �

�
� 9 D � � > � ��G @CH�B � � �

B%@
� � def� � �

� @ 8
By assumption, � and

�
refine

#��
; therefore both calls to � ��G @1H�B � �

are valid. By Fact 2.23
(Tuplesimp Sound) on page 41, � �

� �
and

�
�

� �
.

Suppose �
� �

. By TRANS-SUB, this is equivalent to
� ��� � �

; by RCON-SUB and Fact

2.29 (RCON-SUB Inversion) on page 45, this is equivalent to
� � def� � �

. Summarizing the

argument so far, �
� �

if and only if
� � def� � �

. By definition of
H � � ��������

, this is our
conclusion.

B I @
meets its specification The code for

B I @
is



CHAPTER 2. REFINEMENT TYPE INFERENCE 125

9 @ 8 B I @
� � � >D ��� � 9 D

� 1
�
�
�
1

�
. . .
�
��� � �

�� >
�B�@ � I @ � � �� / � � 1 . . .

�
and

H � � ��������
� ��� � �� @ 8

and we need to show that if � � � � � and �
� � then

B I @
� � � * � $ � ( � ) . This is

obviously correct, since we can assume by induction that the recursive calls to
H � � �����;���

are sound.

I @ �G � ��I
meets its specification The code for

I @ �;G � ��I
is

9 @ 8=I @ �;G � ��I 
 � >
� I @ � � � 
 $

� ) / � � 9 D�D � ��I H � and 
 $
� ) �* ��� �

and we need to show that if there is a � such that


 maps refinements of � to generalized refinements of �
and


 is monotone

and

 $ � G���I @ � ) is not ��� ,

then for all
� � � we have


 $ � ) � � $ I @ �;G � ��I 
 � ) $ � ) 5
Since 
 $ � G���I @ � ) is not ��� , we know that

$ � G���I @ � ) � 
 $ � G���I @ � ) is one of the com-
ponents in

I @ �G � ��I 
 � . Thus
I @ �G � ��I 
 � is not ��� , and we can let � * I @ �G � ��I 
 � .

Suppose
� � � . By definition of � ,

� $ � ) $ � ) *�� � 
 $
� ) / � � � � 5

SELF-SUB gives
� � �

, so 
 $ � ) is in � 
 $
� ) / � � �

�
and Fact 2.77 ( � Intro Sub) on

page 107 gives

 $ � ) � � � 
 $

� ) / � � � � 5
Since f is monotone,

� �
� implies 
 $ � ) � 
 $

� ) . Thus all elements of � 
 $
� ) / � � � � are

greater than 
 $ � ) , so Fact 2.76 ( � Elim Sub) on page 107 gives

� � 
 $
� ) / � � � � � 
 $ � ) 5

Thus � $ � ) $ � ) � 
 $ � ) , which is our conclusion.
�

Theorem 2.93 (Termination for
H � � ��������

and
9 D�D � ��I H

) All algorithms defined in Sub-
subsection 2.10.1.1 terminate for all inputs.
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The function � I @
terminates because its argument is a finite set. An infinite execution

of any other function must involve infinitely many recursive calls to some function, call it

 . Examination of the code tells us 
 must have an argument that is an ML type, and that
ML type must get smaller from one call to 
 to the next. Since all ML types are finite, this
is a contradiction. Thus all executions are finite.

�

2.10.2 Deciding Splits

In the refinement type inference algorithm we present in Subsection 2.10.4, the SPLIT-TYPE

rule is always done as early as possible; each variable is split exactly once when it is
added to the variable environment. For example, if the algorithm is considering what might
happen if � has type

O PSRTR'U
, it will split this into the possibilities � :

# #
and � :

�
when � is

added to the environment, and it will not consider splitting � again. The appropriate split
to use is the principal split of the type of � , as discussed in Subsubsection 2.6.2.2. This
Subsection gives a procedure for computing principal splits.

2.10.2.1 Computing Principal Splits

We will give a constructive proof that principal splits exist which can also be used as an
algorithm for computing them. But first we will give an algorithm

9 @ � H � D:B �
that returns

a useful split of a refinement type if there is one. If there are none, then
9 @ � H � D B �

returns
the singleton set containing its argument.

I � @ 9 @ � H � D B �
�

$ � 1
M

. . .
M � � ) >

D ��� � 9 D
� 1

M
. . .

M
���

> � � � D � H�B � �
�B�@

9 @ � H � D:B �
� 1

� . . . � 9 @ � H � D:B �
���� @ 8E 9 @ � H � D B �

�
#�� >

D ��� � 9 D � � > � ��G @1H�B � �
�B%@ B I � �

has a useful predefined split
! �

���� @ ! �
� D H � � � �� @ 8E 9 @ � H � D B �

�
$ � 1
� � 2 ) > � � �

Soundness of his algorithm follows by induction on the ML type argument.

Assuming
9 @ � H � D B �

works, it is straightforward to find a principal split. Just split all
of the fragments so long as there is one with a useful split, and then use ELIM-SPLIT to
eliminate as many elements as possible.
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Theorem 2.94 (Principal Split Existence) If � � � and �
�
� then we can construct an �

�
that is a principal split of � .

Proof: Let � 1 * � . For ��� 1, if there is an element � � of � � with a useful split �
� �
� , then let

� ��� 1 * $
� � � � � � � ) �

�
� �
� 5

This process has to stop eventually, because by definition of useful the elements added to
each � � are strictly subtypes of the elements we take from ��� , and � has only finitely many
refinements. Let

�
be the last value of � ; by construction, we know that

for all
�

in � � , all splits of
�

are useless.

By repeated use of TRANS-SPLIT,

for all � we have �
�
� � .

Once we eliminate as many elements as possible from � � we will have our result. This is
straightforward: arbitrarily order the elements of � � such that

� � 1 ( . . . ( � 
 � * � �:5
Let

�
� * � � � / � in 1 . . .

�
and whenever

�
� � � � and

� � � �
� we have

� � �
�
� and

� � � .
� 5

By construction, ELIM-SPLIT can eliminate no more elements from �
�
. By repeated use of

ELIM-SPLIT, �
�
�
�
. Since �

�
is a subset of � ,

for all
�

in �
�
, all splits of

�
are useless.

Thus, by Lemma 2.46 (Fragments of Principal Split have Useless Splits) on page 58, �
�

is
a principal split of � .

�

2.10.3 Join

A refinement type for a
��9 H �

statement is an upper bound of the refinement types of the
reachable branches, and the principal refinement type of the case statement is the least upper
bound of the principal refinement types of the reachable branches. Therefore we need to
be able to compute least upper bounds of refinement types. For example, assume that
we have an ML datatype type

< � �"!�#
with only the refinement

O P U �����
and a function

� � �������
with refinement type

O P U ������� O PSRTR'U
and a value

@CB4D $ ) of type
O PTU � ���

. The intuition is that� � �������
determines whether the list is empty, but the programmer has not declared interest

in the distinction between empty
< � �"!�#

’s and nonempty
< � �"!�#

’s, so refinement type inference
will not notice this. Then the expression

� � ������� $ @1B4D $ )L) has the principal type
O P R R'U

,
and computing the principal type of the statement
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��9 H �N� � ������� $ @1BXDA$ )L) G�I� �	� � > � I @ B ��@ G � � 8 � #���� � # > � � �	� � $ )E I9 D H � >�� I @,B ��@ G � � 8 � #����:� # >�� I;9 D H � $ )� @ 8 � < K K �
requires finding the least upper bound of the principal types of the expressions

� �	� � $ )
and

I9 D:H � $ ) , yielding
O PSRTR'U

. In general, the least upper bound will not always exist; in
that case the

��9 H �
statement has no refinement type. For example, assuming

�
has the type#T# � #T#

and
�

has the type
� � �

, trying to find a type for the statement

��9 H �N� � ������� $ @1BXDA$ )L) G�I� �	� � >�� I @ B ��@ G � � 8 � #����:� # > � �E I9 D H � > � I @,B���@ G � �48 � #����:� # > � �� @ 8 � < K K �	� <WK K �
requires finding a least upper bound for

# # � #T#
and

� � �
. There is none, and this statement

has no refinement type. (The reader may object that we cannot write an expression that
has the principal type

#T# � #T#
. This is true for the language constructs introduced in this

chapter, but it will be false after we introduce the � operator in Chapter 6. In any case, it
is consistent with the theory to hypothesize such a variable.)

We will call these least upper bounds “joins” rather than “disjunctions” or “unions”.
Calling them disjunctions would conflict with existing nomenclature used in type theory.
Calling them unions would be misleading because if we interpret the refinement types as
sets, the interpretation of the join of two refinement types may be a proper superset of the
union of their interpretations. For example, the join of the refinement types

O PTU � ����� #T#
andO PTU � ����� �

is
O PTU � ����� OQPSRTR'U

. The function
� � �������

is in the interpretation of
O P U ������� O P R R'U

,
but it is not in the interpretations of either

O PTU � ����� # #
or

O PTU � ����� �
, so it is not in the union

of their interpretations.

According to John Reynolds [personal communication, 1993], type inference for
Forsythe uses a similar notion of least upper bounds for the same purpose.

2.10.3.1 Definition of Join

The least upper bound, if it exists, is the greatest lower bound of all of the upper bounds.

Definition 2.95 If � ? � � and
�

? � � then we define

� ? �
�

? *�� � � � 9 D�D � ��I H � / � ? � � and
�

? � � � 5

We would say “� � � ” instead of “� � 9 D�D � ��I H � ” except � is meaningless for infinite
sets, and if we compare refinements of � by mathematical equality rather than refinement
type equivalence, there are infinitely many refinements of � .
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We also define a join operator for refinement type constructors:

Definition 2.96 If rc
def� tc and kc

def� tc then we define

rc
def

� kc * def� � pc / rc
def�

pc and kc
def�

pc
� 5

If the set is empty, then
� � def

�
� �

is undefined.

It is easy to see that � ? �
�

? is an upper bound of � ? and
�

? in the � ordering; we can
derive � ? � � ? �

�
? by using the definition of � and repeated use of Fact 2.77 ( � Intro

Sub) on page 107.

It is also easy to see that it is a least upper bound; if � is an upper bound of � ? and
�

?, it is
one of the components in � ? �

�
?, so repeated use of AND-ELIM-R-SUB and AND-ELIM-L-SUB

gives � ? �
�

? � � . The definition of � tells us that ��� is also an upper bound of � ? and
�

?
and that � ? �

�
? � ��� .

We can effectively compute � because
9 D�D � ��I H

and � are both computable. Unfortu-
nately, the obvious algorithm derived directly from the definition is inefficient because the
size of the set returned by

9 D�D � ��I H
is exponential in the size of the argument to

9 D�D � ��I H
.

In this section we will present a more efficient algorithm.

If the obvious slow algorithm were used to find
#T# � #T#

�
#T# � �

, it would first find9 D�D � ��I H $ <WK K �	� <WK%K � ) and then take the intersection of all types in that set that are greater
than both

#T# � #T#
and

#T# � �
. The algorithm presented in this subsection would only

need to evaluate
9 D�D � ��I H <WK K �

. The algorithm presented here is still exponential though;
for instance, it will evaluate

9 D�D � ��I H $ <WK�K � � <WK%K � ) if asked to find
$L#T# � # # ) � #T#

�$L#T# � � ) � # #
.

Theorem 2.97 (Join is Decidable) There is an algorithm � G B%@ I
mapping two generalized

refinement types and an ML type to a generalized refinement type such that if

� ? � �
and �

? � �
then all of the following are true:

� ? � � and
�

? � � implies � G B�@ I
� ?

�
? � � �

� ? ��� G B%@ I
� ?

�
? �

�
? ��� G B�@ I

� ?
�

? �
computation of � G B%@ I

� ?
�

? � terminates.
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Proof: We will present the definition of � G B%@ I
as we prove it correct. The proof is by

induction on � . In each case we will omit the proof of
�

? � � G B%@ I
� ?

�
? � because it is

essentially the same as the proof of � ? ��� G B�@ I
� ?

�
? � .

Since least upper bounds are unique, our conclusion is equivalent to

� G B�@ I
� ?

�
? � � � ? �

�
? 5

Case: � G B%@ I ��� �
or � G B%@ I � ��� This case reads

I � @ � G B�@ I ��� � � > ���E � G B�@ I � ��� � > ���

Both of these cases are trivial. In all future cases, we will assume that � and
�

are not ��� .
Case: � G B%@ I

�
� � � 1

M
. . .

M ��� � This case reads

E � G B%@ I
�
� $ � 1

M
. . .

M � � ) >D ��� � 9 D
� 1

M
. . .

M
���

> � � � D � H�B � �
�

� 9 D �
1

M
. . .

M �
�

> � � � D � H�B � � �
B%@ B I

for � in 1 . . .
�

we have
$ � G B%@ I

� � � � � � ) �* ���� �;� @Z$ � G B�@ I
� 1

�
1 � 1 ) M

. . .
M $ � G B%@ I

���
�
� ��� )� D:H � ���� @ 8

SubCase: �
�
� and

� �
� implies

$ � G B%@ I
�
� � 1

M
. . .

M � � ) � � Suppose �
�
� and

� �
� . By Lemma 2.22 (Tuple Intersection) on page 40, there are � 1 through � � such that

� 1
M

. . .
M
� � � � . By TRANS-SUB, Corollary 2.27 (TUPLE-SUB Inversion) on page 45, and

soundness of
� � � D � H�B � �

, we have

for � in 1 . . .
�

we have � � � � � and
� � � � � .

By induction we can assume that recursive calls to � G B%@ I
are sound, so this implies

for � in 1 . . .
�

we have � G B%@ I
� � � � � � � � � $

2 5 54 )
and then TUPLE-SUB and TRANS-SUB give

$ � G B%@ I
� 1

�
1 � 1 ) M

. . .
M $ � G B�@ I

� �
�
� � � ) � �C5

(2.54) tells us that for � in 1 . . .
�

we have
$ � G B%@ I

� � � � � � ) �* ��� , so the definition of
� G B%@ I

gives
� G B%@ I

�
� $ � 1

M
. . .

M � � ) � � (
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which is our conclusion.

SubCase: ��� � G B�@ I
�
� � By Fact 2.23 (Tuplesimp Sound) on page 41 we know that

� 1
M

. . .
M
��� � � . By soundness of the recursive call to � G B�@ I

,

for � in 1 . . .
�

we have � � � � G B%@ I
� � � � � � .

If any of the � G B%@ I
� � � � � � ’s are ��� , then the definition of � gives

� � ���45
Otherwise TUPLE-SUB and TRANS-SUB give

�
� $ � G B%@ I

� 1
�

1 � 1 ) M
. . .

M $ � G B%@ I
���

�
� ��� ) 5

Either way, by definition of this case of � G B%@ I
we have

��� � G B�@ I
�
� $ � 1

M
. . .

M � � ) (
which is our conclusion.

SubCase: � G B�@ I
terminates. Trivial.

Case: � G B%@ I
�
� $ � 1

� � 2 ) The code for this case uses the
B I @

function defined on

page 120 to compute the interpretation � of a refinement type. Here it is:

E � G B%@ I
�
� $ � 1

� � 2 ) >
� � � � � G B�@ I $LB I @

� � � 1 ) $LB I @ �
� � 1 ) � 2 /

� � 9 D�D � ��I H � 1 and$ � G B�@ I $LB I @
� � � 1 ) $LB I @ �

� � 1 ) � 2 ) �* ��� �

Before showing that this case of � G B�@ I
works reasonably, we need to show that its inter-

pretation works reasonably. Formally, we will start by showing that if � � � 1 then

� $ � G B�@ I
�
� $ � 1

� � 2 ) ) $
� ) � � $ � ) $

� ) � � $ � ) $
� ) 5

Suppose � is given and � � � 1. Consider

� $ � G B%@ I
�
� $ � 1

� � 2 )L) $
� ) 5 $

2 5 55 )
By definition of � G B�@ I

, this is equal to

� $ � � � � � � G B�@ I $ � $ � ) $
�
� ) ) $ � $ � ) $

�
� )L) � 2 /

�
� � 9 D�D � ��I H � 1 and$ � G B%@ I $ � $ � ) $

�
� )L) $ � $ � ) $

�
� ) ) � 2 �* ��� ) � ) $

� )
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and by definition of � , this is equal to

� � � G B%@ I $ � $ � ) $
�
� ) ) $ � $ � ) $

�
� ) ) � 2 /

�
� � 9 D�D � ��I H � 1 and$ � G B�@ I $ � $ � ) $

�
� )L) $ � $ � ) $

�
� )L) � 2 ) �* ��� and

�
�
�
� � 5

$
2 5 56 )

By our induction hypothesis,

� G B�@ I $ � $ � ) $
�
� ) ) $ � $ � ) $

�
� )L) � 2 � � $ � ) $

�
� ) � � $ � ) $

�
� ) 5

Thus (2.56) is � to

� � � $ � ) $
�
� ) � � $ � ) $

�
� )3/

�
� � 9 D�D � ��I H � 1 and$ � G B�@ I $ � $ � ) $

�
� )L) $ � $ � ) $

�
� )L) � 2 ) �* ��� and

�
�
�
� �

$
2 5 57 )

By Lemma 2.80 ( � Monotone in Second Argument) on page 108 and monotonicity of � ,

�
�
�
�

implies � $ � ) $
� ) � � $ � ) $

� ) � � $ � ) $
�
� ) � � $ � ) $

�
� ) 5

Since we can eliminate components from the set in (2.57) that are known to be greater than
other components in (2.57) we know that (2.57) is equivalent to

� � � $ � ) $
� ) � � $ � ) $

� ) / $ � G B�@ I $ � $ � ) $
� ) ) $ � $ � ) $

� ) ) � 2 ) �* ��� � 5
By our induction hypothesis, � G B�@ I $ � $ � ) $

� )L) $ � $ � ) $
� ) ) � 2 is ��� if and only if � $ � ) $

� ) �
� $ � ) $

� ) is ��� . Thus this simplifies to

� $ � ) $
� ) � � $ � ) $

� ) 5 $
2 5 58 )

Summarizing (2.55) through (2.58), if � � � 1 then

� $ � G B�@ I
�
� $ � 1

� � 2 ) ) $
� ) � � $ � ) $

� ) � � $ � ) $
� ) 5 $

2 5 59 )

SubCase: ��� � and
� � � implies � G B%@ I

�
� $ � 1

� � 2 ) � � Suppose �
�
� and

� �
� .

By Lemma 2.81 ( � Monotone in First Argument) on page 109 we have

for all �
� � � 1 we have � $ � ) $

�
� ) � � $ � ) $

�
� )

and likewise for
�

gives

for all �
� � � 1 we have � $ � ) $

�
� ) � � $ � ) $

�
� ) .

Since � is a least upper bound, this implies

for all �
� � � 1 we have � $ � ) $

�
� ) � � $ � ) $

�
� ) � � $ � ) $

�
� ) ,
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and (2.59) gives

for all �
� � � 1 we have � $ � G B�@ I

�
� $ � 1

� � 2 )L) $
�
� ) � � $ � ) $

�
� ) ,

and Lemma 2.84 (Ordering on � ) on page 112 gives

� G B%@ I
�
� $ � 1

� � 2 ) � � (
which is our conclusion.

SubCase: ��� � G B�@ I
�
� $ � 1

� � 2 ) Since � is a least upper bound, we have

for all � � � 1 we have � $ � ) $
� ) � � $ � ) $

� ) � � $ � ) $
� ) 5

By (2.59) and Lemma 2.81 ( � Monotone in First Argument) on page 109, this implies

for all � � � 1 we have � $ � ) $
� ) � � $ � G B%@ I

�
� � 1

� � 2 ) $
� ) � � $ � ) $

� ) 5
By Lemma 2.81 ( � Monotone in First Argument) on page 109, this implies

� � � G B�@ I
�
� � 1

� � 2 (
which is our conclusion.

SubCase: Termination The only loop in this code is over a finite set, and by induction

we can assume that the recursive calls to � G B�@ I
terminate.

Case: � G B%@ I
�
� #��

The code for this case uses � ��G @1H�B � �
, which is defined on

page 2.6.1. Here is the code:

E � G B%@ I
�
� #�� >D ��� � 9 D � � > � ��G @1H�B � �

�
� 9 D � � > � ��G @CH�B � � �

B%@
B I � � def

�
� �

is undefined���� @ ���� D H � � � def
�

� �
� @ 8

SubCase: ��� � and
� � � implies � G B%@ I

�
� #�� � � Suppose �

�
� and

� �
� . Then

�
� #��

, so by Lemma 2.24 (Refinement Constructor Intersection) on page 41 there is a
� �

such that � �
� �

. Fact 2.25 (Rconsimp Sound) on page 42 gives

� �
� �
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and �
�

� � 5
Fact 2.29 (RCON-SUB Inversion) on page 45 gives

� � def� � �
and

� � def� � �
. Therefore

� � def
�

� �
is defined and � � def

�
� � def� � � 5

By RCON-SUB, TRANS-SUB, and the definition of this case of � G B�@ I
, this implies

� G B%@ I
�
� #��

is not ��� and
� G B�@ I

�
� #�� �

�C5
By definition of � , this implies

� G B�@ I
�
� #�� � � (

which is our conclusion.

SubCase: ��� � G B�@ I
�
� #��

If � G B%@ I
�
� #��

is ��� , then by definition of � we are

done.

Otherwise,
� � def

�
� �

is defined. By soundness of � ��G @1H�B � �
,

� �
� � . By properties of

def
� ,

� � def� � � def
�

� � 5
Using RCON-SUB, TRANS-SUB, and the definition of � G B%@ I

, this implies

�
def� � G B%@ I

�
� #�� (

which is our conclusion.

SubCase: Termination Trivial.
�

We will also define a simple function
H � G B�@ I

that finds the least upper bound of a finite
set of generalized refinement types:

I � @,H � G B�@ I � � � > � G���I @ �E?H � G B�@ I � $ � � ? � �
� ? ) > � G B%@ I

� ?
$LH � G B%@ I � � ? ) �

We use � G���I @ � as a base case for this recursive function because for all � refining � we
have $ � G���I @ � ) � � * � � � � 9 D�D � ��I H � / � � � and � G���I @ � � � �* � � � � 9 D�D � ��I H � / � � � �

� �%5
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2.10.4 Deciding Refinement Types

In this subsection we will give an algorithm called
B%@ I;� � and prove that it finds principal

refinement types. First in Subsubsection 2.10.4.1 we will give an overview of the algorithm
by giving examples of how it works for each case in the syntax. Then in Subsubsec-
tion 2.10.4.2 we will give a technical lemma that makes the proof much simpler. Finally in
Subsubsection 2.10.4.3 we will describe the algorithm

B%@ I� � and prove it correct.

This algorithm is similar to the one actually implemented. The main difference between
the algorithm described here and the implementation is the evaluation order;

B%@ I;� � is eager
and the implementation is lazy. For example, when confronted with the expression

I @�� � <LK%K � >��
��9 H � � G�I� ��� � > � I @ � > � I;9 D:H � $ )E I;9 D:H � > � I @ � > � � �	� � $ )� @ 8 � <LK K �

B%@ I� � eagerly finds a type for this by assuming
�

can have all possible refinements of
<WK K �

,
yielding the result

� PSRTR'U � � PSRTR'U � # # � � � � � #T# � OQPSRTRVU � O P R R'U 5
The implementation postpones evaluation as long as possible. It returns a function that, for
instance, when passed

#T#
, will return

�
. This strategy is faster than eagerness when we are

only interested in evaluating functions on a few points in their domain. If pursued in the
simplest way, this strategy would be slower than

B%@ I� � if we evaluate the function, say,
100 times at

# #
. The implementation is able to perform well in this case by memoizing. We

will discuss the implementation in more detail in Chapter 7.

2.10.4.1 Overview of the Algorithm

In this section we will present the algorithm informally by giving examples of how it
behaves for each variety of syntax.

The algorithm has one invariant that needs to be maintained: all types in the environment
must have no useful splits. This requires finding a principal split every time we add a variable
binding to the environment. The only syntax that adds variable bindings to the environment
is abstractions, so all the responsibility for maintaining this invariant falls on that case of
the algorithm.

Variable references This case is trivial; just look the variable up in the variable envi-
ronment. For example, in the environment + � : * #T# - , the type we infer for

�
is

# #
.

Abstractions Except for the fact that we have to maintain our invariant, we could find a
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principal type for
I @ � � <LK K � > � G � $ @ G�� ��� � ) using the following procedure: for each

refinement of
<WK K �

, bind
�

to that refinement, and find a principal type for
G � $ @ G�� ��� � )

in the resulting environment. Then we would encode the results as an intersection of arrow
types; for example, if assuming

�
has the type

�
leads to the conclusion

G � $T@ G�� ��� � )
has the type

# #
, then one of the components of the result is

� � #T#
.

Modifying this procedure to enforce our invariant is fairly simple. Instead of binding
�

to a type � in the environment, find a principal split of � . Bind
�

to each fragment of � and
find a principal type for

G � $T@ G�� ��� � ) in the resulting environment. Let
�

be the join of
the results; then the component we should add to our result in this case is �

� �
.

For example, when we consider the refinement
O P R R'U

of
<WK%K �

, we find its principal split
� #T# ( � � . We bind

�
to each of the fragments and find types for

G � $ @ G�� ��� � ) in the result-
ing environments, yielding

#T#
and

#T#
. Then we join these, yielding

#T#
. The final contribution

of this reasoning to our result is
O PSRTRVU � # #

. The type for
I @�� � <WK K � >�� G � $ @ G�� ��� � )

that results from this procedure is

O PSRTR'U � #T# �?#T# � # # � � � #T# � � PSRTR'U � � PSRTR'U 5

Applications Applications become a call to � at the type level. For example, to find
a principal type for

@ G�� �
, first we find principal types for

@ G��
and

�
; suppose we get#T# � � � � � # # � OQPSRTR'U � OQPSRTRVU

and
#T#

, respectively. Then our result is

� $L#T# � � � � � #T# � O P R R'U � OQPSRTRVU ) $L#T# ) (
which is

� � O PSRTR'U
.

Constructor Applications This case is straightforward. Using the
< � # !�#��

datatype first
introduced on page 17 as an example, if we want to find the principal type of an expression
like

��@ � $��	� ����� $ ) ) , we first find a principal type for
� � ����� $ ) , yielding em. Then our

result is the least type
� �

such that
��@ � def

:
���

�
� � �

; in this case it is nf.

By Assumption 2.51 (Constructor And Introduction) on page 67, the least
� �

such that��@ � def
:

���
�
� � �

is the intersection of all of the
� �

’s such that
��@ � def

:
���

�
� � �

. This
intersection can be precomputed when the constructors are defined, so this does not affect
performance

Case Statements Finding the principal type of a case statement starts as an approximate
dual of finding a principal type for constructor applications. First we find a principal type
for the expression the case statement is examining; we can use � ��G @CH�B � �

discussed on
page 42 to simplify this type to something of the form

� �
. For each branch of the case

statement with a constructor � we find the set of greatest � ’s such that � def
: � �

� � �
. These

� ’s are the possible types of the argument to � that could have given rise to our case object.



CHAPTER 2. REFINEMENT TYPE INFERENCE 137

The analogy with constructor application is only approximate because we cannot join

all of the � ’s in this set to get a
�

where � def
:
�
�
� � �

; in other words, there is no dual
to Assumption 2.51 (Constructor And Introduction) on page 67. This is case because

�

accurately forms intersections of refinement types if we interpret them as sets, but � only
returns an upper bound of the union.

If the set of possible � ’s for some constructor is empty, then that branch is unreachable.
Recall that in the formal language, a branch of a case statement is a function that will
be applied to the arguments of the constructor. For each reachable branch � of the case
statement we find a principal type for the application of � to some hypothetical value of
type � ; by the argument we gave for the application case, this is simply a use of � . Since
we do not know which of the reachable cases will be taken during execution, we have to
take the join of all of these types as the principal type of the case statement.

For example, consider the case statement

��9 H � � � � G $
��@ � $��	� ����� $ )L) ) G�I
� � � G > � I @ 9 � � � < � #S!�#�� >�� 9 � �E ��@ � > � I @ 9 � � � < � #S!�#�� > � ��@ � 9 � �E��	� ����� >�� I @ 9 � � � � ���:� # >��Y$��	� ����� $ ) )� @ 8 � < � # !�#��

From the earlier discussion of application, the principal type of
� � � G $���@ � �	� ����� ) is

��
.

The reachable constructors are
� � � G

and
��@ �

, where
� � � G

has the possible input type
��

and
��@ �

has the possible input types
��

or
���

.

The best type for
I @ 9 � � � < � #S!�#�� > � 9 � � applied to a value of type

��
is

��
, and the

best type of
I @ 9 � � � < � # !�#�� > � ��@ �A9 � � applied to a value of type

��
or

���
is

��
. Thus

the principal type of the case statement is
��

�
��

, or
��

.

Tuples The principal type for a tuple is simply the product of the principal types of
the components. For example, to find the principal type for

$ @ G�� � � ��� � $ )L) we first find
the principal types of

@ G��
and

� �	� � $ ) , yielding
# # � � � � � #T# � O PSRTR'U�� O P R R'U

and
#T#

respectively. Thus the type for
$ @ G�� � � �	� � $ ) ) is

$ # # � � � � � #T# �?O P R R'U�� OQPSRTR'U ) M #T# 5

Element Selection To find a principal type of an expression of the form
� D � ��� ��� � ,

find a principal type for � , simplify it with
� � � D � H�B � �

, and then select the appropri-
ate element. For example, a principal type for

$ � �	� � $ ) � I9 D H � $ )L) is
$L#T#3M O P R R'U ) �$LOQPSRTR'U�M � ) . Then

� � � D � H�B � �
returns

$L#T# � O PSRTRVU ) MQ$LOQPSRTR'U � � ) , so a principal type for� D � � � � � $ � ��� � $ ) � I;9 D:H � $ ) ) is
O P R R'U � �

, which is equivalent to
�

.

Fixed Points We find the principal type for a fixed point by iterative approximation. Our
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first approximation to the refinement type of the function is the least refinement of its ML
type; each successive approximation is the principal type of the body of the fixed point,
assuming that recursive references to the function have the previous approximation as their
type. When the approximations stop increasing, the last approximation is our principal
type.

For example, determining a type for the expression

I B�� B%@ � � < � #S!�#�� � < � #S!�#�� > � I @A@ � < � #S!�#�� >��
��9 H � @ G�I

�	� ����� > � I @ � � � ���:� # > ����@ � $�� � ����� $ )L)E���@ � >�� I @ � � H � � < � # !�#�� >�� � � � G $LB%@ � � � H � )E � � � G >�� I @ � � H � � < � #S!�#�� >�����@ � � � H �� @ 8 � < � #S!�#��
yields these successive approximations to the fixed point:

OQP � �"���"! � � P���� ���"!
� P � �"���"! � � P���� ���"! � ��� � �� � �� � ���� OQP � �"���"! � O P���� ���"!
� P�� �"���"! � � P����"��� ! � ����� �� � �� � �� �?O P�� �"���"! � O P����"��� ! 5

Since the last two approximations are equivalent, the process terminates and the last ap-
proximation is our result.

2.10.4.2 Technical Lemma for Principality

To show that the types from
B�@ I� � are principal, we will have to prove

if VR

 � : � then

$ B�@ I;� � VR � ) � � .

The premise VR

 � : � is awkward to use because the root inference of its derivation may

be an inference rule that makes syntactic progress, or it may be WEAKEN-TYPE, AND-INTRO-
TYPE, or SPLIT-TYPE. It turns out that it is sufficient to show

if VR

 
 � : � then

$LB%@ I;� � VR � ) � �

where the root inference of the premise must make syntactic progress. The SPLIT-TYPE case
of the proof is most interesting.

Lemma 2.98 (Syntactic Progress Decidability Sufficient) Let �
�
be given. If

for all � we have VR

 
 � : � implies �

� �
�

and
VR


 � : �
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and for all � in the domain of VR we have

all splits of VR
$ � ) are useless

then
�
� �

�15
Proof: By induction on the derivation of VR


 � : � . The proof is relatively short because
we can trivially handle the cases where the root inference of this derivation makes syntactic
progress.

Case: AND-INTRO-TYPE The � has the form � 1
�
� 2 where the premises of AND-INTRO-TYPE

are
VR


 � : � 1

and
VR


 � : � 2 5
Two uses of the induction hypothesis give

�
� �

� 1

and
�
� �

� 2 5
Then AND-INTRO-SUB gives

�
� �

� 1
�
� 2 (

which is our conclusion.

Case: WEAKEN-TYPE Then the premises of WEAKEN-TYPE are

VR

 � : �

�

and
�
� �

�15
By induction hypothesis,

�
� �

�
� (

so TRANS-SUB gives
�
� �

�

which is our conclusion.

Case: SPLIT-TYPE Then VR has the form VR
� + 	 : * � - where the premises of

H � D:B �
�

�����:�
are � �

�
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and
for

� �
in � we have VR

� + 	 : * � � - 
 � : �C5
By hypothesis, � is a useless split of

�
, so we can choose a

� �
in � such that

�
�
� �

.

We will be putting
� �

in an environment and then using the induction hypothesis, so we
need to know that all splits of

� �
are useless. To show this, suppose that

� � �
�
�
. Then

EQUIV-SPLIT-L gives
� �

�
�
, and by hypothesis there is therefore a

� � �
in �

�
such that

�
�
� � �

.
TRANS-SUB then gives

� �
�
� � �

. Thus,

all splits of
� �

are useless.

Now we have to take cases on the form of � to show that

VR
� + 	 : * � � - 
 
 � : � implies �

� �
� .

The most interesting of the following cases is when � is some variable other than 	 .

SubCase: � is not a variable Suppose that

VR
� + 	 : * � � - 
 
 � : ��5

Lemma 2.66 (Environment Modification) on page 81 gives

VR
� + 	 : * � - 
 
 � : �

and our hypothesis gives
�
� �

� 5
Summarizing, the reasoning so far in this subcase gives

VR
� + 	 : * � � - 
 
 � : � implies �

� �
�45

SubCase: � has the form 	 Suppose

VR
� + 	 : * � � - 
 
 	 : � 5

The last inference of this must be VAR-TYPE, so � * � �
. VAR-TYPE gives

VR
� + 	 : * � - 
 
 	 :

� (
so our hypothesis gives

�
� � � 5

Since
�

�
� �

, this implies �
� �

� . Summarizing the steps in this subcase so far,

VR
� + 	 : * � � - 
 
 	 : � implies �

� �
�45
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SubCase: � has the form � , where � �* 	 Suppose

VR
� + 	 : * � � - 
 
 � : �%5

Since � �* 	 , this derivation ignores 	 , so we also have

VR
� + 	 : * � - 
 
 � : � 5

By hypothesis, this implies
�
� �

� 5
Summarizing the steps in this subcase so far,

VR
� + 	 : * � � - 
 
 � : � implies �

� �
� .

Regardless of which subcase we use, one of the premises of SPLIT-TYPE is

VR
� + 	 : * � � - 
 � : �C5

We can use the induction hypothesis on this and the result from whichever subcase we used
to get

�
� �

� (
which is our conclusion.

Case: Any rule that makes syntactic progress In that case we have

VR

 
 � : �

so our hypothesis gives
�
� �

� (
which is our conclusion.

�

2.10.4.3 Definition and Proof of Refinement Type Inference Algorithm

The decision procedure for monomorphic refinement types is in Figures 2.7 and 2.8. This
procedure takes an expression and an environment mapping variables to refinement types,
and it returns a principal refinement type for the expression if there is one, or ��� otherwise.
It has three interesting properties: it always terminates, it returns a refinement type for
the given expression, and the type is principal. We will prove one of these properties in
each of the next three theorems. The most interesting theorem in this Subsubsection is
Theorem 2.101 (Infer Returns Principal Type) on page 151; the most interesting cases of
each theorem deal with

��9 H �
and

I B��
statements.

The portions of the algorithm that deal with
��9 H �

and
I B��

statements use the “
9 H

”
keyword. This has not appeared so far in this thesis. It simultaneously binds a variable
to a structure and other variables to the parts of the structure; for example, binding the
pattern

� 9 HA$ � � � ) to the value
$ � �	� � � I;9 D:H � ) binds

�
to

� ��� �
,
�

to
I;9 D H �

, and
�

to$ � ��� � � I;9 D H � ) .
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I � @,B�@ I� � VR 	 >
B I

for some � we have VR
$ 	 ) � �� �;� @

VR
$ 	 )� D:H � ���E B�@ I;� � VR

$ I @ � � � > � � � ) >B I
there is a � such that rtom

$
VR ) + � : * � - 
 � � :: ����� @ D ��� � 9 D � >

the unique � such that rtom
$
VR ) + � : * � - 
 � � :: �I � @ 8:G ��G @ �

�
>H � G B%@ I � � B%@ I� � $

VR + � : * �
� - ) � � / � � � H � D B �

�
�B�@

� I @ � � � 8�G ��G @ �
� / � � 9 D�D � ��I H � and

$ 8:G ��G @ �
� ) �* ��� �� @ 8� D H � ���E B�@ I;� � VR

$ � 1 � 2 ) >D ��� � 9 D
� ?

>,B�@ I;� � VR � 1
� 9 D �

?
> B%@ I;� � VR � 2B�@ B I

� ?
> ��� G � �

?
> ������� @ ���� D H �D ���

� 9 D � � � >
rtom

$
� ? )

� 9 D � � >
rtom

$ �
? )B�@ B I � > � �� �� @,B I @

� ?
�

? �� D H � ���� @ 8
� @ 8E B�@ I;� � VR

$ � � � ) >D ��� � 9 D �
?

> B%@ I;� � VR � �
� 9 D � >

the unique � such that � def
:: � � � #��

B�@
� I @ � � � / � � 9 D�D � ��I H � and

H � � �������� �
? � � and � def

: � �
� � � �� @ 8

Figure 2.7: Decision Procedure for Refinement Types Part 1
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E B�@ I;� � VR
$ � 9 HA$ ��9 H � � 0

G�I � 1
> � � 1

E
. . .

E �	� >�� ��� � @ 8 � � ) ) >
B I @ G��

rtom
$
VR ) 
 � :: � � �;� @ ���� D H � D ��� � 9 D
� ?

> B%@ I;� � VR � 0B�@,B I
� ?

> ��� ���� @ ���� D H � D ��� � 9 D � � > � ��G @1H�B � � $
� ? )B�@ H � G B%@ I � � B I @Z$ B�@ I� � VR � � ) � � /

� � 1 5 5 �9 @ 8 � � def
:: � � � � �

9 @ 8
� � 9 D�D � ��I H �9 @ 8 � � def

: � �
� � � �� @ 8

� @ 8E B�@ I;� � VR
$ � 1

�
. . .
� ��� ) >B I

for any � in 1 5 5 � we have
B�@ I;� � VR � � > ������� @ ���� D H � B�@ I;� � VR � 1 � . . . �

B�@ I� � VR ���E B�@ I;� � VR
$ � D ����� ��� � � ) >D ��� � 9 D �

?
> B%@ I;� � VR � �B�@ B I �

?
> ��� � �;� @ ���� D:H � D ��� � 9 D �

1
M

. . .
M � � > � � � D � H�B � � $ �

? )B�@ � 
 � @ 8� @ 8E B�@ I;� � VR
$ � 9 HA$ I B�� 
 � � >�� I @ � � � 1

>�� � � ) ) >D ���AI � @ D G�G��
�

>
D ��� � 9 DY�;���%#

?
>ZB%@ I� � $

VR + 
 : * � - ) $ I @ � � � 1
> � � � )B�@ B I H � � �����;��� �;���%#

? � � � �;� @
�� D H � B I �;��� #

?
> ��� ���� @ ���� D H � D G�G�� �;���%#
?� @ 8

� 9 D � �1 � � 2
> �B�@ B I � �1 �* � 1

���� @ ���� D:H � B I
ML type inference does not give rtom

$
VR ) 
 � :: � 1

� � 2� �;� @ ���� D:H � D G�G�� $ � G���I @Z$ � 1
� � 2 ) )� @ 8

Figure 2.8: Decision Procedure for Refinement Types Part 2
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According to Theorem 2.54 (Inferred Types Refine) on page 68, the refinement type
inference rules in Figure 2.6 ensure that the refinement type environment gives a well-
formed refinement type for each free variable in the expression and that the expression
has an ML type. Since

B�@ I� � is an implementation of these rules, it does the same. The
alternative would be to assume we only use

B%@ I;� � on terms and environments that are
consistent with ML typing. The extra hypothesis would complicate the proofs and obscure
the correspondence between the refinement type inference rules and the algorithm, so the
approach used below seems best.

The algorithm has an invariant: the refinement types in the environment must have no
useful splits. Because of this assumption, we never need to consider using the SPLIT-TYPE

rule to split variables that are in the initial environment. As we execute the algorithm, we
maintain the invariant by taking the principal split of the type of each new variable before we
add it to the environment. The discussion of principal splits above should make it intuitively
clear that this is appropriate; for a formal justification, see the cases for abstractions and
fixed points in the proof of Theorem 2.101 (Infer Returns Principal Type) on page 151.

We start with a simple lemma saying that the argument of the tail recursive loop in
the

I B��
case of

B�@ I� � always refines the same ML type. The hypothesis of the lemma is
always true since it is implied by Theorem 2.100 (Infer Returns Some Type) on page 145;
the hypothesis saves us from having a lemma nested inside a theorem. Note that the
variables � 1 and � 2 mentioned in the lemma are defined in the

I B��
case of

B�@ I;� � .

Lemma 2.99 (Fix Case of Infer is Well-Behaved) In the
I B��

case of
B�@ I;� � , we will ab-

breviate
I @ � � � 1

>�� � � as � � � . If, for all � ,B%@ I� � $
VR + 
 : * � - ) � � � is not ns

implies
VR + 
 : * � - 
 � � � :

B%@ I;� � $
VR + 
 : * � - ) � � � (

then the argument of
D G�G��

always refines � 1
� � 2.

Proof: By induction on the evaluation
D G�G��

.

Case: Initial call to
D G�G��

This is trivial, since the argument to the initial call of
D G�G��

is

� G���I @Z$ � 1
� � 2 ) , which obviously refines � 1

� � 2.

Case: Recursive calls to
D G�G��

We can assume the incoming argument � of
D G�G��

refines

� 1
� � 2, and we need to show that the value next? that will be passed to the next recursive call

also refines � 1
� � 2. Since

�;��� #
? * B%@ I� � $

VR + 
 : * � - ) $ I @ � � � 1
>�� � � ) , our hypothesis

gives
VR + 
 : * ��- 
 � � � :

�;���%#
? 5

Theorem 2.54 (Inferred Types Refine) on page 68 then gives a � � such that
�;���%#

? � � � and

rtom
$
VR + 
 : * ��- ) 
 � � � :: � � 5
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Since � � � 1
� � 2,

rtom
$
VR + 
 : * � - ) * rtom

$
VR ) + 
 : * � 1

� � 2 -'5
If we ever call

D G�G��
then � must have the form � 1

� � 2, and we must also have

rtom
$
VR ) 
 � :: � 1

� � 2 5
The last inference of this must be FIX-VALID with the premise

rtom
$
VR ) + 
 : * � 1

� � 2 - 
 � � � :: � 1
� � 2

Thus Lemma 2.4 (Unique Inferred ML Types) on page 27 gives � � * � 1
� � 2. Since�;��� #

? � � � , this is our conclusion.
�

In the next theorem we have the hypothesis “
B%@ I� � VR

�
terminates”. By Theorem

2.102 (Infer Terminates) on page 160, this is always true. Once again we are using these
always true hypotheses to break up the decidability proof into manageable chunks.

Theorem 2.100 (Infer Returns Some Type)
If

B�@ I� � VR � terminates and
B%@ I� � VR � is not ns then

VR

 � :

B%@ I� � VR ��5

Proof: By induction on � .
Case: � * 	 The code for this case is

I � @,B%@ I� � VR 	 >B I
for some � we have VR

$ 	 ) � �� �� @
VR

$ 	 )� D H � ���
Since

B%@ I� � VR � is not ��� , it is VR
$ � ) and for some � we have VR

$ � ) � � . Thus
VAR-TYPE gives VR


 � :
B%@ I� � VR � , which is our conclusion.

Case: � * I @ � � � >�� � � The code for this case is

E B%@ I� � VR
$ I @ � � � >�� � � ) >B I

there is a � such that rtom
$
VR ) + � : * � - 
 � � :: �� �;� @ D ��� � 9 D � >

the unique � such that rtom
$
VR ) + � : * � - 
 � � :: �I � @ 8:G ��G @ �

�
>H � G B�@ I � � B�@ I;� � $

VR + � : * �
� - ) � � / � � � H � D:B �

�
�B%@

� I @ � � � 8:G ��G @ �
� / � � 9 D�D � ��I H � and

$ 8�G ��G @ �
� ) �* ��� �� @ 8� D:H � ���
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Since
B�@ I� � VR � is not ��� , there is a � such that rtom

$
VR ) 
 � � :: � . By Lemma 2.4

(Unique Inferred ML Types) on page 27, there is exactly one such � .

Since
B�@ I;� � VR � terminates, soundness of � I @

tells us that all calls to
8:G ��G @ �

terminate. Since
B%@ I� � VR � is not ��� , at least one of the calls to

8�G ��G @ �
returns a

refinement type instead of ��� . Suppose
8:G ��G @ �

� does not return ��� ; by definition of8:G ��G @ �
, this implies

for all �
�
in

H � D B �
� we have

B�@ I� � $
VR + � : * �

� - ) � � terminates and is not ��� .
We can use our induction hypothesis to get

for all �
�
in

H � D B �
� we have VR + � : * �

� - 
 � � :
B%@ I� � $

VR + � : * �
� - ) � �

By WEAKEN-TYPE and soundness of
H � G B�@ I

, we get

for all �
�
in

H � D B �
� we have VR + � : * �

� - 
 � � :
8:G ��G @ �

��5
Soundness of

H � D B �
tells us �

�ZH � D:B �
� . Thus SPLIT-TYPE gives

VR + � : * ��- 
 � � :
8:G ��G @ �

�45
Then ABS-TYPE gives

VR

 I @ � � � >�� � � : �

� 8�G ��G @ �
�45

This is true for all � refining � for which
8�G ��G @ �

� is not ��� , so repeated use of AND-INTRO-
TYPE gives

VR

 I @ � � � > � � � :

B%@ I;� � VR � (
which is our conclusion.

Case: � * � 1 � 2 The code for this case is

E?B%@ I� � VR
$ � 1 � 2 ) >D ��� � 9 D
� ?

> B%@ I;� � VR � 1
� 9 D �

?
> B�@ I� � VR � 2B%@ B I

� ?
> ��� G � �

?
> ���� �� @ ���� D H �D ���

� 9 D � � � >
rtom

$
� ? )

� 9 D � � >
rtom

$ �
? )B�@ B I � > � ����� @ZB I @

� ?
�

? �� D H � ���� @ 8� @ 8
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Since
B%@ I� � VR � is not ��� , both � ? and

�
? must not be ��� . Call them � and

�
respectively.

Since � * B%@ I;� � VR � 1 and
� * B�@ I� � VR � 2, the induction hypothesis gives

VR

 � 1 : �

and
VR


 � 2 :
� 5

Since � � � � � , we know that � has the form � 1
�
�
�
1

�
. . .
�
� � � �

�� . By soundness
of

B I @
, B I @

�
� � * � � � �� / � � 1 . . .

�
and

� �
� � � 5

Since VR

 � 2 :

�
, WEAKEN-TYPE gives

for � in 1 . . .
�

such that
� �

� � we have VR

 � 2 : � � .

Since VR

 � 1 : � , we can use WEAKEN-TYPE to get

for all � in 1 . . .
�

we have VR

 � 1 : � � � �

�
� .

Therefore APPL-TYPE gives

for � in 1 . . .
�

such that
� �

� � we have VR

 � 1 � 2 : �

�
�

and repeated use of AND-INTRO-TYPE gives

VR

 � 1 � 2 :

B I @
�
� � 5

By definition of this case of
B%@ I;� � , this is our conclusion.

Case: � * � � � The code for this case is

E B%@ I;� � VR
$ � � � ) >D ��� � 9 D �

?
> B%@ I� � VR � �

� 9 D � >
the unique � such that � def

:: � � � #��B�@
� I @ � � � / � � 9 D�D � ��I H � and

H � � �������� �
? � � and � def

: � �
� � � �� @ 8

Since
B�@ I� � VR � is not ��� , soundness of � I @

and
H � � ��������

tell us that
�

? cannot be
��� . Thus we will call it

�
. The value of

B�@ I� � VR � must have the form

� �
1
�

. . .
� � � �

where for � in 1 . . .
�

we have an � � refining � such that � def
: � � � � � � � and

� �
� � . By

induction hypothesis,
VR


 � � :
� (
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and by WEAKEN-TYPE,

for � in 1 . . .
�

we have VR

 � � : � � .

Then CONSTR-TYPE gives

for � in 1 . . .
�

we have VR

 � � � :

� � �
and repeated use of AND-INTRO-TYPE gives

VR

 � � � :

� �
1
�

. . .
� � � � (

which is our conclusion.

Case: � * ��9 H � � 0
G�I � 1

>�� � 1
E

. . .
E �	� > � ��� � @ 8 � � The code for this case is

E B%@ I;� � VR
$ � 9 H $ ��9 H � � 0

G�I � 1
>�� � 1

E
. . .

E �	� > � ��� � @ 8 � � )L) >B I @ G��
rtom

$
VR ) 
 � :: � � �;� @ ���� D H � D ��� � 9 D
� ?

> B%@ I� � VR � 0B%@,B I
� ?

> ��� � �� @ ���� D H � D ��� � 9 D � � > � ��G @CH�B � � $
� ? )B%@ H � G B%@ I � � B I @ $ B�@ I;� � VR ��� ) � � /

� � 1 5 5 �9 @ 8 � � def
:: � � � � �

9 @ 8
� � 9 D�D � ��I H �9 @ 8 � � def

: � �
� � � �

� @ 8� @ 8
Let

�
be the result of this case of

B%@ I� � . By hypothesis this case does not return ��� , soB%@ I� � VR � 0 is defined. Our induction hypothesis, soundness of � ��G @1H�B � �
, and WEAKEN-

TYPE give
VR


 � 0 :
� � 5

Let
�

in 1 . . .
�

, � , and �
� � � be given such that

� � def
: �

�
�
� � � 5 $

2 5 60 )
By soundness of

9 D�D � ��I H
, there is a � in

9 D�D � ��I H � such that � � �
�
, and Assumption

2.52 (Constructor Argument Strengthen) on page 67 gives

� � def
: � �

� � � 5
Then, by soundness of

H � G B%@ I
, we have

B I @Z$LB%@ I;� � VR � � ) � � � � 5
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By soundness of
B I @

and Lemma 2.83 ( � Gives an Upper Bound) on page 111, this impliesB%@ I;� � VR � � � � � � 5
By induction hypothesis,

VR

 � � :

B�@ I� � VR � � (
and then WEAKEN-TYPE gives

VR

 � � : �

� � 5
Since � � �

�
, we have �

� �
� �

� � �
, so using WEAKEN-TYPE again gives

VR

 ��� : �

� � � 5
Summarizing the argument from (2.60) to here,

for all
�

in 1 . . .
�

,

� � def
: �

�
�
� � �

implies
VR


 � � : �
� � � 5

The algorithm explicitly ensures that

rtom
$
VR ) 
 � :: ��5

Since
H � G B�@ I � � always returns a refinement of � ,

� � � 5
Thus we can use CASE-TYPE to get

VR

 � :

� (
which is our conclusion.

Case: � * $ � 1
�

. . .
� � � ) The code for this case is

E?B%@ I� � VR
$ � 1

�
. . .
� ��� ) >B I

for any � in 1 5 5 � we have
B�@ I;� � VR � � > ������� @ ���� D H � B%@ I� � VR � 1 � . . . �

B�@ I� � VR ���
Since

B%@ I� � VR � is not ��� , for
�

in 1 . . .
�

we have
B%@ I� � VR � � is not ��� . By induction

hypothesis, this implies

for
�

in 1 . . .
�

we have VR

 � � :

B�@ I� � VR � �
and then TUPLE-TYPE gives

VR

 $ � 1

�
. . .
� ��� ) :

B%@ I;� � VR � 1
M

. . .
M B�@ I;� � VR ���

which is our conclusion.

Case: � * � D � ��� ��� � � The code for this case is
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E B�@ I;� � VR
$ � D ����� ��� � � ) >D ��� � 9 D �

?
> B%@ I;� � VR � �B�@ B I �

?
> ��� � �;� @ ���� D:H � D ��� � 9 D �

1
M

. . .
M � � > � � � D � H�B � � $ �

? )B�@ � 
 � @ 8� @ 8
Since

B�@ I� � VR � is not ��� , B�@ I;� � VR � � must not be ��� ; call it
�

. By induction
hypothesis we must have

VR

 � � :

� 5
By soundness of

� � � D � H�B � �
,
�

1
M

. . .
M � � �

�
, and by WEAKEN-TYPE, VR


 � � :
�

1
M

. . .
M � � .

Then ELT-TYPE gives VR

 � D ����� ��� � � :

� 
 ( which is our conclusion.

Case: � * I B�� 
 � � > � I @ � � � 1
>�� � � The code for this case is

E B�@ I;� � VR
$ � 9 HA$ I B�� 
 � � > � I @ � � � 1

> � � � ) ) >D ���NI � @ZD G�G��
�

>D ��� � 9 D6�;���%#
?

>ZB%@ I� � $
VR + 
 : * ��- ) $ I @ � � � 1

> � � � )B�@ B I H � � �����;��� �;���%#
? � � � �;� @

�� D H � B I ����%#
?

> ��� � �;� @ ���� D H � D G�G�� �;��� #
?� @ 8

� 9 D � �1 � � 2
> �B�@ B I � �1 �* � 1

� �;� @ ���� D:H � B I
ML type inference does not give rtom

$
VR ) 
 � :: � 1

� � 2� �;� @ ���� D:H � D G�G�� $ � G���I @Z$ � 1
� � 2 ) )� @ 8

We will abbreviate
I @ � � � 1

>�� � � as � � � . Suppose
B%@ I� � VR � returns � . The definition

of
D G�G��

tells us that
����%#

? � � where

�;���%#
? * B%@ I;� � $

VR + 
 : * ��- ) � � � 5
Our induction hypothesis gives

VR + 
 : * � - 
 � � � :
�;���%#

?

and WEAKEN-TYPE used with
�;���%#

? � � gives

VR + 
 : * � - 
 � � � : � 5
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Lemma 2.99 (Fix Case of Infer is Well-Behaved) on page 144 gives � � � 1
� � 2, so FIX-TYPE

gives
VR


 I B�� 
 � � 1
� � 2

> � � � � : �

which is our conclusion.
�

The next theorem shows that when
B�@ I;� � returns a refinement type, it returns a principal

refinement type. One of the hypotheses is that
B�@ I;� � terminates on its input. Theorem

2.102 (Infer Terminates) on page 160 tells us this is always true, but we have to have an
explicit hypothesis here because we have not yet proved that theorem. An alternative would
be to prove both theorems at once; that would lead to one large proof instead of two smaller
ones.

Theorem 2.101 (Infer Returns Principal Type) If

all splits of types in VR are useless

and B�@ I� � VR � terminates

then
if there is an � such that VR


 � : � then$LB%@ I� � VR � ) � � .

Proof: By induction on � . But first we need to derive the simple consequence of Lemma
2.98 (Syntactic Progress Decidability Sufficient) on page 138 that we will use to prove
principality:

Suppose
VR


 
 � : � implies$LB%@ I;� � VR � ) � � 5
$
2 5 61 )

Also suppose
VR


 � : � 5 $
2 5 62 )

Clearly any derivation of (2.62) is going to include a derivation of VR

 
 � : �

�
for some �

�
.

Therefore, (2.61) gives B�@ I;� � VR � is not ��� $
2 5 63 )

and Lemma 2.98 (Syntactic Progress Decidability Sufficient) on page 138 gives

$LB%@ I;� � VR � ) � � 5 $
2 5 64 )
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Thus (2.62) implies (2.63) and (2.64), which is our principality result. The reasoning so far
tells us that (2.61) implies principality:

For all � ,$
VR


 
 � : � implies$LB%@ I� � VR � ) � � )
implies
For all � ,$
VR


 � : � implies$LB%@ I� � VR � ) � � )

$
2 5 65 )

In each case of the proof below, we shall use (2.65) to establish principality instead of doing
it directly.

Case: � * 	 The code for this case is

I � @,B%@ I� � VR 	 >
B I

for some � we have VR
$ 	 ) � �� �� @

VR
$ 	 )� D H � ���

Suppose VR

 
 	 : � . Then the last inference of this must be VAR-TYPE with the premises

VR
$ 	 ) * � and � � � . Since VR

$ 	 ) � � , we know that
B�@ I;� � VR 	 returns VR

$ 	 ) . By
SELF-SUB, this implies

$LB%@ I;� � VR � ) � � , which in turn implies
$LB%@ I� � VR � ) � � .

Thus (2.65) gives principality.

Case: � * I @ � � � >�� � � The code for this case is

E B%@ I� � VR
$ I @ � � � >�� � � ) >B I

there is a � such that rtom
$
VR ) + � : * � - 
 � � :: �� �;� @

D ��� � 9 D � >
the unique � such that rtom

$
VR ) + � : * � - 
 � � :: �I � @ 8:G ��G @ �

�
>H � G B�@ I � � B�@ I;� � $

VR + � : * �
� - ) � � / � � � H � D:B �

�
�B%@

� I @ � � � 8:G ��G @ �
� / � � 9 D�D � ��I H � and

$ 8�G ��G @ �
� ) �* ��� �� @ 8� D:H � ���

Suppose
VR


 
 $ I @ � � � > � � � ) : �15
The last inference of this must be ABS-TYPE, where � has the form

� � � � � �
and the premises

of ABS-TYPE are � � � � �
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and
VR + � : * � � � - 
 � � :

� � 5
By soundness of

9 D�D � ��I H
, there is a

�
in

9 D�D � ��I H � such that
�

�
� � �

. Suppose �
�

is
in

H � D B � �
. Then �

� � �
, so �

� � � � �
and Lemma 2.66 (Environment Modification) on

page 81 gives
VR + � : * �

� - 
 � � :
� � 5

Because
H � D:B �

is sound, �
�
has no useful splits. Thus we can use our induction hypothesis

to get $ B�@ I;� � $
VR + � : * �

� - ) � � ) � � � 5
Because

H � G B%@ I
is sound and � is a least upper bound,

8:G ��G @ � � � � � 5
Thus ARROW-SUB gives � � 8:G ��G @ � � � � � � � 5
Since

�
�
� � �

, we can use TRANS-SUB and RCON-SUB to get

� � 8:G ��G @ � � � � � � � � � 5
Thus the definition of

B%@ I� � and repeated use of AND-ELIM-L-SUB and AND-ELIM-R-SUB

give $ B�@ I� � VR � ) � � � � � � � 5
Summarizing the argument so far in this subcase,

VR

 
 I @ � � � >�� � � : � implies$LB%@ I;� � VR � ) � �15

By (2.65), this implies our conclusion.

Case: � * � 1 � 2 The code for this case is
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E?B%@ I� � VR
$ � 1 � 2 ) >D ��� � 9 D
� ?

> B%@ I;� � VR � 1
� 9 D �

?
> B�@ I� � VR � 2B%@ B I

� ?
> ��� G � �

?
> ���� �� @ ���� D H �D ���

� 9 D � � � >
rtom

$
� ? )

� 9 D � � >
rtom

$ �
? )B�@ B I � > � ����� @ZB I @

� ?
�

? �� D H � ���� @ 8
� @ 8

Suppose VR

 
 � 1 � 2 : �

�
. The only way to infer this is with APPL-TYPE with the premises

VR

 � 1 : �

�
�
�

and
VR


 � 2 : �C5
Since

B%@ I� � VR � terminates, both
B�@ I;� � VR � 1 and

B%@ I� � VR � 2 must terminate.
Thus we can use the induction hypothesis on each of these to get

B�@ I� � VR � 1 � �
�
�
�

and B�@ I� � VR � 2 � �15
Abbreviate

B%@ I� � VR � 1 as � and
B%@ I;� � VR � 2 as

�
.

Uninteresting reasoning about refinement types tells us that rtom
$
� ) will indeed have

the form � � � and that rtom
$ � ) * � .

By definition of � we have � $ � � �
� ) $
� ) * �

�
. Lemma 2.81 ( � Monotone in First

Argument) on page 109 implies � $ � ) $
� ) � � $ � � �

� ) $
� ) , and Lemma 2.80 ( � Monotone in

Second Argument) on page 108 implies � $ � ) $ � ) � � $ � ) $
� ) . Thus

� $ � ) $ � ) � � � 5 $
2 5 66 )

Thus
B%@ I� � VR � is not ��� . We can use the definition of

B%@ I� � to rewrite (2.66), yielding

B�@ I;� � VR � � � � 5



CHAPTER 2. REFINEMENT TYPE INFERENCE 155

The argument in this subcase so far can be summarized as

VR

 
 � 1 � 2 : �

�
impliesB�@ I;� � VR � � � � 5

By (2.65), this implies our conclusion.

Case: � * � � � The code for this case is

E B%@ I;� � VR
$ � � � ) >D ��� � 9 D �

?
> B%@ I� � VR � �

� 9 D � >
the unique � such that � def

:: � � � #��B�@
� I @ � � � / � � 9 D�D � ��I H � and

H � � �������� �
? � � and � def

: � �
� � � �� @ 8

Suppose
VR


 
 � � � : �15
The last inference of this must be CONSTR-TYPE, where � has the form

� �
and the premises

of CONSTR-TYPE are
� def

: �
�
�
� � �

and
VR


 � � : �
� 5

Our induction hypothesis gives �
? � �

� 5
By Assumption 2.2 (Constructors have Unique ML Types) on page 26, there are unique �
and

#��
such that � def

:: � � � #��
. By Assumption 2.49 (Constructor Type Refines) on page 65,

�
� � � , so there is an � in

9 D�D � ��I H � such that �
�

� � . Then Assumption 2.52 (Constructor
Argument Strengthen) on page 67 gives

� def
: � �

� � �

and TRANS-SUB gives �
? � � 5

Thus
� � � � � � / � � 9 D�D � ��I H � and

H � � �������� �
? � � and � def

: � �
� � � �

.

Since this set is not empty, this call to
B�@ I;� � does not return ��� . By repeated use of

AND-ELIM-L-SUB and AND-ELIM-R-SUB,
$ � � � � / � � 9 D�D � ��I H � and

H � � �������� �
? � � and � def

: � �
� � � � ) � � � 5

Summarizing the argument so far in this subcase,

VR

 
 � : � implies$LB%@ I� � VR � ) � �C5
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By (2.65), this implies our conclusion.

Case: � * ��9 H � � 0
G�I � 1

>�� � 1
E

. . .
E �	� > � ��� � @ 8 � � The code for this case is

E B%@ I;� � VR
$ � 9 H $ ��9 H � � 0

G�I � 1
>�� � 1

E
. . .

E �	� > � ��� � @ 8 � � )L) >B I @ G��
rtom

$
VR ) 
 � :: � � �;� @ ���� D H � D ��� � 9 D
� ?

> B%@ I� � VR � 0B%@,B I
� ?

> ��� � �� @ ���� D H � D ��� � 9 D � � > � ��G @CH�B � � $
� ? )B%@ H � G B%@ I � � B I @ $ B�@ I;� � VR � � ) � � /

� � 1 5 5 �9 @ 8 � � def
:: � � � � �

9 @ 8
� � 9 D�D � ��I H �9 @ 8 � � def

: � �
� � � �� @ 8� @ 8

Suppose we have an � such that VR

 
 � : � . The last inference of this must be CASE-TYPE

with the premises
VR


 � 0 :
� � (

�
� � (

for
�

in 1 . . .
�

and all
�

such that

� � def
:
�
�
� � �

we have
VR


 � � :
� �

� (
$
2 5 67 )

and
rtom

$
VR ) 
 � :: ��5

Thus the ML type checking in this case of
B%@ I� � succeeds and this case of

B�@ I� �
evaluates

B%@ I� � VR � 0. Since this case of
B%@ I;� � terminates,

B�@ I� � VR � 0 must
terminate. Thus our induction hypothesis gives

$LB%@ I;� � VR � 0 ) � � �
. Let

� � *� ��G @CH�B � � $LB%@ I� � VR � 0 ) ; soundness of � ��G @1H�B � �
then gives

� � � � �
.

Now we shall show that for all
�

in 1 . . .
�

and all � such that ��� def
: � �

� � �
,

� $LB%@ I� � VR ��� ) $
� ) � ��5

First choose
�

in 1 . . .
�

and � such that ��� def
: � �

� � �
. By (2.67), this implies VR


 � � :
�
�
� . Then the induction hypothesis gives

B%@ I� � VR ��� � � � ��5
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By Corollary 2.82 (Bound on Argument to � Gives Bound on � ) on page 111, this implies

� $LB%@ I� � VR � � ) $
� ) � ��5

Since this holds for all
�

in 1 . . .
�

and all � such that ��� def
: � �

� � �
, the call to

H � G B�@ I
in

this case of
B�@ I� � does not return ��� . ThusB�@ I;� � VR � is not ���

and
H � G B%@ I

computes a least upper bound, so$LB%@ I;� � VR � ) � � 5
Summarizing the argument so far,

VR

 
 � : � implies$LB%@ I;� � VR � ) � � 5

By (2.65), this implies principality.

Case: � * $ � 1
�

. . .
� ��� ) The code for this case is

E?B%@ I� � VR
$ � 1

�
. . .
� ��� ) >B I

for any � in 1 5 5 � we have
B�@ I;� � VR � � > ������� @ ���� D H � B%@ I� � VR � 1 � . . . �

B�@ I� � VR ���
Suppose VR


 
 $ � 1
�

. . .
� ��� ) : � . The last inference of this must be TUPLE-TYPE, so � has

the form � 1
M

. . .
M
��� and the premises of TUPLE-TYPE are

for
�

in 1 . . .
�

we have VR

 ��� : ��� .

Our induction hypothesis gives

for
�

in 1 . . .
�

we have
$LB%@ I� � VR ��� ) � � � .

This immediately tells us that
B�@ I;� � VR � is not ��� . RCON-SUB givesB�@ I� � VR � 1

M
. . .

M B%@ I� � VR � � � � 1
M

. . .
M
� �

and by definition of this case of
B%@ I;� � , this is equivalent toB%@ I;� � VR � � � 5

Summarizing the argument so far,

VR

 
 � : � implies$LB%@ I;� � VR � ) � � 5

By (2.65), this implies principality.

Case: � * � D � ��� ��� � � The code for this case is
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E B�@ I;� � VR
$ � D ����� ��� � � ) >D ��� � 9 D �

?
> B%@ I;� � VR � �B�@ B I �

?
> ��� � �;� @ ���� D:H � D ��� � 9 D �

1
M

. . .
M � � > � � � D � H�B � � $ �

? )B�@ � 
 � @ 8� @ 8
Suppose VR


 
 � D ����� ��� � � : � . The last inference of this must be ELT-TYPE with the
premise VR


 � � : � 1
M

. . .
M
��� where � * � 
 . By induction hypothesis,

B�@ I� � VR � � is
not ��� ; call it

�
. The induction hypothesis also gives

� �
� 1

M
. . .

M
��� . By Theorem 2.21

(Subtypes Refine) on page 36, there must be a � such that
� � � and � 1

M
. . .

M
��� � � . We

can only have � 1
M

. . .
M
� � � � if � has the form � 1

M
. . .

M � � . Thus
�

is a valid input to� � � D � H�B � �
, and soundness of

� � � D � H�B � �
gives

�
�

� � � D � H�B � � �
.

Let
�

1
M

. . .
M � 
 * � � � D � H�B � � �

. Then TRANS-SUB gives
�

1
M

. . .
M � 
 � � 1

M
. . .

M
��� , and

Corollary 2.27 (TUPLE-SUB Inversion) on page 45 gives
� 
 � � 
 . But

� 
 * B%@ I;� � VR �
and � 
 * � , so we have

$LB%@ I;� � VR � ) � � .

Summarizing the argument so far,

VR

 
 � D � ��� ��� � � : � impliesB�@ I� � VR � � �%5

By (2.65), this implies principality.

Case: � * I B�� 
 � � > � I @ � � � 1
>�� � � The code for this case is

E B�@ I;� � VR
$ � 9 HA$ I B�� 
 � � > � I @ � � � 1

> � � � ) ) >
D ���NI � @ZD G�G��

�
>D ��� � 9 D6�;���%#

?
>ZB%@ I� � $

VR + 
 : * ��- ) $ I @ � � � 1
> � � � )B�@ B I H � � �����;��� �;���%#

? � � � �;� @
�� D H � B I ����%#

?
> ��� � �;� @ ���� D H � D G�G�� �;��� #
?� @ 8

� 9 D � �1 � � 2
> �B�@ B I � �1 �* � 1

� �;� @ ���� D:H � B I
ML type inference does not give rtom

$
VR ) 
 � :: � 1

� � 2� �;� @ ���� D:H � D G�G�� $ � G���I @Z$ � 1
� � 2 ) )� @ 8

We will abbreviate
I @ � � � 1

> � � � as � � � .
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Suppose
VR


 
 I B�� 
 � � >�� � � � :
� 5 $

2 5 68 )
The last inference of this must be FIX-TYPE, so

� has the form � 1
� � 2

$
2 5 69 )

and the premises of FIX-TYPE are � � � 1
� � 2

and
VR + 
 : * � - 
 � � � :

� 5 $
2 5 70 )

We will show by induction on the execution of this case of
B%@ I� � the following properties

of the argument � of
D G�G��

:
�
� �

and B%@ I� � $
VR + 
 : * � - ) � � � is not ����5

For the base case, � * � G���I @ � . Soundness of � G���I @
gives �

� �
, and Lemma 2.66

(Environment Modification) on page 81 applied to (2.70) gives VR + 
 : * � - 
 � � � :
�

. By
Fact 2.35 (Splits of Arrows are Simple) on page 51, � has no useful splits; thus the outer
induction hypothesis tells us that

B%@ I� � $
VR + 
 : * � - ) � � � is not ��� , which is what we

wanted to show.

For the induction case, this call to
D G�G��

is from the body of
D G�G��

. Thus we can assume
by induction that �

� �
and we have to show that

����%#
?
� �

and that
B%@ I� � $

VR + 
 : *�;��� #
? - ) � � � is not ��� . Lemma 2.66 (Environment Modification) on page 81 starting with

(2.70) gives
VR + 
 : * �%- 
 � � � :

� 5
The outer induction hypothesis applies because Fact 2.35 (Splits of Arrows are Simple) on
page 51 tells us � has no useful splits, so we have

B�@ I� � $
VR + 
 : * � - ) � � � is not ��� ; call it

�;��� #
?

and ����%#
?
� � 5 $

2 5 71 )
Lemma 2.66 (Environment Modification) on page 81 starting with (2.70) again gives

VR + 
 : * �;���%#
? - 
 � � � :

�

and the outer induction hypothesis (using Fact 2.35 (Splits of Arrows are Simple) on page 51
to conclude that next? has no useful splits) gives

B%@ I;� � $
VR + 
 : * �;��� # - ) � � � is not ��� .

This and (2.71) are our conclusions. This completes the inner induction.
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Now we have everything we need to show that
B%@ I� � VR � is not ��� . Theorem 2.54

(Inferred Types Refine) on page 68 applied to (2.68) gives a � � such that
� � � � and

rtom
$
VR ) 
 � :: � � 5 $

2 5 72 )
Lemma 2.10 (Unique ML Types) on page 31 gives � * � � 5 By (2.69) and (2.72), the

B I
statements before the initial call to

D G�G��
do not cause

B�@ I� � to return ��� . By the most
recent induction, the call to

D G�G��
does not return ��� . Thus

B%@ I;� � VR � is not ��� .
The most recent induction also gives

$ B�@ I;� � VR � ) � � 5
Summarizing this subcase so far,

VR

 
 � :

�
implies$ B�@ I;� � VR � ) � � 5

By (2.65), this implies principality.
�

The next theorem shows that
B�@ I;� � always terminates. The case of this theorem dealing

with
I B��

statements uses Theorem 2.101 (Infer Returns Principal Type) on page 151.

Theorem 2.102 (Infer Terminates) If

all splits of types in VR are useless

then B�@ I;� � VR � always terminates.

Proof: By induction on � . The cases are all very simple, except the case for
I B��

statements.

Case: � * 	 The code for this case is

I � @,B%@ I� � VR 	 >B I
for some � we have VR

$ 	 ) � �� �� @
VR

$ 	 )� D H � ���
and termination is trivial.

Case: � * I @ � � � >�� � � The code for this case is
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E B%@ I� � VR
$ I @ � � � >�� � � ) >B I

there is a � such that rtom
$
VR ) + � : * � - 
 � � :: �� �;� @ D ��� � 9 D � >

the unique � such that rtom
$
VR ) + � : * � - 
 � � :: �I � @ 8:G ��G @ �

�
>

H � G B�@ I � � B�@ I;� � $
VR + � : * �

� - ) � � / � � � H � D:B �
�
�B%@

� I @ � � � 8:G ��G @ �
� / � � 9 D�D � ��I H � and

$ 8�G ��G @ �
� ) �* ��� �� @ 8� D:H � ���

By soundness of
H � D B �

, all �
�

in
H � D B �

� have no useful splits. Thus, by induction
hypothesis, the recursive calls to

B�@ I� � all terminate. Since principal splits are computable,
all calls to

H � D B �
terminate. Since the refinements of an ML type are enumerable, calls to9 D�D � ��I H

terminate. Thus this case of
B�@ I� � terminates.

Case: � * � 1 � 2 The code for this case is

E?B%@ I� � VR
$ � 1 � 2 ) >

D ��� � 9 D
� ?

> B%@ I;� � VR � 1
� 9 D �

?
> B�@ I� � VR � 2B%@ B I

� ?
> ��� G � �

?
> ���� �� @ ���� D H �D ���

� 9 D � � � >
rtom

$
� ? )

� 9 D � � >
rtom

$ �
? )B�@ B I � > � ����� @ZB I @

� ?
�

? �� D H � ���� @ 8� @ 8
By induction hypothesis, the recursive calls to

B%@ I� � terminate. By soundness of
B I @

it
always terminates. Thus this case of

B%@ I� � terminates.

Case: � * � � � The code for this case is
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E B%@ I;� � VR
$ � � � ) >D ��� � 9 D �

?
> B%@ I� � VR � �

� 9 D � >
the unique � such that � def

:: � � � #��B�@
� I @ � � � / � � 9 D�D � ��I H � and

H � � �������� �
? � � and � def

: � �
� � � �

� @ 8
All loops in this case of

B%@ I� � loop over finite sets, and our induction hypothesis tells us
that the recursive call to

B�@ I� � terminates.

Case: � * ��9 H � � 0
G�I � 1

>�� � 1
E

. . .
E �	� > � ��� � @ 8 � � The code for this case is

E B%@ I;� � VR
$ � 9 H $ ��9 H � � 0

G�I � 1
>�� � 1

E
. . .

E �	� > � ��� � @ 8 � � )L) >B I @ G��
rtom

$
VR ) 
 � :: � � �;� @ ���� D H � D ��� � 9 D
� ?

> B%@ I� � VR � 0B%@,B I
� ?

> ��� � �� @ ���� D H � D ��� � 9 D � � > � ��G @CH�B � � $
� ? )B%@ H � G B%@ I � � B I @ $ B�@ I;� � VR ��� ) � � /

� � 1 5 5 �9 @ 8 � � def
:: � � � � �

9 @ 8
� � 9 D�D � ��I H �9 @ 8 � � def

: � �
� � � �� @ 8� @ 8

By induction hypothesis, all recursive calls to
B%@ I;� � terminate. All other operations in this

case are calls to functions that terminate or iterations over finite sets, so this case of
B%@ I;� �

terminates.

Case: � * $ � 1
�

. . .
� ��� ) The code for this case is

E?B%@ I� � VR
$ � 1

�
. . .
� ��� ) >B I

for any � in 1 5 5 � we have
B�@ I;� � VR � � > ������� @ ���� D H � B%@ I� � VR � 1 � . . . �

B�@ I� � VR ���

By induction hypothesis, all recursive calls to
B�@ I� � terminate, so this case of

B%@ I� �
terminates.

Case: � * � D � ��� ��� � � The code for this case is
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E B�@ I;� � VR
$ � D ����� ��� � � ) >D ��� � 9 D �

?
> B%@ I;� � VR � �B�@ B I �

?
> ��� � �;� @ ���� D:H � D ��� � 9 D �

1
M

. . .
M � � > � � � D � H�B � � $ �

? )B�@ � 
 � @ 8� @ 8
By induction hypothesis, the recursive call to

B%@ I� � terminates. Calls to
� � � D � H�B � �

always
terminate. Thus this case of

B�@ I;� � terminates.

Case: � * I B�� 
 � � > � I @ � � � 1
>�� � � The code for this case is

E B�@ I;� � VR
$ � 9 HA$ I B�� 
 � � > � I @ � � � 1

> � � � ) ) >D ���NI � @ZD G�G��
�

>D ��� � 9 D6�;���%#
?

>ZB%@ I� � $
VR + 
 : * ��- ) $ I @ � � � 1

> � � � )B�@ B I H � � �����;��� �;���%#
? � � � �;� @

�� D H � B I ����%#
?

> ��� � �;� @ ���� D H � D G�G�� �;��� #
?� @ 8

� 9 D � �1
� � 2

> �B�@
B I � �1 �* � 1

� �;� @ ���� D:H � B I
ML type inference does not give rtom

$
VR ) 
 � :: � 1

� � 2� �;� @ ���� D:H � D G�G�� $ � G���I @Z$ � 1
� � 2 ) )� @ 8

We will abbreviate
I @ � � � 1

> � � � as � � � .
If we never get to the call to

D G�G��
in this case of

B�@ I� � , then we obviously terminate
and return ��� . Otherwise, Theorem 2.100 (Infer Returns Some Type) on page 145 and
Lemma 2.99 (Fix Case of Infer is Well-Behaved) on page 144 tell us that the argument �
to

D G�G��
always refines � 1

� � 2. By Fact 2.35 (Splits of Arrows are Simple) on page 51, �
has no useful splits, so our induction hypothesis applies and tells us all recursive calls of
the form

B%@ I� � $
VR + 
 : * � - ) � � � terminate. Thus the computation progresses from each

recursive call to
D G�G��

to the next. Now we have to show that there are only finitely many
recursive calls, and then we will know that the outer call to

D G�G��
terminates.

Let � 1 ( � 2 ( . . . be the values of � in the successive recursive calls to
D G�G��

. Thus � 1 *
� G���I @Z$ � 1

� � 2 ) . We will show by induction that for all
� � 0 we have � �

�
��� � 1.

The base case is trivial. Since � 1 * � G���I @Y$ � 1
� � 2 ) , we know that � 1 is a subtype

of any refinement of � 1
� � 2. Earlier argument tells us that � 2

� � 1
� � 2, so this implies

� 1
�
� 2.
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For the induction case, we can assume that � � � 1
�
��� . By definition of

D G�G��
, � � � 1 *B%@ I� � $

VR + 
 : * ��� - ) � � � 5 Theorem 2.100 (Infer Returns Some Type) on page 145 therefore
gives

VR + 
 : * ��� - 
 � � � : ��� � 1 5
Then we can use Lemma 2.66 (Environment Modification) on page 81 and � � � 1

�
��� to get

VR + 
 : * ��� � 1 - 
 � � � : ��� � 1 5
Since ��� � 1

� � 1
� � 2, Fact 2.35 (Splits of Arrows are Simple) on page 51 tells us that � � � 1

has no useful splits. Thus Theorem 2.101 (Infer Returns Principal Type) on page 151 gives

$ B�@ I� � $
VR + 
 : * ��� � 1 - ) � � � ) � � � � 1 5

By definition of
D G�G��

, this is equivalent to

� �
�
� � � 1 (

which is what we wanted to show. This completes the inner induction.

Repeated use of TRANS-SUB with the inner induction gives

� � � implies ���
�
� � .

By definition of
D G�G��

and soundness of
H � � �����;���

, we would not get to iteration
� �

1 if
��� � 1

�
��� ; thus, for all

�
we have

� � � 1 �� ���45
From this we can use the following reasoning to show that no two of the � � ’s are

equivalent. Suppose by way of contradiction that � � � � � where
�
� � . Then

� �
1
� � ,

so we have � � � 1
�
� � . Then we can use TRANS-SUB on this and � � � � � to get ��� � 1

�
��� .

This contradicts our result from the previous paragraph, so we cannot have � � � � � when
�
� � .

By Theorem 2.90 (Finite Refinements) on page 115, the sequence � 1 ( � 2 ( . . . only contains
representatives from finitely many equivalence classes of refinements of � 1

� � 2. Since they
are all from distinct equivalence classes, there must be only finitely many of them. Thus
there are only finitely many � � ’s, and

D G�G��
and this case of

B%@ I� � always terminate.
�



Chapter 3

Declaring Refinements of Recursive
Data Types

3.1 Introduction

The previous chapter defined refinement type inference in terms of sets of refinement
type constructors refining each ML type constructor. This chapter describes � ���������;�
declarations, which are a compact way to specify these sets of refinement type constructors
and the operations on them.

We shall call the types appearing in � ����������
declarations recursive types. These types

bear some resemblance to the recursive types of [AC90]; we compare the two systems on
page 169.

Because refinement type constructors must be closed under intersection, we must either
require � ����������

declarations to include enough definitions to ensure closure, or we need
to allow the theory to introduce refinement type constructors that do not appear in any� ����������

statement. For example, the declaration

8�9��;9�������A<WK K � > � ��� � $ ) E I9 D H � $ )� ���������;� # #?> � �	� � $
runit )9 @ 8 � > I9 D:H � $

runit )
does not define a refinement type constructor for the intersection of

#T#
and

�
. It would

better to automatically synthesize such a definition than to require the programmer to
augment the � ����������

declaration. The theory below does this; the synthesized type is#T#
&
�

. Here & is an infix operator that combines one or more of the identifiers defined
by the � ���������;�

statement (which we shall call recursive type constructors) to form a
refinement type constructor. Since & is infix, the assumption we have made so far that the� ����������

statement above defines the refinement type constructors
#T#

and
�

is true with this
interpretation.

165
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Another concern is interacting smoothly with the global environment used in the previ-
ous chapter. In that chapter, we wrote assertions like

@1B4D def
::

� ���:� #
�
� < � �"!�#

as though they were simply true, instead of treating them as assumptions from an explicit
list of assumptions, or environment; to put it another way, the environment was an implicit
global variable. The environment never changed, so this was very convenient. In contrast,
the declarations introduced in this chapter specify new assumptions to add to the environ-
ment. We could clarify the manipulation of the environment by making the environment
explicit, but that would create notational problems when we refer to results from the previ-
ous chapter, so instead we will continue to manipulate it implicitly. Since we are describing
changes to the environment, we have “old” assertions that are already in the environment
and in this chapter we describe the “new” ones that will be added. The words “old” and
“new” will be used consistently in this sense throughout this chapter.

With this distinction in mind, we can give the following grammar for � ���������;�
state-

ments. The metavariable names in this chapter are slightly awkward because both “recur-
sive” and “refinement” start with “r”. We resolve the ambiguity by using “n” (standing for
“new”) in the names of metavariables concerned with recursive types. For example, in the
grammar below, we use the terminal

� � �
to stand for recursive type constructors. We also

use
� �

to stand for old refinement type constructors, � to stand for old refinement types,
#��

to stand for ML type constructors, and � to stand for new value constructors:
�L!�#�� #

:: *A� ���������;�
defn

9 @ 8
. . .

9 @ 8
defn

2 �  �
:: * � � � > ��� �� � �
:: * � � / � � � / � $���� � ) / � � ��� � /��� � M

. . .
MQ��� � / � ���:� # / � G����G �,#�� /��� �

&
��� � / � � � E
��� �

In this grammar the name of the nonterminal
��� �

stands for extended recursive types (which
are slightly more flexible than the recursive types that will be introduced below). Notice
that the metasymbol “ / ” is used in the grammar to define a language construct containing
the character “

E
”. We shall assume throughout that the syntactic operators & and

E
are

associative, commutative, and idempotent; thus, for example,
#T#

&
�

and
�

&
#T#

are the
same syntactic object.

The intuitive meaning of these declarations is fairly simple: think of them as a notation
for defining sets of values. The recursive type constructor on the left hand side of the “=”
is defined by the extended recursive type on the right hand side. The extended recursive
type � $ � � � ) contains all values that can be constructed by applying the constructor � to
some value in

��� �
. The extended recursive type � G����;G �,$L#�� ) contains no values and it

refines
#��

; it should be distinguished from the identifier
� �

� , which is the typeset form of the
identifier

<WK #T# K � #��
and can in principle be given an arbitrary definition by the programmer

(although defining it as anything other than � G����G �6$L#�� ) would be an unnecessary surprise).
The extended recursive type

��� �
1

E ��� �
2 contains all values appearing in either

� � �
1 or
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��� �
2. The meanings of the other extended recursive types should be clear by analogy with

refinement types.

The notation � $ ��� � ) is meant to resemble the use of value constructors to construct
values. We increase the resemblance by allowing � $���� �

1 ( . . . ( ��� � � ) as syntactic sugar
for � $ ��� �

1
M

. . .
M ��� � � ) . To make parsing easier, we require the parentheses to always

be present; this makes it possible to parse � ���������;�
statements without knowing in ad-

vance which identifiers are value constructors and which are refinement or recursive type
constructors.

As we did for refinement types, we shall use
� ���:� #

to stand for the empty tuple of
recursive types. Comparing this grammar with the one for refinement types on page 30
makes it clear that all refinement types look like extended recursive types; although there
is a natural correspondence between the two, it is best to think of them as distinct. Context
will make it clear which is meant. An alternative would be to add notation to make the two
kinds of types appear distinct; this seems too laborious.

The notation � G����G �Z#��
gives a way to write types that contain no values; we shall say

that these types are empty. If there are two or more value constructors, we can also write
an empty type as an intersection; for example, given the datatype declaration

8�9��;9�������A< � �"!�#?> ��G @CH G�I,<WK%K �:M < � �"!�# E @1B4D G�I #����:� #

we can write the empty type as

� ���������;� � PTU � ��� > ��G @1HN$LOQPSRTRVU ( � P U ����� ) &
@1BXDY$�� ��� � # )

However, it seems better to provide the � G����G �
notation as well, since this is more direct

approach. When we transform the syntax described here into a normal form, only the direct
approach will be available.

In this thesis, we will require the declaration of a datatype and the unique � ���������;�
declaration specifying refinements of that datatype to appear together. A more general
approach would allow declaring a datatype followed by some expressions using that datatype
followed by a declaration of refinements of that datatype, or even � ���������;�

declarations
that have their scope limited by a

D ���
statement. In the general case, two problems arise:

what to do with the types of variables in the environment when entering the scope of a� ����������
declaration and what to do when we leave the scope of a � ���������;�

declaration.
These problems seem solvable, but nevertheless beyond the scope of this thesis. Because
we forbid separating corresponding

8:9��9������;�
and � ����������

declarations, when we analyze
a � ���������;�

declaration it is possible to make a clear distinction between “new” value
constructors and ML type constructors and “old” ones: the new constructors appear in the
associated

8�9��9�������
statement, and the old ones do not.

The syntax of � ����������
statements above outlaws recursion on the left hand side of

�
by only permitting old refinement types on the left hand side of

�
. This avoids situations
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where there is no obvious fixed point of a declaration; for example, suppose the restriction
were lifted and consider the declaration

8�9��;9������� 2 >�� G�I 2 � <WK%K �=E�� G�I #����:� #
� ���������;� � > � G�I � � #T#

From an intuitive point of view, it is entirely unclear how to determine whether a particular
value is in

�
because as we include more values in

�
, the definition of

�
tells us there are

fewer values in
�
. Formally, the problem with recursion on the left hand side of

�
is that

the definition of membership of a value in a recursive type in Figure 3.2 ceases to be a
monotone function, so we no longer know that it has a fixed point. This is discussed in
more detail on page 182 after we present that definition.

3.1.1 Outline of this Chapter

A � ���������;�
declaration is accepted by type inference if it satisfies some minor semantic

restrictions described in the next section and it can be rewritten as a set of definitions of the
form: 2 �  �

:: * � � ��� � $W� � ) / � G����G �Z$L#�� )� �
:: * �

� � � / � �
&

� � / � � / � � � / � � M
. . .

M � � / � ���:� #
Unlike the previous grammar, this one only allows value constructors at the top level, and

it disallows the symbol “
E
”. We have also replaced the “

>
” with “

�
”; this is meant to imply

that we now allow multiple declarations of a type for a given
� � �

to (roughly speaking)
mean that

� � �
stands for the union of all the definitions that appear. The meaning is formally

defined in Section 3.2. For example, rewriting the declaration

8�9��;9������� < � �"!�# > ��G @CH G�I <WK K �;M < � �"!�# E @1B4D G�I #����:� #
� ���������;�=< ��� > ��G @1HN$LO P R R'U M ��G @CHA$LO PSRTRVU M < ��� )L) E:@1BXDA$

runit )
starts by creating a new type name (the implementation will select names that look like�������

) and results in the set

� < ����� ��G @1H4$LOQPSRTR'UXM ������� )W(< ����� @1BXD�$ � ���:� # )W(��������� ��G @1H4$LOQPSRTRVU4M < ��� )W(O PTU � ���	� ��G @CH�$LO P R R'U�M O PTU � ��� ) (O PTU � ���	�=@1B4D�$�� ���:� # ) �

In Section 3.3, we describe how to infer that some recursive types are empty. For
example, we can infer that in the presence of the declaration above, the recursive type< ���

&
�
�����

contains no values. This inference system is only valid because our con-
structors are eager; if they were lazy, the type

< ���
&
�������

would contain the infinite value
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��G @1HN$ � �	� � $ ) � ��G @1HN$ � �	� � $ ) � . . . ) ) , which could be constructed by using a fixed point
operator.

In Section 3.4, we describe how to infer when one recursive type is a subtype of another.
This inference system can reason about empty types; for example, if we add the definition

< ��� �=@1B4D�$�� ���:� # )
we can infer

< ���
&
�
����� � < ���

.

In Section 3.5, we describe how to infer that one type is contained in a union of other
smaller types. For example, we can infer

O P U ����� � � < ��� ( � ����� � .
In Section 3.6, we define the new refinement type constructors in terms of the recursive

type constructors appearing in the declaration, and we prove that all of the assumptions
made in Chapter 2 about the behavior of refinement type constructors hold when they are
defined by � ����������

statements. We also prove that whenever a value has a refinement
type, it has the corresponding recursive type.

3.1.2 Related Work

We can think of a recursive type as a recognizer for a sublanguage of the language of
values; in this sense, a recursive type is similar to a regular tree automaton as described in
[GS84]. One difference is that our language of values includes functions; another difference
is that our procedure for deciding subtypes for recursive types is weaker than the decision
procedures for deciding inclusion of regular tree automata in [GS84], even for recursive
types that contain no function types. See the example on page 193.

The algorithms presented in this Chapter are similar to the ones in [TZ91]. Our recursive
types differ from their term grammars in that we have function types but they do not, and
their term grammars are closed under union and complement but our recursive types are not.
Some of the proofs below use an induction principle that appears in their paper, specifically
induction on the pair (complement of the trail, some tree) ordered lexicographically.

The algorithms presented in this Chapter also resemble the ones in [AC90]. The abstract
declarations appearing here are very similar to the regular systems described in that paper,
and our algorithm for subtyping recursive types is a version of the algorithm described on
page 24 of that paper, modified to deal with the features we have added to our type system.
Our recursive types disallow the recursion on the left hand side of arrows that is allowed
in [AC90], and our system has intersections, which do not appear in [AC90]. The proof
in this chapter that the algorithm used here is correct does not resemble theirs at all; they
reason about finite approximations to infinite trees to show that their algorithm is consistent
with another axiomatization of subtyping, whereas we have axioms for determining when
a value has a recursive type, and we prove that the inclusion relation from this algorithm is
consistent with membership of values in types.
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In both [AC90] and this chapter, there are two conceptually distinct fixed points in
the definition of membership of a value in a recursive type. One fixed point converts the
recursive type to a potentially infinite non-recursive type; in [AC90], this is a least fixed
point. In this Chapter, we require each recursive definition to have the form

� � ��� � $
. . . ) ;

since the constructor � is always present, the recursion makes progress and the infinite tree
is uniquely determined. (In [AC90], the recursive type is rewritten to make the fixed point
unique before the subtyping algorithm is used.)

The second fixed point determines whether a value is in this potentially infinite non-
recursive type. In this chapter, the fixed point is a greatest fixed point. In [AC90], enough
explicit types appear in the terms to uniquely determine the fixed point. Using a greatest
fixed point is appropriate, since we want to assign as many types to as many terms as
possible while preserving soundness.

There are four important relations axiomatized in this Chapter: membership of a value
in a recursive type, emptyness of a recursive type, subtyping for recursive types, and
splitting for recursive types. All of these are greatest fixed points of the axiom system,
rather than the customary least fixed points. Informally, this means infinite proof trees
are permitted. Formally, we think of each inference system as a monotone function and
consider a judgement to be valid if it is a member of the greatest fixed point of the function.
A proof technique commonly used in the literature (and in this thesis) with greatest fixed
points is co-induction, as described in [MT91a], among other places.

3.2 Abstract Declarations

In the previous chapter, we assumed that information about the primitives
def
: ,

def�
, and so

forth appeared in a global environment. When type inference encounters
8�9��;9�������

and
� ����������

statements, the global environment must be updated appropriately. In this chapter,
we will assume that the

8:9��9������;�
statement has already been added to the environment,

and we will describe how to add the � ����������
statement.

The proofs and inference systems are simpler if we simply assume that & for recursive
types is commutative, associative, and idempotent.

Declarations given by the programmer need to be manipulated in several ways before
they become regular enough for simple algorithms to apply to them. In this section we
will informally describe how the user’s declarations are converted to a normal form called
abstract declarations, and we will define well-formedness for abstract declarations. All of
the algorithms described in future sections take well-formed abstract declarations as input.
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3.2.1 Expansion

Circular definitions of recursive type constructors are potentially confusing. For example,
consider the declaration

8:9��9������;� 2 > �ZG�I 29 @ 8 � >�� G�I �
� ���������� � K%K �,> � K%K �

We could decide that the fixed point by which we give meaning to these declarations is
a least fixed point, as was done in [AC90]; with this interpretation this declaration would
mean that

� K%K �
is an empty type. Alternatively, we could decide that it is a greatest fixed

point, in which case
� K%K �

should contain all of the refinements of some ML type. However,
there is no natural way to determine which ML type

� K�K �
refines, so instead this declaration

is considered an error. In this Subsection we will detect all errors of this kind by making
sure each definition of a recursive type constructor makes progress before recurring.

Define the toplevel of an extended recursive type to be the outermost subterms of the
recursive type that do not use the “&” or “

E
” operators. For example, the toplevel of the

extended recursive type
��G @1HN$LOQPSRTRVU�M < ��� ) &

$ ��G @1HN$L#T#�M < �;��� ) E < ��� )
consists of the subterms

��G @1H $ O PSRTRVUM < ��� ) , ��G @CHA$L#T# M < �;��� ) , and
< ���

. To perform
expansion, repeatedly replace all refinement type constructors at the toplevel with their
definitions until there are no refinement type constructors at the toplevel, or some definition
is expanded more than once. If a definition is expanded more than once, we have a circular
definition and the � ���������;�

declaration is rejected as meaningless.

For example, the declaration

8:9��9������;� � � # >�� � ���AG�I � � #ZE�� � � GNG�I #����:� #
� ���������� � K%K ���Z>Z� K%K ���

9 @ 8 � K%K ��� >Z� K%K ���
is rejected because attempts to expand the definitions of both

� K K ���
and

� K%K ���
fail to

terminate. On the other hand, the declaration

8:9��9������;� � � # >�� � ���AG�I � � #ZE�� � � GNG�I #����:� #
� ���������� � K%K ���Z>Z� K%K ���9 @ 8 � K%K ��� >�� � ��� $L� K%K ��� )

is accepted and the result of this manipulation is

8:9��9������;� � � # >�� � ���AG�I � � #ZE�� � � GNG�I #����:� #
� ���������� � K%K ���Z>�� � ��� $L� K%K ��� )9 @ 8 � K%K ��� >�� � ��� $L� K%K ��� ) �
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3.2.2 Flattening

Declarations given by the programmer will often require inventing new refinement type
names to get the expected effect. For example, with the declaration

8�9��;9������� < � �"!�# > ��G @CH G�I <WK K �;M < � �"!�# E @1B4D G�I #����:� #
� ���������;�=< ��� > ��G @1HN$LO P R R'U4M ��G @CHA$LOQPSRTRVU4M < ��� )L) E:@1BXDA$

runit )
we would expect the expression

��G @1HN$ � ��� � $ ) � ��G @CHN$ � ��� � $ ) � @CB4DA$ ) )L) to have the
refinement type

< � �
. If the only refinement of

< � �"!�#
is

< ���
, we cannot infer this type for

this expression because we have no type for the expression
��G @1HN$ � �	� � $ ) � @1B4D $ )L) .

To get the expected type for
��G @CHN$ � ��� � $ ) � ��G @1H $ � ��� � $ ) � @CB4DA$ ) )L) , we need to

automatically add another refinement of
< � �"!�#

. In practice, the new refinement would be
given a nonmnemonic name like

�������
, and the � ���������;�

declaration would be treated as
though it were written

8�9��;9�������A< � �"!�#?> ��G @CH G�I,<WK%K �:M < � �"!�# E @1B4D G�I #����:� #
� ���������;�=< ��� > ��G @1HN$LO P R R'U�M ������� ) E @1B4DA$

runit )9 @ 8 ������� > ��G @CHN$ O P R R'U�M < ��� )
(The programmer can define a usable name for odd length lists by doing this expansion by
hand, using some mnemonic name such as “

<WK 2 ” in place of “
�������

”.) The manipulation of
the � ����������

statement that adds these new recursive type constructors is called flattening.

The problem is that we have value constructors that are not at the toplevel, and the
solution is to introduce new recursive type constructors until all value constructors are at
the top level. To describe this formally, we will have to speak in terms of a context � ,
which is an extended recursive type with a hole. For example, we can write

��G @1HN$LOQPSRTR'UXM ��G @1H $ O PSRTR'UXM < ��� )L) E @CB4DA$
runit )

as � + O P R R'U - , where � + � -
* ��G @1HN$
�

M ��G @1HN$LO P R R'U M < ��� ) ) E:@CB4DY$
runit ) . With this defini-

tion, we can formally specify how to flatten a � ���������;�
declaration: whenever we encounter

a definition of the form

� � � > � + � � -
where the � in � + � - does not appear at the toplevel, but all toplevel subexpressions of

� �
have the form � $ � � ) or � G����;G �,$L#�� ) , we choose a new recursive type constructor

� � �
and

replace this definition with the two definitions

� � � > � + � � � -� � � >,� �
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The requirement that � does not appear at the toplevel of � + � - is necessary ensure that
the manipulation actually makes the � ����������

simpler; without the requirement, the result
of applying this manipulation to the above example could be

8:9��9������;�=< � �"!�#?> ��G @1H G�I,<WK%K �:M < � �"!�# E @1BXD G�I #����:� #
� ����������A< ���A> � �����

9 @ 8 �������,> ��G @1HA$LO P R R'U M ��G @CHN$ O PSRTR'U M < ��� )L) E @1BXDY$
runit )

which is hardly an improvement.

The requirement that all toplevel subexpressions of
� �

have the form � $ � � ) or
� G����;G �Z$ #�� ) is necessary to ensure that all refinement type constructors created by this
manipulation refine an ML type constructor, instead of refining some ML type. For exam-
ple, without this restriction the result of applying this manipulation to the above example
could be

8:9��9������;�=< � �"!�#?> ��G @1H G�IJ<WK%K �:M < � �"!�# E @1BXD G�I #����:� #
� ����������A< ���A> ��G @CHN$ O PSRTR'U�M ��G @CHN$ �
����� )L) E @CB4DA$

runit )9 @ 8 �������,> OQPSRTRVU�M < ���

which will not satisfy the semantic restrictions that appear below because the new recursive
type constructor

�������
refines

<WK K �M < � �"!�#
, which is not a new ML type constructor.

3.2.3 Simplification

Now we can manipulate the � ����������
statement to ensure that the toplevel of each definition

is simply a call to a value constructor or � G����G �
, rather than an intersection or union of

calls to value constructors or � G����G �
. We can also eliminate some unions; any unions not

eliminated by this manipulation cause an error.

Repeat the following rewrites until none of them apply:

[ If the definition has the form

� � � > ��� �
1

E ��� �
2

replace it with the two definitions
� � � > ��� �

1� � � > ��� �
2 �

[ If the definition has the form

� � � > � $ � � �
1 ) & � $ ��� �

2 ) & . . .



CHAPTER 3. DECLARING REFINEMENTS OF RECURSIVE DATA TYPES 174

replace it with

� � � > � $���� �
1 &

��� �
2 ) & . . .

[ If the definition has the form

� � � > � 1
$ � � �

1 ) & � 2
$ ��� �

2 ) & . . .

where � 1 and � 2 are different, replace it with

� � � > � G����G �,#��
where

#��
is the ML type of the result of � 1.

These rewrites will rewrite many � ���������;�
statements so each definition has the

form
� � � > � $���� � ) or

� � � > � G����G �Z$L#�� ) . If they do not, then the � ����������
state-

ment is considered meaningless; for example, the results of rewriting may have the form� � � > ��� �
1
� ��� �

2 or
� � � > � $ ��� �

1 ) &
$ ��� �

2
M � � �

3 ) . These are and should be disal-
lowed; the former because the user has apparently attempted to declare a new refinement
of
�

, and the latter because the new recursive type constructor must refine both the output
type of � (which must be a datatype) and some tuple type.

3.2.4 Adding Top

Suppose we declare the booleans as

8:9��9������;�=<LK%K � > � ��� �NG�I #����:� # E I9 D H �NG�I #����:� #
� ���������� #T#?> � ��� � $ � ���:� # )9 @ 8 � > I9 D:H � $�� ��� � # ) �

If this only gives rise to the refinement type constructors
#T#

,
�

, and
#T#

&
�

refining
<WK K �

,
then there would be no type for an expression when refinement type inference cannot infer
that it always evaluates to

� ��� � $ ) or it always evaluates to
I9 D H � $ ) . For example, most

calls to the function
H 9 � � D � @ � � �

defined by

I � @ZH 9 � � D � @ � ��� $ ��G @CHA$ ��� � D � )L) $ ��G @1HN$ � � � D � ) ) >,H 9 � � D � @ � � � � D � � D �E H 9 � � D � @ � ��� @1BXD @1BXD > � ��� �E H 9 � � D � @ � ��� � � > I;9 D:H �
will get a type error. Our options at this point are to declare that most calls to

H 9 � � D � @ � � �
cause a type error unless the user adds a definition

. . .
9 @ 8 O PSRTR'U > � ��� � $ � ���:� # ) E I9 D:H � $ � ���:� # ) �
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or we could implicitly add the definition. Since there will often be expressions where
refinement type inference does not deduce precise information, we choose to implicitly add
definitions of catch-all types like

O PSRTR'U
to every � ���������;�

declaration.

When the value constructors have arguments, the added definitions will mention the
maximal refinement of other refinement types. For example, the definition we would add
to 8:9��9������;�

d
> � G�I

bool� ����������
dtrue

> �Z$
tt )

would be

. . .
9 @ 8 O � >��Z$LOQPSRTRVU ) �

When the datatype includes functions, the catch-all refinement type will have to have
minimal refinement types on the left hand side of each arrow, as well. For example, the
implicit definition of the catch-all type for the declaration

8:9��9������;�
d

> � G�I <WK%K � � <LK%K �
is

� ���������;� O � > �Z$L$L#T#
&
� ) � O P R R'U )

and not

� ���������;� O � >��Z$LOQPSRTRVU�� O PSRTR'U )
because the latter does not assign a type to an expression

���
when

�
has the type

# # � #T#
.

As explained in Subsection 2.7.2 on page 74, we cannot yet construct values with the least
type

#T# � #T#
, but we will be able to in Chapter 6.

The general procedure for creating catch-all types is straightforward and will not be
given here. It starts to break down when we introduce polymorphic type constructors; see
Subsection 5.8.3 on page 272.

This procedure is not meaningful with a
8�9��9�������

declaration that is recursive on the
left hand side of

�
such as

8�9��;9������� 2 >�� G�I 2 � <WK%K �=E�� G�I #����:� #
because the generated � ����������

declaration would have recursion on the left hand side of
the

�
, which is not consistent with the grammar given above for � ����������

statements.
The user cannot use a � ���������;�

statement to specify refinements of 2 either, for the same
reason. The best approach seems to be to give datatypes like this exactly one refinement,
which would be called

O �
in this case, and to give trivial definitions of the primitives used

in Chapter 2 that satisfy the assumptions made.
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3.2.5 Definition of Abstract Declarations

This chapter deals with recursive types, which we define in terms of recursive type con-
structors and refinement types. We shall use the following metavariables in this chapter:

� � � ( � � � ( � � �
Recursive type constructors.� � � ! ( � � � ! ( � � � !
Sets of recursive type constructors.� � ( � � ( � � ( ���
Recursive types.� �L! ( � � ! ( � �:!
Sets of recursive types.

This naming scheme is meant to be mnemonic; “n” stands for “new”, “s” stands for “set”,
“c” stands for “constructor”, and “r”, “k”, “p” and “q” simply distinguish multiple names
of each type. We will also occasionally use metavariables defined in the previous chapter.

After we rewrite � ���������;�
statement given by the programmer as described above, we

can summarize the � ����������
statement as a set � of expressions of the form

� � � � � $W� � )
or the form

� � � �
bottom

$L#�� ) .
For example, the declaration

8:9��9������;�=< � �"!�#?> ��G @1H G�IJ<WK%K �:M < � �"!�# E @1BXD G�I
tunit� ����������A< ���A> ��G @CHN$ O PSRTR'U � ��G @1HN$LOQPSRTRVU � < ��� )L) E @CB4DA$

runit )9 @ 8Z<WK 2 > ��G @CHA$LOQPSRTR'U � < ��� )9 @ 8 � P U ����� > � G����G �Z$ < � �"!�# )
corresponds to the abstract declaration

� O PTU � ���	� ��G @CH�$LO P R R'U�M O PTU � ��� ) (O PTU � ���	�=@1B4D�$�� ���:� # )W(< ����� ��G @1H4$LOQPSRTR'UXM <WK 2;)W(< ����� @1BXD�$ � ���:� # )W(<WK 2 � ��G @1H�$ O PSRTR'U�M < ��� )W(� PTU � ���	�
bottom

$ < � �"!�# ) � 5

The environments of most of the type inference rules below will include an abstract
declaration, usually called � . There will be no corresponding description of the ML type

environment; instead, we will assume that appropriate assumptions of the form � def
:: � � #��

reflect the
8�9��9�������

declaration when � is new. We do this because this thesis is not
concerned with ML type inference and the extra notation does not seem worthwhile. A
complete description of an ML dialect that included � ���������;�

declarations should have an
explicit environment that includes descriptions of the

8:9��9������;�
declarations in effect as

well as the � ����������
declarations.
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AND-RECREFINES:
� 
 � � � � � 
 � � � �

� 
 � �
&

� � � �

ARROW-RECREFINES:
�

� � 1 � 
 � � � � 2

� 

�
� � � � � 1

� � 2

NEW-RECREFINES:

for all � and
� �

such that
� � � � � $ � � ) � �

there is a � such that � def
:: � � � #��

for all
#�� �

such that
� � � �

bottom
$L#�� � ) � �

we have
#�� * #�� �

� 
 � � � � #��

OLD-RECREFINES:
� � def� #��

� 
 � � � #��

TUPLE-RECREFINES:
for all � we have � 
 � � � � � �

� 
 � �
1

M
. . .

M � � � � � 1
M

. . .
M � �

Figure 3.1: Monomorphic Recursive Type Refinement Rules

3.2.6 Well-formedness

In this section, we will give some conditions that abstract declarations used in this chapter
must satisfy.

�����������
declarations giving rise to abstract declarations that do not satisfy

these conditions are rejected by type inference.

Given an abstract declaration, we must first check that it is well-formed. Since this
thesis is about refinement type inference and not ML type inference, we will assume

without further ado that assertions of the form � def
:: � � � #��

derived from the
8:9��9������;�

statement are available. For instance, given the declaration

8�9��9�������A< � �"!�#?> ��G @CH G�I < K�K �:M < � �"!�# E @CB4D G�I
tunit

we should immediately have the assertions

��G @CH def
::

$ <WK K �;M < � �"!�# ) � � < � �"!�#
@1B4D def

::
#����:� #

�
� < � �"!�# 5

Given these assertions, it is possible to use the inference rules in Figure 3.1 to infer that
certain recursive types refine certain ML types.

These rules are analogous to the monomorphic refinement rules in Figure 2.3 on page 31,
except we have added a rule NEW-RECREFINES which is not similar to any rule from
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Figure 2.3. This rule makes clear the purpose of the “bottom” declarations that can appear
in � ; they constrain the ML type of recursive type constructors that would otherwise
be entirely absent from � . This is the only place we will use the “bottom” declarations.
Without these declarations, a completely empty recursive type constructor would not appear
at all in the abstract declaration, so it could refine all ML type constructors, which would
make Fact 3.9 (Recursive Unique ML Types) on page 179 false.

As in Chapter 2, we will consider
� ���:� #

and
#����:� #

to be tuples of zero elements, so we
can use the TUPLE-RECREFINES rule to infer � 
 � ��� � # � #����:� #

.

Now that we can determine when a recursive type refines an ML type, we can say what it
means for an abstract declaration to be well-formed. An abstract declaration is well-formed
if the next six conditions all hold. These conditions can all be easily checked by a program.

First we require all definitions in the abstract declaration to be consistent with the ML
types of the value constructors:

Condition 3.1 (Refinement Consistency) If � is well-formed then for all nrc
� � $

nr ) �
� , there are must be � and tc such that � def

:: ��� � tc and � 

nrc � tc and � 


nr � � .

The distinction between “new” and “old” constructors mentioned earlier is only useful
if the new constructors are limited in how they interact with the old ones. An appropriate
restriction is:

Condition 3.2 (New Recursive Type Constructors Defined) Every well-formed abstract
declaration must define all new recursive type constructors.

We need this because there is no way to determine the ML type refined by a new recursive
type constructor that does not appear in the declaration. This restriction is satisfied naturally
if the set of new recursive type constructors is taken as the recursive type constructors that
appear in the abstract declaration.

Condition 3.3 (New Value Constructors Defined) Every well-formed abstract declara-
tion must mention all new value constructors.

Without this restriction, the behavior of the new value constructors on refinement types
would not be determined. This restriction is enforced naturally when catch-all recursive
types are added.

Condition 3.4 (New Value Constructors Only) Every well-formed abstract declaration
must not mention any old value constructors.

Without this, the abstract declaration could define new refinements of old ML types. For
example:
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8�9��9�������
bool

> � ��� � G�I
tunit

E I9 D:H � G�I
tunit

. . . some code . . .8�9��9�������A< � �"!�#?> ��G @CH G�I < K�K �:M < � �"!�# E @CB4D G�I
tunit� ���������;�

tt
> � ��� � $

runit )
We have several more conditions that simply formalize some of the behavior of8:9��9������;�

declarations. This restriction prevents incrementally declaring refinements of
existing data types:

Condition 3.5 (New Value Constructors Closed) The output type of each new value con-
structor must be a new ML type constructor.

Condition 3.6 (Declarations are Finite) All well-formed abstract declarations are finite.

The abstract declaration, as written, gives one or more definitions for some of recursive
type constructors. It is also possible to think of it as giving one or more definitions for
some intersections of recursive type constructors; we call the set of all of the intersections
the closure of � , and formally define it as follows:

Definition 3.7 (Intersection Membership) Define � to be the set with elements of the
form nrc1 & . . . & nrc � � � $

nr1 & . . . & nr � ) where for � between 1 and
�

we have
nrc � � � $

nr � ) � � .

Simple reasoning tells us that Condition 3.1 (Refinement Consistency) on page 178
extends naturally to intersections of recursive type constructors:

Fact 3.8 (Intersection Refines) If � def
:: � � � tc and &nrcs

� � $
nr ) � � then

� 

nr � �

and
� 


& nrcs � tc 5
An analogue of Lemma 2.10 (Unique ML Types) on page 31 holds for recursive types:

Fact 3.9 (Recursive Unique ML Types) If � 

nr � � and � 


nr � � then ��* � .

The proof of this is a straightforward induction on
� �

.
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AND-RECVALUE:

� � !
has two or more elements

for each
� �

in
� �L!

we have � 

� � � �

� 

� � &

� �L!

ABS-RECVALUE:
for all � and all �

�
we have

�



� : � and

$ I @ � � � > � � ) � � �
�
imply � 


�
� � � �

� 
 $ I @ � � � > � � ) � � � � �

NEW-RC-RECVALUE:
� � � � � $ � � ) � � � 


� � � �
� 
 � � � � � �

OLD-RC-RECVALUE:
�



� :

� �
� 


� � � �

TUPLE-RECVALUE:
for all � we have � 


� � � � � �
� 
 $

�

1
�

. . .
�

� � ) � � �
1

M
. . .

M � � �

Figure 3.2: Whether a Value is in a Recursive Type; Greatest Fixed Point

3.2.7 Meaning of Recursive Types

We can think of recursive types as standing for sets of values. In this section we will
specify when a value is in a recursive type. For technical reasons described below, the
inference system must be given an unusual interpretation that permits infinite proof trees.
The inference system is also somewhat unusual in that some inferences can have infinitely
many premises. Fortunately, this inference system does not need to be decidable. First we
will explain why we need infinitely tall inference trees, and how to formalize this. Then we
will explore various alternatives to the rule with infinitely many premises.

If one attempts to write inference rules for proving that a value has a recursive type,
apparent success comes quickly. If we write “with the abstract declaration � , the value �

has the recursive type
� �

” as � 

� � � �

, then we get the inference rules in Figure 3.2.
(The need for the requirement of two or more elements in

� � !
in the AND-RECVALUE rule

and the meaning of the phrase “Greatest Fixed Point” in the caption will be explained in a
moment.)

An ordinary interpretation of these inference rules works well for all values without
functions embedded in them. Unfortunately, it is possible to use function objects to define
possibly infinite lazy lists in ML, and a straightforward interpretation of the inference rules
in Figure 3.2 draws wrong conclusions in this case. We can declare possibly infinite lazy
lists of booleans with the declaration

8�9��9�������
lazy

> � G�I #����:� # �A$ <WK%K ��M � ��� � )
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and we can distinguish lazy lists where all elements are
� �	� � $ ) with this declaration:

� ����������
alltrue

>�� $ � ���:� # � #T# M � �S� #�� ��� )
The corresponding abstract declaration is

� * � � �S� #�� �:� � �C$ � ���:� # � #T#
M � �S� #�� �:� ) � 5
If the function object in a value with ML type lazy fails to terminate, then it vacuously
satisfies the ABS-RECVALUE rule. Thus if we let

�

0 * � $ I @ �Y>��Y$ I B�� I >�� I @��6>��Y$ I � ) )L)
we have

� 

�

0 � � �S� #�� �:�
and if we let � ��� 1 * � $ I @ �Y>��Y$ � �	� � $ ) � � � ) ) for � � 0, we also have

� 

� � � � �S� #�� ��� 5

However, because the normal interpretation of inference systems disallows infinite proofs,
we cannot use the normal interpretation of this system to give a type to the infinite lazy list

� $ I @ � > � $ $ I B�� I >�� I @ � >��Y$ � ��� � $ ) � � I ) ) $ )L)L) �

There are several possible ways to deal with this. In theory, one could imagine a type
system that gives no type to the infinite lazy list. Distinguishing the infinite lazy list from
lists that have a finite number of elements followed by an infinite loop when the next one
is fetched is equivalent to the halting problem, so that type system would also have to give
no type to some finite lazy lists. This seems awkward.

Instead, we use an informal interpretation of the above inference system that permits
infinite proofs. Normally, the relation defined by an inference system is considered to be
the least relation consistent with the inference rules. Instead, we will interpret it as the
greatest relation consistent with the inference rules. This is the cause of the restriction of
AND-RECVALUE to sets of two or more elements; if we allow sets of one element, then the
conclusion of the rule is the same as the premise, and the greatest fixed point would include
all possible conclusions because for any value � and any recursive type � we would have
the infinite inference tree

. . . + AND-RECVALUE -� 

� � � + AND-RECVALUE -� 

� � �

Formally, we interpret this inference system as the greatest fixed point of a function.
Take � as fixed for the time being. A greatest fixed point must be within some universe;
let our universe

�
be the set of all possible pairs of the form

$
� ( � � ) . We can encode the

inference system in Figure 3.2 as a function � mapping subsets of
�

to subsets of
�

. If we
abbreviate “

� �
has the form � ” as “

� ��� � ”, the part of the definition of � corresponding
to the AND-RECVALUE and ABS-RECVALUE rules is:
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$
� ( � � ) � � $�� ) if and only if$ � � �

&
� � !

where
� � !

has 2 or mere elements, and
for all

� �
in

� � !
we have

$
� ( � � ) � � )

or$ � � �
�
� � �

and �
� I @ � � � >�� �

and
for all �

� �
and �

�
we have

if �



�
� �

: �
and

$ I @ � � � > � � ) �
� � � �

�
then

$
�
� ( � � ) � � )

or
. . . omitted cases . . .

where the omitted cases are always false if
� � �

&
� � !

where
� � !

has 2 or more elements,
or

� � �
�
� � �

. With this definition of � , we say � 

� � � if

$
� ( � ) is in the greatest

fixed point of � , which we shall write as gfp
$ � ) .

It is easy to see that � is monotone. As we admit more premises of the form � 

� � � ,

we can use the inference rules in Figure 3.2 to infer more conclusions of that form. By
contrast, if we allow recursion on the left hand side of arrows, the natural version of
ABS-RECVALUE would be

for all � and all �
�
we have

� 

� � � �

and
$ I @ � � � > � � ) � � �

�
imply � 


�
� � � �

� 
 $ I @ � � � > � � ) � � � � � �

which is not monotone, since we have the premise � 

� � � �

on the left hand side of an
implication.

Another option that seems attractive at first is defining membership of a function in a
recursive type in terms of some other type inference system. More specifically, we would
say that

I @ � � � > � � has the type �
� � �

if, in some sense, when we assume that � has
the type � we can infer that � has the type

� �
. Unfortunately, we do not have a type

inference system on hand that infers when an expression with free variables has a recursive
type. We could make a recursive type inference system analogous to the refinement type
inference system in Chapter 2, but the description of such a system might be about as large
as Chapter 2. This inference system, on the other hand, is concise and sufficient for our
purposes.

We use co-induction to reason about these greatest fixed points, as described in [MT91b,
page 216]:

Fact 3.10 (Co-induction) Let
�

be any set, and let � be a monotonic function mapping
subsets of

�
to subsets of

�
. For any

��� �
, in order to prove

���
gfp

$ � ) , it is sufficient
to prove

��� � $�� ) .
The first co-induction in this chapter is Theorem 3.20 (Emptyness Consistency II) on
page 190.
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Before we turn away from membership of values in recursive types, we note that co-
induction is not necessary in the simple proof of an extended version of NEW-RC-RECVALUE

that applies to intersections of recursive type constructors:

Fact 3.11 (Intersection Value Membership) If &nrcs
� � $

nr ) � � and � 

� � nr then

� 
 � � � &nrcs.

3.3 Empty Types

The value constructors in Standard ML are eager, but the simplest type systems are more
appropriate for lazy value constructors. The algorithm introduced in this section allows� ����������

statements to ignore certain distinctions that are unimportant in SML, but would
be important if we had lazy value constructors. For example, if we have the declarations

8:9��;9�������A< � �"!�# > ��G @1H G�I <WK%K �:M < � �"!�# E @1BXD G�I � ���:� #
� ����������A< � � > ��G @CHN$ O P R R'U�M <LK 2;) E @CB4DA$

runit )9 @ 8 <WK 2 > ��G @1HN$LO P R R'U�M < ��� )9 @ 8 < �;��� > ��G @1HN$LOQPSRTR'UXM O PTU � ��� )9 @ 8 < ��� >=@1BXDA$
runit )

and value constructors are lazy, then
< � �

&
<WK 2 contains the infinite value

��G @1HN$ � �	� � $ ) � ��G @1HN$ � ��� � $ ) � . . . )L) (
but if value constructors are eager, there are no infinite values and this type is empty. By
contrast, the type

< ���
&

< �;���
is empty regardless. Thus, if our type system takes no

account of the fact that value constructors in SML are eager, we will have

< ���
&

< �;��� � <WK 2 &
< ���

but not <WK 2 &
< ��� � < ���

&
< �;��� 5

This distinction is an unintuitive nuisance to a programmer who expects value constructors
to be eager.

These unnecessary distinctions seem to arise most often for empty recursive types. In
this section we define an algorithm that determines when a recursive type is empty if value
constructors are call by value. The definition of subtyping for recursive types that appears
in the next section ensures that empty recursive types are always subtypes of other recursive
types that refine the same ML type. Thus, we will be able to derive

<WK 2 &
< ��� � < ���

&
< �;��� 5
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RCON-EMPTY:
� �

1
def�

. . .
def� � � � def

empty
 � �
1 & . . . &

� � � empty

REF-TUPLE-EMPTY:
for some � in 1 . . .

�
we have



� 1 � � . . .

�
� 
 � empty
 $

� 11
M

. . .
M
� 1 � ) � . . .

� $
� 
 1

M
. . .

M
� 
 � ) empty

Figure 3.3: When a Refinement Type is Empty

We will describe the algorithm for determining whether a recursive type is empty in
several steps. First in Subsection 3.3.1 we shall postulate a property of refinement type
constructors that says whether they are empty. This can easily be extended to a judgement

� empty that says when a refinement type � is empty. We assume that these judgements

are consistent in certain ways. Then in Subsection 3.3.2 we shall give declarative inference
rules for the judgement that a recursive type is empty, written � 
 � �

empty, where �
is an abstract declaration and

� �
is the recursive type in question. Infinite proofs with

these inference rules will be allowed, as they were for the � 

� � � judgement. We also

present type inference rules for a relation � ;
� 
 � �

alg-empty which includes a set
�

of
intersections of recursive type constructors that are presumed empty. Proper use of these
inference rules only allows finite proofs, and can be easily read as an algorithm. Then in
Subsection 3.3.3 we will prove several properties of these judgements; the most interesting
ones are that the algorithmic and declarative are equivalent and that types judged empty
actually contain no values.

3.3.1 Emptyness for Refinement Types

We start by assuming that some refinement type constructors are empty. We write the

assertion that
� �

is empty as
� � def

empty. If we assume that certain refinement type constructors
are empty, it is straightforward to conclude that certain refinement types are empty. We call
the judgement for this



� empty and define it by the rules in Figure 3.3.

For these rules to work properly, we need some consistency between the
� � def

empty
and the



� empty judgements; we can also regard these as consistency conditions on the

implicit global environment, as were the assumptions listed in Chapter 2. First, if a value
constructor returns something with an empty type, it was given something with an empty
type:

Assumption 3.12 (Emptyness Constructor) If rc
def

empty and � def
: � �

�
rc then



� empty.

Also, if a refinement type constructor is empty, any smaller refinement type constructor
must also be empty:
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Assumption 3.13 (Emptyness Subtyping) If rc
def

empty and kc
def�

rc then kc
def

empty.

These assumptions are sufficient to show that emptyness for refinement types is sound,
in the sense that empty refinement types contain no values:

Fact 3.14 (Soundness of Refinment Type Empty) If


� empty and �



� :: � and � � �

then we do not have �



� : � .

The proof of this is a straightforward induction on � that we shall omit.

3.3.2 Emptyness for Recursive Types

Emptyness for recursive types is more interesting because we must either allow infinite
proofs to get correct behavior in the presence of recursion, or use trails to ensure termination.

For example, using the � ����������
declarations on page 183, we should be able to infer

that
< � �

&
<LK 2 is empty. Suppose, by way of contradiction, that a value has this type; then

the value will be in both
< � �

and
<WK 2 . By the declarations of these types, the outermost

constructor of this value must be
��G @CH

, and the argument to
��G @1H

will be in both of the
types

O P R R'U M <WK 2 and
O PSRTR'U M < ���

. This can only be the case if there is some value in the
type

<WK 2 &
< ���

. We assume that & for recursive types is commutative, so this is equivalent
to the problem we started with. We can either continue to produce an infinite argument, or
we can keep track of the set of subproblems already encountered (this set is called a trail)
so we can observe that we have encountered this problem before and stop. Since there are
actually no values with this type, either approach should lead to the conclusion that the type
is empty.

If we take the approach of permitting infinite proofs, we get the inference system in
Figure 3.4. For this example, the infinite proof tree for � 
 < ���

&
<WK 2 empty is

. . . + NEW-INFER-EMPTY -� 
 <WK 2 &
< ���

empty + REC-TUPLE-EMPTY -� 
 O P R R'U�M <WK 2 &
O P R R'U�M < ���

empty + NEW-INFER-EMPTY -� 
 < ���
&

<WK 2 empty

Finding an intuitively meaningful reading is straightforward, with the possible exception
of NEW-INFER-EMPTY. Translating it into words yields “If the only way to construct an
element of a recursive type

� �
is by starting with elements of other types that are all empty,

then
� �

is empty.”, which seems plausible.

If, instead, we take the approach of using a trail to keep track of the pending subproblems,
we get the inference system in Figure 3.5. In this system, the trail is the set

�
, which
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NEW-INFER-EMPTY:
for all � and all � � such that &

� � �W! � � $W� � ) � � we have
� 
 � �

empty
� 


&
� � � !

empty

OLD-EMPTY:
def� � �W! def

empty
� 


&
� � !

empty

REC-TUPLE-EMPTY:
for some � in 1 . . .

�
we have � 
 � �

1 � & . . . &
� � 
 � empty

� 
 $W� �
11

M
. . .

M � �
1 � ) & . . . &

$W� � 

1

M
. . .

M � � 
 � ) empty

Figure 3.4: Declarative Emptyness for Recursive Types (Greatest Fixed Point)

ALG-NEW-ENV-EMPTY:
&

� � � ! � �

� ;
� 


&
� � � !

alg-empty

ALG-NEW-INFER-EMPTY:
for all � and all � � such that &

� � � ! � � $W� � ) � � we have
� ;

� � � & � � � ! � 
 � �
alg-empty

� ;
� 


&
� � � !

alg-empty

ALG-OLD-EMPTY:
def� � � ! def

empty
� ;

� 

&

� �W!
alg-empty

ALG-REC-TUPLE-EMPTY:
for some � in 1 . . .

�
we have

� ;
� 
 � �

1 � & . . . &
� � 
 � alg-empty

� ;
� 
 $ � �

11
M

. . .
M � �

1 � ) & . . . &
$W� � 


1
M

. . .
M � � 
 � ) alg-empty

Figure 3.5: Algorithmic Emptyness for Recursive Types

contains the intersections of recursive type constructors that we are already attempting to
prove empty. For example, the following derivation is a proof that

< ���
&

<WK 2 is empty:

+ ALG-NEW-ENV-EMPTY -� ; � < ���
&

<WK 2 � 
 <WK 2 &
< ���

alg-empty + ALG-REC-TUPLE-EMPTY-� ; � < ���
&

< K 2 � 
 O P R R'U M <WK 2 &
O P R R'U M < ���

alg-empty + ALG-NEW-INFER-EMPTY -� ; � � 
 < ���
&

<WK 2 alg-empty

This inference system can easily be read as an algorithm. Simply try to construct a
derivation starting at the root with an empty trail, and use ALG-NEW-ENV-EMPTY instead of
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ALG-NEW-INFER-EMPTY whenever a choice arises. Informally speaking, the algorithm for
inferring � ;

� 
 � �
alg-empty is sure to terminate because at each step either

�
stays the

same and
� �

gets smaller, or
�

gets larger. Since � is finite and
�

contains intersections
of sets of recursive type constructors mentioned in � , the largest possible

�
is finite.

Formalizing this requires introducing two new definitions: a measure of the size of
� �

that
we shall call depth

$ � � ) and the maximal value of
�

which we call emptyU
$ � ) .

Because of the ALG-REC-TUPLE-EMPTY rule, we cannot say that if
�

remains constant,� �
is replaced by a subterm of itself. For instance, given the problem � ;

� 
 $L#T# M
� ) &

$ � M � ) alg-empty, we would examine the subproblems � ;
��
 #T#

&
�

alg-empty
and � ;

� 
 �
&
�

alg-empty. Neither of these recursive types appear literally within$L#T#�M � ) &
$ � M � ) . They are smaller in the sense that their printed representation is smaller,

but this is awkward to reason about. Instead we regard the recursive type as a tree, and think
in terms of the height of the tree. Since & for recursive types is assumed to be idempotent,
we have to give the same “height” to both

# #
&

#T#
and

# #
; thus we call it “depth” to distinguish

it from the ordinary notion of tree height, and we define it so intersection operators do not
increase the measure of a recursive type:

Definition 3.15 (Depth of a Recursive Type) We define the depth of a recursive type by
the equations

depth
$
&nrs ) * max � depth

$
nr ) / nr � nrs

�
depth

$
�
�

nr ) * depth
$
nr ) � 1

depth
$
� � 1

M
. . .

M
� � � ) * max � depth

$
nr � / � � 1 . . .

� ) � � 1
depth

$
rc ) * 0

depth
$
nrc ) * 0 5

By Condition 3.2 (New Recursive Type Constructors Defined) on page 178, all recursive
type constructors that can appear in

�
are defined in � . Thus we can define the universe

from which
�

is chosen as all possible subsets of the types defined in � :

Definition 3.16 Define emptyU
$ � ) to be � &nrcs / all nrc � nrcs are defined in � � .

With these definitions, we can say that the natural algorithm derived from the rules in
Figure 3.5 terminates because the pair

$
emptyU

$ � ) � � ( depth
$ � � ) ) always lexicographi-

cally decreases. Not surprisingly, this measure will also ensure that some induction proofs
below make progress.

3.3.3 Properties of Empty

We shall show that the algorithmic and declarative versions of emptyness inference are
equivalent, and that types judged empty actually contain no values.
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Fact 3.17 (Algorithmic Emptyness Strengthening) If � ;
�

1



nr alg-empty then

� ;
�

1
� �

2



nr alg-empty 5
Proving this is a trivial induction on the derivation of the hypothesis. The derivation of

� ;
�

1
� �

2

 � �

alg-empty has the same shape as the derivation of � ;
�

1

 � �

alg-empty;
the only difference is that in the former derivation all of the trails are larger.

Lemma 3.18 (Empty Eliminable Assumptions) If

� ; � � 
 &nkcs alg-empty

and
� ;

� � � &nkcs
� 


nr alg-empty

then
� ;

� 

nr alg-empty 5

Proof: By induction on the derivation of � ;
� � � & � � � ! � 
 � �

alg-empty.

Case: ALG-NEW-ENV-EMPTY,
� � * &

� � � !
Applying Fact 3.17 (Algorithmic Emptyness

Strengthening) on page 188 to � ; � � 
 &
� � �W!

alg-empty gives � ;
� 


&
� � � !

alg-empty,
which is our conclusion.

Case: ALG-NEW-ENV-EMPTY,
� � �* &

� � � !
Then

� � �
&

� � � !
where the premise of ALG-

NEW-ENV-EMPTY is &
� � � ! � � � � & � � � ! �

. Since
� � �* &

� � � !
, this implies &

� � � ! � �
,

and ALG-NEW-ENV-EMPTY gives � ;
� 


&
� � � !

alg-empty, which is our conclusion.

Case: ALG-NEW-INFER-EMPTY Then
� � �

&
� � � !

and the premise of ALG-NEW-INFER-

EMPTY must be

for all � and all
� �

such that &
� � � ! � � $W� � ) � � we have

� ;
� � � & � � � ! ( & � � �W! � 
 � �

alg-empty 5
By induction hypothesis,

for all � and all
� �

such that
��� � �W!�� � $W� � ) � � we have

� ;
� � � & � � � ! � 
 � �

alg-empty 5
and ALG-NEW-INFER-EMPTY gives our conclusion.

Case: ALG-OLD-EMPTY Then
� � �

&
� �W!

and the premise of ALG-OLD-EMPTY is


 def� � � !
empty. ALG-OLD-EMPTY gives our conclusion.
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Case: ALG-REC-TUPLE-EMPTY Then
� � �Z$W� �

11
M

. . .
M�� �

1 � ) & . . . &
$W� � 


1
M

. . .
M�� � 
 � )

and the premise of ALG-REC-TUPLE-EMPTY is

for some � in 1 . . .
�

we have � ;
� � � & � � � ! � 
 � �

1 � & . . . &
� � 
 � alg-empty 5

By induction,

for some � in 1 . . .
�

we have � ;
� 
 � �

1 � & . . . &
� � 
 � alg-empty (

and ALG-REC-TUPLE-EMPTY gives our conclusion.
�

Now we can show that the algorithmic and declarative versions of emptyness infer-
ence are equivalent. We have separate proofs showing each is at least as strong as the
other. The first proof is by induction on the pair

$
emptyU

$ � ) � � ( depth
$W� � )L) ordered

lexicographically; the second is the first co-induction in this chapter.

Theorem 3.19 (Emptyness Consistency I) If � 

nr empty and for all &nrcs � �

we
have � 


&nrcs empty then � ;
� 


nr alg-empty.

Proof: By induction on the pair
$
emptyU

$ � ) � � ( depth
$ � � ) ) , ordered lexicographically.

The declarative emptyness rules constrain the form of
� �

, so we have the following cases:

Case:
� � �

&
� � � !

If
� � � �

, then ALG-NEW-ENV-EMPTY gives our conclusion.

Otherwise, the last inference of � 
 � �
empty must be NEW-INFER-EMPTY with the

premise

for all � and all
� �

such that &
� � � ! � � $W� � ) � � we have � 
 � �

empty 5
Combining the two hypotheses of this theorem,

for all &
� � � ! � � � � & � � �W! �

we have � 

&

� � � !
empty 5

The induction hypothesis gives

for all � and all
� �

such that &
� � � ! � � $W� � ) � � we have

� ;
� � � & � � � ! � 
 � �

alg-empty (
and ALG-NEW-INFER-EMPTY gives our conclusion.

Case:
� � �

&
� � !

Then the last inference of � 
 � �
empty is OLD-EMPTY with the

premise
def� � � ! def

empty and ALG-OLD-EMPTY gives � ;
� 
 � �

alg-empty, which is our
conclusion.
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Case:
� � �,$W� �

11
M

. . .
M � �

1 � ) & . . . &
$ � � 


1
M

. . .
M � � 
 � ) Then the last inference of

� 
 � �
empty is REC-TUPLE-EMPTY with the premise

for some � in 1 . . .
�

we have � 
 � �
1 � & . . . &

� � 
 � empty.

The induction hypothesis gives

for some � in 1 . . .
�

we have � ;
� 
 � �

1 � & . . . &
� � 
 � alg-empty.

and ALG-REC-TUPLE-EMPTY gives our conclusion.
�

Theorem 3.20 (Emptyness Consistency II) If � ; � � 
 nr alg-empty then � 

nr empty.

Proof: By co-induction. Take � to be fixed, and let � be the natural encoding of the
rules in Figure 3.4 as a function from sets of recursive types to sets of recursive types. Let� * � � � / � ; � � 
 � �

alg-empty
�
; thus our goal is to show

���
gfp

$ � ) . By co-induction,
it suffices to show

� � � $�� ) . Let
� �

be an element of
�

. We will show by cases on
� �

that
� �

is in � $�� ) as well.

Case:
� � �

&
� � � !

The last inference of � ; � � 
 � �
alg-empty must be ALG-NEW-INFER-

EMPTY with the premise

for all � and all
� �

such that &
� � � ! � � $W� � ) � � we have � ; � & � � �W! � 
 � �

alg-empty 5
By Lemma 3.18 (Empty Eliminable Assumptions) on page 188 we have

for all � and all
� �

such that &
� � �W! � � $W� � ) � � we have � ; � � 
 � �

alg-empty

and the definition of
�

gives

for all � and all
� �

such that &
� � � ! � � $W� � ) � � we have

� � � � .

By NEW-INFER-EMPTY, this implies &
� � �W! � � $�� ) , which is what we wanted to show.

The next two cases are trivial, but they are also short, so we include them for complete-
ness.

Case:
� � �

&
� � !

The last inference of � ; � � 
 � �
alg-empty must be ALG-OLD-EMPTY

with the premise
def� � � ! def

empty. By OLD-EMPTY, this implies
� � � � $�� ) , which is our

conclusion.

Case:
� � �,$W� �

11
M

. . .
M � �

1 � ) & . . . &
$ � � 


1
M

. . .
M � � 
 � ) Then the last inference of

� ; � � 
 � �
alg-empty is ALG-REC-TUPLE-EMPTY with the premise

for some � in 1 . . .
�

we have � ; � � 
 � �
1 � & . . . &

� � 
 � alg-empty.
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The definition of
�

gives

for some � in 1 . . .
�

we have
� �

1 � & . . . &
� � 
 � � � .

REC-TUPLE-EMPTY then gives
� � � � $�� ) , which is our conclusion.

�

We shall say that the last inferences of a derivation have some property if every path
from the root of the derivation starts with one or more inferences that have that property.
For an example, see the first case of the following proof.

Theorem 3.21 (Soundness of Empty) We never have � 

nr empty and � 


� � nr.

Proof: By induction on � .

Case: �
� � �

�
where � is new Then the last inferences of the derivation of � 


� � � �

must be AND-RECVALUE and NEW-RC-RECVALUE, so
� � �

&
� � �W!

. The last inference of
� 
 � �

empty must be NEW-INFER-EMPTY with the premises

for all � and all
� �

such that &
� � � ! � � $W� � ) � � we have � 
 � �

empty.
$
3 5 1 )

The premises of AND-RECVALUE and NEW-RC-RECVALUE leading up to � 

� � � �

must be

for all
� � � � � � � !

there is a
� �

�

!
� such that� � � � � $ � �

�

!
� ) � � and

� 

�
� � � �

�

!
� 5

$
3 5 2 )

By definition of intersection membership,

&
� � � ! � � $

& � � �
�

!
� / � � � � � � � ! � ) � �

thus (3.1) gives
� 


& � � �
�

!
� / � � � � � � � ! �

empty 5
Applying AND-RECVALUE to (3.2) gives

� 

�
� � & � � �

�

!
� / � � � � � � � ! � 5

The induction hypothesis applied to the last two displayed formulae yields our contradiction.

Case: �
� � �

�
where � is old Then the last inferences of � 


� � � �
must be AND-

RECVALUE and OLD-RC-RECVALUE, so
� � �

&
� � !

and for all
� �

in
� � !

we have �


 � �
�

:
� �

.
By AND-INTRO-TYPE we have

�


 � �
�

: &
� �W! 5

The last inference of � 
 � �
empty must be OLD-EMPTY with the premise

def� � � ! def
empty;

RCON-EMPTY then gives



&
� �W!

empty and by Fact 3.14 (Soundness of Refinement Type
Empty) on page 185 we do not have

�


 � �
�

: &
� �W! 5
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This is our contradiction.

Case: �
�,$

�

1
�

. . .
�

� � ) Then the last inferences of � 

� � � �

must be AND-RECVALUE

and TUPLE-RECVALUE, so
� ��� $ � �

11
M

. . .
MQ� �

1 � ) & . . . &
$ � � 


1
M

. . .
M � � 
 � ) . Thus the

last inference of � 
 � �
empty must be REC-TUPLE-EMPTY with the premise

for some � in 1 . . .
�

we have � 
 � �
1 � & . . . &

� � 
 � empty.
$
3 5 3 )

The premises of AND-RECVALUE and TUPLE-RECVALUE leading up to � 

� � � �

must be

for all � in 1 . . .
�

and all � in 1 . . .
�

we have � 

� � � � � � �

and AND-RECVALUE gives

for all � in 1 . . .
�

we have � 

� � � � �

1 � & . . . &
� � 
 �'5 $

3 5 4 )
Our induction hypothesis applied to (3.3) and (3.4) gives our contradiction.

Case: �
� I @ � � � > � � Then the last inferences of � 


� � � �
must be ABS-RECVALUE

and AND-RECVALUE, so
� � �

� 1
� � �

1 & . . . & � � � � � � and there is no way to infer
� 
 � �

empty.
�

The intersection of an empty recursive type and any other recursive type is also empty,
if it the intersection is well-formed. We include the proof to give another example of
an ordinary co-induction proof, slightly more complex than Theorem 3.20 (Emptyness
Consistency II) on page 190.

Theorem 3.22 (Empty Intersection) If � 

nr empty and � 


nr & nk � � then � 

nr & nk empty.

Proof: By co-induction. Take � as fixed, and let � be the natural description of the rules
in Figure 3.4 as a function from sets of recursive types to sets of recursive types. Let
� * � � �

&
� � / � 
 � �

empty and there is a � such that � 
 � �
&

� � � � � . We need to
show

� �
gfp

$ � ) ; by co-induction, it suffices to show
� � � $�� ) . Let

� �
&

� �
be an

arbitrary element of
�

; it suffices to show that
� �

&
� � � � $�� ) . We take cases on the form

of
� �

.

Case:
� � �

&
� � � !

Then by definition of
�

we have � 

&

� � � !
empty and � 


$
&

� � � ! ) &
� � � � . We can only infer the latter if

� � �
&

� � � !
. The last inference of

� 

&

� � � !
empty must be NEW-INFER-EMPTY with the premise

for all � and all
� � �

such that &
� � � ! � � $W� � � ) � � we have � 
 � � �

empty.

Let � and
� �

be given such that &
$W� � � ! � � � � ! ) � � $W� � ) � � . By definition of intersection

membership, we can write
� �

as
� � �

&
� � �

where &
� � � ! � � $W� � � ) . By Fact 3.8 (Intersection

Refines) on page 179, there is a � such that � 
 � � �
&

� � � � � , so the definition of
�

gives

for all � and all
� �

such that &
$W� � � ! � � � � ! ) � � $W� � ) � � we have

� � � �
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Thus, by NEW-INFER-EMPTY, &
$W� � � ! � � � � ! ) � � $�� ) , which is our conclusion.

Case:
� � �

&
� � !

Since � 
 � �
&

� � � � , we know
� � �

&
� �W!

. The last inference of

� 
 � �
empty must be OLD-EMPTY with the premise

def� � � ! def
empty. Simple reasoning about

def�
gives

$ def� � � ! ) def�Q$ def� � � ! ) def� $ def� � � ! ) , so Assumption 3.13 (Emptyness Subtyping) on

page 185 gives
$ def� � � ! ) def� $ def� � � ! ) def

empty. OLD-EMPTY then gives
$
&

� � ! ) & $
&

� �W! ) � � $�� ) ,
which is our conclusion.

Case:
� � �,$W� �

11
M

. . .
M � �

1 � ) & . . . &
$ � � 


1
M

. . .
M � � 
 � ) Since � 
 � �

&
� � � � ,

we must have
� � � $ � �

11
M

. . .
M � �

1 � ) & . . . &
$W� �

� 1
M

. . .
M � �

� � ) . The last inference
of � 
 � �

empty must be REC-TUPLE-EMPTY with, for some � , the premise � 
 � �
1 � &

. . . &
� � 
 � empty. Simple reasoning about recursive refinement types gives a � such

that � 
 � �
1 � & . . . &

� � 
 � &
� �

1 � & . . .
� �

� � � � . The definition of
�

then gives� �
1 � & . . . &

� � 
 � &
� �

1 � & . . .
� �

� � � � , then REC-TUPLE-EMPTY gives
� �

&
� � � � $�� ) ,

which is our conclusion.
�

3.4 Subtyping

The type inference system for subtyping recursive types is similar to the system in the
previous section for inferring when a type is empty. For subtyping we have two similar
systems, one declarative using a greatest fixed point and no trail, and one algorithmic
using a least fixed point and a trail. In this case a trail is a set with elements of the form$
&

� � � ! ( & � � � ! ) ; each element represents the assertion that we are already working on the
problem � 


&
� � �W! �

&
� � � !

.

The declarative system is described in Figure 3.6, and the algorithmic system is Fig-
ure 3.7. The OLD-RECSUB and TUPLE-RECSUB rules are self-evident; explanations of the
other two follow.

One way to understand the NEW-INFER-RECSUB rule is by walking through a sketch of
that case of Theorem 3.34 (Recursive Subtype Soundness) on page 204. Suppose some
value � � is in &

� � � !
. Then there must be some definition of &

� � � !
of the form � $W� � )

where � is in
� �

. If
� �

is empty, then we have a contradiction and we are done. Otherwise,
if there is a definition of &

� � � !
of the form � $ � � ) for some

� �
larger than

� �
, then � is in� �

and � � is in &
� � � !

.

Although this rule is sound, it could be stronger. For example, consider the declaration

8�9��9������� 2 > � G�I <WK K �
� ���������;� 2 � >��,$LO P R R'U )9 @ 8 2�� >��,$L#T# ) E � $ � )
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NEW-INFER-RECSUB:

� 

&

� � � ! � #��
� 


&
� � � ! � #��

for all � and all
� �

such that &
� � � ! � � $W� � ) � �

either � 
 � �
empty

or there is a
� �

such that &
� � � ! � � $W� � ) � � and � 
 � � �Z� �

� 

&

� � �W! �
&

� � � !

ARROW-RECSUB:
� 


& � � � � � � � / � � 1 . . .
� � � �

for � � 1 . . .
�

we have � 

& � � � � / � � 1 . . .

�
and

� � � � � � �,� � �
� 


& � � � � � � � / � � 1 . . .
� � �

& � � � � � � � / � � 1 . . .
� �

OLD-RECSUB:
$ def� � � ! ) def� $ def� � � ! )
� 


&
� �W! �

&
� � !

TUPLE-RECSUB:
for � � 1 . . .

�
we have � 
 � �

1 � & . . . &
� � 
 � � � �

1 � & . . . &
� �

� �
� 
 $ � �

11
M

. . .
M � �

1 � ) & . . . &
$ � � 


1
M

. . .
M � � 
 � ) �$W� �

11
M

. . .
M � �

1 � ) & . . . &
$W� �

� 1
M

. . .
M � �

� � )
Figure 3.6: Declarative Rules for Recursive Subtyping (Greatest Fixed Point)

With this declaration, all values in 2 � are also in 2 � , but if we convert this declaration into
an abstract declaration � we cannot infer � 
 2 � � 2�� . The cause of this is that

O P R R'U
is

less than the union of
#T#

and
�

, but it is not less than either
#T#

or
�

taken individually. Since
it is possible to decide whether the language recognized by one regular tree automaton is a
subset of the language recognized by another ([GS84]), and � ����������

statements that do not
contain “

�
” are essentially descriptions of regular tree automata, it is in principle possible

to make a practical system that is complete in the first-order case.

The ARROW-RECSUB rule is motivated by Lemma 2.83 ( � Gives an Upper Bound) on
page 111. It would probably be possible to take the approach of Chapter 2 and have simple
axioms defining recursive type inference and then restructure the system completely to find
a practical algorithm that uses ARROW-RECSUB, but such an analysis might be as long as
Chapter 2. Our grammar does not admit & with zero arguments, so this rule does not apply if
any of the sets mentioned are empty. For example, suppose � includes the usual definitions
of refinements of

<WK%K �
and we are trying to prove the false assertion � 
 # # � � � � � # #

;
then one of the premises would have to be � 
 � � � �Z#T#

, which is malformed.

The algorithmic and the declarative systems are consistent in the same sense the systems
for emptyness were consistent. The proof is entirely analogous to the proof that the systems
for emptyness are consistent. We start by establishing that we can manipulate the trail:

Fact 3.23 (Subtype Strengthening) If
� � � �

and � ;
� � 


nr
�

nk then � ;
� 


nr
�

nk.
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ALG-NEW-ENV-RECSUB:

� 

&

� � � ! � #��
� 


&
� � � ! � #��$

&
� � �W! ( &

� � � ! ) � �

� ;
� 


&
� � � ! �

&
� � � !

ALG-NEW-INFER-RECSUB:

� 

&

� � � ! � #��
� 


&
� � � ! � #��

for all � and all
� �

such that &
� � � ! � � $ � � ) � �

either � 
 � �
empty

or there is a
� �

such that
&

� � � ! � � $ � � ) � � and � ;
� 
 � � �Z� �

� ;
� 


&
� � � ! �

&
� � � !

ALG-ARROW-RECSUB:

� 

& � � � � � � � / � � 1 . . .

� � � �
for � � 1 . . .

�
we have

� ;
� 


& � � � � / � � 1 . . .
�

and
� � � � � � �Z� � �

� ;
� 


& � � � � � � � / � � 1 . . .
� � �

& � � � � � � � / � � 1 . . .
� �

ALG-OLD-RECSUB:
$ def� � � ! ) def� $ def� � � ! )
� ;

� 

&

� � ! �
&

� � !

ALG-TUPLE-RECSUB:

for � � 1 . . .
�

we have
� ;

� 
 � �
1 � & . . . &

� � 
 � �Z� �
1 � & . . . &

� �
� �

� ;
� 
 $W� �

11
M

. . .
M � �

1 � ) & . . . &
$ � � 


1
M

. . .
M � � 
 � ) �$W� �

11
M

. . .
M � �

1 � ) & . . . &
$ � �

� 1
M

. . .
M � �

� � )
Figure 3.7: Algorithmic Rules for Recursive Subtyping

The proof is a simple induction on the derivation of � ;
� � 
 � � �,� �

.

Fact 3.24 (Subtype Eliminable Assumptions) If � ; � � 
 &nrcs
�

&nkcs and � ;
� �

� $
&nrcs ( &nkcs ) � 
 nr

�
nk then � ;

� 

nr
�

nk.

The proof is by induction on the derivation of � ;
� � � $

&
� � �W! ( &

� � � ! ) � 
 � � �Z� �
.

As we did for the rules for emptyness, we must define a universe of all possible members
of the trail:

Definition 3.25 Define subtypeU
$ � ) to be

� $
nr ( nk ) / nr � emptyU

$ � ) and nk � emptyU
$ � ) � 5
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and continue with separate proofs for the if and only if cases:

Fact 3.26 (Recursive Subtype Consistency I)
If � 


nr
�

nk and for all
$
&nrcs ( &nkcs ) � �

we have � 

&nrcs

�
&nkcs then

� ;
� 


nr
�

nk.

Proof is by induction on the pair
$
subtypeU

$ � ) � � ( depth
$ � � )L) , ordered lexicographi-

cally.

Fact 3.27 (Recursive Subtype Consistency II) If � ; � � 
 nr
�

nk then � 

nr
�

nk.

Proof is by co-induction, and is similar to the proof of Theorem 3.20 (Emptyness
Consistency II) on page 190.

An analogue for Theorem 2.21 (Subtypes Refine) on page 36 holds for recursive types:

Fact 3.28 (Recursive Subtypes Refine) If � 

nr
�

nk then there is a � such that � 

nr � � and � 


nk � � .

Proof is by induction on the depth of
� �

.

For refinement types, we explicitly assumed that intersection is a greatest lower bound.
For recursive types, we must prove it. The proof is not very interesting; it is included
because it is a proof about recursive subtyping that has no analog in Section 3.3.

Lemma 3.29 (Recursive Intersection Lower Bound) If � 

nr
�

nk and � 

nr&np �

� then � 

nr & np

�
nk.

Proof: By co-induction. Take � as fixed, and let � be an encoding of the declarative
subtype inference system in Figure 3.6 as a function from sets of pairs of recursive types to
sets of pairs of recursive types. Let

� * � $ � �
&

� � ( � � )3/ � 
 � � �,� �
and for some � we have � 
 � �

&
� � � � � 5

Then our goal is to show
���

gfp
$ � ) , and by co-induction, it suffices to show

� � � $�� ) .
Let

$ � �
&

� � ( � � ) be any element of
�

; if we can show
$W� �

&
� � ( � � ) � � $�� ) , we are

done. We must have � 
 � �
&

� � � � , so
� �

must have one of the following forms:

Case:
� � �

&
� � � !

Then the last inference of � 
 � � �Z� �
must be NEW-INFER-RECSUB,

so
� � �

&
� � � !

and the premises of NEW-INFER-RECSUB are

� 

&

� � � ! � #��
� 


&
� � �W! � #��
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where
#��

is new and

for all � and all
� � �

such that &
� � � ! � � $W� � � ) � �

either � 
 � � �
empty

or there is a
� � �

such that &
� � � ! � � $ � � � ) � � and � 
 � � � � � � �

$
3 5 5 )

Let � and
� � � �

be given such that
$
&

� � � ! ) &
$
&

� � � ! ) � � $W� � � � ) � � . By definition of
intersection membership,

� � � � � � � �
&

� � �
for some

� � �
such that &

� � � ! � � $W� � � ) � � .
By Fact 3.8 (Intersection Refines) on page 179, there is a � such that

� 
 � � �
&

� � � � � $
3 5 6 )

By (3.5) we have the following cases:

SubCase: � 
 � � �
empty By Theorem 3.22 (Empty Intersection) on page 192 we have

� 
 � � �
&

� � �
empty.

SubCase: otherwise Then by (3.5) there is a
� � �

such that &
� � � ! � � $W� � � ) � � and

� 
 � � � �6� � �
. By definition of

�
, this implies

$W� � �
&

� � � ( � � � ) � � .

End SubCase

Summarizing,

for all � and all
� � � �

such that
$
&

� � �W! ) &
$
&

� � �W! ) � � $ � � � � ) � � we have
either � 
 � � � �

empty
or there is a

� � �
such that &

� � � ! � � $W� � � ) � � and
$ � � � � ( � � � ) � �

Thus NEW-INFER-RECSUB gives
$L$

&
� � � ! ) &

$
&

� � � ! )W( � � ) � � $�� ) , which is what we
wanted to show.

Case:
� � �

& � � � � � � � / � � 1 . . .
� �

Then the last inference of � 
 � � �6� �
is ARROW-

RECSUB and
� � * & � � � � � � � / � � 1 . . .

� �
. The premises of ARROW-SUB include

for � in 1 . . .
�

we have � 

& � � � � / � � 1 . . .

�
and

� � � � � � �Z� � � 5
The last inferences of � 
 � �

&
� � � � must be AND-RECREFINES and ARROW-RECREFINES

so
� � �

& � � � � � � � / � � � �
1 . . . �

�
and � � � 1

� � 2 and the premises of ARROW-
RECREFINES are

for � � 1 . . . � we have � � � � 1

and
for � � 1 . . . � we have � 
 � � � � � 2 5

Using AND-RECREFINES gives

for � � 1 . . .
�

we have � 

& � � � � / � � 1 . . . � and

� � � � � � � � 2 5
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The definition of
�

gives

for � in 1 . . .
�

we have
$
& � � � � / � � 1 . . . � and

� � � � � � ( � � � ) � �

and then ARROW-RECSUB gives
$W� �

&
� � ( � � ) � � $�� ) , which is our conclusion.

Case:
� � �

&
� � !

Then the last inference of � 
 � � �,� �
must be OLD-RECSUB, where

� � �
&

� � !
and the premise of OLD-RECSUB is

$ def� � �W! ) def� $ def� � � ! ) . The last inferences of
� 
 � �

&
� � � � are AND-RECREFINES and OLD-RECREFINES, so

� � �
&
� �W!

and � �F#��
where

#��
is old and the premises of OLD-RECREFINES include

for
� � � � �W! � � � !

we have
� � def� #��

.

By Assumption 2.16 (
def�

defined) on page 34,
def�Q$�� � ! � � � ! ) is defined, and by Assumption

2.17 (
def�

Elim) on page 34 we have
def�Q$�� � ! � � � ! ) def� def� � � !

. The OLD-RECSUB gives$ def� $�� � ! � � �W! )W( def� � � ! ) � � , which is our conclusion.

Case:
� � �,$W� �

11
M

. . .
M � �

1 � ) & . . . &
$ � � 


1
M

. . .
M � � 
 � ) Then the last inference of

� 
 � � �,� �
is TUPLE-RECSUB, so

� � �Z$W� �
11

M
. . .

M � �
1 � ) & . . . &

$W� �
� 1

M
. . .

M�� �
� � ) and

the premises of TUPLE-RECSUB are

for � � 1 . . .
�

we have � 
 � �
1 � & . . . &

� � 
 � �,� �
1 � & . . . &

� �
� �75

The last inferences of � 
 � �
&

� � � � must be AND-RECREFINES and TUPLE-RECREFINES,
so � � � 1

M
. . .

M � � and
� � �Z$W� �

� 
 � 1 � 1
M

. . .
M � �

� 
 � 1 � � ) & . . . &
$W� �

� 1
M

. . .
M � �

� � ) and the
premises of TUPLE-RECREFINES must be

for � � 1 . . .
�

and � � 1 . . . � we have � 
 � � � � � � �75
AND-RECREFINES then gives

for � � 1 . . .
�

we have � 
 � �
1 � & . . . &

� �
� � � � � (

and the definition of
�

then gives

for � � 1 . . .
�

we have
$W� �

1 � & . . . &
� �

� � ( � �
1 � & . . . &

� �
� � ) � � 5

TUPLE-RECSUB then gives
$W� �

&
� � ( � � ) � � $�� ) , which is our conclusion.

�

Intersection is also a greatest lower bound for recursive types.

Fact 3.30 (Recursive Intersection Greatest) If � 

nr
�

nk and � 

nr
�

np then
� 


nr
�

nk & np.
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The proof is a straightforward co-induction, and we omit it.

All recursive types that refine some ML type are subtypes of themselves, but to make
the co-induction go through we must first instead prove a stronger assertion:

Lemma 3.31 (Self Recsub) If � 

&nrs � � then for any nks

�
nrs we have � 


&nrs
�

&nks.

Proof: By co-induction. Take � as fixed and let � be the natural encoding of the inference
rules in Figure 3.6 as a function from pairs of recursive types to pairs of recursive types.
Let

� * � $
&

� �L! ( & � � ! )?/ � 

&

� � ! � � and
� � ! �6� � ! �

. Then our goal is to show� �
gfp

$ � ) , and by co-induction it suffices to show
� � � $�� ) . Proof is by cases on

&
� � !

.

The most natural statement of this theorem would only allow
� � !

and
� � !

to be identical,
each with exactly one element. The case for arrow types required strengthening the co-
induction hypothesis to include the possibility that

� � !
contains more than one element.

Once we allow
� � !

to contain more than one element, the case for recursive type constructors
required including the possibility that

� � !
has more than one element.

Case: &
� � ! * &

� � � !
Then &

� � ! �
&

� � � !
. Let � and

� � �
such that &

� � � ! � � $W� � � ) �
� be given. By definition of intersection membership,

� � � �
&

� �L! �
, and there is a� � ! � �,� �L! �

such that &
� � � ! � � $

&
� � ! � ) � � . Definition of

�
gives

$
&

� � ! � ( &
� � ! � ) � � .

Summarizing this case so far (and adding an otherwise unnecessary disjunction to make the
summary have the right form),

for all � and all &
� � ! �

such that &
� � � ! � � $

&
� �L! � ) � �

either � 

&

� �L! �
empty

or there is a &
� � ! �

such that &
� � � ! � � $

&
� � ! � ) � � and � 


&
� �L! � �

&
� � ! �

By NEW-INFER-RECSUB, this implies
$
&

� � � ! ( &
� � � ! ) � � $�� ) , which is what we wanted to

show.

Case: &
� � ! �

& � � � � � � � / � � 1 . . .
� �

Then &
� � ! �

& � ��� � � � � / � � 1 . . .
� �

where
� � �

. By SELF-SUB we have

for � in 1 . . .
�

we have � � � � �
and some simple set manipulation and the definition of

�
gives

for � in 1 . . .
�

we have
$
& � � � � / � � 1 . . .

�
and � � � � � � ( � � � ) � � 5

ARROW-RECSUB then gives
$
&

� �L! ( &
� � ! ) � � $�� ) , which is what we wanted to show.

Case: &
� � ! �

&
� � !

Then &
� � ! �

&
� � !

, where
� � ! � � � !

. Simple reasoning about
def�

gives
$ def� � � ! ) def� $ def� � � ! ) , and by OLD-RECSUB this implies

$
&

� �L! ( & � � ! ) � � , which is
our conclusion.
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Case:
� �L! �Z$W� �

11
M

. . .
M � �

1 � ) & . . . &
$W� �

� 1
M

. . .
M � �

� � ) Then &
� � ! � $W� �

11
M

. . .
M

� �
1 � ) & . . . &

$ � �
� � ) where �

� �
. Set manipulation and the definition of

�
give

for � in 1 . . .
�

we have
$ � �

1 � & . . . &
� � 
 � ( � �

1 � & . . . &
� �

� � ) � �

and TUPLE-RECSUB gives
$
&

� �L! ( &
� � ! ) � � $�� ) , which is our conclusion.

�

Now we can move on to prove that recursive subtyping is transitive, which is somewhat
more work. Since the subtyping rules mention emptyness, we need to first show that a
type smaller than an empty type is also empty. Proving this requires a slightly unusual
co-induction; we include the case of the proof that makes the unusualness necessary:

Theorem 3.32 (Empty Transitivity) If � 

nk empty and � 


nr
�

nk then � 

nr empty.

Proof: Take � as fixed, and let � be the natural encoding of the rules for emptyness in
Figure 3.4 as a function from sets of recursive types to sets of recursive types. Let

� � *
� � � / there is a

� �
such that � 
 � �

empty and � 
 � � �6� � �
, and let

� * � � �
gfp

$ � ) .
(This definition of

�
allows the first subcase of the first case below to work.) Our theorem

is true if
� � �

gfp
$ � ) , which is true if and only if

���
gfp

$ � ) . By co-induction it suffices
to show

� � � $�� ) . Proof is by cases on some
� � � � .

If
� � � gfp

$ � ) , then by definition of greatest fixed point,
� � � � $

gfp
$ � ) ) , and by

monotonicity of � we have
� � � � $�� ) . Thus our result always holds if

� � � gfp
$ � ) , and

we only need to consider
� � � � � in the cases below.

Case:
� � �

&
� � � !

Then the last inference of � 
 � � �Z� �
must be NEW-INFER-RECSUB,

so
� � �

&
� � � !

and the premises of NEW-INFER-RECSUB are

� 

&

� � � ! � #��
� 


&
� � �W! � #��

for all � and all
� � �

such that &
� � �W!�� � $W� � � ) � �

either
� � � � gfp

$ � )
or there is a

� � �
such that &

� � � ! � � $ � � � ) � � and � 
 � � � �Z� � � 5
$
3 5 7 )

The last inference of � 
 � �
empty must be NEW-INFER-EMPTY with the premise

for all � and all
� � �

such that &
� � � ! � � $W� � � ) � � we have � 
 � � �

empty
$
3 5 8 )

and by NEW-INFER-EMPTY it suffices to show

for all � and all
� � �

such that &
� � � ! � � $W� � � ) � � we have

� � � � �

Let � and
� � �

such that &
� � � ! � � $ � � � ) � � be given. By (3.7), we have these cases:



CHAPTER 3. DECLARING REFINEMENTS OF RECURSIVE DATA TYPES 201

SubCase:
� � � � gfp

$ � ) Then, by definition of
�

, we have
� � � � � . (This is the step

that requires
�

to be larger than
� �

.)

SubCase: Otherwise Then there is a
� � �

such that &
� � � ! � � $W� � � ) � � and � 
 � � � �

� � �
. By (3.8), this implies � 
 � � �

empty. Definition of
� �

gives
� � � � � � , and then

definition of
�

gives
� � � � � .

End SubCase

Summarizing the above two cases,

for all � and all
� � �

such that &
� � � ! � � $W� � � ) � � we have

� � � � �

NEW-INFER-EMPTY then gives &
� � �W! � � $�� ) , which is what we wanted to show.

Case: Otherwise The remaining possibilities are all straightforward and are omitted.
�

Theorem 3.33 (Subtype Transitivity) If � 

nr
�

nk and � 

nk
�

np then � 

nr
�

np.

Proof: By co-induction. Take � as fixed, and let � be the encoding of the recursive
subtyping relation in Figure 3.6 as a function from pairs of recursive types to pairs of
recursive types, and let

� * � $W� � ( � � ) / for some
� �

we have � 
 � � �Z� �
and � 
 � � �,� � � 5

We need to prove
� �

gfp
$ � ) , and by co-induction it suffices to show

� � � $�� ) . Proof
is by cases on an

� �
such that

$ � � ( � � ) � � . Delicate use of the fact that intersection for
recursive types is a least upper bound is necessary in the case where

� �
refines an arrow

type.

Case:
� � �

&
� � � !

Let
� �

be as given in the definition of
�

. Since � 
 � � � � �
, by

NEW-INFER-RECSUB we have
� � �

&
� � � !

and the following:

� 

&

� � � ! � #��
� 


&
� � �W! � #��

for all � and all
� � �

such that &
� � �W!�� � $W� � � ) � �

either � 
 � � �
empty

or there is a
� � �

such that &
� � � ! � � $ � � � ) � � and � 
 � � � �Z� � � 5

$
3 5 9 )

Similarly, since � 
 � � � � �
, by NEW-INFER-RECSUB we know

� � �
&

� � � !
and the

following:
� 


&
� � � ! � #��
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for all � and all
� � �

such that &
� � � ! � � $W� � � ) � �

either � 
 � � �
empty

or there is a
� � �

such that &
� � � ! � � $W� � � ) and � 
 � � � � � � � $

3 5 10 )

Our goal is to prove
$
&

� � � ! ( & � � � ! ) � � $�� ) , and by NEW-INFER-RECSUB it suffices to
show

for all � and all
� � �

such that &
� � � ! � � $W� � � ) � �

either � 
 � � �
empty

or there is a
� � �

such that &
� � � ! � � $W� � � ) � � and

$W� � � ( � � � ) � �
$
3 5 11 )

To prove this, let � and
� � �

such that &
� � � ! � � $W� � � ) � � be given. By (3.9), either

� 
 � � �
empty (in which case we are done) or there is a

� � �
such that &

� � �W! � � $ � � � ) � �
and � 
 � � � �,� � �

. Applying (3.10) to this gives two cases:

SubCase: � 
 � � �
empty Because � 
 � � � � � � �

, Theorem 3.32 (Empty Transitivity)

on page 200 gives � 
 � � �
empty, which implies (3.11).

SubCase: Otherwise Then there is a
� � �

such that &
� � � ! � � $ � � � ) � � and � 
 � � � �

� � �
. The definition of

�
then gives

$W� � � ( � � � ) � � .

End SubCase

Summarizing, (3.11) is true regardless. By NEW-INFER-RECSUB, this implies our conclusion.

Case:
� � �

& � � � � � � � / � � 1 . . .
� �

Then the last inference of � 
 � ��� � �
must be

ARROW-RECSUB, so
� � � � � � � � � � / � � 1 . . .

� �
and, similarly,

� � � � � �

� � �
� / � �

1 . . . �
�
. The premises of ARROW-RECSUB must include

� 

& � � � � � � � / � � 1 . . .

� � � � $
3 5 12 )

for � � 1 . . .
�

we have � 

& � � � � / � � 1 . . .

�
and

� � � � � � �,� � � $
3 5 13 )

for � � 1 . . . � we have � 

& � � � � / � � 1 . . .

�
and � �

� � � � �Z� �
�

$
3 5 14 )

By the form of
� �

, we must have � � � 1
� � 2.

By repeated use of Lemma 3.29 (Recursive Intersection Lower Bound) on page 196
with (3.13) we have

for � � 1 . . . � and � � � 1 . . .
�

we have
� �

� � ��� implies
� 


& � & � � � � / � � 1 . . .
�

and
� � � � � � / � � 1 . . .

�
and � �

� � � � � � � � �
and Fact 3.30 (Recursive Intersection Greatest) on page 198 then gives

for � � 1 . . . � we have
� 


& � & � � � � / � � 1 . . .
�

and
� � � � � � / � � 1 . . .

�
and � �

� � � � �
& � � � � � / � � � 1 . . .

�
and � �

� � � � � 5
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Set manipulation gives

� & � � � � / � � 1 . . .
�

and
� � � � � � / � � 1 . . .

�
and � �

� � � �*
� � � � / � � 1 . . .

�
and � � 1 . . .

�
and � �

� � � and
� � � � � � 5

By TRANS-SUBTYPE, � �

� � � and
� � � � � implies � �

�
� � , so

� � � � / � � 1 . . .
�

and � � 1 . . .
�

and � �

� � � and
� � � � � ��

� � � � / � � 1 . . .
�

and � �

�
� � � 5

Thus Lemma 3.29 (Recursive Intersection Lower Bound) on page 196 gives

for � � 1 . . . � we have
� 


& � � � � / � � 1 . . .
�

and � �

�
� � � � & � � � � � / � � � 1 . . .

�
and � �

� � � � �
From this, (3.14), and the definition of

�
, we can infer

for � � 1 . . . � we have
$
& � � � � / � � 1 . . .

�
and � �

�
� � � ( � �

� ) � � (
and ARROW-RECSUB then gives

$W� � ( � � ) � � $�� ) , which is our conclusion.

Case:
� � �

&
� � !

Then the last inference of � 
 � � � � �
is OLD-RECSUB and

� � �

&
� � !

. Similarly,
� � �

&
� � !

. The premises of OLD-RECSUB are
$ def� � � ! ) def� $ def� � �W! )

and
$ def� � � ! ) def� $ def� � � ! ) . By Assumption 2.14 (trans-

def�
) on page 34 we have

$ def� � � ! ) def�
$ def� � �W! ) , and then OLD-RECSUB gives

$ � � ( � � ) � � $�� ) , which is our conclusion.

Case:
� � �,$W� �

11
M

. . .
M � �

1 � ) & . . . &
$ � � 


1
M

. . .
M � � 
 � ) Then the last inference of

� 
 � � � � �
is TUPLE-RECSUB, so

� � � $W� �
11

M
. . .

M � �
1 � ) & . . . &

$ � �
� 1

M
. . .

MQ� �
� � ) .

Similarly,
� � �,$W� �

11

M
. . .

M � �
1 � ) & . . . &

$W� �
� 1

M
. . .

M � �
� � ) and the premises of TUPLE-

RECSUB are

for � � 1 . . .
�

we have � 
 � �
1 � & . . . &

� � 
 � �,� �
1 � & . . . &

� �
� �

and
for � � 1 . . .

�
we have � 
 � �

1 � & . . . &
� �

� � �,� �
1 � & . . . &

� �
� � 5

The definition of
�

then gives

for � � 1 . . .
�

we have
$W� �

1 � & . . . &
� � 
 � ( � �

1 � & . . . &
� �

� � ) � � ,

and TUPLE-RECSUB then gives
$ � � ( � � ) � � $�� ) , which is our conclusion.

�

Finally, we can show that recursive subtyping is sound:
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Theorem 3.34 (Recursive Subtype Soundness) If � 

nr
�

nk and � 

� � nr then

� 

� � nk.

Proof: By co-induction. Take � to be fixed, and let � be the natural encoding of the
recursive subtyping relation defined in Figure 3.6 as a function from pairs of recursive
types to pairs of recursive types, and let

� * � $
� ( � � ) / for some

� �
we have � 
 � � �,� �

and � 

� � � � � 5

We want to show
� �

gfp
$ � ) , and by co-induction it suffices to show

� � � $�� ) . Proof
is by cases on a

$
� ( � � ) � � . The proof is straightforward, but we include it because the

result is important.

Case:
� � �

&
� � !

where
� � !

has two or more elements Then there is an
� �

such that

� 
 � � �
&

� � !
and � 


� � � �
. By Lemma 3.31 (Self Recsub) on page 199,

for all
� � � � � � !

we have � 

&

� � ! � � � �

and by Theorem 3.33 (Subtype Transitivity) on page 201,

for all
� � � � � � !

we have � 
 � � �,� � � 5
By definition of

�
, this implies

for all
� � � � � � !

we have
$

� ( � � � ) � �

and by AND-RECVALUE this implies
$

� ( &
� � ! ) � � $�� ) , which is our conclusion.

Case:
� � � � � � � �

Then there is an
� �

such that � 
 � � � � � � � �
and � 


� � � �
.

The only way to infer the first of these is by using ARROW-RECSUB, so
� � �

& � � � � � � � /
� � 1 . . .

� �
and the premises of ARROW-RECSUB are

� 

& � � � � � � � / � � 1 . . .

� � � �
and

� 

& � � � � / � � 1 . . .

�
and

� �
� � � �,� � � 5 $

3 5 15 )
The last inferences of � 


� � � �
must be AND-RECVALUE and ABS-RECVALUE, so �

�
I @ � � � > � � and the premises of ABS-RECVALUE are

for � in 1 . . .
�

, all �
�
, and all �

� �
such that

�



�
� �

:
�

and$ I @ � � � >�� � ) �
� � � �

�
we have
� 


�
� � � � �

$
3 5 16 )
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We want to show
$L$ I @ � � � > � � ) ( � � � � � ) � � $�� ) . We can only infer this by using

ABS-RECVALUE with the premise

for all �
�

and �
� �

such that
�



�
� �

:
�

and$ I @ � � � > � � ) �
� � � �

�
we have$

�
� ( � � � ) � �

$
3 5 17 )

To prove this, let �
�

and �
� �

be given such that �



�
� �

:
�

and
$ I @ � � � > � � ) �

� � � �
�
.

By (3.16),
if � � 1 . . .

�
and

� �
� � then � 


�
� � � � � (

and then AND-RECVALUE gives � 

�
� � & � � � � / � � 1 . . .

�
and

� �
��� � . Then (3.15) and

the definition of
�

imply
$

�
� ( � � � ) � � . Thus (3.17) is true, which implies our conclusion.

Case:
� � � � � �

The last inference in � 
 � � �,� �
must be NEW-INFER-RECSUB where� � �

&
� � � !

and the premises of NEW-INFER-RECSUB are

� 

&

� � � ! � #��
� 
 � � � � #��

for all � and all
� � �

such that &
� � � ! � � $W� � � ) � �

either � 
 � � �
empty

or there is a
� � �

such that
� � ��� � $W� � � ) � � and � 
 � � � �,� � �

.

$
3 5 18 )

The last inferences of � 

� � � �

must be AND-RECVALUE and NEW-RC-RECVALUE where
�
� � �

�
and the premises of NEW-RC-RECVALUE are

for all
� � � � � � � !

we have some
� � �

�

!
� such that� � � � � $W� � �

�

!
� ) � � and

� 

�
� � � � �

�

!
�

Let
� � * & � � � �

�

!
� / � � � � � � � ! �

. By definition of intersection membership, &
� � � ! �

� $W� � ) � � . By AND-RECVALUE, � 

�
� � � �

. By Theorem 3.21 (Soundness of Empty)
on page 191, we cannot have � 
 � �

empty, so (3.18) implies there is a
� � �

such that� � � � � $W� � � ) � � and � 
 � � � � � �
. By definition of

�
, this implies

$
�
� ( � � � ) � � , and

NEW-RC-RECVALUE then gives
$ � �

� ( � � � ) � � $�� ) , which is what we wanted to show.

Case:
� � � � �

Then the last inference of � 
 � � � � �
is OLD-RECSUB where

� � �
&

� � !
and the premise of OLD-RECSUB is

$ def� � � ! ) def� � �
. The last inferences of � 


� � � �
must

be OLD-RC-RECVALUE and AND-RECVALUE with the premises

for
� � � � � !

we have �



� :

� � 5
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Simple manipulation of refinement types then gives �



� :

def� � � !
; then WEAKEN-TYPE gives

�



� :

� �
and OLD-RC-RECVALUE gives

$
� ( � � ) � � $�� ) , which is our conclusion.

Case:
� � � � �

1
M

. . .
M � � � Then the last inference of � 
 � � � � �

is TUPLE-RECSUB

and
� � �,$W� �

11
M

. . .
M�� �

1 � ) & . . . &
$ � � 


1
M

. . .
M � � 
 � ) and the premise of TUPLE-RECSUB

is
for � � 1 . . .

�
we have � 
 � �

1 � & . . . &
� � 
 � �,� � �75

The last inferences of � 

� � � �

must be AND-RECVALUE and TUPLE-RECVALUE where
�
�,$

�

1 ( . . . ( � � ) and the premises of TUPLE-RECVALUE are

for � � 1 . . .
�

and � � 1 . . .
�

we have � 

� � � � � � �'5

AND-RECVALUE gives

for � � 1 . . .
�

we have � 

� � � � �

1 � & . . . &
� � 
 � 5

Then the definition of
�

gives

for � � 1 . . .
�

we have
$

� � ( � � � ) � �

and TUPLE-RECVALUE then gives
$ $

�

1 ( . . . ( � � )W( � �
1

M
. . .

M � � � ) � � $�� ) , which is our
conclusion.

�

3.5 Splitting

This section describes a type inference system for inferring the relation
def�

from an abstract
declaration.

The type inference rules for splitting recursive types are in Figure 3.8. The � operator
used in the TUPLE-RECSPLIT rule was introduced on page 117. The ARROW-RECSPLIT and
TUPLE-RECSPLT rules are straightforward; we shall explain the other two.

The main idea behind the NEW-RECSPLIT rule is, wherever the type &
� � �W!

has the
definition � $W� � ) , there must be some consistency between the splits of

� �
and the splits of

&
� � � !

. One way to understand the details is by stepping through an explanation of why it
is sound. Suppose a value � � is in &

� � �W!
; then we need to know it is in some fragment

&
� � � !

of &
� � � !

. There must be some definition � $W� � ) of &
� � � !

such that � is in
� �

. Thus
� is in some fragment

� �
of

� �
. If there is some definition � $W� � ) of &

� � � !
such that

� �
is

larger than
� �

, then we know that � is in
� �

and � � is in &
� � � !

.

Another way to understand it is to look at an example. If we take the
8�9��9�������

declaration

8:9��;9�������A< � �"!�# > ��G @1H G�I <WK%K �:M < � �"!�# E @1BXD G�I � ���:� #
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NEW-RECSPLIT:

� is a nonempty set, and
for all

� �
in � we have � 
 � � �

&
� � � !

, and
for all � and

� �
such that &

� � �W!�� � $W� � ) � �
there is an �

�
such that

� 
 � � �
�
�

for all
� � � � � , there is an &

� � � ! � � and a
� �

such that
&

� � � ! � � $ � � ) � �
� 
 � � �,� �

� 

&

� � �W! �
�

ARROW-RECSPLIT: � 

� 1
� � �

1 & . . . & � � � � � � � � � 1
� � �

1 & . . . & ��� � � � � �

OLD-RECSPLIT:
� �

1
def�

. . .
def� � � � def� � def� � � ! / � � ! � � �

� 
 � �
1 & . . . &

� � � � � & � �W! / � � ! � � �

TUPLE-RECSPLIT:
for � � 1 . . .

�
we have � 
 � �

1 � & . . . &
� � 
 � � � �

� 
 $W� �
11

M
. . .

M � �
1 � ) & . . . &

$W� � 

1

M
. . .

M � � 
 � ) � � 1
� . . . � � �

Figure 3.8: Splitting for Recursive Types (Greatest Fixed Point)

and the abstract declaration

� * � O PTU � ��� � ��G @CH4$ O PSRTR'UXM O PTU � ��� )O PTU � ��� � @1B4D�$�� ���:� # )< ����� ��G @1H�$LOQPSRTR'U�M <WK 2;)< �����N@CB4D�$�� ���:� # )<WK 2 � ��G @1H4$LOQPSRTRVU4M < ��� ) � (
we can infer � 
 O P U ����� � � < ��� ( <WK 2 � . The root inference of the derivation of this is
NEW-RECSPLIT with the premises:

� < ��� ( <WK 2 � is a nonempty set
� 
 < �����ZO PTU � ���
� 
 <WK 2 �ZO PTU � ���

� 
 OQPSRTRVU�M OQP U ����� � � O P R R'U4M < � � ( O PSRTR'U�M <LK 2 �< � ��� ��G @CH�$LOQPSRTRVU�M <WK 2;) � �
� 
 O P R R'U4M <WK 2 � O P R R'U�M <WK 2<WK 2 � ��G @1H4$LO P R R'U4M < � � ) � �
� 
 OQPSRTRVU�M < ��� � O P R R'U�M < ���

� 
 � ��� � # � � � ���:� # �
< ����� @1B4D�$�� ���:� # ) � �
� 
 � ��� � # � � ���:� #
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Despite the lack of intuitiveness of this rule, it seems to work well in practice.

A previous version of OLD-RECSPLIT simply said
� �

1
def�

. . .
def� � � � def�

�

� 
 � �
1 & . . . &

� � � � �
which is straightforward. The problem with this definition is that we need to prove an
analogue of Lemma 2.43 (Split Intersection) on page 54 for recursive types. This requires
sometimes having intersections of recursive types as fragments of recursive types; the
previous version does not permit this, but the rule as stated allows it.

It is not clear how to make an efficient algorithm for this inference system. The
implementation attempts to use a brute-force search to find the principal splits directly; I do
not know if that strategy is sound. Roughly speaking, the implementation enumerates all
fixed points of the function arising from this inference system such that each intersection
of recursive type constructors has exactly one split, and that no two elements of that split
are comparable. A fixed point that contains the smallest types in the splits is chosen, and
we assume it contains principal splits. I do not know whether there will always be a fixed
point with the least types.

We can show if a value is in a recursive type, then it is in some fragment of that recursive
type.

Theorem 3.35 (Recursive Split Soundness) If � 

nr
�

nks and � 

� � nr then for

some nk � nks we have � 

� � nk.

Proof: By induction on � .

Case: �
� � �

�
where � is new Then the last inferences of � 


� � � �
must be AND-

RECVALUE and NEW-RC-RECVALUE so
� �

has the form &
� � � !

and the premises of NEW-RC-
RECVALUE are

for
� � � � � � � !

we have
� � ��� � $W� �

�

!
� ) � � $

3 5 19 )
and

for
� � � � � � �W!

we have � 

�
� � � �

�

!
� 5 $

3 5 20 )
The last inference of � 
 � � �J� � !

must be NEW-RECSPLIT with the premises� � !
is a nonempty set

for all
� � � � � � we have � 
 � � �

&
� � � !

and
for all � and all

� � �
such that &

� � � ! � � $ � � � ) � �
there is an �

�
such that

� 
 � � � �
�
�

for all
� � � � � � there is an &

� � � ! � � � !
and a

� �
such that

&
� � � ! � � $W� � ) � �

� 
 � � � �,� �
$
3 5 21 )
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Let
� � � * & � � �

�

!
� / � � � � � � � ! �

. Using the definition of intersection membership and
(3.19) gives &

� � � ! � � $W� � � ) � � . Thus we can use (3.21) to get an �
�
such that

� 
 � � � �
�
�

and
for all

� � � � � � there is an &
� � � ! � � � !

and a
� �

such that
&

� � � ! � � $W� � ) � �
� 
 � � � �,� � 5

$
3 5 22 )

Using AND-RECVALUE on (3.20) gives � 

�
� � � � �

, so our induction hypothesis gives a� � � � �
�

such that � 

�
� � � � � 5 Thus (3.22) gives a &

� � � ! � � � !
and a

� �
such that

&
� � � ! � � $ � � ) � � and � 
 � � � �,� �

. Theorem 3.34 (Recursive Subtype Soundness) on
page 204 gives � 


�
� � � �

, and Fact 3.11 (Intersection Value Membership) on page 183
then gives � 
 � �

� � &
� � � !

, which is our conclusion.

The remaining cases are simple, but they are also short, so we include them for com-
pleteness.

Case: �
� I @ � � � > � � Then the last inferences of � 


� � � �
must be AND-RECVALUE

and ABS-RECVALUE where
� � �

� 1
� � �

1 & . . . & � � � � � � . Thus the only way to infer
� 
 � � �J� � !

is by using ARROW-RECSPLIT so
� � ! * � � � �

and our premise � 
 � � �,� � !
is our conclusion.

Case: �
� � �

�
where � is old Then the last inferences of � 


� � � �
are AND-RECVALUE

and OLD-RC-RECVALUE where
� � �

&
� � !

and the premises of OLD-RC-RECVALUE are

for
� � � � � !

we have �


 � �
�

:
� � 5

The last inference of � 
 � � � � � !
must be OLD-RECSPLIT where for some set � of

sets of refinement type constructors,
� � � * � & � � ! / � � ! � �

�
and the premise of OLD-

RECSPLIT is
def� � � ! def� � def� � � ! / � � ! � � � . Simple reasoning about refinement types gives

�


 � �
�

: &
� �W!

and Theorem 2.69 (Splitting Value Types) on page 89 gives a &
� � ! � � � !

such that �


 � �
�

:
def� � � !

. By WEAKEN-TYPE, OLD-RC-RECVALUE, and AND-RECVALUE this
implies � 
 � �

� � &
� � !

, which is our conclusion.

Case: �
�,$

�

1
�

. . .
�

� � ) Then the last inferences of � 

� � � �

must me AND-

RECVALUE and TUPLE-RECVALUE where
� � �,$ � �

11
M

. . .
M � �

1 � ) & . . . &
$W� � 


1
M

. . .
M � � 
 � )

and the premises are

for � � 1 . . .
�

and � � 1 . . .
�

we have � 

� � � � � � � 5

The last inference of � 
 � � � � � !
must be TUPLE-RECSPLIT where

� � ! �
� 1

� . . . � � �
and the premises of TUPLE-RECSPLIT are

for � � 1 . . .
�

we have � 
 � �
1 � & . . .

� � 
 � � � �'5
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AND-RECVALUE gives

for � � 1 . . .
�

we have � 

� � � � �

1 � & . . . &
� � 
 � (

and then our induction hypothesis gives

for � � 1 . . .
�

there is a
� � � � � � such that � 


� � � � � � .
TUPLE-RECVALUE then gives � 
 $

�

1
�

. . .
�

� � ) � � �
1

M
. . .

M � � � . The definition of �

gives
� �

1
M

. . .
M � � � � � � !

, which is our conclusion.
�

It is also possible to show that intersection interacts with splitting in a natural way.
Compare this to Lemma 2.43 (Split Intersection) on page 54.

Fact 3.36 (Recursive Split Intersection) If � 

nr
�
� and � 


nr � � and � 

nk � � ,

then � 

nr & nk

� � np & nk / np � � � .
Proof of this is a straightforward co-induction.

3.6 Recursive Types provide Refinement Type Construc-
tors

In this section we show that the assumptions made in Chapter 2 and the assumptions made

about
def

empty in this chapter actually hold for recursive types as defined in this chapter.

In Subsection 3.6.1, we define the operators that were taken as predefined in Chapter 2
in terms of recursive type operations defined in this chapter. Then in Subsection 3.6.2 we
enumerate the assumptions from Chapter 2 and prove them. Finally, in Subsection 3.6.3
we will prove a grand soundness result for this entire chapter: if refinement type inference
concludes a value is in a refinement type, then it is also in the corresponding recursive type.

3.6.1 Defining the Primitives

First we need to define the primitives
def�

,
def�

,
def
: , and so forth in terms of recursive type

inference as defined in this chapter. We assume at this point that there is some specific
abstract declaration � we are adding to the global environment, and the primitives are

being expanded to include the new declaration. For example, we expect � def
: � �

� � �
to be

true if either it was true before we encountered the declaration � , or � , � and
� �

satisfy the
definition we give below.

If two refinement type constructors refine the same ML type constructor, then by

Assumption 2.16 (
def�

defined) on page 34 their intersection (using
def�

) is a refinement type
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constructor. This is not true for recursive type constructors, so we cannot simply define
the new refinement type constructors to be the new recursive type constructors. Instead,
we define a refinement type constructor to be any intersection (using &) of recursive type
constructors that all refine the same ML type constructor.

We can easily promote this way to construct refinement type constructors from recursive
type constructors to a way to construct refinement types from recursive types. However,
since we consider & for recursive types to be associative, commutative, and idempotent,
but we do not assume the same for

�
for refinement types, there are many refinement types

corresponding to one recursive type. For example, the recursive type
< ���

&
<WK 2 &

O PTU � ���
corresponds to any of the refinement types

< ��� � <WK 2 �?OQP U ����� (<WK 2 � < ��� �?$ O PTU � ���
&

< ��� ) (< ���
&

<WK 2 &
O PTU � ��� (

or infinitely many others. We could represent this as a one-to-many relation between
recursive types and refinement types. Instead, we will represent it as the inverse of a
many-to-one function rtort from refinement types to recursive types. (Hence the name
rtort.) Formally, we have the following definition:

Definition 3.37 Define the function rtort from refinement types to recursive types by the
recursion equations

rtort
$
� 1
�
� 2 ) * � 1

�
rtort

$
� 2 )

rtort
$
� 1
�
� 2 ) * rtort

$
� 1 ) & rtort

$
� 2 )

rtort
$
rc ) * rc

rtort
$
&nrcs ) * &nrcs

rtort
$
� 1

M
. . .

M
��� ) * rtort

$
� 1 ) M

. . .
M

rtort
$
��� )

It is very straightforward to define when a refinement type constructor refines an ML
type constructor in terms of the behavior of the recursive types:

Definition 3.38 We say &nrcs
def� tc if � 


& nrcs � tc.

With this definition, recursive types refine ML types if and only if the corresponding
refinement types refine the same ML types:

Fact 3.39 Under the assumptions arising from � we have �
� � if and only if � 


rtort
$
� ) � � .

Proof of this is by induction on � .

To find the intersection of constructed refinement type constructors, we take the inter-
section at the recursive type level:
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Definition 3.40 We say &nrcs
def�

&nkcs * &
$
nrcs

�
nkcs ) whenever there is a � such that

� 

&

$
nrcs

�
nkcs ) � � .

The definition of subtyping refinement type constructors in terms of subtyping recursive
types is also straightforward:

Definition 3.41 We say &nrcs
def�

&nkcs if � 

&nrcs

�
&nkcs.

With this definition, the subtyping relation for refinement types coincides with the one
for recursive types:

Fact 3.42 (Refinement and Recursive Subtyping Equivalence) We have � 

rtort

$
� ) �

rtort
$ � ) if and only if, under the assumptions arising from � , we have �

� �
.

One proof of this takes the “if” and the “only if” cases separately. To prove the “if”
case, use Theorem 2.21 (Subtypes Refine) on page 36 to find a � that both � and

�
refine, and

proceed by induction on that � . To prove the “only if” case, we use Fact 3.28 (Recursive
Subtypes Refine) on page 196 to find a � that both rtort

$
� ) and rtort

$ � ) refine, and again
proceed by induction on that � .

This implies that, whenever two refinement types coerce to the same recursive type,
they are equivalent:

Corollary 3.43 (Equivalence rtort) If rtort
$
� ) * rtort

$ � ) and � � � and
� � � then � �

�
.

Proof: By Lemma 3.31 (Self Recsub) on page 199, � 

rtort

$
� ) � rtort

$ � ) , and Fact 3.42
(Refinement and Recursive Subtyping Equivalence) on page 212 gives �

� �
. Similarly� �

� , and together these imply � �
�

.
�

This can be used to show that recursive splitting and refinement type splitting are
consistent:

Fact 3.44 (Refinement and Recursive Split Consistency) If � 

rtort

$
� ) � � rtort

$ � ) /� � � � and � � � then �
�
� .

The proof of this is a straightforward induction on � .
Whenever we have &

� � � ! � � $
rtort

$
� ) ) � � , we can say that � def

: � �
�

&
� � � !

.
In general, the converse does not hold, because Assumption 2.52 (Constructor Argument
Strengthen) on page 67 and Assumption 2.53 (Constructor Result Weaken) on page 67 place

constraints on the behavior of
def
: that may not be satisfied by our abstract declaration. For
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example, in the presence of the example abstract declaration appearing on page 183, these
constraints give ��G @1H def

:
$LO P R R'U M $ < � �

&
<WK 2;) ) � � < ���

because
< ��� � ��G @1H4$LO PSRTR'UCM <WK 2;) � � and

$ < ���
&

<WK 2;) def� <WK 2 . Reasoning about
def
:

requires first defining a version of intersection membership that allows the argument to the
constructor to be strengthened and the result to be weakened:

Definition 3.45 (Weakened Intersection Membership) We define
�

� to contain all ele-
ments of the form &nrcs � � $

nr ) where there are nk and nkcs such that &nkcs
� � $

nk ) � �
and � 


nr
�

nk and � 

&nkcs

�
&nrcs.

This relation makes a natural statement about membership of values in recursive types:

Fact 3.46 (Weakened Intersection Soundness) If &nrcs � � $
nr ) �

�

� and � 

�
� � nr

then � 
 � �
� � &nrcs.

The proof is little more than two uses of Theorem 3.34 (Recursive Subtype Soundness)
on page 204.

We can sometimes use the definition of recursive subtyping to eliminate one of the
subtyping assertions in the definition of Weakened Intersection Membership:

Lemma 3.47 (Weakened Intersection Simplification I) If nrc � � $
nr ) then either � 


nr empty or there is a nk such that � 

nr
�

nk and nrc
� � $

nk ) � � .

Proof: The definition of weakened intersection gives
� � � !

and
� �

such that

&
� � � ! � � $W� � ) � � $

3 5 23 )
� 
 � � �Z� � $

3 5 24 )
� 


&
� � �W! �Z� � � $

3 5 25 )
The last inference of (3.25) must be NEW-INFER-RECSUB with the premise

for all � and all
� � �

such that &
� � �W!�� � $W� � � ) � �

either � 
 � � �
empty

or there is a
� �

such that
� � ��� � $W� � ) � � and � 
 � � � �Z� �

5

Using (3.23) and (3.25), we get

either � 
 � �
empty

or there is a
� �

such that
� � � � � $ � � ) � � and � 
 � � �Z� � 5 $

3 5 26 )
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If � 
 � �
empty, then Theorem 3.32 (Empty Transitivity) on page 200 and (3.24) give

� 
 � �
empty, which implies our conclusion.

Otherwise, let
� �

be as given in (3.26). Thus
� � � � � $ � � ) � � and � 
 � � �F� �

;
Theorem 3.33 (Subtype Transitivity) on page 201 and (3.24) give � 
 � � � � �

. These
imply our conclusion.

�

We can also do the same simplification if we replace
� � �

by an intersection of recursive
type constructors:

Lemma 3.48 (Weakened Intersection Simplification II) If &nrcs � � $
nr ) � � then ei-

ther � 

nr empty or there is a nk such that � 


nr
�

nk and &nrcs
� � $

nk ) � � .

Proof: By Lemma 3.31 (Self Recsub) on page 199,

for all
� � � � � � � !

we have � 

&

� � � ! �Z� � � 5
By definition of weakened intersection, &

� � � ! � � $W� � ) �
�

� implies there are &
� � � !

and� �
such that

&
� � �W! � � $ � � ) � � (

� 

&

� � � ! �
&

� � � ! (
and

� 
 � � �Z� � 5
Theorem 3.33 (Subtype Transitivity) on page 201 gives

for all
� � � � � � � !

we have � 

&

� � � ! �Z� � �

and definition of weakened intersection then gives

for all
� � � � � � � !

we have
� � � � � $W� � ) �

�

� .

and then Lemma 3.47 (Weakened Intersection Simplification I) on page 213 gives

for all
� � � � � � �W!

, either
� 
 � �

empty
or there is a

� �
�

!
� such that

� 
 � � �,� �
�

!
�� � � � � $W� �

�

!
� ) � �

$
3 5 27 )

If � 
 � �
empty, we are done. Otherwise let

� � * & � � �
�

!
� / � � � � � � � ! �

. By (3.27)
and the definition of weakened intersection, we have &

� � � ! � � $W� � ) � � , and by (3.27)
and Fact 3.30 (Recursive Intersection Greatest) on page 198 we have � 
 � � �,� �

. These
last two are our conclusion.

�

We can define
def
: in terms of this. To make Assumption 2.50 (Split Constructor Consis-

tent) on page 66 hold, we need to also say that � def
: � �

� � �
whenever � is empty; see the

counterexample that arises if we do not assume this in the discussion of Split Constructor
Consistent on page 217.
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Definition 3.49 We say � def
: � �

�
&nrcs if either &nrcs � � $

rtort
$
� )L) �

�

� , or all of the
following hold:

� 

rtort

$
� ) empty

and for some � and tc we have

� def
:: � � � tc (

� 

& nrcs � tc (

and
� 


rtort
$
� ) � ��5

We define
def

empty in terms of emptyness for recursive types:

Definition 3.50 We say &nrcs
def

empty if � 

&nrcs empty.

Finally, we define splitting for constructed refinement type constructors in terms of
splitting for recursive types:

Definition 3.51 If � 

& nrcs

�
� , then we say &nrcs

def� � &nkcs / &nkcs � � � .
With these assumptions, refinement type emptyness and recursive type emptyness co-

incide:

Fact 3.52 (Emptyness Consistency) If � 

rtort

$
� ) empty then under the assumptions

introduced by � we have


� empty.

The proof is by induction on depth
$
rtort

$
� )L) .

3.6.2 Proving the Assumptions

In this subsection we enumerate the assumptions made in Chapter 2 about predefined
properties of refinement type constructors, and prove that they hold for refinement type
constructors derived from recursive types as described in this chapter. This is only non-
trivial for Split Constructor Consistent, which is discussed on page 217.

Some assumptions are not addressed in this list because they concern only ML type
inference, which for the purposes of this thesis we assume is well-understood. We include
them in the list with the statement that the assumption is entirely about ML types.

Assumption 2.2 (Constructors have Unique ML Types) on page 26: For each � , there
are unique � and

#��
such that

� def
:: ��� � #�� 5
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This is entirely about ML types.

Assumption 2.7 (Unique Predefined Refinements) on page 31: For all
� �

there is a

unique
#��

such that
� � def� #��

.

Proof: If
� �

is old, this follows from Unique Predefined Refinements before we incorporated
� into the environment.

Otherwise,
� �

is new and has the form &
� � � !

where there is a
#��

such that � 

&

� � � ! �#��
. Thus there is at least one

� � � #��
.

To show there is at most one, suppose � 

&

� � �W! � #��
and � 


&
� � �W! � #�� �

.
Let

� � �
be any element of

� � �W!
. By AND-RECREFINES we must have � 
 � � � � #��

and
� 
 � � � � #�� �

. The last inference of these must be NEW-RECREFINES with the premises

for all � and
� �

such that
� � � � � $W� � ) � �

there is a � such that � def
:: � � � #��

for all � and
� �

such that
� � � � � $W� � ) � �

there is a � such that � def
:: � � � #�� �

By Condition 3.2 (New Recursive Type Constructors Defined) on page 178 these universal
quantifications are not vacuous, so by Assumption 2.2 (Constructors have Unique ML
Types) on page 26,

#�� * #�� �
.

�

Assumption 2.8 (Finite Predefined Refinements) on page 31: Immediate from Condition
3.6 (Declarations are Finite) on page 179.

Assumption 2.13 (reflex-
def�

) on page 33: Immediate from Lemma 3.31 (Self Recsub)
on page 199.

Assumption 2.14 (trans-
def�

) on page 34: Immediate from Theorem 3.33 (Subtype Tran-
sitivity) on page 201.

Assumption 2.15 (Refines
def�

) on page 34: Immediate from Fact 3.28 (Recursive Sub-
types Refine) on page 196 and Fact 3.9 (Recursive Unique ML Types) on page 179.

Assumption 2.16 (
def�

defined) on page 34: Immediate from the definition of refinement
type constructors.

Assumption 2.17 (
def�

Elim) on page 34: Immediate from Lemma 3.31 (Self Recsub) on
page 199.

Assumption 2.18 (and-intro-
def�

) on page 34: Immediate from Fact 3.30 (Recursive
Intersection Greatest) on page 198.

Assumption 2.30 (Split Subtype Consistent) on page 49: Immediate from the second
premise of NEW-RECSPLIT.
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Assumption 2.36 (Refinement Constructor Splits are Nonempty) on page 51: Immediate
from the first premise of NEW-RECSPLIT.

Assumption 2.42 (Predefined Split Intersection) on page 54: Immediate from Fact 3.36
(Recursive Split Intersection) on page 210.

Assumption 2.49 (Constructor Type Refines) on page 65: Straightforward from Fact
3.28 (Recursive Subtypes Refine) on page 196.

Assumption 2.50 (Split Constructor Consistent) on page 66: If

� def
: � �

� � �

and � � def� � � �
1 ( . . . ( � � � �

then there is some provable assertion of the form

�
� � � 1 ( . . . ( � 
 �

such that for all � between 1 and
�

there is an � between 1 and
�

such that

� def
: � � � � � � �'5

If instead we defined � def
: � �

�
&

� � � !
to mean &

� � � ! � � $
rtort

$
� ) ) �

�

� , this would
not be true. A counterexample presumes the datatype declaration

8�9��;9������� 2 > 9AG�I #���� � # E � G�I #����:� # E � G�I 2
and the abstract declaration

� * � ��� �
bottom

$ 2;)W(�;��� � � 9 $�� ���:� # ) (�;��� � � � $�� ���:� # ) (�;��� � � 9 $�� ���:� # ) (�;��� � � � $ ��� )W(�;��� � � 9 $�� ���:� # ) (�;����� � � $�� ���:� # ) � 5
The names

���
and

�;���
stand for “empty” and “nonempty”, respectively. Because

� 
 �;��� � � �;��� �
, we have

�;��� � � � $���� ) �
�

� . We also have � 
 �;��� � �

� �;��� � ( �;����� �
, so Split Constructor Consistent would give a split of

���
where

�
maps

each fragment to either
��� �

or
�����

. Since the fragments must all be subtypes of
���

, the

only possible split is � ��� �
. If we had the simpler definition of

def
: , this would imply that

either
�;��� � � � $ ��� ) �

�

� or
�;����� � � $ ��� ) �

�

� , neither of which is true. With the

actual definition of
def
: , we have both

� def
:

���
�
� �;��� �

and
� def

:
���

�
� �;�����

. In fact, we

can prove that Split Constructor Consistent is true in general for the actual definition of
def
: .
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Proof: We must have
� � �

&
� � � !

. By definition of
def
: , either � 


rtort
$
� ) empty

or &
� � � ! � � $

rtort
$
� )L) �

�

� . In the latter case, Lemma 3.48 (Weakened Intersection
Simplification II) on page 214 gives

either � 

rtort

$
� ) empty

or there is a
� �

such that
� 


rtort
$
� ) �Z� �

&
� � � ! � � $W� � ) � � 5

If � 

rtort

$
� ) empty, by SELF-SPLIT we can choose � * � � � . Let

� �
be any element of! �

; then the definition of
def
: immediately gives � def

: � �
� � �

, which is our conclusion.

Otherwise, there is a
� �

such that � 

rtort

$
� ) � � �

and &
� � � ! � � $W� � ) � � . If we

let
! � � * � rtort

$
� ) / � � ! � �

the definition of
def�

gives � 

&

� � � ! � ! � �
; the last inference

of this must be NEW-RECSPLIT with the premises

! � �
is a nonempty set,

for all
� � � ! � �

we have � 
 � � �
&

� � � ! (
and

for all � and
� �

such that &
� � � ! � � $ � � ) � �

there is an �
�
such that

� 
 � � �
�
�
, and

for all
� �

in �
�
there is an &

� � � ! � ! � �
and a

���
such that

&
� � � ! � � $W��� ) � � , and

� 
 � � � � � 5
Applying the last of these to

� �
and � gives an �

�
such that

� 
 � � �
�
�

and
for all

� �
in �

�
there is an &

� � � ! � ! � �
and a

���
such that

&
� � � ! � � $ ��� ) � � , and

� 
 � � � � � 5
$
3 5 28 )

By Fact 3.36 (Recursive Split Intersection) on page 210,

� 
 � �
& rtort

$
� ) � � � �

& rtort
$
� )3/ � � � �

� � 5
Let � * � � & � / rtort

$
� ) � � � � . By Fact 3.44 (Refinement and Recursive Split Consistency)

on page 212, if we choose � such that
� � * rtort

$
� ) , we have � & �

�
� . Since � 


rtort
$
� ) �,� �

, we have � & � � � , so EQUIV-SPLIT-L gives �
�
� .

Let
� � � be given; thus

� �
� & � where rtort

$
� ) � � � . By (3.28), there is an &

� � � ! � ! � �
and a

���
such that &

� � � ! � � $ ��� ) � � and � 

rtort

$
� ) �,���

. By Lemma 3.29 (Recursive
Intersection Lower Bound) on page 196, this implies � 


rtort
$
� ) & rtort

$
� ) � ���

, and
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the definition of rtort immediately gives � 

rtort

$ � ) � ���
. The definition of weakened

intersection then gives
&

� � � ! � � $
rtort

$ � )L) �
�

�
and the definition of

def
: gives � def

:
�
�
�

&
� � �W!

. Since &
� � � ! � ! � �

,
��� � � !

is in
! �

, so this
is our conclusion.

�

Assumption 2.51 (Constructor And Introduction) on page 67: If � def
: � �

� � �
and

� def
: � �

� � �
then � def

: � �
� $�� � def� � � ) .

Proof: The proof is very straightforward despite its length and may be skipped on the first
reading.

If � is old, then Constructor And Introduction continues to be true for it as it was before
we added the declaration � .

If we infer either of our hypotheses because � 

rtort

$
� ) empty, then the definition of

def
: gives our conclusion immediately.

Otherwise,
� � �

&
� � � !

and
� � �

&
� � � !

and by the definition of
def
: we have &

� � � ! �
� $

rtort
$
� )L) �

�

� and &
� � � ! � � $

rtort
$
� )L) �

�

� . By definition of weakened intersection,
there are

� �
1,

� � � !
1,

� �
2, and

� � � !
2 such that all of the following are true:

&
� � � !

1
� � $W� �

1 ) � �
� 


rtort
$
� ) �,� �

1

� 

&

� � � !
1
�

&
� � � !

&
� � � !

2
� � $W� �

2 ) � �
� 


rtort
$
� ) �,� �

2

� 

&

� � � !
2
�

&
� � � ! 5

The definition of intersection membership gives

&
$ � � � !

1
� � � � !

2 ) � � $W� �
1 &

� �
2 ) � � 5

Fact 3.30 (Recursive Intersection Greatest) on page 198 gives

� 

rtort

$
� ) �Z� �

1 &
� �

2

and Lemma 3.29 (Recursive Intersection Lower Bound) on page 196 gives

� 

&

$W� � � !
1

� � � � !
2 ) � &

� � � !
and

� 

&

$ � � � !
1

� � � � !
2 ) � &

� � � !
and Fact 3.30 (Recursive Intersection Greatest) on page 198 then gives

� 

&

$W� � � !
1

� � � � !
2 ) � &

$W� � � ! � � � � ! ) 5
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Finally the definition of weakened intersection then gives

&
$W� � �W! � � � � ! ) � � $

rtort
$
� )L)

and the definitions of
def
: and

def�
give � def

: � �
� � � def� � �

, which is our conclusion.
�

Assumption 2.52 (Constructor Argument Strengthen) on page 67: If � def
: � �

� � �
and

� �
� then � def

:
�
�
� � �

.

Proof: If we inferred � def
: � �

� � �
because � 


rtort
$
� ) empty, then Theorem 3.32

(Empty Transitivity) on page 200 gives � 

rtort

$ � ) empty, and our conclusion follows
immediately. Otherwise our conclusion follows from Theorem 3.33 (Subtype Transitivity)
on page 201.

�

Assumption 2.53 (Constructor Result Weaken) on page 67: If � def
: � �

� � �
and

� � def� � �
,

then � def
: � �

� � �
.

Proof: If we can infer � def
: � �

� � �
because � 


rtort
$
� ) empty, then we get our conclusion

immediately. Otherwise it follows from Theorem 3.33 (Subtype Transitivity) on page 201.
�

Assumption 3.12 (Emptyness Constructor) on page 184: If
� � def

empty and � def
: � �

� � �
then



� empty.

Proof: By definition of � def
: � �

� � �
, either � 


rtort
$
� ) empty or rtort

$ � � ) � � $
rtort

$
� )L) �

�

� . If the former is true, then Fact 3.52 (Emptyness Consistency) on page 215 gives our
conclusion. Otherwise the statement of NEW-INFER-EMPTY, two uses of Theorem 3.32
(Empty Transitivity) on page 200, and Fact 3.52 (Emptyness Consistency) on page 215
give our conclusion.

�

Assumption 3.13 (Emptyness Subtyping) on page 185: If
� � def

empty and
� � def� � �

then
� � def

empty. Immediate from Theorem 3.32 (Empty Transitivity) on page 200.

3.6.3 Value Containment

Here we will show that if a value has a refinement type, it has the corresponding recursive
type.

Theorem 3.53 (Value Containment) Under the assumptions introduced by � , if �



� : �

then � 

� � rtort

$
� ) .

Proof: Take � as given, and let � be the natural encoding of the rules for recursive type
membership in Figure 3.2 as a function, and let

� * � $
� ( rtort

$
� )L) / �



� : �

�
. We need to

show
� �

gfp
$ � ) and by co-induction it suffices to show

��� � $�� ) . Proof is by cases on
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a pair
$

� ( � ) in
�

. The proof is straightforward and is included only because the result is
important.

Case: �
�
� 1 & � 2 Then rtort

$
� ) * rtort

$
� 1 ) & rtort

$
� 2 ) . We can use WEAKEN-TYPE and

�



� : � to infer �



� : � 1 and �



� : � 2. Thus, by definition of

�
, we have

$
� ( rtort

$
� 1 ) ) � �

and $
� ( rtort

$
� 2 )L) � � 5

Then AND-RECVALUE gives
$

� ( rtort
$
� 1 ) & rtort

$
� 2 ) ) � � $�� ) , which is what we wanted to

show.

Case: �
� � �

�
, � is new, and �

� � � �
By Lemma 2.68 (Subtype Irrelevancy) on page 88

and �



� :

� � �
we have

�


 

� :

� � � 5
The last inference of this must be CONSTR-TYPE with the premises

� def
:
�
�
� � � � $

3 5 29 )
and

�



�
�

:
� 5

If we were able to infer (3.29) because � 

rtort

$ � ) empty, Fact 3.52 (Emptyness Con-
sistency) on page 215 gives


 �
empty, and Fact 3.14 (Soundness of Refinement Type

Empty) on page 185 contradicts �



�
�

:
�

. Thus we must have inferred (3.29) from� � � � � $
rtort

$ � ) ) . By Lemma 3.47 (Weakened Intersection Simplification I) on page 213,
either � 


rtort
$ � ) empty or there is a

� �
such that

� 

rtort

$ � ) �,� �
and � � � � � $ � � ) � � 5
We have already show that � 


rtort
$ � ) empty cannot be true. Thus the other branch of the

disjunction is true, so we can choose a � such that rtort
$
� ) * � �

. By Fact 3.42 (Refinement
and Recursive Subtyping Equivalence) on page 212 we have

� �
� , and then WEAKEN-TYPE

gives �



�
�

: � . Thus by definition of
�

we have
$

�
� ( rtort

$
� )L) � � , and NEW-RC-RECVALUE

then gives
$ � �

� ( � � � ) � � $�� ) , which is our conclusion.

Case: �
� � �

�
, � is new, �

�
&

� � � !
where

� � �W!
has two or more elements.

WEAKEN-TYPE immediately gives

for all
� � � � � � �W!

we have �



� : & � � � � �

.
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Then the definition of
�

gives

for all
� � � � � � � !

we have
$

� ( � � � ) � �

and AND-RECVALUE then gives
$

� ( &
� � �W! ) � � $�� ) , which is our conclusion.

Case: �
� � �

�
, � is old, �

� � �
Then we can immediately use OLD-RC-RECVALUE to get$

� ( � � ) � � $�� ) , which is our conclusion.

Case: �
� I @ � � � > � � and �

�
� 1
�
� 2 Suppose �



�
� �

: � 1 and
$ I @ � � � >�� � ) �

� � �
�
�
. Then, by APPL-TYPE, we have �


 � I @ � � � > � � � �
� �

: � 2, and by Theorem 2.71
(Refinement Type Soundness) on page 99 we have �



�
�

: � 2. The definition of
�

then
gives

$
�
� ( rtort

$
� 2 )L) � � .

Thus, by ABS-RECVALUE we have
$L$ I @ � � � > � � ) ( � � �

rtort
$
� 2 ) ) � � $�� ) . By defi-

nition of rtort, this is our conclusion.

Case: �
� � �

1
�

. . .
�

� � � and �
�
� 1

M
. . .

M
� � By Lemma 2.68 (Subtype Irrelevancy)

on page 88 we have �


 
 � �

1
�

. . .
�

� � � : � 1
M

. . .
M
��� . The last inference of this must be

TUPLE-TYPE with the premises

for � in 1 . . .
�

we have �



� � : � �'5

By definition of
�

this implies

for � in 1 . . .
�

we have
$

� � ( rtort
$
� � ) ) � � (

and the definition of rtort and TUPLE-RECSUB give
$ $

�

1
�

. . .
�

� � ) ( rtort
$
� )L) � � $�� ) , which

is our conclusion.
�



Chapter 4

Refinement Type Variables

There are two changes that need to be made to add polymorphism to refinement types. We
need to add type variables and refinement type constructors that take type arguments. This
chapter discusses the former, and Chapter 5 discusses the latter.

Adding the type variables is fairly simple. After looking at the various plausible options
in Section 4.1, we will conclude that it seems best for each ML type variable to have exactly
one refinement, which is a refinement type variable. Then in Section 4.2 we will describe
the changes we must make to the machinery in Chapters 2 and 3 to accommodate this.

4.1 Adding Type Variables

The motivating examples behind refinement types have not made interesting use of poly-
morphism so far. Since ML is indeed a polymorphic language, we need a straightforward
correct way to deal with polymorphism. For some examples, the desired behavior is clear.
For instance, since

� ��� �
has the refinement type

# #
and

I9 D H �
has the refinement type

�
,

we would like the statement D ��� � 9 DAB 8 > I @ � > � �B�@ $LB 8N� ��� � �?B 8=I9 D H � )� @ 8
to get the refinement type

# #
M �
.

Notation to represent the type for
B 8

seems straightforward. The most general ML type
scheme for

B 8
is written as � $

� ) 5 � � �
By analogy with the notation for the ML type scheme, we shall also write the refinement
type scheme as � $

� ) 5 � � ��5

223
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4.1.1 Instantiation

Next we need to understand how to instantiate the refinement type. Instantiating the ML
type is simple; ML type inference tells us that in this example the � in the ML type scheme
should be instantiated to

<WK%K �
, giving a resulting type of

<WK K �	� <WK K �
. Instantiating the

refinement type scheme is a little more complex because it must have both of the types#T# � #T#
and

� � �
. We could take the path used in [Pie91a] and instantiate the refinement

type scheme to a list of refinement types that is explicitly given in the expression; in this case
we would be instantiating the � in

� $
� ) 5 � � � to � #T# ( � � to get the type

# # � # # � � � �
.

However, we know that all of the types in the list must be refinements of
<WK K �

, and since<WK K �
has finitely many refinements, we can put all of those refinements into the list. We

might as well put all possible refinements into the list since that will yield the most precise
possible result; since there is therefore only one reasonable list, we can omit the list instead
of explicitly specifying it.

Thus, to instantiate a refinement type scheme, we instantiate each refinement type
variable to an ML type. The result is the intersection of all distinct results of substituting
refinements of that ML type for the refinement type variable. For example, instantiating
the refinement type variable � to

<WK K �
in the refinement type scheme

� $
� ) 5 � � � yields

#T# � #T# � � � � �?OQPSRTR'U�� O P R R'U � � PSRTRVU � � PSRTRVU

Once we move on to more complex examples, more choices arise. Consider the
expression skeleton:

D ��� � 9 DAH � � B ��� B I > I @��Y>�� I @ � >�� I @ � > �AB I � � �� @ �Z� D H � �B�@
. . .� @ 8

What should be the refinement type scheme for
H � � B ��� B I

? The ML scheme is
� $
� ) 5 <LK%K ���

�
�
�
�
� 5

It is tempting to permit multiple refinements of each ML type variable, since we could give
this expression an informative type scheme like

� $
� ( � ) 5 #T# � �

� � �
�

�
� �

�
� � � � �OQPSRTRVU��
�
�
�
�
�

�
� PSRTRVU �

�
�
�
� ���

Unfortunately, if we permit arbitrarily many refinements of each ML type variable, then
there are expressions with no principal type. We will illustrate this with an example.

In the example, we shall use the datatype
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8�9��;9������� � K �#7� K � >�� ��� � G�I �
E������ �

to represent a value which may or may not be present. Note that
����� �

has no argument;
we are using the concise version of the syntax for this example. We want to distinguish
the two constructors of this datatype at the refinement type level, so we use the following
rectype statement:

� ���������;� � ! K � � >�� ����� $
� )9 @ 8 �

� K �;� >������ �

(Although the value constructor
����� �

takes no argument, the refinement type constructor� K �;�
does take one argument because it refines the ML type constructor

K �#7� K �
which takes

one argument.)

Suppose we have a collection of rewrite rules which only apply sometimes. We can
represent one of these rules as a function with the type

�
�
� K �#7� K �

If the rewrite rule � ���
applies to a value � , then � ��� � � � ����� 	 , where 	 is the result of

rewriting � . If the rewrite rule does not apply, then � ��� � � ����� �
.

One natural thing to do with a rewrite rule to repeat it until it no longer applies; the
result is a rewrite rule. We can write this as a straightforward higher-order function:

I � @ � ���;��9�� � ��� � >
��9 H � � ��� � G�I

����� �N>�� � ��� � �E � ��� � � > � � ���;��9�� � ���N�

which has the ML type
$
�
�
� K �#7� K � ) � �

�
� K �#'� K �

.

Now, assuming an infinite number of refinement type variables refine each ML type
variable, what is the type for � �����9��

? Suppose the refinement type of the value bound
to
�

is � 1. Perhaps the value bound to
�

will be rewritten zero times; this happens if the
argument to � ���;��9��

has type � 1
�
� 2

� K �;�
, so � �����9��

has the type

$
� 1
�
� 2

� K �;� ) � � 1
�
� 1

! K � �
The value bound to

�
may also be rewritten once. This happens if the rewriter has type

� 1
�
� 2

! K � � �
� 2
�
� 3

� K �� (
so � ���;��9��

also has the type

$
� 1
�
� 2

! K � � �
� 2
�
� 3

� K �;� ) � � 1
�
� 2

! K � � 5
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We can continue in this fashion, giving types for � ���;��9��
that describe its behavior when

the rewrite rule applies any nonnegative number of times. The only type that includes all of
this information is the infinite intersection of all of these possible types. Our system only
has finite refinement types, so � �����9��

does not have a principal type if we permit infinitely
many refinements of an ML type variable. The only natural choices for the number of
refinements of each ML type variable seem to be one or infinitely many. Since we have
ruled out having infinitely many, we shall have only one.

4.1.2 ML Polymorphism vs. Refinement Typing

Once we decide that each ML type variable has only one refinement (or any other fixed
number), ML polymorphism interferes with refinement typing. For example, consider the
expression

D ��� � 9 D @ G�� > I @��Y>��YB I � ���� @ I;9 D:H �N� D:H � � ��� �
� 9 D 8�G � � D � > I @ I > � I @��Y> � I $ I � )B�@

8�G � � D � @ G��A� �	� �� @ 8
There are two ways to derive an ML type for this expression. Either we can have a
polymorphic

8:G � � D �
with the type scheme

� $
� ) 5 $ � � � ) � �

�
�

and instantiate � to
<WK K �

when
8:G � � D �

is used, or we can have a monomorphic
8:G � � D �

with the type scheme � $ ) 5 $ < K%K � � < K�K � ) � <WK K ��� <WK K �
which does not need to be instantiated before it is used.

These two ways to derive an ML type for the above expression have different conse-
quences for refinement typing. If

8:G � � D �
is polymorphic, then clearly the only refinement

type scheme it can have is �

� 5 $ � � � ) � �
�
�

Instantiating � to the refinements of
<WK K �

gives an intersection with four components:

$L#T# � # # ) � #T# � #T# �
$ � � � ) � � � � �$LOQPSRTR'U�� O P R R'U ) � O PSRTR'U � OQPSRTR'U �$ � PSRTR'U � � PSRTR'U ) � � PSRTRVU � � PSRTRVU

If
8:G � � D �

has this refinement type, then what is the refinement type of8:G � � D � @ G�� � �	� �
? The first two components do not help us determine this type, since
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@ G��
has neither of the types

# # � #T#
nor

� � �
. The last component is irrelevant because� �	� �

does not have the type
� PSRTR'U

. Thus the only usable component is the third and the
best type for

8:G � � D � @ G��N� ��� �
is

O PSRTR'U
.

If, on the other hand,
8�G � � D �

is monomorphic, then its type is much more informative.
In the definition of

8:G � � D �
I @ I > � I @��Y> � I $ I � )

we can assume that
I

has the type
#T# � � � � � # #

and that
�

has the type
# #

. Then
I �

has the type
�

, and
I $ I � ) has the type

#T#
, so the best type for

8�G � � D � @ G��A� �	� �
is

#T#
.

Thus, the programmer using refinement types will have to have in mind the same
derivation of the ML type that the compiler has in mind if he wants to predict what
refinement types the compiler will assign to a particular expression. This should not be
too difficult, since the algorithms actually used in the compilers always generate the most
general ML type at every opportunity. Thus in the example above the programmer can
expect the compiler to use the most general type for

8�G � � D �
, which results in the less

informative refinement type for the
D ���

statement. If the programmer wanted the
D ���

statement to have the more informative type, he could use explicit ML type declarations to
reduce the polymorphism. One way to do this would be to declare the second argument of8:G � � D �

to have type
<WK%K �

, as in:

D ��� � 9 D @ G�� > I @ �Z> � B I � � �;� @ I;9 D H �N� D:H � � �	� �
� 9 D 8�G � � D � > I @ I > � I @ �

:
<LK%K � >�� I $ I � )B�@

8:G � � D � @ G��N� ��� �
� @ 8

In this thesis we avoid a choice among the various algorithms that could conceivably be
used for ML type inference by stipulating that our terms must have enough embedded ML
type information to uniquely determine how the ML type is derived. This requires us to
at least explicitly specify which variables each

D ���
statement generalizes over. This isn’t

quite sufficient though; consider the let statement

D ��� B 8 >�� $
� ) 5 I @ � > � �B�@ B 8=� �	� �� @ 8

This expression has type
<WK%K �

. We could have derived this type by giving
B 8

the type
scheme

� $
� ) 5 � � � and instantiating � to

<WK K �
immediately before using

B 8
, or we could

have derived it by giving
B 8

the unusual type scheme
� $
� ) 5 <WK K ��� <WK K �

and instantiating
� to something arbitrary before using

B 8
. To eliminate this ambiguity, we must have an

explicit declaration each place a type variable could be introduced, which means an explicit
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declaration each time a variable is used and for each abstraction. Because SML eagerly
evaluates values bound by both

D ���
and

I @
, we can make our language more uniform by

declaring an instantiation for every variable reference, including nonpolymorphic variables
such as

�
in this example. Thus the fully explicit form of the above

D ���
statement is:

D ��� B 8 >�� $
� ) 5 I @ � � � > � � +.-B�@ B 8 + < K K � - � �	� �

� @ 8
The constructor

� ��� �
does not need the square brackets because it is not a variable

and because constructors will not be polymorphic until Chapter 5. Constructors can be
distinguished from variables because they are explicitly mentioned in the grammar for the
language and in the inference rules.

4.2 Formally Incorporating Type Variables

We will write type variables as � ,
�

; the mathematical variable that can stand for any
type variable is written � ; context should make it clear whether we are talking about one
particular type variable or an arbitrary type variable.

The new grammars for ML types and refinement types have no surprises; we simply
add productions for type variables:

� :: * #�� / � M
. . .

M � / #����:� # / � � � / �
� :: * �

�
� / � � � / � � / � M

. . .
M
� / � ���:� # / �

We write a possibly empty vector of type variables as � . We also have vectors of
refinement types � , and so forth. We can substitute a vector of refinement types � for a
vector of type variables � in a refinement type � by using the notation + � � �
- � . The length
of the vector � is written length

$
� ) , and the � ’th element is written � � � � . The first element

is � � 1 � , not � � 0 � .
We define ML type schemes to have the form

� $
� ) 5 � , and refinement type schemeto have

the form
� $
� ) 5 � .

The only changes we must make the object language grammar on page 19 is adding
D ���

statements and adding instantiations after each variable reference as discussed on page 228;
the entire grammar is:

� :: * ��+ �%- / I @ � � � > � � / � � / � � /��9 H � � G�I � > � � E
. . .

E � > � � � @ 8 � � /$ � � . . .
� � )3/ $ )�/ � D ����� ��� � /I B�� 
 � � > � I @ � � � >�� � /D ��� � > � $

� ) 5 � B%@ � � @ 8
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D ���Y8�G � � D � > � $
� ) 5 I @ I � � � �

>�� I @�� � � > � I + - $ I + - � +.- )B%@ D ��� @ G�� > � $ ) 5 I @ 9 � � � < K K � > �
��9 H �N9 � � + - G�I
� ��� � > � I @ � > ��� 9 D:H � $ )E�� 9 D:H � > � I @ � > � � �	� � $ )� @ 8 � <LK K �B%@

8:G � � D � + < K K � - @ G�� +.- $ � ��� � $ )L)� @ 8
� @ 8

Figure 4.1: Sample Expression Using Polymorphism

We define an expression scheme to have the form
� $
� ) 5 � , as appears in the grammar forD ���

statements. If a variable is bound by a
D ���

, then the substitution after it specifies how
to instantiate the expression scheme before use. If the variable is bound by a

I @
, then

the substitution must be trivial (that is, both the vector of ML types and the vector of type
variables must have zero length). For this chapter, we assume that our value constructors are
still monomorphic. An example of the syntax is in Figure 4.1. The problem of converting
human readable code into this syntax is simply ML type inference.

In Chapter 2, we defined substitution of closed expressions for variables in expressions.
Because the expressions were closed and there were no type variables in the language at
the time, the problem of variable capture did not arise. In the present case, we still limit
substitution to expressions with no free object language variables, but they may have free
type variables that can be bound by

D ���
statements; thus we now have to deal with the

possibility of type variable capture during substitution. For example, the terms
D ���A� > � $

� ) �

� + - B%@
� + <LK%K � - $ � �	� � $ )L)� @ 8

$
4 5 1 )

and D ���N� >�� $ � ) �

� + - B%@
� + <LK K � - $ � ��� � $ )L)� @ 8

$
4 5 2 )

have the same meaning in some intuitive sense. If we ignore the issue of variable capture
while substituting

� $ ) 5 I @ � � �
> � � +.- for

�
in each of these, we get

D ��� � > � $
� ) �

I @ � � �
>��	� +.- B%@

� + <LK%K � - $ � ��� � $ )L)� @ 8
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and D ���N� > � $ � ) �

I @�� � � >��	� + - B%@
� + < K K � - $ � ��� � $ )L)� @ 8

�

$
4 5 3 )

Something has gone wrong here because these expressions no longer have intuitively
equivalent meanings; in fact, in the ML type system we define below, the first has well-
formed ML types but the second does not. The problem occurred when we substituted an
expression with a free � into a context in which � was bound. There are several ways we
could have prevented the problem.

First, we could simply forbid substitutions that cause variable capture. This would mean
that (4.1) and (4.2) are no longer equivalent, because the substitution above is forbidden
for (4.1) but permitted for (4.2). This is aesthetically unpleasing, but similar to approaches
taken by others in the past; for example, with slightly different notations, the papers
[Car87, CDDK86, DM82, Myc84, Tof88] all define systems that allow one to derive


 : �

 I @ �Y>�� �

::
� � 5 � � �

but not

 : �


 I @��Z>�� �
::

�

� 5 � � � 5
There are other approaches, such as higher-order abstract syntax[PE88, MNPS91,

HHP93] and de Bruijnindices [Bar80, dB72], that solve the problem by changing or elimi-
nating the notion of “named variable”. These seem too radical for the task at hand.

Instead, we will circumvent the problem by giving a different meaning to (4.1) and
(4.2) so they are actually the same mathematical object, as was done in [Bar80, page 26]
and [CR36]. In this approach, we identify two expressions if we can transform one into
the other by renaming bound variables, and whenever we write an expression, we really
mean the equivalence class containing that expression. In this case the proper definition of
substitution still forbids variable capture as a special case, but we can always find an element
of the equivalence class that makes the substitution go through. With this interpretation, the
correct result of the substitution mentioned above is (4.3). We use the same strategy to deal
with binding object language variables; thus

I @ � � <WK K � >�� � + - and
I @ � � <WK K � > � � + - are

the same term, as are

D ��� � > � $
� ) 5 I @ � � �

> � � + - B�@�� + <WK K � - � @ 8

and

D ���N� > � $
� ) 5 I @ � � �

> �	� +.- B%@ � + < K K � - � @ 8
�

Now that we have a clear policy for dealing with type variable capture, we can modify
the definition of substitution on page 23 so we now substitute expression schemes (not
expressions) for variables in expressions. Only a few of the clauses of the substitution
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definition change in a non-trivial way; the first clause listed uses the operation of substituting
ML types for type variables in expressions, which is a simple operation we shall not formally
define here:

+ � $
� ) 5 � � �:- $ ��+ �%- ) *,+ � � �
- � if length

$
� ) * length

$ � )+ � $
� ) 5 � � �:- $ ��+ �%- ) fails otherwise+ � $
� ) 5 � � �:- $ 	 + ��- ) * 	+ �%- if 	��* �

+ � $
� ) 5 � 1

� ��- $ D ��� 	 > � $ � ) 5 � 2
B%@ � 3

� @ 8 ) *$ D ��� 	 > � $ � ) 5S+ � $
� ) 5 � 1

� �:- � 2
B�@ + � $

� ) 5 � 1
� �:- � 3

� @ 8 )
where � �* 	 and � and

�
have no elements in common.

For example, substituting
� $
� ) 5 I @ � � � >�� � +.- for

�
in

� + < K�K � - $ � ��� � $ )L) yields$ I @ � � <LK%K � >�� � + - ) $ � ��� � $ )L) (
and substituting

� $ ) 5 � �	� � $ ) for
�

in
$ � + - � � +.- ) yields

$ � �	� � $ ) � � ��� � $ )L) .
The grammar for values is unchanged, but the meaning changes slightly because the

grammar references expressions, and expressions have changed:

� :: * � � / $
�
�

. . .
�

� ) / $ ) / I @ � � � > � �
The changes to the evaluation relation defined in Figure 2.1 on page 24 consist of adding a
rule for

D ���
and modifying rules that do substitution to construct trivial expression schemes

so we can use the modified definition of substitution above:

LET-SEM:
� 1 � �

1+ $ � $
� ) 5 �

1 ) � �:- � 2 � �

2D ��� � > � $
� ) 5 � 1

B�@ � 2
� @ 8 � �

2

APPL-SEM:

� 1 � I @ � � � >�� � 3

� 2 � �

2+ $ � $ ) 5 �

2 ) � ��- � 3 � �

3

� 1 � 2 � �

3

FIX-SEM:
I B�� 
 � � >�� I @ � � � > � ���+ $ � $ ) 5 I B�� 
 � � >�� I @ � � � >�� � ) � 
- I @ � � � > � �

Notice that the
D ���

�

H � �
rule says to eagerly evaluate the variable in

D ���
statements. There

have been proposals to evaluate them lazily under some circumstances; we could do that
with the alternative rule

LET-SEM’:
+ $ � $

� ) 5 � 1 ) � ��- � 2 � �

2D ��� � >�� $
� ) 5 � 1

B�@ � 2
� @ 8 � �

2

Since we do not have polymorphic type constructors yet, our value constructors will not
have polymorphic outputs. Thus it would be peculiar for them to have polymorphic inputs;
for example, consider this declaration:
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8�9��9�������  K K >�� 9 � G�I �

Standard ML disallows
8:9��;9�������

declarations where the constructors have type variables
free in the input type ( � in this example) that are not free in the output type (

 K K
in this

example), so we shall forbid them also. Since we cannot have a polymorphic output type
in this chapter, we will outlaw type variables in the input type altogether:

Assumption 4.1 (Free Type Variables in Constructors) If

� def
:: � � tc

then � has no type variables.

The modifications to the ML type system introduce few surprises. The environment
VM now maps variable names to ML type schemes. For uniformity, it maps all variable
names to ML type schemes, even the variables bound by

I @
and

I B��
; as the ABS-VALID rule

below says, all such variables are bound to vacuous ML type schemes that quantify over
zero type variables. We add a rule for

D ���
statements, and make slight modifications to the

rules for variables, abstractions, and fixed points to accommodate the new environment:

LET-VALID:

VM

 � 1 :: � 1

for all � in � we have � is not free in VM
VM + � : * � $

� ) 5 � 1 - 
 � 2 :: �
VM


 D ��� � > � $
� ) 5 � 1

B�@ � 2
� @ 8

:: �

VAR-VALID:
VM

$ � ) * � $
� ) 5 �

length
$
� ) * length

$ � )
VM


 ��+ �%- :: + � � �
- �

ABS-VALID:
VM + � : * � $ ) 5 � 1 - 
 � :: � 2

VM

 $ I @ � � � 1

> � � ) :: � 1
� � 2

FIX-VALID:
VM + 
 : * � $ ) 5 � 1

� � 2 - 
 $ I @ � � � 1
>�� � ) :: � 1

� � 2

VM

 $ I B�� 
 � � 1

� � 2
> � I @ � � � 1

>�� � ) :: � 1
� � 2

Fact 2.3 (ML Type Soundness) on page 27 and Lemma 2.4 (Unique Inferred ML Types) on
page 27 still hold for the modified language, as do Fact 2.5 (ML Free Variables Bound) on
page 29 and Fact 2.6 (ML Value Substitution) on page 29.

We augment the refinement rules in Figure 2.3 on page 31 by asserting that each
refinement type variable refines the corresponding ML type variable:

VAR-REF: � � �
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We say �
� � if length

$
� ) * length

$ � ) and, for � between 1 and length
$
� ) , we have

� � � � � ��� � � . A refinement type scheme refines an ML type scheme if they quantify over
the same variables and, after stripping off the quantifiers, the underlying refinement type
refines the underlying ML type.

Lemma 2.10 (Unique ML Types) on page 31 is still true; the added case to the proof is
trivial, and we shall omit it. We augment the definition of rtom on page 32 so it also works
on substitutions mapping type variables to refinement types; for example,

rtom
$ + #T# � � ( � � � - ) $ I @�� � � M � > � � + - ) *+ < K�K � �
� ( <WK K � � � - $ I @ � � � M � >�� � + - ) *I @ � � < K K �;M <WK K � >�� � + -T5

Fact 2.12 (Tuple Refines) on page 32 is still true.

We need to make no change to the subtyping rules in Figure 2.4 on page 35, since the
SELF-SUB rule ensures that refinement type variables are subtypes of themselves. Similarly,
we do not need to change the rules for splitting in Figure 2.5 on page 48 because the
SELF-SPLIT rule deals with refinement type variables.

Now that we have both substitution and subtyping, we have to show that they interact
with each other in the natural way:

Fact 4.2 (Type Substitution Preserves Subtyping) If �
� �

, then for any well-formed
substitution � , we have �

$
� ) � � $ � ) .

The proof of this is by induction on the derivation of �
� �

.

We also need to prove that substitution and splitting interact in a natural way:

Fact 4.3 (Split Substitution) If �
� � � 1 ( . . . ( ��� � , then for any �

�
and � we have

+ � � � �
- � � ��+ � � � � - � 1 ( . . . ( + � � � �
- ��� � 5
The proof of this is a simple induction on the derivation of the hypothesis.

The changes to refinement type inference are entirely analogous to the changes to ML
type inference. The variable environment VR now contains refinement schemes rather than
simple refinement types. Starting with the rules in Figure 2.6 on page 60, we add a rule
for

D ���
, change the rule for variables, and make minor changes to the rules for abstractions
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and fixed points:

LET-TYPE:

VR

 � 1 : � 1

for all � � � we have � not free in VR
VR + � : * � $

� ) 5 � 1 - 
 � 2 : �
VR


 D ��� � > � $
� ) 5 � 1

B%@ � 2
� @ 8

: �

VAR-TYPE:

VR
$ � ) * � $

� ) 5 �
�

� �
�

� �
VR


 �
+ ��- : + � � �
- �
ABS-TYPE:

VR + � : * � $ ) 5 � - 
 � :
�

�
� �

VR

 I @ � � � > � � : �

� �

FIX-TYPE:
�

� � 1
� � 2

VR + 
 : * � $ ) 5 � - 
 $ I @ � � � 1
>�� � ) : �

VR

 $ I B�� 
 � � 1

� � 2
> � I @ � � � 1

>�� � ) : �

In the syntax example in Figure 4.1 on page 229, using the LET-TYPE rule on the outer
D ���

statement leads us to add the type scheme
� $
� ) 5 $ � � � ) � �

�
�

for
8:G � � D �

to the type environment before inferring a type for the inner
D ���

statement.
Then we add the trivial type scheme

� $ ) 5 # # � # # � � � � � � PSRTR'U � � PSRTR'U � OQPSRTR'U � O P R R'U
for

@ G��
. The only way we can instantiate

8:G � � D �
that allows the application

$ 8�G � � D � + <'K K � - @ G�� +.- ) $ � ��� � $ ) )
to have a type is to substitute

O PSRTR'U
for � ; if we do this,

8:G � � D � + <'K%K � -
gets the type

$ O P R R'U�� OQPSRTRVU ) � O P R R'U�� OQPSRTR'U
,

8:G � � D � + < K K � - @ G�� +.-
gets the type

O PSRTR'U�� O P R R'U
, and

$ 8�G � � D � + <'K K � - @ G�� +.- ) $ � ��� � $ ) )
and the

D ���
statement as a whole has the type

O PSRTR'U
.
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Compatibility with ML is unaffected by the new rules added. We will omit the simple
case for

D ���
that must be added to the proof of Theorem 2.54 (Inferred Types Refine) on

page 68, and the proofs of Lemma 2.55 (Value Arrow Type) on page 74 and Fact 2.56
(Value Constructor Type) on page 74 are unchanged. We must add this equation to the
definition of mtor on page 76:

mtor
$
� ) * � ;

the proofs of Fact 2.61 (mtor Refines) on page 76 and Fact 2.62 (Unique Refinement) on
page 76 are still trivial, and the case we must add to deal with

D ���
statements in Theorem

2.64 (ML Compatibility) on page 77 is simple and we will omit it.

Updating the soundness proof is somewhat more work, and constitutes most of the
remainder of this chapter. The statement of Lemma 2.66 (Environment Modification) on
page 81 does not change; the VAR-TYPE case of the proof changes slightly: The statement
of Lemma 2.66 (Environment Modification) on page 81 does not change; the proof only
changes slightly:

Lemma 4.4 (Environment Modification) If

VR

 � : �

and
VR

�
has the same domain as VR

and
for � free in � we have VR

� $ � ) � VR
$ � )

then
VR

� 
 � : �%5
Also, if in addition

VR

 
 � : �

and
� is not a variable

then
VR

� 
 
 � : � 5
Proof: By induction on the derivation of VR


 � : � .

Case: VAR-TYPE Then � has the form ��+ �%- , and � has the form + � � �
- � where the premises

of VAR-TYPE are:
VR

$ � ) * � $
� ) 5 �

�
� � $

4 5 4 )
� � � 5
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Since VR
$ � ) � VR

� $ � ) , we know that

VR
� $ � ) �

� $
� ) 5 � � $

4 5 5 )
for some

� � � �
. By the version of Theorem 2.21 (Subtypes Refine) on page 36 that holds

for this system,
� � � � . Then we can use VAR-TYPE with the premises (4.5), (4.4), and� � � � to get

VR
� 
 ��+ �%- : + � � �
- � � 5

Then Fact 4.2 (Type Substitution Preserves Subtyping) on page 233 gives + � � � - � � � + � � �
- � ,
and WEAKEN-TYPE then gives VR

� 
 ��+ �%- : + � � �
- � , which is our conclusion.

Case: Otherwise. Omitted.
�

Lemma 2.67 (Piecewise Intersection) on page 84 and Lemma 2.68 (Subtype Irrelevancy)
on page 88 are unchanged because values do not have

D ���
statements at the top level.

Theorem 2.69 (Splitting Value Types) on page 89 is changed slightly because it has to use
Fact 4.3 (Split Substitution) on page 233.

Lemma 2.70 (Value Substitution) on page 93 becomes slightly more interesting. We
have to add a case for

D ���
declarations and make nontrivial changes to the case for variables.

The new type inference rule for variables specifies a refinement type substitution, so we need
to be able to substitute refinement types for type variables in refinement type derivations:

Fact 4.5 (Refinement Type Substitution) Suppose VR

 � : � and � is a substitution

mapping type variables to refinement types where for all � in the domain of � we have �
$
� )

is well formed. Then
�
$
VR ) 
 rtom

$
� ) $ � ) : �

$
� ) 5

The proof of this is a simple induction on the derivation of VR

 � : � . The SPLIT-TYPE

case uses Fact 4.3 (Split Substitution) on page 233.

This fact is useful in variable case of Value Substitution; we shall restate that lemma
and give the

D ���
and variable cases of the proof:

Lemma 4.6 (Value Substitution) If

VR

 � 1 : � 1 (

where � 1 is a value or a closed expression of the form
I B�� 
 � � 1

> � I @ � � � 2
> � � � � , and

VR + � : * � $
� ) 5 � 1 - 
 � 2 : � 2 (

and none of the variables in � are free in VR, and the substitution + $ � $
� ) 5 � 1 ) � �:- � 2 succeeds,

then
VR


 + $ � $
� ) 5 � 1 ) � ��- � 2 : � 2 5
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Proof: By induction on the derivation of VR + � : * � $
� ) 5 � 1 - 
 � 2 : � 2.

Case: VAR-TYPE Then � 2 has the form 	C+ . . . - for some 	 . If 	 is not � , then the desired

conclusion is VR

 � 2 : � 2. We can get this by eliminating the unused variable � from the

hypothesis VR + � : * � $
� ) 5 � 1 - 
 � 2 : � 2.

Otherwise, � 2 has the form ��+ ��- . By the shape of VAR-TYPE, � 2 has the form + � � � - � 1.
The premises of VAR-TYPE must be � � � and, for some � , � 1

� � . By Fact 4.5 (Refinement
Type Substitution) on page 236,

+ � � �
- $ VR ) 
 rtom
$ + � � �
- ) $ � 1 ) : + � � ��- $ � 1 ) 5 $

4 5 6 )
By hypothesis, none of the variables in � are free in VR, so + � � �
- $ VR ) * VR. By definition
of substitution, + $ � $

� ) 5 � 1 ) � �:- � 2 * + $ � $
� ) 5 � 1 ) � ��- $ ��+ ��- ) * + � � �
- � 1 * rtom

$ + � � ��- ) $ � 1 ) .
Since � 2 *Z+ � � � - � 1, (4.6) is our conclusion.

Case: LET-TYPE Then � 2 has the form
D ��� 	 > � $ � ) 5 � 3

B�@ � 4
� @ 8

for some 	 . Rename

variables if necessary to ensure that 	 and � are distinct, and that � and
�

have no variables
in common. For some � 3, the premises of

D ���
�

������
must be

VR + � : * � $
� ) 5 � 1 - 
 � 3 : � 3 (

for all
� � �

we have
�

not free in VR + � : * � $
� ) 5 � 1 - ,

and
VR + � : * � $

� ) 5 � 1 ( 	 : * � $ � ) 5 � 3 - 
 � 4 : � 2 5
Let � abbreviate

� $
� ) 5 � 1; then our induction hypothesis gives

VR

 +�� � �:- � 3 : � 3

and
VR + 	 : * � $ � ) 5 � 3 - 
 +�� � ��- � 4 : � 2 5

Then LET-TYPE gives

VR

 D ��� 	 >�� $ � ) 5S+�� � �:- � 3

B%@ +�� � �:- � 4 : � 2;

by definition of substitution, this is our conclusion.

Case: Otherwise Omitted.
�

We are finally able to give the modifications of Theorem 2.71 (Refinement Type Sound-
ness) on page 99 necessary for the system described in this chapter. Although the statement
of the theorem does not change, we will repeat it here:

Theorem 4.7 (Refinement Type Soundness) If ��� � and �


 � : � , then �



� : � .



CHAPTER 4. REFINEMENT TYPE VARIABLES 238

Since � is closed, it is not a variable; thus the only change we need to make to the previous
version of the proof is to deal with the possibility that � may be a

D ���
statement.

Proof: By cases on the pair (root inference of � � � , root inference of �


 � : � ).

Case:
$
LET-SEM ( LET-TYPE ) Then � must have the form

D ��� � >�� $
� ) 5 � 1

B%@ � 2
� @ 8

.

The premises of LET-SEM must be
� 1 � �

1
$
4 5 7 )

and + $ � $
� ) 5 �

1 ) � �:- � 2 � � 5 $
4 5 8 )

For some � , the premises of LET-TYPE must include

�


 � 1 : � 1
$
4 5 9 )

and
VR + � : * � $

� ) 5 � 1 - 
 � 2 : � 5 $
4 5 10 )

Using the induction hypothesis on (4.7) and (4.9) gives

�



�

1 : � 1

Value Substitution and (4.10) then give

�


 + $ � $
� ) 5 �

1 ) � �:- � 2 : ��5
Using the induction hypothesis on this and (4.8) gives �



� : � , which is our conclusion.

Case: Otherwise Omitted.
�

The proofs of Theorem 2.90 (Finite Refinements) on page 115 and Corollary 2.91
(Principal Refinement Types) on page 115 are essentially unchanged.

The only significant change to the decision procedure is modifying the
B%@ I� � function

defined in Figures 2.7 and 2.8 on pages 142 and 143 to deal with
D ���

statements and the
new syntax for variable references. The new cases are:
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I � @ZB%@ I� � VR 	C+ �%- >B I
VR

$ 	 ) is undefined
G �

VR
$ 	 ) does not have the form

� $
� ) 5 �

where � refines some �� �� @ ���� D H �D ��� � 9 D � $
� ) 5 � >

VR
$ 	 )B�@

� I @ ��+ � � �
- � / length
$
� ) * length

$
� ) and

for all � we have � � � � � 9 D�D � ��I H�$ ��� � � ) �� @ 8E B%@ I� � VR
$ � 9 H $ D ��� � > � $

� ) 5 � 1
B%@ � 2

� @ 8 ) ) >
D ��� � 9 D � > B�@ I� � VR � 1

� 9 D
�

> H � D:B � $ � )
� 9 D � >

the unique � such that rtom
$
VR ) 
 � :: �B�@ H � G B�@ I � � B�@ I;� � $

VR + � : * � $
� ) 5 ��- ) � 2 / � � � �� @ 8

The correctness proof for the revised case for variables has no surprises, and the proof for
the

D ���
case uses no concepts that do not appear in the application or abstraction cases, so

we shall omit them.

By Assumption 4.1 (Free Type Variables in Constructors) on page 232, there cannot
be any type variables in � ����������

declarations. Thus the argument in Chapter 3 needs no
revisions to accommodate the type variables introduced in this chapter.

To summarize, once we decide that each ML type variable is refined by exactly one
refinement type variable, the formal description of refinement types with type variables
follows straightforwardly.



Chapter 5

Polymorphic Refinement Type
Constructors

Programmers intuitively know that all even length lists of
� ��� �

’s are also even length
lists of booleans. With polymorphic refinement type constructors, we can write this as#T# ��� � O P R R'U3���

, where
� �

is the type of lists with even length. This chapter is about
formalizing that intuition in the type system.

We say that the type argument to
���

is a positive type argument, since as the type
argument of

� �
gets larger, the type as a whole gets larger. There are other possibilities; for

example, suppose we have the declaration

8:9��9������;� � � �L� 2 >�� � � 8 G�I �
� <WK K �

� ���������� � # � � � 2 >�� � � 8 $
�
� #T# )9 @ 8 �

 � �L� 2 >�� � �48 $
�
� � )

Using an intuitive reading of this � ����������
declaration, we would expect to be able to apply� � � 8

to a function with type
#T# � #T#

and get a value of type
#T#3# � �W� 2 ; similarly, we would

expect to be able to apply
� � � 8

to a function with type
O P R R'U�� #T#

and get a value of typeO P R R'U�# � �W� 2 . Since
O PSRTR'U � #T# �F# # � # #

, we expect
O P R R'U�# � �W� 2 �F#T# # � � � 2 . We say the

type arguments of
� �L� 2 ,

# � �L� 2 , and
 � � � 2 are all negative.

There are two other possibilities. We can have a type variable that appears on both the
left and the right side of an arrow, such as

8:9��;9������� � � > � G�I �
�
�
�

where
# # O��

is incomparable with
O PSRTR'U O��

. We say the type argument of
�

is mixed.

We can also have type variables that appear nowhere in the type, such as

8�9��;9������� � � > � G�I <WK K �

240
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where
# #�O �

�
O P R R'U�O �

. We say the type argument of
�

is ignored. It turns out that positive,
negative, mixed, and ignored are all the possibilities.

Since our type system is an approximation instead of an all-knowing oracle, we have the
option of ignoring any or all of the above distinctions, so long as the resulting approximation
is conservative. We could take the least informative approximation in all cases; this would
mean treating all type arguments as mixed type arguments. In this case the refinement types#T# ���

and
OQPSRTRVU ���

would be incomparable. With this interpretation,
#T# � �

would no longer
be a principal type of

��G @CHN$ � ��� � � ��G @1HN$ � �	� � � @CB4D ) ) , since the type
# # � � � O PSRTR'U
���

would be another type for that expression that is strictly smaller. This approach has not been
explored enough to determine how many unpleasant surprises it gives the programmer, but
nevertheless we will not go that way.

Another approach is to simplify things by outlawing some of the possibilities; since all
of the possibilities are permitted in Standard ML, this implies becoming less compatible
with Standard ML. The current implementation does this; it outlaws mixed type arguments
and it treats ignored type arguments as though they were positive. However, in this chapter
we will permit and accurately model all four possibilities.

Thus, in general, each polymorphic refinement type constructor will have four kinds of
type arguments. We will represent the different kinds by grouping them together, separated
by semicolons, in the order negative, positive, mixed, and ignored. For example, the true
form of

#T# ���
is

$
;
# #

; ; ) � �
.

Each ML type constructor takes a fixed number of type arguments; each of these is either
negative, positive, mixed, or ignored. We will assume these type arguments are grouped
as described in the previous paragraph, so we can describe the number of arguments an
ML type constructor takes with a tuple of four nonnegative integers saying how many
arguments it takes of each type. We call this tuple the arity of the ML type constructor,
and if we call the ML type constructor

#��
then we write its arity as arity

$L#�� ) . For instance,
arity

$L� �"!�# ) * $
0; 1; 0; 0 ) and arity

$�� ) * $
0; 0; 1; 0 ) . Assumption 2.2 (Constructors have

Unique ML Types) on page 26 still holds, so we can assume that the arity function is defined
for ML type constructors, and define arity

$�� � ) to be arity
$L#�� ) for the unique

#��
such that

� � def� #��
.

With these conventions, we can define arrow and tuple types as uses of ordinary type
constructors. With this interpretation, many of the inference rules concerning tuple or arrow
types are subsumed by more general rules. Specifically, we shall treat the “

�
” operator

that appears in ML types as an ordinary ML type constructor with arity
$
1; 1; 0; 0 ) ; we shall

call it
# � ��� K��

when we are thinking of it in this context. We also have an “
�

” operator in

refinement types; we will call it
� � ��� K��

, and we have the assumption
� � � � K�� def� # � � � K��

.
We will continue to use “

�
”, but now it is a readable abbreviation for a use of

� � ��� K��
or

# � ��� K��
, rather than part of the syntax. For example

<WK K ��� <WK K �
is syntactic sugar for$ <WK K �

;
<WK K �

; ; ) # � � � K��
and

#T# � �
is syntactic sugar for

$ # #
;
�

; ; ) � � ��� K��
.

Similarly, we can represent tupling of ML types as an ordinary ML type constructor.
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For example, we give the ML type constructor that takes arguments � ,
�

, and
�

and
constructs �

M�� M �
the name

# #�� �� �
3 which has arity

$
0; 3; 0; 0 ) . In general we have an

ML type constructor
# #�� �� � � for tuples of each nonnegative size

�
, and arity

$L#T#�� �� � � ) *$
0;
�

; 0; 0 ) . Refinement type tuples get their own constructor, named
�W#�� �� � � , and for all

nonnegative
�

we have
�W#�� �� � � def� #T#�� �� � � . We will continue to use the old syntax as

syntactic sugar for the new; for example,
� ���:� #

stands for
$
; ; ; ) �W#�� �� �

0 and
<WK%K � M <WK K �

stands for
$
;

<WK K � ( <WK�K �
; ; ) #T#�� �� �

2.

We will make the examples more readable by using some other syntactic sugar too.
When a refinement or ML type constructor has no arguments, we eliminate the argument
list entirely; thus we write

<WK K �
instead of

$
; ; ; ) <LK%K �

. Also, if all of the arguments are
positive, we omit the semicolons, and if there is only one argument and that argument is
positive, we omit the parentheses; thus we write

<WK K � � �"!�#
instead of

$
;

< K%K �
; ; ) � �"!�#

.

To make the rest of this chapter more concise, we will introduce special notation for
groups of four vectors of types or type variables. We abbreviate

$
� 1; � 2; � 3; � 4 ) as � . We

define � as a similar grouping of four � ’s.

With this said, it should not be surprising that after we expand all the syntactic sugar,
the grammars for ML and refinement types have become simpler:

� :: * $ � ) #�� / �
� :: * �

�
� / $

� ) � � / �

We change the grammar for expressions by stating explicitly how to instantiate each
value constructor before using it. We do this for the same reason we had an explicit
instantiation after each variable in Chapter 4: we need the object language to uniquely
determine the ML type derivation. We specify the ML types of value constructors with
assumptions of the form

� def
:: ��� � $

� ) #�� (
so the easiest way to specify the substitution is by giving a quadruple of types to substitute
for the type variables � . Thus the new grammar for expressions is:

� :: * ��+ �%- / I @ � � � > � � / � � / ��+ ��- � /��9 H � � G�I � > � � E
. . .

E � > � � � @ 8 � � /$ � � . . .
� � )3/ $ )�/ � D ����� ��� � /I B�� 
 � � > � I @ � � � >�� � /D ��� � > � $

� ) 5 � B%@ � � @ 8
As we did with type constructors, we may omit the substitution after a value constructor if

it is empty; thus we will write
� ��� � $ ) instead of

� �	� � + ; ; ; - $ ) .
Intersections of vectors of refinement types happen pointwise; that is, if � and

�
have

the same length, then �
� �

has that length too, and
$
�
� � ) � � � * � � � � � � � � � for �

between 1 and length
$
� ) .
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The arguments in this chapter are a modification to the arguments in Chapters 2 and 4.
We will disregard trivial changes made to accommodate the change in syntax of the object
language.

The definition of substitution on page 231 does not change, nor do the semantics rules
on page 231.

5.1 ML typing

Now that we have polymorphic type constructors, we can have polymorphic
8�9��;9�������

declarations. To permit this, we need to revise Assumption 4.1 (Free Type Variables in
Constructors) on page 232:

Assumption 5.1 (Free Type Variables in Constructors) If

� def
:: � �N$

� ) tc
then all type variables free in � appear in � .

The only change to the appearance of the ML typing relation specified in Figure 2.2 on
page 27 and updated on page 232 are to the rules for constructors and

��9 H �
statements:

CONSTR-VALID:
� def

:: � � � $
� ) #��

VM

 � :: + � � � - �

VM

 ��+ ��- � ::

$ � ) #��

CASE-VALID:

VM

 � 0 ::

$ � ) #��
for all � we have ��� def

:: � � � � $
� ) #��

for all � we have VM

 � � :: + � � � - � � � �

VM

 $ ��9 H � � 0

G�I � 1
>�� � 1

E
. . .

E �	� > � ��� � @ 8 � � ) :: �
The meaning of these rules have changed, though, because now

�
and

M
are syntactic sugar

for uses of polymorphic ML type constructors instead of primitive symbols. The modified
system has all the usual properties; Fact 2.3 (ML Type Soundness) on page 27, Lemma 2.4
(Unique Inferred ML Types) on page 27, Fact 2.5 (ML Free Variables Bound) on page 29,
and Fact 2.6 (ML Value Substitution) on page 29 still hold.

5.2 Subtyping

Because arrows and tuples are no longer primitive, we can eliminate some of rules for
the refines relation “ � ” defined in Figure 2.3 on page 31 and updated on page 233. The
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VAR-REF: � � �

AND-REF:
� 1

� � � 2
� �

� 1
�
� 2

� �

RCON-REF:
� � def� #��

�
� �

+ �;- � � � + �%- #��

QUADRUPLE-REF:
� 1

� � 1 � 2
� � 2 � 3

� � 3 � 4
� � 4$

� 1; � 2; � 3; � 4 ) � $ � 1; � 2; � 3; � 4 )

VECTOR-REF:
length

$
� ) * length

$ � )
for all � in 1 . . . length

$
� ) we have � � � � � ��� � �

�
� �

Figure 5.1: Polymorphic Refinement Rules

complete set of rules is in Figure 5.1. In these rules we use the abbreviation � � � to mean

that the quadruples � and � have the same shape and, for each � in � and the corresponding

� in � , we have � � � . We are able to get the effect of the old ARROW-REF rule because we
have the RCON-REF and we assume

� � ��� K�� def� # � � � K�� 5
Similarly, we get the effect of TUPLE-REF by using RCON-REF and the assumption

� #�� �� � � def� # #�� �� � �
for all nonnegative

�
.

Lemma 2.10 (Unique ML Types) on page 31 is still true, and we shall omit the proof.
The definition of rtom on page 32 is unchanged, as is the addition that defines its effect on
substitutions on page 233.

For the same reason, we can simplify the subtyping rules that originally appeared in
Figure 2.4 on page 35. First we generalize RCON-SUB and RCON-AND-ELIM-SUB to deal with
polymorphism, then we eliminate ARROW-SUB, ARROW-AND-ELIM-SUB, TUPLE-SUB, and
TUPLE-AND-ELIM-SUB because those rules are now subsumed by the generalized RCON-SUB

and RCON-AND-ELIM-SUB. The entire set of rules is in Figure 5.2.

To use RCON-SUB with arrows and tuples, we need arrow and tuple refinement type
constructors to be subtypes of themselves; thus we need to have

� � � � K�� def� � � ��� K��
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SELF-SUB:
�

� �
�
�
�

AND-ELIM-R-SUB:
�

� � � � �
�
� � �

�

AND-ELIM-L-SUB:
�

� � � � �
�
� � � �

AND-INTRO-SUB:
�
� �

1 �
� �

2

�
� �

1
� �

2

TRANS-SUB:
�
�
� �

� �

�
� �

RCON-SUB: �
� � � � def� � �
�

� � � � � �

RCON-AND-ELIM-SUB:

$
� 1; � 2

�
�
�
2; � 3; � 4 ) � �$

� 1; � 2; � 3; � 4 ) � � � $
� 1; �

�
2; � 3; � 4 ) � � � �

$
� 1; � 2

�
�
�
2; � 3; � 4 ) $�� � def� � � � )

QUADRUPLE-SUB:
�

1
�
� 1 � 2

� �
2 � 3 �

�
3 � 4

� � �
4

� �$
� 1; � 2; � 3; � 4 ) �Z$ �

1;
�

2;
�

3;
�

4 )

VECTOR-SUB:
length

$
� ) * length

$ � )
for � in 1 . . . length

$
� ) we have � � � � � � � � �
�
� �

VECTOR-EQUIV:
�
� � � �

�
� �

�

Figure 5.2: Polymorphic Subtyping Rules
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and, for all nonnegative
�

, #T#�� �� � � def� #T#�� �� � � 5

Theorem 2.21 (Subtypes Refine) on page 36 still holds. Lemma 2.22 (Tuple Intersection)
on page 40, Fact 2.23 (Tuplesimp Sound) on page 41, Lemma 2.24 (Refinement Constructor
Intersection) on page 41, and Fact 2.25 (Rconsimp Sound) on page 42 will be immediate
corollaries of theorems we will prove below as part of the proof that each refinement type
still has finitely many refinements. Since we only need these theorems for the type inference
algorithm, we will postpone discussion of them until Section 5.5.

Fact 4.2 (Type Substitution Preserves Subtyping) on page 233 still holds, as does Fact
4.3 (Split Substitution) on page 233.

5.3 Finiteness of Refinements

Because we have made polymorphism more general, the lemmas used to prove that each
ML type has only finitely many refinements become much more useful. Thus we shall
describe the appropriate generalization of that proof now, before we use the lemmas in the
soundness and decidability proofs.

In Section 2.9 on page 105, we created two interpretations of each refinement type.
Two refinement types � and

�
were equivalent if and only if their interpretations

�$
� ) and�:$ � ) were equal, which was true if and only if their interpretations � $ � ) and � $ � ) mapped

equivalent refinement types to equivalent generalized refinement types. This section
preserves this property while generalizing

�
and � to apply to arbitrary refinement types

with polymorphic type constructors. The definition of
�

in terms of � is straightforward, so
we will discuss generalizing � .

The proper generalization of � is fairly clear once we determine what its inputs and
outputs should be. Since in this chapter we have converted the “

�
” refinement type

operator from Chapter 2 into an ordinary refinement type constructor with one negative
and one positive argument, reasoning by analogy with the definition of � from Chapter 2
leads one to expect that the new � will take negative type arguments for input and produce
positive type arguments in its output.

It is possible to declare refinement types that behave similarly to
� � ��� K��

, except the
output of the function is represented as a refinement type constructor instead of as a positive
type argument. For example, we can reuse the

� �L� 2 datatype:

8:9��9������;� $
� ; ; ; ) � �L� 2 >�� � � 8 G�I �

� <WK K �
� ���������� $

� ; ; ; ) # � �L� 2 > � � � 8 $
�
� # # )9 @ 8 $

� ; ; ; )  � �L� 2 >�� � �48 $
�
� � )
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In this case, it is obvious, for example, that a function 
 has the refinement type
#T# � #T# �

� � �
if and only if

� � � 8 
 has the refinement type
$ # #

; ; ; ) # � �L� 2 � $ �
; ; ; )  � � � 2 . Thus we

expect refinement type constructors to have an analogous role to positive type arguments:
they are outputs from the interpretation.

The problem of determining the role of mixed type arguments remains. We will use this
example:

8�9��;9������� $
; ; � ; ) � � �Z> � B�� G�I �

�A$
�

M <WK%K � )� ���������;� $
; ; � ; ) #�� � �,> � B��Z$

�
�A$
�

M #T# ) )9 @ 8 $
; ; � ; )  � � �6> � B��Z$

�
� $
�

M � )L)9 @ 8 $
; ; � ; ) <WK #�� � �Z> � B��Z$

�
�A$
�

M � PSRTR'U )L)
In this case, the following types are all distinct:

$
; ;

#T#
; ) #�� � � � $

; ;
O PSRTR'U

; ) <WK #�� � �$
; ;

#T#
; ) #�� � � �?$

; ;
O P R R'U

; ) #�� � �$
; ;

#T#
; ) <WK #�� � � �?$

; ;
O P R R'U

; ) <WK #�� � �$
; ;

#T#
; ) <WK #�� � � �?$

; ;
O PSRTR'U

; ) #�� � �
It seems most natural to give different interpretations to these distinct types by making
mixed type arguments an input to the interpretation. From this example, it is clear that
mixed arguments give rise to more distinct refinements than do negative arguments. We
must therefore have more distinct interpretations of refinement types with mixed arguments;
this happens because the interpretation in general is monotone for the negative arguments
but not for the mixed arguments.

In Chapter 2 we had “generalized refinement types”, which were either a refinement type
or ��� . In the argument below, we use generalized pairs for a similar purpose. A generalized
pair is either a pair consisting of a vector of refinement types corresponding to the positive
arguments of some refinement type constructor and a refinement type constructor, or it is
��� . We will use the metavariables

� �
?,

� �
?, and

� �
? to stand for generalized pairs. The

operations on generalized refinement types can also be defined on generalized pairs; for
example, the new definition of � is entirely analogous to the definition on page 106:

Definition 5.2 We define the binary relation � on generalized pairs by the following cases:

$
� ; rc ) � $ �

; kc ) if and only if �
� �

and rc
def�

kc$
� ; rc ) � ns always

ns � $ �
; kc ) never

ns � ns 5
The definition of � is also analogous:

Definition 5.3 We say rr? � kk? if rr? � kk? and kk? � rr?.
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Definition 5.4 We define the binary operation � mapping pairs of generalized pairs to
generalized pairs by the equations:

$
� ; rc ) � $ �

; kc ) * $
�
� �

; rc
def�

kc )$
� ; rc ) � ns * ns � $

� ; rc ) * $
� ; rc )

ns � ns * ns 5

Definition 5.5 Suppose � is a finite set of generalized pairs; then we define � � as follows:

If � is empty, then � � * ns.

If � * � rr?1 ( . . . ( rr? � � , then � � * rr?1
�

. . .
�

rr? � .

Definition 5.6 We say rr? � $ � ; tc ) if rr? * ns or rr?
�Z$

� ; rc ) and � � � and rc
def� tc.

Definition 5.7 If � is a finite set of generalized pairs, then we define � � $ � ; tc ) to mean
that for all elements rr? of � , we have rr? � $ � ; tc ) .

Fact 2.76 ( � Elim Sub) on page 107, Fact 2.77 ( � Intro Sub) on page 107, and Fact
2.78 (Transitivity of � ) on page 108 transplant easily to this new context, and they continue
to hold.

As discussed earlier, the new interpretation of a refinement type takes as input two
sequences of refinement types corresponding to the negative and mixed arguments and
it outputs a generalized pair. Interpretations have a simple property that can almost be
used as a definition: the interpretation � of a type � is a function 
 such that for all
well-formed � , �

� �
, and �

� � �
of appropriate length, if there is a least pair

$
�
�
;

� � ) such
that �

� $
� ; �

�
; �
� �
; �
� � � ) � �

, then 
 $
� ; �

� � ) * $
�
�
;

� � ) ; if there is no
$
�
�
;

� � ) such that
�
�,$

� ; �
�
; �
� �
; �
� � � ) � �

then 
 $
� ; �

� � ) * ��� . To avoid a circular proof, we cannot yet argue
that these are all the possibilities; in principle there could be an infinite chain of distinct pairs
. . .
� $ �

3;
� �

3 ) � $ �
2;

� �
2 ) � $ �

1;
� �

1 ) such that for all � we have �
� $

� ;
� � ; � � � ; � � � � ) � � � .

Thus we will not use this simple property to define � ; instead give a different, more
constructive, definition of � and then prove that the � defined this way satisfies the simple
property.

Definition 5.8 (Interpretation of a Refinement Type) Suppose
�

has the form
$ �

1;
� �

1;
� � �

1;
� � � �

1 ) kc1
�

. . .
� $ � � ; � �� ; � � �� ; � � � �� ) kc �

and suppose
� � $ � ; � � ; � � � ; � � � � ) tc and �

� � and �
� � � � � � . Then we define � $ � ) $

� ; �
� � ) to

be
� � $ � �

� ; kc � ) / �
is in 1 . . .

�
and �

� �
� and �

� �
�
� � �
�
� 5
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We extend � to give an interpretation to generalized refinement types by defining
� $ ��� ) $

� ; �
� � ) * ��� .

For example, if we eliminate some of the syntactic sugar from the refinement type#T# � � � OQPSRTRVU�� # #
we get

$ # #
;
�

; ; ) � � � � K�� � $ O PSRTRVU
;

#T#
; ) � � � � K��

. The interpretation
of this is a function; if we pass the function the pair

$ # #
; ) consisting of the sequence of

refinement types
#T#

with length 1 followed by the empty sequence of refinement types, the

result is the generalized pair
$ # # � O PSRTRVU

;
� � ��� K�� def� � � ��� K�� ) . This has the same information

as the interpretation we had in Chapter 2.

For another example, we can compute � $ $L#T# ; ; ; ) # � �L� 2 �Q$ �
; ; ; )  � �L� 2;) ; this is a function

which, among other things, maps the pair
$L#T# � �

; ) to
$
;
# � �L� 2 def�� � �L� 2C) .

We also give an example using the datatype
� � �

. The refinement type
$
; ;

#T#
; ) #�� � � �$

; ;
O P R R'U

; )  � � �
is not equivalent to any simpler refinement type; we have

� $ $ ; ;
# #

; ) #�� � � � $
; ;

OQPSRTR'U
; )  � � � ) $

;
#T# ) * $

;
#�� � � )W(

� $L$ ; ;
#T#

; ) #�� � � �?$
; ;

O P R R'U
; )  � � � ) $

;
� ) * $

;
 � � � ) (

and
� $ $ ; ;

# #
; ) #�� � � � $

; ;
O P R R'U

; )  � � � ) $
;

OQPSRTR'U ) * ����5
After updating the notation, the theorems proved about � in Chapter 2 are still provable.

The only real difference in the proofs is the convolutedness of the notation, so we shall omit
the proofs.

The new version of Lemma 2.80 ( � Monotone in Second Argument) on page 108 has
two parts, because the mixed type arguments are treated differently from the negative type
arguments:

Fact 5.9 ( � $ � ) $
� ; �

� � ) Monotone in � ) If

� 1
�
� 2

and � 1
� � and �

� � � � � � and
� � $ � ; � � ; � � � ; � � � � ) tc, then

� $ � ) $
� 1; �

� � ) � � $ � ) $
� 2; �

� � ) 5
Fact 5.10 ( � $ � ) $

� ; �
� � ) Respects Equivalence in �

� �
) If

�
� �
1 � �

� �
2

and � � � and �
� �
1

� � � � and
� � $ � ; � � ; � � � ; � � � � ) tc, then

� $ � ) $
� ; �

� �
1 ) � � $ � ) $

� ; �
� �
2 ) 5
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Lemma 2.81 ( � Monotone in First Argument) on page 109 requires little change:

Fact 5.11 ( � Monotone in First Argument) If

� �
�

and � � � and �
� � � � � � and

� � $ � ; � � ; � � � ; � � � � ) tc, then

� $ � ) $
� ; �

� � ) � � $ � ) $
� ; �

� � ) 5
The corollary to Lemma 2.81 ( � Monotone in First Argument) on page 109 is still

simple:

Fact 5.12 (Bound on Argument to � Gives Bound on � ) If

� �Z$
� ; �

�
; �
� �
; �
� � � ) rc

then
� $ � ) $

� ; �
� � ) � $

�
�
; rc ) 5

Using the facts stated above, we can prove the following generalization of Lemma
2.26 (Tuple Subtyping) on page 42 and Fact 2.28 (Refinement Constructor Subtyping) on
page 45:

Corollary 5.13 (Arbitrary Constructor Subtyping) If
$ � ) kc

� $
� ) rc, then

� �
� and

kc
def�

rc.

Proof: Suppose �
�
� ; �

�
; �
� �
; �
� � �

and
� � �

;
� �

;
� � �

;
� � � �

. By Fact 5.12 (Bound on
Argument to � Gives Bound on � ) on page 250 we have

� $ $ � ) � � ) $
� ; �

� � ) � $
�
�
;

� � ) 5 $
5 5 1 )

Thus � $L$ � ) � � ) $
� ; �

� � ) is not ��� , and the definition of � gives

� $L$ � ) � � ) $
� ; �

� � ) * $ � �
;

� � )W(
�
� � (

and
�
� �

�
� � � 5

From (5.1) and the definition of � we have

� � �
�
�



CHAPTER 5. POLYMORPHIC REFINEMENT TYPE CONSTRUCTORS 251

and
� � def� � � 5 $

5 5 2 )
Theorem 2.21 (Subtypes Refine) on page 36 holds for this system, so there is a � � � � such

that
� � � � � � � � � and �

� � � � � � � � . Then the definition of
�

for sequences gives
� �

� . This
and (5.2) are our conclusion.

�

We state the generalizations of the remaining lemmas and theorems from Section 2.8 so
a determined reader will be able to reconstruct the details of the reasoning without going
astray. Nothing very interesting is happening here, so other readers can skip to the next
section.

Fact 5.14 ( � Gives an Upper Bound) If

� $ � ) $
� ; �

� � ) � $
�
�
; rc )

and
� � $

� ; �
�
; �
� �
; �
� � � ) tc and �

� � � � � � � � , then
� �Z$

� ; �
�
; �
� �
; �
� � � ) rc 5

Fact 5.15 (Ordering on � ) If, for all
� � � and all

� � � � � � � , we have

� $ � ) $ �
;
� � � ) � � $ � ) $ �

;
� � � )W(

and � � $ � ; � � ; � � � ; � � � � ) tc and � � $ � ; � � ; � � � ; � � � � ) tc, then

�
�
�C5

Fact 5.16 ( � Preserves Information) Suppose that � 1 and � 2 both refine
$ � ; � � ; � � � ; � � � � ) tc.

Then
for all

�
1

� � and
�

2
� � and

� � �
1

� � � � and
� � �

2
� � � �

we have$ �
1 �

�
2 ) and

$ � � �
1 �

� � �
2 ) imply$ � $ � 1 ) $ �

1;
� � �

1 ) � � $ � 2 ) $ �
2;
� � �

2 ) )
if and only if

� 1 � � 2 5
Definition 5.17 We define the equivalence class of a generalized refinement type � ? (written

� $
� ? ) ) to be the set � � ? � / � ? � � � ?

�
.

We define the equivalence class of a generalized pair rr? (written � $
rr? ) ) to be the set

� rr?
� / rr?

�
� rr?

� �
.

We define the equivalence class of a sequence of refinement types � (written � $
� ) ) to

be the set � � � / � � � �
�
.
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Definition 5.18 We define the set of equivalence classes of refinements of an ML type �
(written EC

$ � ) ) to be � � $
� ? ) / � ? � � � .

We define the set of equivalence classes of refinements of a pair
$ � ; tc ) (written EC

$ � ; tc ) )
to be � � $

rr? ) / rr? � $ � ; tc ) � .
We define the set of equivalence classes of refinements of a sequence � (written EC

$ � ) )
to be � � $

� )3/ � � � � .
We shall use � as a metavariable standing for the equivalence class of some refinement

type, � ? as a metavariable standing for the equivalence class of some generalized refinement
type,

� �
? as a metavariable standing for the equivalence class of some generalized pair, and

� as a metavariable standing for the equivalence class of some sequence.

Definition 5.19 If � � $ � ; � � ; � � � ; � � � � ) tc and cc? � EC
$ � � ; tc ) and � � EC

$ � ) and � � � �
EC

$ � � � ) then we write
cc? * �:$

� ) $ � ; � � � )
if there is a

�
and a

� � �
in � � � such that

cc? * � $ � $ � ) $ �
;
� � � ) ) 5

By Fact 5.9 ( � $ � ) $
� ; �

� � ) Monotone in � ) on page 249 and Fact 5.10 ( � $ � ) $
� ; �

� � ) Respects
Equivalence in �

� �
) on page 249, for all � we know that

�:$
� ) is a function.

Fact 5.20 (
�

Preserves Equivalence) If � and �
�
refine

$ � ; � � ; � � � ; � � � � ) tc then

� � �
�

if and only if

for all � � EC
$ � ) and all � � � � EC

$ � � � ) we have
�;$
� ) $ � ; � � � ) * �:$

�
� ) $ � ; � � � ) 5

And finally,

Fact 5.21 (Finite Refinements) For each ML type � we have EC
$ � ) is finite.

and, once we define type inference, the same simple argument for principal types used in
Chapter 2 will hold:

Fact 5.22 (Principal Refinement Types) If

VR

 � : �

then there is a
�

such that
VR


 � :
�

and for all � we have
VR


 � : � implies
� �

� .
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5.4 Splitting

Splitting does not simplify as much as subtyping did. We only need a syntactic change to
make the RCON-SPLIT rule in Figure 2.5 on page 48 accommodate polymorphic constructors:

RCON-SPLIT:
� � def� ! �

$
� ) � � � � $

� ) � � / � � � ! � �
None of the other splitting rules in the system change; in particular, the TUPLE-SPLIT rule
does not change. It is tempting to “generalize” it to get an incorrect rule for splitting
polymorphic types where all the arguments are positive:

BOGUS:

� � � �$
; ;
�

1 ( . . . ( � � � 1 ( � � ( � ��� 1 ( . . . ( � 
 ; ) � � �
� $

; ;
�

1 ( . . . ( � � � 1 ( � ( � ��� 1 ( . . . ( � 
 ; ) � � / � � � �
This incorrect rule would allow us to use

O PSRTR'U � � #T# ( � � to derive
O P R R'U���� � � #T#
��� ( � ��� �

.
This is not sound; for example, the value

��G @1HN$ � ��� � � ��G @1HN$ I9 D H � � @1B4D ) ) has the typeO P R R'U ���
but it does not have either of the types

# #3���
or
� ���

.

To make type inference tractable, we assume that if a refinement type constructor splits,
it has no negative or mixed type arguments. Formally,

Assumption 5.23 (Split Positive) If rc
def� � rc1 ( . . . ( rc � � , then arity

$
rc ) has the form$

0; � ; 0; 	 ) for some nonnegative integers � and 	 .

Without this assumption, there might be splittable refinement types that can only be ex-
pressed as an intersection of other refinement types; for example, we could have the
declaration

8�9��;9������� $
� ; ; ; ) 2 K � < � ��� � � 2 >�� � �48 � G�I �

� <WK%K �NE � � �48 � G�I �
� <WK%K �

� ���������;� $
� ; ; ; ) # � �L� 2 � � > � � � 8 � G�I �

� # #,E � � � 8 � G�I �
� #T#

9 @ 8 $
� ; ; ; ) # � �L� 2 �Z> � � � 8 � G�I �

� # #
9 @ 8 $

� ; ; ; ) # � �L� 2 � > � � � 8 � G�I �
� # #

9 @ 8 $
� ; ; ; )  � �L� 2 � � >�� � � 8 � G�I �

� � E � � �48 � G�I �
� �

where
# � �L� 2 � � def� � # � �W� 2 � ( # � �L� 2 � � . Then we might have to determine that the principal

split of the refinement type
$L#T#

; ; ; ) # � �L� 2 � � � $ �
; ; ; )  � �L� 2 � � is

� $L#T#
; ; ; ) # � � � 2 � � $ �

; ; ; )  � �L� 2 � � ( $ # #
; ; ; ) # � �L� 2 � �?$ �

; ; ; )  � � � 2 � � � 5
In general, it seem that we might have to search over all of the supertypes of the type we
start with to find splits, and then combine these to get the principal split. The assumption
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above saves us from that; with the assumption, all splittable types are equivalent to a type
of the form

$
� ) � �

where
� �

has a predefined split.

The theorems Theorem 2.31 (Splits Are Subtypes I) on page 49, Corollary 2.32 (Split
Types Refine I) on page 51, Fact 2.33 (Splits Are Subtypes II) on page 51, and Fact 2.34
(Split Types Refine II) on page 51 continue to hold for the new system. To get Fact 2.35
(Splits of Arrows are Simple) on page 51 to hold in the new system, we need to assume that� � � � K��

has no interesting splits:

Assumption 5.24 (Arrow Does Not Split) There is no sc such that rarrow
def�

sc.

Fact 2.37 (Splits are Nonempty) on page 51 continues to hold, as do Lemma 2.43 (Split
Intersection) on page 54, Lemma 2.45 (Principal Split Implies Useless Splitting Fragments)
on page 58, and Lemma 2.46 (Fragments of Principal Split have Useless Splits) on page 58.

5.5 Refinement Type Inference

The assumptions we make about value constructors now have type variables embedded. To
say that a constructor � maps values with type � to values with type

$
� ) � �

, we write

� def
: � �

� $
� ) � � 5

This notation implies that � maps all instances of � to the corresponding instances of
$
� ) � �

.
Only two refinement type inference rules appearing in Figure 2.6 on page 60 and updated
on page 4.2 have to change to accommodate this:

CONSTR-TYPE:

� def
: � �

� $
� ) � �

VR

 � : + � � � - �
�

� �
VR


 ��+ ��- � :
$
� ) � �

CASE-TYPE:

VR

 � 0 :

$
� 1 ) � �

1
�

. . .
� $

� 
 ) � � 

�

� �
rtom

$
VR ) 
 $ ��9 H � � 0

G�I � 1
> � � 1

E
. . .

E � � > � ��� � @ 8 � � ) :: �
for all � in 1 . . .

�
and all � 1 ( . . . ( � 
 , whenever

for all � in 1 . . .
�

we have � � def
: � � � � $

� ) � � �
we have

VR

 � � :

$ + � 1
�
� - � 1

�
. . .
� + � 
 � � - � 
 ) � �

VR

 $ ��9 H � � 0

G�I � 1
>�� � 1

E
. . .

E �	� > � ��� � @ 8 � � ) : �

The CONSTR-TYPE rule is fairly intuitive. To infer that a value constructor returns a
polymorphic type

$
� ) � �

, we check that � is well-formed, that the value constructor maps
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some type � to
� �

, and that the argument of the value constructor has an appropriate
instance of � as its type. For example, we can use this rule to conclude that the expression��G @1H + < K K � - $ � ��� � + - $ ) � @1B4D + < K K � - $ ) ) has the type

$
;
#T#

; ; ) K 2 , assuming we have the
premises ��G @1H def

:
$
�

M $
; � ; ; ) ��� ) � � $

; � ; ; ) K 2C(
�


 $ � ��� � + - $ ) � @1BXD + < K K � - $ ) ) :
# #�M $

;
#T#

; ; ) ��� (
and #T# � <LK%K � 5

The CASE-TYPE rule is somewhat more complex; the difficult part is the premise begin-
ning with “for all � in 1 . . .

�
...”. An intuitive reasonable reading of this complex premise

of CASE-TYPE is

for all branches of the
��9 H �

statement and all inputs to the constructor in that branch, if
giving an input to the constructor for this branch yields the type of the case object

then
giving that input to the type of this branch must yield the type of the

��9 H �
statement.

We can translate this into the formal notation used in the inference rule as follows:

[ “For all branches of the
��9 H �

statement” becomes “for all � in 1 . . .
�

”.

[ “The case object” is “ � 0”.

[ “The type of the case object” is
$
� 1 ) � �

1
�

. . .
� $

� 
 ) � � 
 .

[ “The constructor in that branch” is “ � � ”.

[ “For all inputs to the constructor in that branch” becomes “for all � 1 ( . . . ( � 
 ”. Roughly
speaking, the input to the constructor is + � 1

�
� - � 1

�
. . .
� + � 
 � � - � 
 .

[ “Giving an input to the constructor of this branch yields the type of the case object”
translates approximately to

“ ��� :
$ + � 1

�
� - � 1

�
. . .
� + � 
 � � - � 
 ) � $L$

� 1 ) � �
1
�

. . .
� $

� 
 ) � � 
 ) ” 5
However, this is not well formed, since constructors by themselves are not expres-
sions. Doing this one component at a time yields the still ill-formed translation

“for all � in 1 . . .
�

we have � � : + � � � � - � � �A$
� 
 ) � � 
 ”.

We can make a well-formed translation without changing the meaning in any impor-
tant way by omitting the instantiation in the type of � � ; this yields

“for all � in 1 . . .
�

we have � � def
: � � � � $

� ) � � � ”.
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[ “The type of the
��9 H �

statement” is simply “ � ”.

[ “This branch” is “ � � ”.

[ “Giving that input to the type of this branch must yield the type of the
��9 H �

statement”
translates to “VR


 � � :
$ + � 1

�
� - � 1

�
. . .
� + � 
 � � - � 
 ) � � ”.

For example, if we use the pred datatype introduced on page 240, then the expression

��9 H � � � � 8 $ I @�� � <WK K � >�� � + - ) G�I
� � �48 > � I @ I � <LK%K ��� <WK K � >�� I +.-� @ 8 � <LK K ��� <WK K �

has the type
# # � #T# � � � �

because the following premises hold:

�


 � � �48 $ I @�� � <WK K � > � � + - ) :
$L#T#

; ; ; ) # � �L� 2 �?$ �
; ; ; )  � � � 2C(

#T# � #T# � � � � � <WK K ��� <WK�K � (
�


 $ ��9 H �
. . .

� @ 8 � < K%K ��� <WK K � ) ::
<WK K ��� <WK�K � (

and
� � � 8 def

:
$
�
� # # ) � � $

� ; ; ; ) # � �L� 2 and
� � � 8 def

:
$
�
� � ) � � $

� ; ; ; )  � � � 2 imply
�


 I @ I � <LK%K � � <WK�K � > � I + - :
# # � #T# � � � � 5

5.5.1 Positions of Type Variables

We need to make some assumptions about how the type variables appear in the
def
: relation.

First we must assume that the type variables appear in the proper position; for example, if

� is in the positive position of � , and � def
: � �

� $
� ) � �

, then + � � �
- � should become larger
as
�

becomes larger. We will give a formal definition of this assumption below, but first we
will give a concrete example where refinement type inference is unsound if the assumption
does not hold.

We will assume a datatype
$
� ; ; ; ) <WK �

with one negative type argument, one refinementO P R
� , and one value constructor

� G �
. We shall assume the constructor

� G �
has these

behaviors: � G � def
:: � �

� $
� ; ; ; ) <WK �

� G � def
: � �

� $
� ; ; ; ) O P R

�

Since � occupies the first position in the quadruple
$
� ; ; ; ) and the first position is negative,

this behavior for
� G �

violates the assumption we are discussing: as a type substituted for
� gets larger, the type � on the left hand side of the �

�
also gets larger, but the type$

� ; ; ; ) O P R
� on the right side gets smaller.
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We will also use the value constructor
� ��� �

for the booleans. If we do not use any of
the convenient abbreviations we have introduced so far,

� �	� �
has these behaviors:

� �	� � def
::

$
; ; ; ) # #�� �� �

0 �
� $

; ; ; ) <WK%K �
� ��� � def

:
$
; ; ; ) �W#�� �� �

0 �
� $

; ; ; ) #T#
Using the abbreviations, we can make these look more familiar:

� ��� � def
::

#����:� #
�
� <WK K �

� ��� � def
:

� ��� � #
�
� #T#

We will also use the assumption that
� PSRTR'U def� #T#

.

In this context, we can now show that the expression

��9 H � � G � + <LK K �
; ; ; - $ � ��� � $ )L) G�I

� G �A> � I @ � � <LK%K � > � � + -� @ 8 � < K%K �
has the refinement type

� P R R'U
. Since this expression evaluates to

� ��� � $ ) , and
� ��� � $ )

does not have the type
� PSRTR'U

, our type system is not sound with the assumptions we have
made so far.

First we find a type for
� G � + # # ; ; ; - $ � ��� � $ )L) . The expression

� ��� � $ ) obviously has
the type

# #
. By CONSTR-TYPE and the assumed behavior of

� G �
, the expression

� G � + # # ; ; ; - $ � ��� � $ )L)
then has the type

$L#T#
; ; ; ) O P R

� . Now we can do the step where we lose soundness: since� P R R'U � #T#
, by RCON-SUB we have

$ # #
; ; ; ) O PSR

�

� $ � P R R'U
; ; ; ) O PSR

� ; thus by WEAKEN-TYPE

we can infer that
� G � + # # ; ; ; - $ � ��� � $ )L) has the type

$ � P R R'U
; ; ; ) O P R

� .

Now we can continue to find a type for the
��9 H �

statement as a whole. This is a use of
CASE-TYPE with the premises

�


 � G � + #T# ; ; ; - $ � �	� � $ )L) :
$ � PSRTR'U

; ; ; ) O PSR
� (

� P R R'U � <WK%K � (
�


 ��9 H �
. . .

� @ 8 � < K K �
::

<WK K � (
and � G � def

: �
�A$
� ; ; ; ) O PSR

� and �


 I @ � � <LK K � > � � +.- :
� P R R'U � � P R R'U 5

The conclusion of CASE-TYPE is �


 $ ��9 H �
. . .

� @ 8 � < K K � ) :
#T#

. As discussed above, if this
expression has this type, then type inference is not sound.

To prevent this, we need to define what it means for a type variable to be positive,
negative, mixed, or absent from a refinement type, and we will require that whenever

� def
: � �

� $
� ) � �

, the positive type arguments of
� �

are positive in � , the negative ones are
negative, and so forth. The definition is somewhat wordy, but very regular.
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Definition 5.25 (Negative, Positive, Ignored) We say a type variable � is negative (or
positive or ignored) in a list of refinement types � if � is negative (or positive or ignored,
respectively) in each element of � .

A type variable � is negative in a refinement type � if

[ �
�
� 1
�
� 2 and � is negative in both � 1 and � 2, or

[ �
� �

where
� �* � , or

[ �
�,$

� 1; � 2; � 3; � 4 ) rc and � is positive in � 1, negative in � 2, and ignored in � 3.

A type variable � is positive in a refinement type � if

[ �
�
� 1
�
� 2 and � is positive in � 1 and � 2, or

[ �
� �

(whether or not � * �
), or

[ �
�,$

� 1; � 2; � 3; � 4 ) rc and � is negative in � 1, positive in � 2, and is ignored in � 3.

A type variable � is ignored in a refinement type � if

[ �
�
� 1
�
� 2 and � is ignored in both � 1 and � 2, or

[ �
� �

where � �* �

[ �
�,$

� 1; � 2; � 3; � 4 ) rc and � is ignored in � 1, � 2, and � 3. (It does not matter whether
it appears in � 4.)

Definition 5.26 (Varies properly) We say that a quadruple of type variables � 1; � 2; � 3; � 4

varies properly in a refinement type � if all the variables in � 1 are negative in � , all variables
in � 2 are positive in � , and all variables in � 4 are ignored in � .

Assumption 5.27 (Variance) If � def
: � �

� $
� ) rc, then � varies properly in � .

Fact 5.28 (Variant Weakening) If � varies properly in � , and �
�
�
�
, and � � � , then

+ � � � - � � + � � � � - � 5
The proof is by induction on � .
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5.5.2 Intersection and Polymorphism

In this Subsection we will make an assumption that eliminates the need to use RCON-AND-
ELIM-SUB to reason about types for constructors. The assumption is:

Assumption 5.29 (Predefined Intersection Distributivity) For all value constructors � ,
if

� def
: � �

� $
� ) rc

and
� def

: �
�
�
� $

� ) rc
�

and � has the form
$
� 1; � 2; � 3; � 4 ) , then for any well-formed

�
and

� �
of appropriate

length, we have + � � � 2 - � � + � � � � 2 - � � � + � � � � � � 2 - $ � � � � ) 5
Now we can explain which uses of RCON-AND-ELIM-SUB this makes unnecessary. Sup-

pose an expression � has the type + � � � 2 - � � + � � � � 2 - � � . By WEAKEN-TYPE it has each of
the types + � � � 2 - � and + � � � � 2 - � � . Then we can use CONSTR-TYPE twice to determine, for

an appropriate � , that ��+ �%- � has each of the types
$
� 1;

�
; � 3; � 4 ) � �

and
$
� 1;

� �
; � 3; � 4 ) � � �

.
Then AND-INTRO-TYPE tells us it has the type

$
� 1;

�
; � 3; � 4 ) � � � $

� 1;
� �

; � 3; � 4 ) � � �
, and

WEAKEN-TYPE and RCON-AND-ELIM-SUB tells us it has the type
$
� 1;

� � � �
; � 3; � 4 ) $�� � def� � � � ) .

Predefined Intersection Distributivity tells us we can come to the same conclusion
without using RCON-AND-ELIM-SUB. First we use WEAKEN-TYPE to conclude that � has the
type + � � � � �

� 2 - $ � � � � ) ; then by Assumption 2.52 (Constructor Argument Strengthen)
on page 67 and Assumption 2.51 (Constructor And Introduction) on page 67 we have

� def
: �

�
�
�
�
� $

� ) $ � � def� � � � ) , and then by CONSTR-TYPE we know that ��+ ��- � has the type

$
� 1;

� � � �
; � 3; � 4 ) $�� � def� � � � ) 5

Having an assumption that makes it unnecessary to use certain inference rules with
constructors is something we have done before. For example, Assumption 2.51 (Constructor
And Introduction) on page 67 makes it unnecessary to use AND-INTRO-TYPE in some cases,
and Assumption 2.52 (Constructor Argument Strengthen) on page 67 and Assumption 2.53
(Constructor Result Weaken) on page 67 make some uses of WEAKEN-TYPE unnecessary.
All these assumptions eliminate the need to use refinement type inference to infer types for
constructors from the CASE-TYPE rule. Perhaps it would be possible to make a system with
fewer assumptions but a more complex proof if we used refinement type inference for the
constructors in

��9 H �
statements; but that is beyond the scope of this thesis.

There are no interesting changes to the theorems asserting compatibility between re-
finement type inference and ML type inference.
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5.6 Soundness

The statement and proof of Lemma 4.4 (Environment Modification) on page 235 do not
change. The new version of Lemma 2.67 (Piecewise Intersection) on page 84 needs to make
nontrivial use of Predefined Intersection Distributivity; we will restate the lemma and show
how it depends on Predefined Intersection Distributivity before we show the modifications
to the proof.

Lemma 5.30 (Piecewise Intersection) If

for all � in 1 . . .
�

we have �


 

� :

$ � � ) kc � $
5 5 3 )

and $ �
1 ) kc1

�
. . .
�?$ � 
 ) kc 
 �Y$

� 1 ) rc1
�

. . .
� $

� � ) rc � $
5 5 4 )

then for all � in 1 . . .
�

we have
�


 

� :

$
� � ) rc � 5

Without Predefined Intersection Distributivity, this is false. For a counterexample, suppose
we have the declarations

8�9��;9������� $
� ; ; ; ) 2 > � G�IJ<WK%K �	�

�� ���������;� $
� ; ; ; ) � > � $ # # �

� ) E � $ � �
� )

Then, if it were not for Predefined Intersection Distributivity, we could use a straightforward
procedure to determine that � has the behaviors

� def
:

$L#T# �
� ) � � $

� ; ; ; ) �
and

� def
:

$ � �
� ) � � $

� ; ; ; ) �
but not

� def
:

$ � PSRTRVU �
� ) � � $

� ; ; ; ) � 5
Then these premises of Piecewise Intersection could be true:

�


 
 � + < K K � - $ I @ � � <LK%K � >�� � + - ) :
$L#T#

; ; ; ) �
�


 
 � + <LK%K � - $ I @�� � <WK K � >�� � +.- ) :
$ �

; ; ; ) �$L#T#
; ; ; ) � �?$ �

; ; ; ) � �Z$ � PSRTR'U
; ; ; ) �

but we would not have the conclusion

�


 
 � + < K%K � - $ I @ � � <WK K � > � � + - ) :
$ � PSRTR'U

; ; ; ) �
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because the only way to derive this conclusion uses WEAKEN-TYPE as the last inference,
and the meaning of


 

specifically excludes WEAKEN-TYPE as the last inference.

Proof: By induction on the derivation of
$ �

1 ) � �
1
�

. . .
� $ � 
 ) � � 
 � $

� 1 ) � �
1
�

. . .
� $
� � ) � � � .

Case: RCON-SUB. Then
� * � * 1 and the premises of RCON-SUB are

�
1
�
� 1 and

� �
1

def� � �
1. From here we take cases on the form of � .

SubCase: �
� ��+ � � - �

�
. The last inference of �


 

� :

$ �
1 ) � �

1 must be CONSTR-TYPE with

the premises

� def
: � �

� $
� ) � �

1 (
�



�
�

: + � 1
�
� - � (

and
�

1
� ��5

By Assumption 2.53 (Constructor Result Weaken) on page 67 and
� �

1

def� � �
1, we have

� def
: � �

� $
� ) � �

1 5 $
5 5 5 )

By Assumption 5.27 (Variance) on page 258 we know that � varies properly in � . Thus Fact

5.28 (Variant Weakening) on page 258 gives + � 1
�
� - � � + � 1

�
� - � , and then WEAKEN-TYPE

gives
�



�
�

: + � 1
�
� - �

and CONSTR-TYPE and (5.5) give

�


 ��+ �%- �
�

:
$
� 1 ) � �

1 (
which is our conclusion.

SubCase: Otherwise. Omitted.

Case: RCON-AND-ELIM-SUB. Then (5.4) has the form

$ �
1;
�

2;
�

3;
�

4 ) � �
1
�?$ �

1;
� �

2;
�

3;
�

4 ) � �
2
� $ �

1;
�

2
� � �

2;
�

3;
�

4 ) $ � �
1

def� � �
2 ) 5

From here we shall take cases on the form of � .

SubCase: �
� ��+ ��- �

�
. Then (5.3) says

�


 
 ��+ ��- �
�

:
$ �

1 ) � �
1
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and
�


 
 ��+ �%- �
�

:
$ �

2 ) � �
2 5

The last inferences of each of these must be CONSTR-TYPE with the premises

� def
:
�

1 �
� $

� ) � �
1

�



�
�

: + � 1
�
� - � 1

�
1

� �
� def

:
�

2 �
� $

� ) � �
2

�



�
�

: + � 2
�
� - � 2

�
2

� �
Then AND-INTRO-TYPE gives

�



�
�

: + � 1
�
� - � 1

� + � 2
�
� - � 2 5

Suppose � has the form � 1; � 2; � 3; � 4; then Assumption 5.29 (Predefined Intersection
Distributivity) on page 259 gives

+ � 2
�
� 2 - � 1

� + � �2 � � 2 - � 2
� + � 2

� � �
2

�
� 2 - $ � 1

� �
2 ) 5

Using Fact 4.2 (Type Substitution Preserves Subtyping) on page 233 on this gives

+ � 1
�
� - � 1

� + � 2
�
� - � 2

� + � 1
�
� - $ � 1

� �
2 ) 5

Then WEAKEN-TYPE gives
�



�
�

: + � 1
�
� - $ � 1

� �
2 ) 5

Assumption 2.18 (and-intro-
def�

) on page 34 and Assumption 2.52 (Constructor Argument
Strengthen) on page 67 give

� def
:

$ �
1
� �

2 ) � � $
� ) $ � �

1
def� � �

2 ) (
and then CONSTR-TYPE gives

�


 ��+ � � - �
�

:
$
� ) $ � �

1
def� � �

2 )W(
which is our conclusion.

SubCase: Otherwise. Omitted.

Case: Otherwise. Omitted.
�

Lemma 2.68 (Subtype Irrelevancy) on page 88, Theorem 2.69 (Splitting Value Types)
on page 89, and Fact 4.5 (Refinement Type Substitution) on page 236 continue to hold
with no interesting changes. The version of Value Substitution as revised in Chapter 4
on page 236 also has only notational changes. Refinement Type Soundness as revised in
Chapter 4 on page 237 has no interesting changes either; the only nontrivial changes needed
to deal with polymorphic type constructors are in the lemmas, not in the main theorem.
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5.7 Decidability

The changes in this chapter only affect the cases of the type inference algorithm that deal
with constructors and

��9 H �
statements. The changes required to the algorithms are intuitive;

the changes required to the proofs are simple, except the proof that the algorithm derives
principal types for

��9 H �
statements is awkward.

Since types have become more general, we need to generalize some of the utility
functions used by

B%@ I� � . First, we make versions of
9 D�D � ��I H

that find refinements for a
vector or quadruple of refinement types:

I � @ � 9 D�D � ��I H � >
� � / D � @ � � �

� * D � @ � ��� � and
for � � 1 . . .

D � @ � � � � we have
� � � � � 9 D�D � ��I H ��� � ���I � @�� 9 D�D � ��I H � 1; � 2; � 3; � 4

>
� � 1; � 2; � 3; � 4 /

� 1 � � 9 D�D � ��I H � 1 and
� 2 � � 9 D�D � ��I H � 2 and
� 3 � � 9 D�D � ��I H � 3 and
� 4 � � 9 D�D � ��I H � 4

�

The new definition of the interpretation � works for arbitrary refinement types, instead of
just functions. We call the function for computing this

B ��G @CH � � by analogy with the
B I @

function defined on page 120. In this definition,
B ��G @CH � � � ?

$
� ; �

� � ) $ � ; � � � ) computes
� $ � ? ) $

� ; �
� � ) , assuming that � � � and �

� � � � � � and, for some
#��

, � � , and � � � � we have
� ? � $ � ; � � ; � � � ; � � � � ) #��

. This definition assumes that � I @
has been revised to work on

generalized pairs, and that �
H � � �����;���

is a generalization of
H � � ��������

that works on
vectors; both of these are easy to write.

I � @,B ��G @CH � � � ?
$
� ; �

� � ) $ � ; � � � ) >B I
� ?

> ��� � �;� @ ���� D H �D ��� � 9 DA$
� 1; �

�
1; �

� �
1; �

� � �
1 ) � �

1
�

. . .
�?$

� � ; � �� ; �
� �� ; � � � �� ) � � � >

� ?B�@
� I @ � $

�
�
� ;

� �
� )3/

� � 1 . . .
�

and � H � � ��������
� � � � and

� H � � ��������
�
� �
�
� �
� � � � and � H � � �����;���

�
� �
� �

� � � � � �� @ 8
It is easy to give an alternative definition of the old function

B I @
in terms of

B ��G @1H � � .
Here

B I @
� ? � � evaluates to � $ � ? ) $

� ) , using the old definition of � from Chapter 2,
assuming that � � � and for some � we have � ? � � � � .
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I � @,B I @
� ? � � >

��9 H � B ��G @1H � � � ?
$
� ; ) $ � ; ) G�I

��� > � ���E $ �
;

� � ��� K�� ) >�� �

We also define a utility function
8:� � 9 D

that de-evaluates a constructor; more specifically,

if � def
: � �

� $
� ) � �

, then there is some type equivalent to � in
8:� � 9 D � � �

. This is used
only in the case of

B�@ I;� � for
��9 H �

statements that appears below. Because there are finitely
many possible inputs to

8�� � 9 D
, it can be evaluated quickly by table lookup at type inference

time. The implementation does this.

I � @ 8:� � 9 D � � � >
D ��� � 9 D � >

the unique � such that � def
:: � � � $

� ) #��B�@
� � / � � 9 D�D � ��I H � and � def

: � �
� $

� ) � � �� @ 8
The new cases of the

B%@ I� � algorithm are:

I � @,B�@ I� � VR
$ ��+ ��- � � ) >D ��� � 9 D �

?
>ZB%@ I� � VR � �

� 9 D � >
the unique � such that � def

:: � � � #��
� 9 D

�
> 9 D�D � ��I H $ � )B%@

� I @ � $
� ) � � / � � � and for some � � 9 D�D � ��I H � we have

� def
: � �

� $
� ) � �

and
H � � �����;��� �

?
$ + � � � - � ) � �� @ 8E?B�@ I� � VR

$ � 9 H $ ��9 H � � 0
G�I � 1

> � � 1
E

� � �

E � � >�� ��� � @ 8 � � )L) >B I @ G��
rtom

$
VR ) 
 � :: � ���� @ ���� D H � D ��� � 9 D
� ?

> B%@ I;� � VR � 0
� 9 D � >

the unique � such that rtom
$
VR ) 
 � 0 :: �B%@ B I

� ?
> ��� � �;� @ ���� D H � D ��� � 9 DA$

� 1 ) � �
1
�

. . .
$
� 
 ) � � 
 >

� ?I � @ZH � � � > $ 8:� � 9 D � � � �
1

� . . . � 8�� � 9 D � � � � 
 )B%@ H � G B%@ I �
� B I @Z$LB%@ I� � VR � � � + � 1

�
� - � 1

�
. . .
� + � 
 � �3- � 
 ) � /

� � 1 . . .
�

and
$
� 1 ( . . . ( � 
 ) � $LH � � � ) �� @ 8

� @ 8
A full proof of this would require replacing two of the cases in each of the proofs of

Theorem 2.100 (Infer Returns Some Type) on page 145, Theorem 2.101 (Infer Returns
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Principal Type) on page 151, and Theorem 2.102 (Infer Terminates) on page 160. Most of
these new cases would be very similar to the cases they replaced, so we shall omit them.
The exception is the case of Infer Returns Principal Type for

��9 H �
statements, which we

give below, after a lemma.

Before we can prove that the algorithm for inferring types for
��9 H �

statements returns
a principal type, we must show that as the refinement type of the case object becomes
stronger, the type inferred for the

��9 H �
statement as a whole becomes stronger. To state

this formally, we speak in terms of the premises of CASE-TYPE:

Lemma 5.31 (Case Statement Body) If

$
� 1 ) rc1

�
. . .
� $

� 
 ) rc 
 �Z$ �
1 ) kc1

�
. . .
� $ � � ) kc � $

5 5 6 )
and, for all

�
1 ( . . . ( � � we have

for all
�

in 1 . . .
�

we have � def
:
�
� �
� $

� ) kc �
implies

VR

 � :

$ + � 1
�
� - � 1

�
. . .
� + � � � � - � � ) � �

$
5 5 7 )

and
for all � in 1 . . .

�
we have � def

: � � � � $
� ) rc � ( $

5 5 8 )
then

VR

 � :

$ + � 1
�
� - � 1

�
. . .
� + � 
 � � - � 
 ) � � 5

The proof is not particularly interesting, but it is long enough that it was a nuisance to
discover, so we include it here.

Proof: Suppose that
�
� has the form

�
� ;
� �
� ;
� � �
� ;
� � � �
�

and � � has the form
� � ; �

�
� ; �

� �
� ; �

� � �
�

and � has the form
� ; �

�
; �
� �
; �
� � � (

and let � abbreviate
$
� 1 ) � �

1
�

. . .
� $
� 
 ) � � 
 . By Fact 5.12 (Bound on Argument to � Gives

Bound on � ) on page 250 and (5.6),

for
� � 1 . . .

�
we have � $ � ) $ �

� ;
� � �
� ) � $ � �

� ;
� �

� ) . $
5 5 9 )

Define
�
$ � ) * � � � 1 . . .

� / � � � � � and
� � �
� � �

� �
� � 5 $

5 5 10 )
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Then, by definition of � and (5.9),

for
� � 1 . . .

�
we have � � $

�
�
� ;

� � � ) / � � � $ � ) � � $ � �
� ;

� �
� )

which implies
for

� � 1 . . .
�

we have
� � � �� / � � � $ � ) � � � �

�
$
5 5 11 )

and

for
� � 1 . . .

�
we have

def� � � � � / � � � $ � ) � def� � �
� .

$
5 5 12 )

We can use (5.8) and Assumption 2.52 (Constructor Argument Strengthen) on page 67 to
get

for
� � 1 . . .

�
and all � in �

$ � ) we have � def
:
� � � � / � � � $ � ) � � � $

� ) � � �
and then Assumption 2.51 (Constructor And Introduction) on page 67 gives

for
� � 1 . . .

�
we have � def

:
� � � � / � � � $ � ) � � � $

� ) $ def� � � � � / � � � $ � ) � )
and Assumption 2.53 (Constructor Result Weaken) on page 67 with (5.12) then gives

for
� � 1 . . .

�
we have � def

:
� � � � / � � � $ � ) � � � $

� ) � �
��5 $

5 5 13 )
Define

�
� to mean

� � � � / � � � $ � ) � . Then by (5.7), we have

VR

 � :

$ + � 1
�
� - � 1

�
. . .
� + � � � � - � � ) � �%5 $

5 5 14 )
The remainder of the proof consists of showing that

$ + � 1
�
� - � 1

�
. . .
� + � � � � - � � ) � �

�Z$ + � 1
�
� - � 1

�
. . .
� + � 
 � � - � 
 ) � � 5

Once we prove this, we can use WEAKEN-TYPE with (5.14) to get our conclusion.

By Assumption 5.27 (Variance) on page 258, for
� � 1 . . .

�
and all � � � $ � ) we have

� varies properly in � � . By definition of �
$ � ) , we have

for
� � 1 . . .

�
we have � � � $ � ) implies

�
�
�
� �

and
for

� � 1 . . .
�

we have � � � $ � ) implies
� � �
� � �

� �
� 5

By SELF-SUB,
for

� � 1 . . .
�

we have � � � $ � ) implies �
�
�
�
�
�
� 5

Thus by the definition of
�

for quadruples we have

for
� � 1 . . .

�
and all � � � $ � ) we have � � � �

� ; �
�
� ;
� � �
� ;
� � � �
� 5

Then Fact 5.28 (Variant Weakening) on page 258 gives

for
� � 1 . . .

�
and all � � � $ � ) we have + � � � � - � � � + � � ; �

�
� ;
� � �
� ;
� � � �
�
�
� - � � 5
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Then
for

� � 1 . . .
�

we have� ��+ � � � � - � � / � � � $ � ) � �� ��+ � � ; �
�
� ;
� � �
� ;
� � � �
�
�
� - � � / � � � $ � ) �

$
5 5 15 )

because each element of the set on the left hand side is a subtype of the corresponding
element of the set on the right hand side.

It is easy to use induction to generalize Assumption 5.29 (Predefined Intersection
Distributivity) on page 259 to apply when more than two refinement types are involved in
the intersection; thus we have

for
� � 1 . . .

�
we have� ��+ � �� � �
- � � / � � � $ � ) � �+ � � � �� / � � � $ � ) � � � � - $ � � � � / � � � $ � ) � )

Then Fact 5.28 (Variant Weakening) on page 258 used with (5.11) gives

for
� � 1 . . .

�
we have

+ � � � �� / � � � $ � ) � � � � - $ � � � � / � � � $ � ) � ) � + � � � � �
- $ � � � � / � � � $ � ) � ) 5
Then TRANS-SUB applied to these gives

for
� � 1 . . .

�
we have

� ��+ � �� � � � - � � / � � � $ � ) � � + � � � � � � - $ � � � � / � � � $ � ) � ) .
By Fact 4.2 (Type Substitution Preserves Subtyping) on page 233, this implies

for
� � 1 . . .

�
we have

+ � � ;
� � �
� ;
� � � �
�
�
� ; �

� �
; �
� � � - $ � ��+ � �� � � � - � � / � � � $ � ) � ) �+ � � ;

� � �
� ;
� � � �
�
�
� ; �

� �
; �
� � � -V+ � � � � � � - $ � � � � / � � � $ � ) � )W(

and the definitions of substitution and
�
� then give

for
� � 1 . . .

�
we have� ��+ � � ; �

�
� ;
� � �
� ;
� � � �
�
�
� ; �

�
; �
� �
; �
� � � - � � / � � � $ � ) � �

+ � � � � - � �
Then TRANS-SUB with (5.15) gives

for
� � 1 . . .

�
we have

� ��+ � � � � - � � / � � � $ � ) � � + � � � � - � ��5
By repeated use of AND-ELIM-L-SUB and AND-ELIM-R-SUB, this implies

for
� � 1 . . .

�
we have + � 1

�
� - � 1

�
. . .
� + � 
 � � - � 
 � + � � � � - � � (

and by repeated use of AND-INTRO-SUB, this implies

+ � 1
�
� - � 1

�
. . .
� + � 
 � � - ��� � + � 1

�
� - � 1

�
. . .
� + � � � � - � ��5
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Finally, we can use RCON-SUB to infer

$ + � 1
�
� - � 1

�
. . .
� + � � � �3- � � ) � �

�Z$ + � 1
�
� - � 1

�
. . .
� + � 
 � � - ��� ) � �

and then WEAKEN-TYPE with this and (5.14) gives our conclusion.
�

Now we can give the
��9 H �

case of Theorem 2.101 (Infer Returns Principal Type) on
page 151. We will restate the theorem first.

Theorem 5.32 (Infer Returns Principal Type) If

all splits of types in VR are useless

and B�@ I� � VR � terminates

and
VR


 � : �

then $LB%@ I� � VR � ) � �

Proof: By induction on � . As in Chapter 2 on page 152, we will use

For all � ,$
VR


 
 � : � implies$LB%@ I� � VR � ) � � )
implies
For all � ,$
VR


 � : � implies$LB%@ I� � VR � ) � � )

$
5 5 16 )

Case: � � ��9 H � � 0
G�I � 1

> � � 1
E

. . .
E � � > � ��� � @ 8 � � Suppose we have an �

such that
VR


 
 � : �%5 $
5 5 17 )

The last inference of this must be CASE-TYPE with the premises

VR

 � 0 :

$ �
1 ) � �

1
�

. . .
� $ �

� ) � �
� (

�
� � (

for all
� � 1 . . .

�
and all

�
1 ( . . . ( � 
 , whenever

for all � � 1 . . . � we have � � def
:
�

� �
� $

� ) � �
�

we have

VR

 � � :

$ + � 1
�
� - � 1

�
. . .
� + � �

�
� - � � ) � � (
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and
rtom

$
VR ) 
 � :: ��5

Since
B%@ I� � VR � terminates,

B%@ I;� � VR � 0 must terminate. By induction hypothesis,

B�@ I� � VR � 0
�Z$ �

1 ) � �
1
�

. . .
� $ �

� ) � �
� 5

Suppose
B%@ I� � VR � 0 has the form

$
� 1 ) � �

1
�

. . .
�?$

� 
 ) � � 
 . We will show that for all
�

and all
$
� 1 ( . . . ( � � ) in

H � � �
, we haveB I @,$LB%@ I� � VR ��� � + � 1

�
� - � 1

�
. . .
� + � 
 � � - ��� ) � �%5

Then trivial properties of � G B�@
will give

B�@ I;� � VR � � � , which is our conclusion.

First, choose any
�

in 1 . . .
�

and
$
� 1 ( . . . ( � 
 ) in

H � � �
. By the definition of

H � �
, this

implies

for � � 1 . . .
�

we have � � def
: � � � � $

� ) � � � .

Lemma 5.31 (Case Statement Body) on page 265 then gives

VR

 � � :

$ + � 1
�
�3- � 1

�
. . .
� + � 
 � � - ) ��� � ��5

Since
B%@ I;� � VR � terminates,

B%@ I� � VR � � must also terminate. Our induction hypoth-
esis then gives B�@ I;� � VR ��� � + � 1

�
� - � 1

�
. . .
� + � 
 � � - � 
 � �%5

Hence, by Fact 5.12 (Bound on Argument to � Gives Bound on � ) on page 250 we haveB I @,$LB%@ I� � VR � � � + � 1
�
� - � 1

�
. . .
� + � 
 � � - � 
 ) � � 5

Since this holds for all
�

and all
$
� 1 ( . . . ( � 
 ) in

H � � �
, soundness of

H � G B�@ I
givesB%@ I� � VR � � � . Summarizing (5.17) to here,

VR

 
 � : � implies

B%@ I� � VR � � �

By (5.16), this implies our conclusion.

Case: Otherwise. Omitted.
�

5.8 Declaring Polymorphic Type Constructors

Three new issues arise when analyzing � ����������
declarations with polymorphic type con-

structors: we must determine which type arguments are mixed, positive, negative, and
ignored; we must ensure that Assumption 5.29 (Predefined Intersection Distributivity) on
page 259 holds; and we must construct default refinement types that expressions written
without concern for refinement types can inhabit.

Except for these issues, analyzing � ����������
declarations with type variables is very

similar to analyzing the same declarations with all the variables replaced by constants, so
the theory from Chapter 3 applies directly.
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5.8.1 Separating Mixed, Positive, Negative, and Ignored

We can use a straightforward abstract interpretation of the type declaration to distinguish
the different kinds of arguments to type constructors. We separately infer whether a type
variable appearing as an argument occurs positively and whether it occurs negatively in the
definition of the type; if neither is true, the argument is ignored, and if both are true, the
argument is mixed. For example, given the datatypeq

8�9��9������� $
� ( � ) � � �Z> � B�� G�I �

�A$
�

M � )
we immediately determine that � is mixed and

�
is positive. When several mutually

recursive type constructors are declared simultaneously, we may have to iterate to determine
the best classification. For example, given the declaration

8:9��9������;� $
� ( � ) � �Z>

� G�I $
� ( � ) � � E � G�I �

M
�9 @ 8 $ � ( � ) � � >

� G�I $ � ( � ) � � E �ZG�I � � �

we will have to use at least two iterations to determine that � and
�

are positive and
�

and�
are mixed. Implementing this is straightforward.

5.8.2 Enforcing Predefined Intersection Distributivity

The best way to enforce Assumption 5.29 (Predefined Intersection Distributivity) on
page 259 is unclear. The following theory says it is possible to effectively discover
declarations for which this assumption is not true; we could simply reject them, but it
would be better to silently repair declarations to cause the rule to be true. It is not obvious
how to repair the declarations.

The following fact has an immediate corollary which leads to an algorithm that rec-
ognizes declarations for which the assumption is not true. The main idea is that we can
determine whether the assumption is true for all vectors of refinement types we could sub-
stitute by checking it in one special case. The special case uses a vector � � of monomorphic
ML type constructors and two vectors � and

�
of monomorphic refinement type construc-

tors, where all three vectors have the same length and the type constructors in all three of
these vectors are distinct from each other and from any other type constructors mentioned
in the lemma, and for all � � 1 . . . length

$ � � ) , the only refinements of � � � � � are ��� � � , � � � � ,
and � � � � def� � � � � . Similarly, we use the vectors � , �

�
, and �

� �
where all three vectors have

the same length as � � and no type variable appears more than once in all three vectors.
Then we have:
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Fact 5.33 (Predefined Intersection Distributivity Technical) Suppose � and
�

are as de-
scribed above, and that

�
and

� �
are vectors of refinement types where

� � � �
refines some

� . Let
� *Z+ �

�
� ( � �

�
� ( $

�
� � ) � � � � -

and
�
� *,+ � � � ( � � � � � ( $ � � � � ) � � � � -75

Then, for any refinement types
�

and
� �

in which none of the � � � � ’s or
� � � � ’s appear, if

�
$ � ) � � $ � � )

then
�
� $ � ) � � � $ � � ) 5

The proof of this is a straightforward induction on the derivation of �
$ � ) � � $ � � ) . Then we

have the following corollary:

Corollary 5.34 (Predefined Intersection Distributivity Decidable) Suppose � and
�

are
as described above, and that

�
and

� �
are vectors of refinement types where

� � � �
refines

some � . Then, for any refinement types
�

and
� �

in which none of the � � � � ’s or
� � � � ’s appear,

if + �
�
� - � � + � �

�
- � � � + �
� � �

��- $ � � � � )
then + � � �
- � � + � � � � - � � � + � � � � � �
- $ � � � � ) 5
Proof: Use the previous fact, with

� * �
� + � � � �
- � � and

� � * + � � � � �
- $ � � � � ) . �

At this point, an admittedly slow algorithm for checking the assumption is clear: each
time we analyze a � ���������;�

declaration, for each constructor � where

� def
:: � � � $

� 1; � 2; � 3; � 4 ) #�� (
temporarily introduce new � � , � , and

�
as described in the corollary above. Enumerate all

� , �
�
,

� �
, and

� � �
such that � def

: � �
� $

� ) � �
and � def

: �
�
�
� $

� ) � � �
; in each case, verify that+ �

�
� 2 - � � + � �

� 2 - � � � + �
� � �

� 2 - .
There may be faster algorithms for doing this test, and there may be ways to repair� ����������

declarations that fail this test without violating the intuitive expectations of the
programmer. All this is future work.
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5.8.3 Default Refinement Types

As the example in Subsection 2.7.2 on page 74 shows, if any ML type has more than one
refinement, there will be programs with an ML type that have no refinement type. Once
we permit mixed type arguments, we get into an even stranger situation: there will be ML
types with no maximal refinement. For example, assuming the usual refinements of the
booleans and the declared ML type

�
on page pagerefexample:mixed, the refinements of<WK K � �

are
#T# O �

,
� O �

,
� PSRTR'U O �

,
O PSRTR'U
O �

, and intersections of these. There is no
refinement of

<WK%K � �
that is greater than both

O PSRTR'U:O �
and

#T# O �
.

Since there is no refinement type that includes the others, the terminology “catch-
all type” that we used in previous chapters is not appropriate. Instead, the purpose of
the default type is to provide a refinement type that terms with an ML type can inhabit
whenever the strangeness from Subsection 2.7.2 does not happen. With this understanding,
constructing the default type of a given ML datatype is still straightforward: define the
default refinement type to be any constructor that constructs the ML datatype, applied to
the default type refining the argument ML type of the constructor. For example, given the
datatype

8:9��;9������� $
; ; � ; ) � � �Z> � B�� G�I �

�A$
�

M <WK%K � )
the default refinement type is defined as

� ���������� $
; ; � ; ) O � � �6> � B��Z$

�
� $
�

M O PSRTR'U )L)



Chapter 6

Declaring Refinement Types for
Expressions

In this chapter we add explicit refinement type declarations to the language of expressions;
for example, the expression

I @�� � <WK K � > � $������
�

#T# )
will have the type

#T# � # #
but not the type

� � �
. Adding this feature is surprisingly

simple.

The � operator is coercive, in the sense that the best refinement type of a expression
of the form � � � will be � , if it has any type at all. We can also imagine a non-coercive
version, which we shall call �

�
. The best type of � � � � would be the best type of � , if that

type is less than � ; otherwise the expression has no type.

Both operators are simple, but � is more elegant because we can use � to implement
�
�
, but not vice versa. To use � to implement �

�
, regard the expression � � � � as an

abbreviation for
$ I @ � � � >��Y$L$ I @ � � � > � I @ � � � >�� � + - ) � + - $ � + - � � )L)L) � , where � is

a valid ML type for � .
Type inference for � is simple. First we add the syntax to the language; we will still

have a use for expressions without any � operators, so we will keep the metavariable � with
the meaning it was given on page 242 and use the metavariable � to stand for expressions
that may have � operators. Thus the grammar for � is:

� :: *�� � � /
��+ ��- / I @ � � � >�� � / ��� / ��+ ��-�� /��9 H � � G�I � > � � E

. . .
E � > � � � @ 8 � � /$ � � . . .

� � ) / $ ) / � D � ��� ��� � /I B�� 
 � � >�� I @ � � � >�� � /D ��� � >�� $
� ) 5�� B%@ � � @ 8

273
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Our language of types is unchanged, so results such as Fact 5.21 (Finite Refinements) on
page 252 continue to hold. Type inference for expressions with refinement type declarations
is the same as type inference for expressions without refinement type declarations, except
we add this rule:

DECL-TYPE:
VR



� : �

VR

 $ � � � ) : �

Strictly speaking, we also need to take the rules in effect for � (see page 254) and assert that
they still hold, except all � ’s in those rules should be changed to � ’s.

Instead of using coercive declarations to implement non-coercive declarations, we could
treat non-coercive declarations directly by adding this rule:

DECL-TYPE’:
VR



� : � �

� �

VR

 $ � � � � ) : �

The presence or absence of this rule has little impact on the reasoning below.

With these declarations there comes a new phenomenon: expressions can now have free
refinement type variables. Attempts to directly define a notion of evaluation on expressions
with declarations lead to pointless questions about how to instantiate free refinement type
variables while evaluating

D ���
statements. To avoid these questions, we simply erase the

refinement type declarations before evaluating:

Definition 6.1 (Erase) We use the notation erase
$ � ) to mean � with all of the refinement

type declarations erased.

Our soundness result therefore reads as follows:

Theorem 6.2 (Refinement Type Soundness) If erase
$ � ) � � and �


 � : � , then �



� : � .

Proof: We can use induction to prove that �


 � : � implies �



erase

$ � ) : � . Thus
�



erase

$ � ) : � , and we can apply Theorem 4.7 (Refinement Type Soundness) on page 237
to get our conclusion.

�

The algorithm for inferring refinement types for expressions with refinement type dec-
larations is also simple. We add the following case:

I � @ZB%@ I;� � VR � � �
>B I

rtom
$
VR ) 
 erase

$ � ) :: � � �;� @D ��� � >
the unique � such that rtom

$
VR ) 
 erase

$ � ) :: �B�@ B I H � � �������� $LB%@ I;� � VR � ) � � � �;� @
�

� D H � ���� @ 8� D H � ���
The soundness proof for this is straightforward and we omit it.



Chapter 7

Implementation

An implementation of refinement type inference has been written in Standard ML. It
corresponds well with the theory developed in the previous chapters, and it runs reasonably
quickly. This chapter discusses the technical issues that had to be resolved to create
this implementation; this chapter is not meant to be complete instructions for using the
implementation.

Since the language of the implementation resembles the object language, there is poten-
tial for confusion between the object and the implementation languages. Worse, examining
types of expressions in the implementation language is useful when trying to understand the
implementation, so we must add yet another kind of type to the discussion. We call types
in the implementation language “SML types”, to distinguish them from the “ML types” in
the object language described in the previous chapters.

The syntax for the expressions recognized by the implementation is similar to the
grammar appearing on page 274, except we implement ML type inference so explicit ML
types need not appear in terms. The grammar does not closely resemble true SML. A
simple interaction with the implementation is below. In the example, the refinement type
declaration operator “ � ” is written as “ � � ” and the operator “

�
” is written as “ �

�
”. Input

typed by the user is preceded by
�

� or
� >

.

275
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�
�

8:9��;9������� � G�G D > � �	� �NG�I � @CB � E I9 D:H �NG�I � @CB ��4> � ���������� ��� > � ��� � $ � @CB � ) 9 @ 8 I�I > I;9 D H � $ � @CB � ) ��
�

� ��� � �B � � $ � @1B �
�

� � G�G D ) � �$ � @CB �
�

� ��� )�
�

� ��� �
� �

I�I �
� 9 B4D � 8 �G � @1B I�� $ � @CB �

�

� � G�G D ) 9 @ 8 � G�G D
��� BXD � ��� �����;�A� �;���

�
B%@ � � �	� �

� �
I�I

�

��� �����;�A� ����
�

I;9 BXD � 8
��

�

$ � ��� � $ )L) � �
I�I �B � � � G�G D � �

� �
B%@ � 9 D:B 8 IG � �� � �,$ � ��� � � � $ )L) �

��� 9���� � 9 D�D � �948N���� ������ ����
�;G � � � B �48 �GA��G�� � ��� B � �G � �� �����;� I�I

��
�

$ � ��� � $ )L) � �
��� �B � � � G�G D � �����

�

As is the case in the theory described in previous chapters, all value constructors take
exactly one argument. Notice that at no point do we calculate a value; this implementation
of refinement type inference does not implement any kind of evaluation.

The implementation has many boolean flags that the user can manipulate to turn on and
off various performance optimizations in the type checker. The flags are all false by default;
the flags are defined in such a way that the default is usually best. A given flag 
 can be
set with the top level command “

H ����I D 9 � 
 � ” or cleared with the top level command
“
� D ��9 � I D 9 � 
 � ”. A list of all flags with a description and the present value of each is

printed whenever the flag argument to
H ����I D 9 �

or
� D ��9 � I D 9 �

is invalid.

Most of the optimizations discussed below can be turned off by setting some flag. We
justify most optimizations to type inference by citing how turning off the optimization
makes some example run more slowly. All run times in this chapter were measured on a
SPARCstation iPX.

7.1 Representations

This section discusses how the various mathematical objects discussed in previous chapters
are represented in the implementation.
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7.1.1 Type Constructors

The Definition of Standard ML [MTH90] makes a distinction between a type name and a
type identifier. Type identifiers are simply the strings appearing in the program text that
refer to various types; for example, if we have a declaration of the form

������ � >
� � �

that is shadowed by a later declaration of the form
8:9��;9������� � >

� � � , both of the types
have the same identifier

�
. In contrast, type names are unique for each type; since the two

types with identifier
�

are different, they will have different type names.

In the implementation refinement types we make even more distinctions. First we have
refinement type identifiers ( � ��I;��G @CB 8

’s) and ML type identifiers (
�1D ��G @1B 8

’s), which are
both implemented as

H � � B%@ �
s. Then we have refinement type names ( � ��I��G @�@ 9 � �

’s) and
ML type names (

�1D ��G @�@ 9 � �
’s), which are unique identifiers. These are equality types,

so they can easily be used as keys for tables. Finally, we have ML type constructors
(
�1D ��G @CH � ��� ���;G � ’s), which have an

�1D ��G @�@ 9 � �
and other information describing all the

refinements of that ML type name.

Refinement type identifiers and names are represented as follows:

�����;� � ��I��G @1B 8 > H � � B%@ �
�����;� � ��I��G @�@ 9 � � > �%� ��I;��G @CB 8 � � ��I��G @1B 8 � � @1B � � � B 8 � B�@ � �?B%@ 8�� � � B%@ � �

The � @CB � � � B 8
field of � ��I��G @�@ 9 � �

’s is used to distinguish different refinement type
constructors with the same name. If an ML type constructor

#��
is refined by the refinement

type constructors
� �

1 ( . . . ( � � � , then the
B�@ 8�� �

field of the representations of these refinement
type constructors will be distinct integers in the range 0 ( . . . ( � �

1, in some order. This
allows us to implement functions mapping a refinement of

#��
to some other value as a

simple array reference.

ML type identifiers and names are represented as follows:

�����;� �1D ��G @CB 8 > H � � B%@ �
�����;� D G�� � �CD ��G @�@ 9 � � > �CD ��G @1B 8

�
B%@ �8:9��;9������� �1D ��G @�@ 9 � � >

� � � D �NG�I B%@ �E � ��� G��E � � H �G � G�I D G�� � �1D ��G @�@ 9 � �
This is all very straightforward:

� � � D � �
stands for

# #�� �� � � , � ��� G��
stands for

# � ��� K��
,

and
� � H �G �6$

�
� � ) stands for the user-defined ML type constructor with the name � . The

integer � has the same role as the � @CB � � � B 8
field of refinement type constructor names.

Note that
�1D ��G @�@ 9 � �

’s distinguish separate cases for arrow and tuple types, but� ��I��G @�@ 9 � �
’s do not. This does not create ambiguity because whenever the implemen-

tation uses a refinement type constructor, it always has on hand the ML type constructor
that this refinement type constructor refines. Thus if a refinement type constructor refines
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an ML type constructor with the name
� ��� G��

, it must be the representation of
� � � � K��

. In
this case we put arbitrary values in the � ��I��G @1B 8

, � @1B � � � B 8
, and

B%@ 8:� �
fields. We do the

same for tuple refinement type constructors.

The ML type constructor itself is a record containing the ML type constructor name,
along with other information describing its refinements. The meanings of the fields are
discussed below.

8:9��9������;� �CD ��G @1H � ��� �%�G � >
��� � G @1H � � G�I
� @ 9 � � � �1D ��G @�@ 9 � � �
� @CB � � � � � ��I B @ � � � @ � H � � ��I;��G @�@ 9 � � D:B�H � �@ G @ � @1B � � � � � ��I B @ � � � @ � H � $ � ��I��G @�@ 9 � � � � ��I��G @�@ 9 � � ) � �

H � � H � B � � � B G @��
� G����;G � � � ��I;��G @�@ 9 � � �
� G����;G � ��� � ���4��� � � G�G D �
�G�� � � ��I;��G @�@ 9 � � ��G � � $ � ��I��G @�@ 9 � �

� � ��I;��G @�@ 9 � � ) �

� � ��I;��G @�@ 9 � � ��9 @ 8 � $ � ��I;��G @�@ 9 � �
� � ��I��G @�@ 9 � � ) �

� � ��I��G @�@ 9 � � �� D � � � $ � ��I;��G @�@ 9 � �
� � ��I��G @�@ 9 � � ) �

� � G�G D �@ � � 9 � � �;G H � B�@ � D:B�H � �
�G H 9 � � �;G H � B�@ � D:B�H ���

The � @1B � � � � � �%I B�@ � � � @ � H
and

@ G @ � @CB � � � � � ��I B @ � � � @ � H
fields are used to keep redun-

dant refinements of an ML type from slowing refinement type inference. For example, if
this declaration is given to refinement type inference:

8:9��9������;�=<LK%K � > � ��� �NG�I #����:� # E I9 D H �NG�I #����:� #
� ���������� #T#?> � ��� � $ #����:� # )9 @ 8 � > I9 D:H � $L#���� � # )9 @ 8 � PSRTRVUQ> � G����G � <WK K � �

then the refinement types
#T# def� �

and
� P R R'U

will be equivalent. The � @1B � � � � � �%I B%@ � � � @ � H
field has a list of the refinements we will use (which excludes

#T# def� �
), and@ G @ � @1B � � � � � ��I B�@ � � � @ � H

has a substitution mapping each refinement we will not use

into the corresponding one we will use (in this case,
#T# def� �

is mapped to
� P R R'U

).

Skipping forward, the
�G � ,

�9 @ 8
, and

� D � �
fields contain functions that can join,

intersect, and compare the refinements of this ML type constructor. The functions
�G � and�9 @ 8

only have elements of � @CB � � � � � ��I B @ � � � @ � H
as their range, to make it possible to

pay as little attention as possible to the redundant refinement type constructors.

The fields � G����G �
and

�G��
have the least and greatest refinement of this ML type

constructor, respectively. These fields are redundant; we could compute them by us-
ing the functions stored in the

�9 @ 8
and

�G � fields to combine the types listed in@ G @ � @1B � � � � � ��I B�@ � � � @ � H
.
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The � G����G � ��� � ���4���
field is used to evaluate the



� empty judgement described in

Chapter 3. If this flag is true, we assume that the refinement in the � G����G �
field is empty,

otherwise we assume it is not. We assume that all nonredundant refinements other than
the one in the � G����G �

field are not empty, since otherwise they would be equivalent to the
refinement in the � G����;G �

field, and therefore they would be redundant.

All type arguments in the implementation are either positive or negative. Mixed
arguments are outlawed and ignored arguments are treated as positive. Syntactically, each
ML type constructor has one linear list of arguments, as they do in SML; but internally,
we treat the negative type arguments very differently from the positive ones, so we keep
them segregated into separate lists. The

�G H 9 � � �;G H
and

@ � � 9 � � �G H
fields say how to do

the segregation. If we sequentially assign numbers (starting with zero) to the syntactic
type arguments, then

�G H 9 � � �;G H
is a list of the numbers for positive type arguments and@ � � 9 � � �;G H

is a list of the numbers for negative type arguments. For example, given the
declaration

8�9��9������� $
� ( � ( � ) 2 > � G�I � M $

�
� � )

argument number 0 ( � ) is negative and arguments 1 (
�

) and 2 (
�

) are positive, so the@ � � 9 � � �;G H
field of 2 will be

� � �
and the

�G H 9 � � �G H
field will be

� � � � � .

7.1.2 ML types and type schemes

We represent ML types with the datatype

8:9��9������;� �1D ��� >
��� � G @ G�I � @ � � � �1D ��� D B�H � ��;G H � �1D ��� D B�H � �

��G @ � �1D ��G @CH � ��� ���:G � �E ��� ��� � 9 � G�I��
�

��� � 9 �
where

�
�

��� � 9 � is a representation of type variables. This is a direct encoding of the
grammar for ML types given on page 242, except we have already segregated the negative
and positive type arguments; from the

@ � � 9 � � �;G H
and

�;G H 9 � � �G H
fields of the constructor,

it is obvious how to merge the
@ � �

and
�;G H

fields to get the type arguments in the order the
user expects.

The encoding of ML type schemes is straightforward as well:

8:9��9������;� �CD H � �� � � >
��� � � �� � � G�I $ �

�

��� � 9 � D B�H �
�

�CD ��� )
These encodings of ML types are straightforward enough that we will ignore them in

this chapter, and use the same notation for ML types in this chapter that we have used in
previous chapters.
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7.1.3 Refinement Types

The implementation has different representations for the refinement types appearing in
explicit declarations (such as

#T#
in

$ � �	� � $ ) ) � # #
) and refinement types that are inferred

for an expression by the implementation. After we describe both representations, we will
explain below how the special representation for refinement types in explicit declarations
allows quick checking of the assertions in expressions containing � .

The representation for refinement types appearing in explicit declarations is simple, and
similar to the representation of ML types:

8:9��9������;� H � @ ��� >
� ��@ 8 G�I H � @ ��� D:B�H �E � � G @ G�I � �G H � H � @ ��� D B�H � �@ � � � H � @ ��� D:B�H � � � ��I;��G @ � � ��I��G @�@ 9 � ���E � �9 �

Since we usually know which ML type a refinement type refines, we only have one
representation

� �;9 � for all type variables appearing in explicitly-declared refinement types.

We represent inferred refinement types with a function that computes the interpretation
� of the refinement type as in Definition 5.8 on page 248, along with a few other fields that
make some optimizations possible. The representation of refinement types is:

8�9��9������� ��� >
�;��I � G @ G�I $ �;� � G����

� � G�G D
�

�CD ��G @1H � �	� �%�G � �$ ��� D:B�H �
�

�A$ ��� D B�H �
� � ��I;��G @�@ 9 � � )L) )E �;��I���� � 9 �

���I���� � 9 � is analogous to
� �9 � ; it stands for a type variable, but it does not bother to say

which one, because there is generally an ML type on hand that makes that clear. If the
refinement type is not a type variable, then the constructor is

�;��I � G @
with a tuple of four

components as its argument.

Skipping ahead, the fourth component of the tuple is the interpretation, represented as a
function in the obvious way. We only have one argument to the function because we outlaw
mixed type variables.

The first component of the tuple has the type
�� � G����

which we have not yet dis-
cussed. This type is used for memoizing refinement type equality, and it is discussed with
memoization in Subsection 7.2.4 below. In practice, the implementation uses a utility pro-
cedure called

���;��I � G @
that inserts the

�� � G����
;
�����I � G @

takes as argument a tuple with the
last three components of the argument to

���I � G @
, it constructs and inserts an appropriate�� � G����

, and it calls
�;��I � G @

and returns the resulting
���

.

The implementation of refinement types uses references when it finds a type for a fixed
point. As the values stored in these references change, the behavior of the functional
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component of some refinement types can change; we say these refinement types are not
constant. It is important not to memoize these refinement types, because the information
stored in the memo table may not be accurate by the time it is used. To ensure this, we use the
second component of the tuple in each refinement type created by

�;��I � G @
to record whether

the refinement type is constant. For a more complete discussion, see Subsection 7.2.2.

The third component of the tuple is the ML type constructor. This is redundant and
could be eliminated; it is presently used so we can recognize arrow and tuple types when
printing refinement types during debugging, and so we can form intersections and joins of
refinement types without having to pass around the ML type that they refine.

Given the functional component of a
���

and a
H � @ ���

, one can efficiently determine
whether the

���
is a subtype of the

H � @ ���
. If the

H � @ ���
is an intersection, then the

���
is a subtype of the

H � @ ���
if and only if it is a subtype of all of the components of the

intersection. If the
H � @ ���

is
� �;9 � , then ML type inference should have ensured that the���

is
�;��I���� � 9 � , so the

���
is a subtype of the

H � @ ���
. Lastly, if the

H � @ ���
is a

� � G @
, then

we use the definition of � to convert the negative arguments of the
H � @ ���

into a
���

, we
pass those negative arguments to the functional component of the

���
, and we recursively

compare the result of the function call to the positive arguments of the
H � @ ���

.

7.2 Refinement Type Inference

Refinement type inference is similar to the type inference algorithm described at the ends
of Chapters 2, 4, and 5. The main change is the lazy representation of refinement types;
this immediately leads to the needs for memoization, pending analysis for fixed points,
and an interesting instantiation algorithm. Lazy representations of types also appear in
[HM94]. Once these issues are understood, there is little to be gained by writing out the
entire algorithm; instead, we will only deal with interesting cases of it below.

7.2.1 Laziness

Often a function will only be used at a few of the types for which it is defined. This
tendency is especially strong for higher-order functions, since functional ML types can
have so many distinct refinements. For example, assuming the usual � ���������;�

declaration
for the booleans is in effect, the refinement type given to

8�G � � D �
by the declaration

� 9 D 8�G � � D � > I @ I > � I @��Z> � I $ I $ � � < K%K � )L) �

is an intersection of 112 components. By representing refinement types as functions that
can compute the relevant components of the intersection on demand, we can usually avoid
computing all 112 components and storing them in memory.
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The case of type inference that reflects this principle most clearly deals with abstractions.
Using the notation in the original definition of the type inference algorithm in Figure 2.7
on page 142, this is the modified algorithm:

E B%@ I� � VR
$ I @ � � � >�� � � ) >B I

there is a � such that rtom
$
VR ) + � : * � - 
 � � :: ����� @

D ��� � 9 D � >
the unique � such that rtom

$
VR ) + � : * � - 
 � � :: �I � @ 8�G ��G @ �

�
>H � G B%@ I �� B%@ I� � $

VR + � : * �
� - ) � � / � � � H � D B �

�
�B�@

���I � G @ $
. . .
�

. . .
� # � � � K�� � I @ � � �A>��Y$ � 8:G ��G @ � � � � � � ��� K�� )L)� @ 8� D H � ���

where we have omitted the first two components of the argument of
���I � G @

. In the actual
implementation, the ML type � of the entire abstraction is stored in the abstract syntax of
the abstraction, so refinement type inference does not have to invoke ML type inference.

7.2.2 Fixed Points

The method for finding least fixed points in the
I B��

case of the algorithm in Figures 2.7
and 2.8 on pages 142 and 143 is an instance of a general technique: start with the least
possible value, and repeatedly apply the function we want the fixed point of until the result
stops changing. This technique does not work well with lazy representations of refinement
types because comparing the results of one iteration to the results of the next causes us to
evaluate both results completely.

Instead, we use a technique called pending analysis. This technique allows one to
evaluate the abstract interpretation of a fixed point at any given point; this evaluation
examines a minimal number of other points. It is easiest to explain this with an example;
for a more formal description, see any of [Jag89, Dix88, You89]. The tables of pending
values resemble the minimal function graphs of [JM86].

Suppose we have the declarations
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8�9��9������� � � �"!�#?> ��G @CH G�I �
M
�

� �"!�#ZE @1BXD G�I #����:� #
� ���������;� � ���A>=@1BXDY$L#����:� # ) E ��G @1H $

�
M
� K 2;)9 @ 8 � K 2 > ��G @1HN$

�
M
�

��� )9 @ 8 �
��� >N@CB4DY$L#����:� # )9 @ 8 �
�;��� > ��G @CHN$

�
M
�

O U ����� )9 @ 8 � � U ����� > � G����;G �Z$
�

� �"!�# ) �8�9��9�������A<WK K � > � ��� �NG�I #����:� # E I;9 D H �NG�I #����:� #
� ���������;� # # > � �	� � $L#����:� # )9 @ 8 � > I;9 D:H � $ #����:� # )9 @ 8 � P R R'UQ> � G����;G � <WK K � �

and (using the concise syntax) the function definitions

I � @ @ G�� $ � ��� � $ )L) > I9 D H � $ )E @ G�� $ I9 D:H � $ )L) > � ��� � $ )I � @ � G�G D � 9�� $ I � � G�G D
�

� � G�G D ) $ $ @1BXDY$ ) ) � � G�G DND:B�H � ) >=@1B4D $ )E � G�G D � 9�� I $ ��G @1HN$ � 8 � � D ) ) > ��G @1HN$ I �:8 � � G�G D � 9�� IA� D )
or, in the formal syntax, the function definitions

� 9 D @ G�� > I @ � � <LK%K � > �
��9 H � � G�I � ��� � > � I9 D:H � E I9 D:H � >�� � ��� �A� @ 8 � < K K � �

� 9 D � G�G D � 9�� >
I B�� � G�G D � 9�� � $ <'K K �	� <WK K � ) � <WK%K � � �"!�# � <LK%K � � �"!�#?> �

I @ I � <LK%K ��� <WK K � > � I @ZD � <LK%K � � �"!�#?> �
��9 H � D G�I@CB4D > � I @ � � #����:� #?> � @1B4DA$ )E ��G @1H >�� I @ � � < K�K �:M <WK K � � �"!�# > �

��G @1HN$ I $ � D � � � � � � ) � � G�G D � 9�� I $ � D � � � � � � )L)� @ 8 � <LK K � � �"!�# �

and suppose we want to find the principal type for

� G�G D � 9�� @ G�� $ ��G @1HN$ � �	� � $ ) � @1BXDA$ )L)L) 5
We start with an abstract interpretation using a strategy very similar to the strategy for

actually evaluating the expression. This becomes interesting when we must take steps to
ensure that abstract interpretation terminates even in the presence of recursion. The type of
� G�G D � 9��

has the form

���I � G @Y$ �� � G���� � � � ��� � � �9 ��� G�� � � G�G D � 9���I @ � )7(
where

�;9 ��� G��
is an ML constructor representing arrow types and � G�G D � 9���I @ �

is some
function. Similarly, the type of

@ G��
is some unimportant structure wrapped around a function
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we shall call
@ G���I @ �

. From the declaration of
���I � G @

on page 280, we know that both
� G�G D � 9���I @ �

and
@ G���I @ �

have the SML type
��� D B�H �

�

� $ ��� D B�H �
� � ��I;��G @�@ 9 � � ) .

Because the ML type constructor named
� ��� G��

has one negative argument, the list of
���

’s
passed to � G�G D � 9���I @ �

and
@ G���I @ �

will always have exactly one element. Because
� ��� G��

has one positive argument, the list of
���

’s returned from � G�G D � 9���I @ �
and

@ G���I @ �
will

also always have exactly one element. Since
� ��� G��

is refined by only one refinement type
constructor, the � ��I;��G @�@ 9 � �

returned from both � G�G D � 9���I @
and

@ G���I @
will always be

that refinement type constructor. Thus we can represent all the information in � G�G D � 9���I @ �
and

@ G���I @ �
using functions with the SML type

���
�

� ���
; we will call these functions

� G�G D � 9���I @
and

@ G���I @
.

The interior structure of the type of
��G @CHN$ � ��� � $ ) � @CB4DY$ )L) is not relevant for this

example, so we will write that type as a mathematical refinement type:
#T# K 2 .

We take the behavior of
@ G���I @

as given, and our goal in this example is to describe the
behavior of � G�G D � 9���I @

when it is passed the arguments
@ G���I @

and
# # K 2 .

If we had no concerns about termination of type inference, we could simply make
the abstract interpretation of � G�G D � 9��

recur at the same point in the code where � G�G D � 9��
itself recurs. We would start with

I
having the type

@ G���I @
and

D
having the type

#T# K 2 .
(Throughout this scenario,

I
will have the type

@ G���I @
, so we will not mention it again.)

We can summarize this situation with the notation

� G�G D � 9���I @ @ G���I @Z$L#T# K 2;) * ?

We can construct an odd length list starting with either an empty list or an nonempty,
even length list, so the abstract interpretation would make two recursive calls to the body
of � G�G D � 9��

: one where
D

has the type
#T# ���

(this returns immediately with the result
� P R R'UA���

) and one where
D

has the type
# # $���� def� �;��� ) . We can summarize the current

situation with the table

� G�G D � 9���I @ @ G���I @ $L#T# K 2;) * ?
� G�G D � 9���I @ @ G���I @ $L#T# ��� ) * � P R R'U ���

� G�G D � 9���I @ @ G���I @ $L#T# $���� def� �;��� )L) * ?

Continuing, the call with argument
#T# $ � � def� �;��� ) gives rise to a recursive call where

D
has

the type
# # K 2 . This is the argument we started with, so if we continue in the fashion we

have up to this point, we will have an infinite loop.

The solution to this problem is the essence of pending analysis. Instead of
continuing with the recursion, we behave as though the inner recursive call to
� G�G D � 9���I @ @ G���I @Z$L#T# K 2;) simply returns the least type we have observed so far for
the expression � G�G D � 9���I @ @ G���I @Z$ # # K 2;) . Since our table lists “?” as the entry corre-
sponding to � G�G D � 9���I @ @ G���I @Z$ # # K 2;) , we have not yet observed any types returned from
this expression, so we return the least available type for the expression, which is

� PSRTR'U � U � ���
.

Under this assumption, the value returned when
D

is
# #�$ � � def� �;��� ) is

� � U �����
. This type is
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less than the true type when
D

is
#T# $���� def� �;��� ) ; we will revise it later. This table describes

the current situation:

� G�G D � 9���I @ @ G���I @ $L#T# K 2;) * ?
� G�G D � 9���I @ @ G���I @ $L#T# ��� ) * � P R R'U ���

� G�G D � 9���I @ @ G���I @ $L#T# $���� def� �;��� )L) * � � U � ���
Now we can finish this part of the abstract interpretation; we take the join of

� PSRTRVU ���
and� � U �����

and apply
��G @CH

, yielding
� K 2 and the following table:

� G�G D � 9���I @ @ G���I @ $L#T# K 2;) * � K 2
� G�G D � 9���I @ @ G���I @ $L#T# ��� ) * � P R R'U ���

� G�G D � 9���I @ @ G���I @ $L#T# $���� def� �;��� )L) * � � U � ���
Call this table “Generation 1”. Although we have the correct answer to the problem we are
interested in, this table is peculiar because the solutions to the subproblems listed on the
second and third lines are too small. We were lucky this time; in general, at this point in
the computation, the proposed solution to the top-level problem can be too small.

This happened because we knew too little when we computed some of the subproblems.
A natural approach is to repeat the computation, but whenever a subproblem that would
otherwise cause a loop arises, we use the value from Generation 1 instead of the least type
available. Doing this results in the correct result for the top-level problem again, and also
a correct table:

� G�G D � 9���I @ @ G���I @Z$L#T# K 2C) * � K 2
� G�G D � 9���I @ @ G���I @Z$L#T# ��� ) * � ���

� G�G D � 9���I @ @ G���I @Z$L#T# $ � � def� �;��� )L) * � $ � � def� ���� )
Call this “Generation 2”. We only know this is a correct table because we have foreknowl-
edge of the correct result; the only way the implementation can determine that this table is
correct is by using it to calculate a third generation, and seeing that Generations 2 and 3 are
identical.

It is plausible, but not at all obvious, that this procedure gives correct results. For
proofs, see [Dix88].

The implementation organizes the table representing these generations as an association
list. Searching the association list can be expensive, in general, because comparing types
can be expensive. Therefore each entry in the table is a reference that can be updated in
place; this avoids the usual accumulation of useless entries in an association list as new
entries are added to the beginning.

Unfortunately, this also means that some refinement types have functions embedded
in them that make non-trivial use of references. In general, if a subexpression has a free
variable that is bound by a surrounding

I B��
operator, its type will contain a function that
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may change as we search for the fixed point. Putting this type in a memo table would cause
problems, because the behavior of the type may change with time. To ensure that these
types are never placed in a memo table, each refinement type other than

�;��I���� � 9 � has a
boolean field that is set to

� ��� �
if it definitely uses no references (that is, it is constant),

and
I;9 D:H �

if it may use nontrivial references of this kind. This is the second component of
the tuple argument to

�;��I � G @
on page 280.

7.2.3 Optimizing Equality

The above technique requires us to look up types in a table and to determine whether one
table is identical to another. Both of these problems rely heavily on determining when types
are equal to each other. There are several steps that can be taken to make this efficient.

The straightforward implementation of type equality (based on a generalization of theH � � ��������
function from page 119 to operate on refinement type constructors with negative

type arguments) is fairly fast for types without any negative arguments because in that case9 D�D � ��I H
is never used to enumerate the refinements of an ML type. However, whenever

we compare refinements of an ML type with non-trivial negative type arguments such as$ <WK K �	� <WK%K � ) � <LK%K �
, we will have to enumerate all of the refinements of the negative type

arguments; in this example, we have exactly one negative type argument
<WK K ��� <WK%K �

.

To have as few of these expensive enumerations as possible, we memoize type equality.
Whenever a refinement type is not

���I���� � 9 � , it contains a tuple where the first component
has the type

�;� � G����
which is used for this purpose. The definition of

�� � G����
is:

8�9��;9������� �� � G���� > �;� � � ��� G�I � H 9 � ��9 H ��� �
�

H ��� �8 B I�I;� � � @ �4I � G � ��� �
�

H ��� D B�H � � ��I��

This definition is a
8�9��9�������

with only one constructor rather than a type abbreviation
because SML does not allow type abbreviations in signatures. The type �

�
�

H ���
represents

equivalence classes; �
�

is a name for a structure with this signature:

H�B���@ 9�� �:� � � � � ��� � � � � >H�B��
������ H ���
� 9 D @ ��� H ��� � � @1B �

�

�YH ���
� 9 D � @CB G @ � H ���

�

�AH ���
�

� � @1B �
� 9 DYH 9 � � H ��� � H ���

�

�YH ���
�

� � G�G D
� @ 8

Think of a
H ���

here as a name for something. The function
@ ��� H ���

creates a new name,
� @CB G @

declares that two names really stand for the same thing, and
H 9 � � H ���

reports whether
all of the � @1B G @

’s done so far imply that two given names stand for the same thing. As the
name of the signature implies, this is the classic Union-Find problem, discussed in [AHU74,
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page 124]. The names
H ���

and � @CB G @
are part of the standard nomenclature used with that

problem. The implementations of these operations run in almost constant time.

With this understanding of �
�

�

H ���
, it should be clear how

�� � G����
’s are used. UsingH 9 � � H ���

on two
H 9 � ��9 H

fields will return
� �	� �

if we have already observed that the two
refinement types are equal. Using

H 9 � � H ���
to search the

8 B I�I;� � � @ ��I � G �
fields will tell

us if we have already determined that two refinement types are different. If we have to
compare two refinement types, and the

�� � G����
fields do not make it clear that they are

either equal or unequal, then we do the comparison using whatever expensive enumerations
are necessary, and then we update the

�� � G����
fields as necessary to record the result of the

comparison. As an exception, we do not try to memoize type equality for refinement types
that are not constant.

This strategy works well in practice. The most expensive aspect is searching the8 B I�I;� � � @ ��I � G �
fields. We can improve this even further by only memoizing type equality

when expensive iterations are involved (that is, when the type constructor has negative type
arguments). Since programs often have many refinements of simple types such as tuples,
booleans, and lists, and few refinements of higher-order types, this usually helps. In the
� G�G D � 9��

example above, memoizing type equality would avoid all comparisons of
@ G���I @

with itself when we are searching the generation tables, but no use of the
�� � G����

field
would be made when we compare the refinements of � G�G DND B�H �

.

This optimization ought to make a difference when evaluating a fixed point requires
comparing function objects with large types. This optimization can be turned on and
off by setting the

8:G @ � ���� � � � @CB G @ I B�@ 8
flag, and experiments with this flag show that

this optimization rarely makes a difference. Memoizing functional refinement types, as
discussed below, makes the amount of work saved by this optimization trivial when function
types are fairly small.

7.2.4 Memoizing Refinement Types

When analyzing typical programs, the type inference algorithm described in previous
chapters often finds the interpretation of a type and then evaluates that interpretation many
times at the same point. Since we represent types by their interpretations, we can hope
to save time by memoizing these interpretations. This means that after the first time we
evaluate the function at a given point, if an occasion to evaluate it at the same point arises
again, we look up the old value in a table we maintain for this purpose instead of repeating
the work. The implementation does this.

The most straightforward implementation of memo tables would implement the tables
as association lists, and always use type equality to search for a relevant entry in the
table. The present implementation does indeed implement the tables as association lists,
but searching the tables is slightly more clever. Since type equality can be slow when types
have negative arguments, we compare types with negative arguments using the

H 9 � ��9 H
field

of the
�;� � G����

; this is essentially the same as using pointer equality, except that if two types
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have been found equal while searching pending analysis tables, we use that information
when searching the memo tables.

Memoization of refinement types can be turned off by setting the
8�G @ ��� � � � G B � �

flag.
This optimization does help; we can run the

� � �
example from Chapter 1 in 22 seconds

with the flag clear, and 27 seconds with the flag set.

As a special case, we use a simpler algorithm to memoize types with no negative
arguments. In this case the argument to the function in the argument to

���I � G @
is always

the empty list, so we can omit the work of searching the memo table altogether.

This special case can be turned off by setting the
D 9 � ��� � ��I��G @

flag. When this is done,
these types are memoized with the general-purpose memoizer only. In the

� � �
example

from Chapter 1, there are many simple types with no negative arguments, so setting the flag
causes an even larger slowdown than

8:G @ � � � � � G B � �
. This example runs in 22 seconds

with this flag clear and 28.5 seconds with the flag set.

Non-constant types are not entered into memo tables or compared with types in memo
tables.

7.3 Instantiating Refinement Types

Instantiating refinement types is straightforward when they are represented explicitly. For
example, instantiating � to

<WK�K �
in the refinement type

$
�
�
� ) � �

�
� yields

$L#T# � #T# ) � # # � #T# �$ � � � ) � � � � �
$LO P R R'U�� OQPSRTR'U ) � OQPSRTRVU�� O PSRTR'U �$ � P R R'U � � P R R'U ) � � PSRTR'U � � P R R'U 5

An algorithm for this is straightforward: simply enumerate all refinement type substitutions
refining the ML type substitution, apply each of them to the original refinement type, and
take the intersection of all the results. Unfortunately, this procedure is slow; the number of
refinement type substitutions to consider grows exponentially as a function of the number
of type variables to be instantiated. In this section we give an instantiation algorithm that
instantiates lazily represented refinement types without enumerating all possible refinement
type substitutions. The correctness proof for this algorithm is future work.

The purpose of this section is to make the instantiation algorithm intuitively plausible
and to describe it well enough to permit interested people to attempt to prove or disprove
soundness. One obstacle to the soundness proof is devising specifications for the various
subroutines in the algorithm that are both formal and correct. All specifications below will
be informal.
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7.3.1 Instantiation Example and Algorithm

The function

���������	�
���������������������������������������

has the refinement type scheme � � �!�#"$�%�&�
�'���(�	�
�
. Call this function )�*,+�-/.�0 . Our

example consists of using a lazy representation of refinement types to determine the principal
refinement type of )�*1+�-2.30 �54%676185�9� *,: ���;� :=<>+20 ���?�

, where the booleans have the usual
refinements and

� *,: is the obvious function mapping booleans to booleans. As the argument
in Subsection 4.1.2 on page 226 shows, the correct result is @&ACB�B%D .

To make the explanation simple, we use a simplified version of the lazy refinement type
representation introduced above:

)�E,:2E1:�F3G20H-2*�*3.I<�0 �J�JK�KML;N3NOL�P *,: L;K *1G
)�E,:2E1:�F3G20H:�G ��Q <�*,+ � )J* � -/*�*�.R<�0 �L�S E,:/0I<T* �U� :�GWV  :�G �

L�X 0 � :�F�Y/EI<
In this datatype,

Q <�*,+ � ) constructs refinements of
4#67618

in the obvious way.
S E,:20R< is a

simplified version of the
X 0 �=Z * � constructor that only applies to function types;

S E,:/0I<J[ is
the refinement type with the interpretation (as defined in Chapter 2) [ . The value constructorX 0 � :3F�Y2ER< stands for a refinement of a type variable. It is always clear from context which
type variable

X 0 � :�F3Y2EI< refines.

To conveniently describe types in terms of this datatype, we will need an inverse forS E1:20R< :

0 �2\ 0,G3:^]R* ��P +3_`* �Ua :�<2] � _� + �J� *,b �cS E,:20R< �2�d�J�
L;� *,bWe � <�E�] a 0 P +3_gf � *,b�f

Using this, we can write something equivalent to the representation of the refinement type
of )�*,+3-2.�0 that would arise from the natural type inference algorithm:

S E1:20R< �������h���S E,:20R< �������i��i��� *,b �2�j�?��� *1b �/���/�?�k�

With the exception of the insertions of the
S E,:20R< ’s and

� *1b ’s, this has the same structure
as the definition of )�*,+3-2.30 itself. This is not surprising since refinement type inference is a
form of abstract interpretation and )�*,+�-/.�0 contains no value constructors. Here we assume
that the refinement type given for

�
will always refine

�&�l�
and the refinement type given

for
�

will always refine
�

; this implies the type passed for
�

will always be
X 0 � :�F�Y/EI< .

(Later, we will consider an alternative valid refinement type for )�*,+3-2.30 other than the one
that would arise from the natural type inference algorithm.) We can also give the type for� *1: ���

in this format:
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.30,: � + �J� *,: � - K�K �JN�N
L;� *,: � - N�N �JK�K
L;� *,: � - K *1G �JK *,GL;� *,: � - P *1: � P *,:� + �J� *,: � E � Q <�*1+ � ) �/� �W� Q <�*1+ � ) ��� *,: � - �/�?�
L;� *,: � EJe � <�E�] a 0 P +�_gf � *1: � E2f

] � S E,:20R< � *,: � EJ0 � )
and the type of :=<>+20 ���

is
Q <�*1+ � ) K�K

.

The heart of the instantiation algorithm we will describe below only works for types
with no negative type arguments. Thus the first step toward determining the type for
)�*1+�-/.�0 �54%676185�9� *,: ���;� :=<>+20 ���?�

is postponing the real work of instantiation until we are left
with the problem of instantiating a type with no negative type arguments. This postponment
is necessary for the correctness of the algorithm we describe below. An example where the
algorithm is incorrect if this step is omitted appears on page 292.

The ML type type of )�*1+�-2.30 �54%6 618 �
is

� 4#6 618R� 4#6 618 �=� 4#67618R� 4#6 618
, which has negative

type arguments. Thus we postpone work; the refinement type generated for )�*,+�-/.�0 �$4 6 6185�
is simply

S E,:20R< �c�3�J��� ��
. . .

�
, where we will fill in the “. . .” in a moment.

While finding the type for )�*,+3-2.30 �54 6 618 �9� *,: ���
, we will strip the

S E,:/0I< from the type
of )�*,+�-/.�0 �$4 6 6185�

and pass
S E1:20I< � *,: � E to the resulting function. The result of this must

be a refinement of
4#6 618>� 4#67618

, so we postpone work further by giving this the formS E1:20R< �c�3� ��� ��
. . .

�
. This implies the refinement type of )�*1+�-/.�0 �54 6 618 �

must have the
form

S E,:/0I< ����� ��� ���S E1:20R< �c�3�J��� ��
. . .

�k�
.

While finding the type for )�*1+�-/.�0 �54 6 618 � � *1: ��� � :=<>+20 � �k�
, we will strip the

S E1:20I< from
the type of )�*,+�-/.�0 �$4 6 618 � � *1: ���

and pass
Q <�*,+ � ) K3K

to the resulting function. The result
will refine

4#6 618
, which has no negative type arguments; thus we are finished with the stage

where we are postponing the real work of instantiation.

Once we have
���

and
���

, we will search for the least substitution mapping type variables
to refinement types that is consistent with the types

���
and

���
. In our example,

���
is bound

to the type of
� *1: ���

as described above and
���

is bound to
Q <�*,+ � ) K3K

. Given a substitution
��� , we can convert

���
and

���
into refinement types we can pass for

�
and

�
in the before-

instantiation type of )�*,+3-2.�0 . We call this process “reshaping”.

We will talk about two different reshaping processes. One is called <�0 a�� E1G203E,- because
it reshapes an after-instantiation refinement type like

���
into a before-instantiation refine-

ment type like
�

. Another is called <�0 a�� E1G201-2E because it reshapes a before-instantiation
refinement type into an after-instantiation refinement type. These two procedures are mu-
tually recursive. They refer to two global variables: ��� is the present substitution of
refinement types for type variables, and � � is a fixed substitution of ML types for type
variables.

As described above, we are looking for a least ��� that is consistent with the types
���

and
���

. We perform this search by starting with the least ��� and revising it as necessary
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until it is consistent with the types
���

and
���

. The code below indicates that revisions are
necessary by raising an exception; specifically, the exception

K *3*����^E�.3. �%��� � � is raised
to indicate that ��� should be replaced by ���

� �
: � � � .

Although we have no formal specification for <�0 a � E,G/0�E1- and <�0 a � E,G/0,-/E , we can
formally describe a few invariants used in it. Whenever <�0 a�� E1G203E,- ��� is called, �
	
� �

� � � . When evaluating <�0 a�� E,G203E,- ��� raises no exception, the result refines � . Whenever
<�0 a�� E,G201-2E ��� is called, ��	� , and any result refines � �

� � � .
� + � <�0 a � E1G20�E1- ��S E,:/0I<J[ � � �

1
� �

2
�d�

S E,:/0I< �c�3� � �� <�0 a � E1G20�E1- � [ � <�0 a�� E,G/0,-2E ���
1
�k� �

2
�

L <�0 a � E1G20�E1- � 4#6 618 � �L <�0 a � E1G20�E1- � �
�
] �Ua +�-3:�F�G/0,G � � � �%�'�

� �
�%�'� : � 0 �X 0 � :�F�Y/EI<

0�. a 0
<�E=] a 0 K *�*���� E�.�. �%����� *�] ��� � � � � � �

� �
� � �k�

E � )�<�0 a � E1G20,-/E ��S E,:/0I<J[ � � �
1
� �

2
�d�

S E,:/0I< �c�3� � �� <�0 a � E1G20,-/E � [ � <�0 a�� E,G/0�E,- ���
1
�k� �

2
�

L <�0 a � E1G20,-/E � 4#6 618 � �L <�0 a � E1G20,-/E � �
� � � �%�'�

To solve the instantiation problem at hand, we will use <�0 a�� E,G203E,- to convert
���

and
���

to the
�

and
�

expected in the uninstantiated type for )�*1+�-2.30 . Then we will use <�0 a�� E1G201-2E
to convert the value returned from the type for )�*,+�-/.�0 into a refinement of

4#6 618
.

Now we shall apply these algorithms to
���

and
���

. For the instantiation problem we
have in mind, � � is � �

: � 4#6 618 �
;

we will leave ��� undetermined for the time being. Evaluating <�0 a�� E1G203E,- ��� �%� �
�'�
and simplifying yields

S E1:20I< ����� � ��
] �Ua +�-�:3F�G/0,G �c� *,: � E � � � �%�'�k�?� � � � � � 4#6 618 : � 0 �X 0 � :3F�Y/EI<
03. a 0�<�E=] a 0 K *�*����^E3.�. � ����� *�] �3� � ��� �%�'� 4#6 618%�k�

and evaluating <�0 a � E1G20�E1- ��� �
and simplifying yields

] �Ua +�-3:�F�G/0,G �%Q <�*,+ � ) K�K/� � � �%� � 4#67618 : � 0 �X 0 � :�F�Y/EI<
0�. a 0

<�E=] a 0 K *�*���� E�.�. �%����� *�] ��� �%Q <�*1+ � ) K�K2� ��� �%�'� 4#67618��
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We start by assuming that � � is the least possible substitution that refines � � , which is

� �
: � Q <�*,+ � ) P *1: � "

With this assumption, determining <�0 a�� E,G203E,- ��� �
immediately raises the exception

K *3*���� E�.3. �%���jQ <�*,+ � ) K�K2���

so we revise ��� to � �
: � Q <�*,+ � ) K3KR� "

Starting with the new ��� , we find that <�0 a � E,G/0�E1- ��� �
yields

S E1:20R< �c�3� � ��
] �Ua +�-3:�F�G/0,G �c� *,: � E �%Q <�*1+ � ) K3K2�k� �%Q <�*,+ � ) K3K2� 4#6 618 : � 0 �X 0 � :�F�Y/EI<
0�. a 0�<�E�] a 0 K *�*����^E3.�. � ����� *=] ��� � �%Q <�*,+ � ) K�K/� 4k67618��k�

and <�0 a�� E1G203E,- ��� �
yields

�
. Now we pass these two values for

�
and

�
respectively in��� *,b �2�j�?��� *1b �2� �2�

; the definition of
�

then raises the exception

K *�*���� E�.�. �%���jQ <�*,+ � ) K *,G �?"

Thus we revise the substitution to

� �
: � Q <�*,+ � ) K *1G �

and try again. This time no exceptions are raised, and the value returned by

��� *1b �/� �k�c� *,b �2� �2�

is
X 0 � :3F�Y2ER< . Then we call <�0 a�� E,G201-2E X 0 � :�F�Y/EI< �

, which yields
Q <�*1+ � ) K *,G , which is

our solution.

If we do not postpone as much work as possible, this algorithm gives incorrect
results. For example, suppose we want to instantiate

�
to

4#67618
in refinement typeS E1:20R< �c�3���`���� �

interpreted as a refinement of
� �
�

. If we do not postpone any
work, we start with the assumption � � � � �

: � Q <�*,+ � ) P *,: � and end with the same sub-
stitution. The result from instantiation is <�0 a � E1G20,-/E ��S E,:/0I< �������`���� �?� �%�&�
� �

,
which simplifies to

S E,:20R< �c�3���	���� <�0 a � E1G20,-/E � <�0 a�� E,G203E,- �
� � � �'�

which in turn simplifies to

S E,:/0I< �������
� �� ] �Ua +3-�:3F�G201G �
� �%Q <�*,+ � ) P *,: � 4#67618 : � 0 � Q <�*1+ � ) P *,: 03. a 0
<�E=] a 0 K *3*����^E�.3. �%�����	� �k��
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Thus instantiation returns a refinement type that will raise
K *3*���� E�.3. under some conditions;

this is clearly malformed.

To finish the instantiation algorithm, we will describe the code wrapped around the
definitions of <�0 a � E,G/0�E1- and <�0 a�� E1G201-2E , and we will describe and fix one situation where
the above code is incorrect. The resulting procedure has no known bugs but no correctness
proof.

There are two parts to the remaining code: the procedure for postponing work until we
have no negative type arguments and the loop searching for an appropriate ��� . Both of
these are straightforward; we will present postponing the work first, since it is outermost. In
the following definition, the call ] � a : � � � � instantiates the refinement type � according
to the substitution � � mapping type variables to ML types, under the assumption that �

refines � . In the code below, we assume that � E,G a +�- a :J[ � constructs a substitution with
the same domain as � and for all

�
in that domain,

� �^E1G a +3- a : [ � � �%� � � [ � � � � �?�
. The

-2*1: �3�
function was introduced on page 118 for computing the least refinement of any ML

type. We will fill in the definition of the function .�*�*1G20R< later.

� + � ] � a : � � � � �
.�0,: � + � ] �^a :2ER<R_ a��������������
	��� � � �

1
� �

2
� �

S E,:/0I< ����������� �� ] �^a :2EI<>_ a�������� �3���������1� � �
1

�3�������
	���1� � �
2
�

L ] �^a :2ER<R_ a��������������
	��� ��� �
.�0,: � + � .�*�*1G20R< ��� �

. . .
] �

.3*�*1G20I< � �^E,G a +3- a :�-2*1: �3�
� �

�
0 � )

] �
] �^a :2EI<>_ a�������� ���

0 � )
The above code is straightforward; it simply accumulates refinement types and ML types
in the

�������
and

�����
	���
arguments until the refinement type does not refine a functional type,

and then it calls .�*3*,G/0I< with a suitable initial value for � � .

Now we can give a definition of the function .�*3*,G/0I< that iterates to find the least
substitution consistent with the constraints. This definition has the free variables

�������
,

�����
	���
, � , and � . In the code below, <�01Y is the standard function for reversing lists.
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� + � .3*�*1G20I< ��� �
.�01:`0 �2\ 01G�: ]R* � K *�*���� E�.�.�* � � 	�� ��� ��� 	��

� + � <�0 a�� E,G203E,- . . .
�

. . .
E � )J<�0 a�� E,G201-2E . . .

�
. . .� + � \ E3.�. ��S E1:20I<J[ � � �����	� ��� ��������
 � 	#� � �
	��O��� �
	���
 � 	 � �

\ E3.�. � [ � <�0 a � E,G/0�E1- �����	� �
	�� �k� ��������
 � 	 �
	���
 � 	
Ld\ E3.�. � �������J� <�0 a�� E1G201-2E � �Ld\ E3.�.Je e e � <�E=] a 0 P +3_gf \ E�.3.�f

] � � \ E�.�. � � <�0,Y ����� �R�j� <�0,Y �����
	���R�
� E � )�.30K *�*���� E�.�. �� ��� � 	����d��

.�*3*,G20R< � � � �� ���
: � 	��/�c�

0 � )
This code is fairly straightforward; it uses the stored argument lists to repeatedly call the
uninstantiated refinement type, changing ��� as indicated by the

K *�*����^E3.�. exceptions until
��� is a usable substitution.

The symmetry between <�0 a�� E,G/0�E,- and <�0 a�� E,G201-2E is pleasing, and the algorithm
specified above seems to work if all refinement types are generated by a natural algorithm
starting with expressions without any explicit refinement type declarations, and all argu-
ments are used. Unfortunately, making an algorithm that appears to work in general breaks
the symmetry. For example, this .30,: statement

.30,: � *�* ��� � � � " ���J� � �&�
�������� � � � ��������
] � . . . 0 � )

will add the refinement type scheme

� � �!�#"5� � �
� ���
� �
�
to the environment before it typechecks the expression within the scope of the .30,: statement.
This is the same as the refinement type scheme resulting from the )�*1+�-/.�0 example above,
except now the representation of the refinement type that results from the natural algorithm
is

S E,:20R< �������i���S E1:20R< �c�3� �i����/�?��

Since
�

is never used, the above instantiation algorithm will not inspect the type of
�

.
This is clearly wrong; since the refinement type of

� *�* is the same as the refinement type
of )�*,+3-2.�0 , instantiating the type of

� *�* should pull the same information out of
�

that
instantiating the refinement type of )�*,+�-/.�0 does.

Suppose we used the present algorithm to determine the type of
� *�* �$4k6 6185�	� *,: ���	� :=<>+20 ���?�#"
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The instantiation algorithm would start with ��� equal to

� �
: � Q <�*,+ � ) P *1: � "

As in the earlier example, this would be observed to be inconsistent with the type of :=<>+20 ���
,

so we would revise � � to � �
: � Q <�*,+ � ) K3KR� "

Here the resemblance to the earlier example ends, because unlike that example the type of� *1: ���
is never examined; the algorithm is finished and the result is

Q <�*1+ � ) K�K
.

Intuitively, it seems plausible that the problem is that the final substitution is not
consistent with the type of

� *,: ���
; in other words, if we use <�0 a � E1G20�E1- to de-instantiate the

type of
� *1: ���

with the final ��� , the resulting type raises an exception for all inputs. Since
the interpretation of a refinement is always a monotone function, it will fail for all inputs if
and only if it fails for the least input. Thus we can detect this problem by passing the least
refinement of the input ML type to the function and discarding the result; any problems will
be dealt with as a consequence of the resulting

K *�*����^E3.�. exception. Thus we rewrite the
function case of <�0 a � E,G/0�E1- as follows:

� + � <�0 a � E1G20�E1- ��S E,:/0I<J[ � �
1
� �

2
�

� <�0 a�� E,G/0�E,- � [ � -2*1: ���`� E,G3G2.1F a +3- a : � � � 1 �k�k� � 2 �S E1:20R< �c�3�
arg

�� ] �^a :2EI<>_ a��
arg

�3�
args

� � �
1

�3�
argtys

� � �
2
�k�

With this rewritten case, the algorithm has no known bugs. Assembling the pieces of code
appearing in this chapter yields the completed algorithm in Figure 7.1.

7.3.2 Memoizing Instantiation

Every variable is instantiated before it is used, although the instantiation is often trivial. This
makes memoizing instantiation very important. If we do not do this, then each type is created
anew every time a variable is referenced; these newly created types have empty memo tables,
so unmemoized instantiation undoes many of the other memoization optimizations. The
implementation normally memoizes instantiation; the flag )�* � :2e�� 0�� *�]���0Re�] �2a : can be set
to turn this off.

As implemented, the instantiation algorithm quickly deals with nonpolymorphic types
by using a special case. Thus the

Z���N
example above cannot be used to illustrate this

optimization. We can illustrate it by using a simple polymorphic type, such as polymorphic
lists, even if we make no interesting use of the polymorphism. For example, if we distinguish
even length lists from odd length lists and empty lists from nonempty lists, then a simple
function for appending lists:
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� + � ] �^a : � � � � �
.�01: � + � ] � a :2ER<R_ a �������������
	 � � � � �

1
� �

2
�d�

S E1:20I< ����������� �� ] �^a :2ER<R_ a�� ����� ��������� �1� � �
1

�3�������
	 � �1� � �
2
�

L ] � a :2ER<R_ a �������������
	 � � ��� �
.�01: � + � .�*3*,G20R< � � �

.�0,:W0 �/\ 0,G3:^]>* � K *�*����^E3.�.�* � � 	 � ��� � � 	��
� + � <�0 a�� E,G203E,- ��S E1:20R<J[ � �

1
� �

2
�

� <�0 a � E1G20�E1- � [ � -/*,: �3�`� E1G�G/.,F a +�- a : � � � 1 �?�k� � 2 �S E1:20R< �c�3� ����� ��
] � a :/EI<R_ a � �����O��� �������,� � �

1
�3�������
	 � �R� � �

2
�k�

L <�0 a�� E,G203E,- � 4#6 618;� �L <�0 a�� E,G203E,- � ���
] �`a +�-3:�F�G/0,G � � � � � �

� �
�%�'� : � 0 �X 0 � :�F�Y/EI<

0�. a 0
<�E=] a 0 K *3*����^E�.3. �%����� *=] �3� � � � �%�'�

� �
�%� �k�

E � ) <�0 a�� E,G201-2E ��S E1:20R<J[ � � �
1
� �

2
�d�

S E1:20R< ����� � �� <�0 a�� E,G201-2E � [ � <�0 a � E1G20�E1- ���
1
�k� �

2
�

L <�0 a�� E,G201-2E � 4#6 618;� <L <�0 a�� E,G201-2E � ��� ��� �%�'�
� + �`\ E3.�. ��S E1:20I<�[ �j�������	� �3����������
 � 	 �j���
	 � ��� �
	���
 � 	#� �

\ E3.�. � [ � <�0 a � E,G/0�E1- �����	� �
	��/�?� ����� � 
 � 	 �
	 ��
 � 	
L \ E3.�. � � � � � � <�0 a � E,G/0,-/E � �L \ E3.�.Je�e e � <�E=] a 0 P +3_Uf \ E3.�.2f

] � ��\ E3.�. � � <�0,Y ����� �1� � <�0,Y �����
	���,�
� E � )�.30K *�*���� E�.�. �� ��� ��	 ��� ��

.3*�*1G20I< � ��� �� ���
: � 	��2���

0 � )
] �

.�*�*1G20R< � �^E1G a +3- a :�-/*,: �3�
� �

�
0 � )

] �
] �^a :2ER<R_ a ��� � � ���

0 � )

Figure 7.1: Instantiation algorithm.
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� ] � E,G ���(8 � � 	 �
� 8 � � 	2��� 8 � � 	j��
��� � � � 8 � � 	j������ F � � 8 � � 	j��
\ E a 0 � * �\ * � a ����3� � )R:2. � � � � 8 � � 	j��

\ * �^a � 0�.1:2e��1e�� � )>:2. � E1G � 0�.,:/e��3e�� � )R:/. � F ���c�
L�� ]R. ���������� 	�� � � 	 �� F ���

0 � ) � ��8 � � 	

has a refinement type that is an intersection of 49 components. Computing this type takes
7.3 seconds with )�* � :2e��^0�� *=] ��0�e�] �2a : turned off, or 60 seconds with )�* � :2e��^0�� *=] �30�e�] � a :
turned on.

7.4 Analyzing Rectype Declarations

Most of the code for analyzing <�0 \ :�F�G/0 declarations is either obvious or an implementation
of some algorithm in Chapter 3. A brief description of the known shortcomings of the
implementation follows.

No attempt has been made to enforce Assumption 5.29 (Predefined Intersection Dis-
tributivity) on page 259. Sometimes this assumption does not hold and the implementation
behaves strangely; for example, with the usual declaration for

4#67618
and this declaration:

)�E,:/E,:�F3G20 ���W� Z * �g4#67618>�
�
<�0 \ :�F�G/0 �	�J� Z � 	 	2��� � L�Z ��
`�(�'�

�

the implementation infers that
ZU�k�����J�`����2�� � 	 	2��	 	#�k�

has the principal type
	 	��

and ZW�?�������`�� �2��� ��
`��
 �k�
has the principal type


��
, but it also infers that

ZW�?�������h�� �2��� ��
W��
�� 	 	 � 	 	 �?�

has the principal type @ A BcB D � . This means that the behavior inferred for
Z

is not monotone,
a serious bug. Fixing this by inferring a different behavior for

Z
seems more satisfying than

fixing it by outlawing declarations similar to this one, but the best way to do this is not
immediately clear. In this example, the instantiation algorithm is misbehaving in circum-
stances where Predefined Intersection Distributivity is false; thus it is reasonable to guess
that any soundness proof for the instantiation algorithm will use Predefined Intersection
Distributivity.

When we infer the predefined splitting relation from the <�0 \ :3F�G/0 declaration, we
assume without proof that it suffices to consider exactly one most informative principal
split of each constructor. The implementation uses a brute force search to find all of the
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“plausible” principal splits of each constructor; in this context a proposed split is plausible
if no two types in it are comparable, and all of the fragments are less than the constructor
of which they are proposed fragments. Then another brute force search lists fixed points of
the inference system in Figure 3.8 on page 207 where we assume each new refinement type
constructor has at most one split in the fixed point. We assume without proof that the most
informative of these is an appropriate predefined splitting relation.

7.5 Differences Between Implementation and Theory

There are a few differences between the implementation and the theory that do not fit neatly
into any of the topics listed above.

We treat
\ E a 0 statements where the case object is a variable specially. For example,

suppose we have the declarations

)�E1:2E1:�F�G/0��
���14 
 � :=<>+20 * � 	 � � � 	 L;� E3. a 0J* � 	 � � � 	 L � E,F�-/0J* � 	�� � � 	

<�0 \ :3F�G20 	 	j� :=<R+/0 � 	�� � � 	 �
E � ) 
 �J� E�. a 0 � 	 � � � 	#�
E � ) 	���� :=<R+/0 � 	 � � � 	 �iL � E�. a 0 � 	�� � � 	 �

)�E1:2E1:�F�G/0 � 6���� 
 	j� Z * � �
���14�


Then the best type for
�

from

Y2E�. �`�h\ E a 0 Z`� :=<>+20 ���?� * �iZ ����3� F �� FW0 � ) �
�
���14�


is @����	� A�
 . Reading the type system strictly, the statement

\ E a 0 � * �
:�<R+20 ����3� e ���� E�. a 0 ���

L � E�. a 0 ����3� e ����
L � E,F�-/0 ����3� e ���� E�. a 0 � �

0 � ) �
�
���,4�


�

has the best type @���	� A�
 because in the
� E3. a 0 case, the type of the variable

�
is still @����	� A�
 ,

since
\ E a 0 statements do not affect variable bindings. This surprises many users because

the
\ E a 0 statement obviously always returns

� E�. a 0 ���
. To eliminate the surprise, when the

case object is a variable (
�

in the example), the implementation binds that variable to a better
type while analyzing each branch of the case statement. The better type is computed by
applying the constructor for each case to the inferred type of its argument; in this example,
the constructor is

� E�. a 0 and the inferred type of the argument is the unique refinement
of
	�� � � 	

, so
�

is bound to the type



within the scope of the
� E�. a 0 branch of the

\ E a 0
statement.
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Another practical inaccuracy in the implementation is that types appearing at the top
level are not split. For example, assuming the usual definitions of the booleans,

� *1: , and
*I< , splitting causes the expression

����� � �� � *R< �U��� *1: �/�?�k� �k� :=<R+/0 � �k��� @ A BcB%D �

to get the type
	 	

. However, if the declaration

Y2E�. �i�W� :�<R+20 ���k��� @ ACB�B%D �
is followed by the expression

*I< �U��� *1: �2� �

then the latter expression only gets the type @	A BcB D . We do this because the implementation
of splitting requires reanalyzing the entire scope of the binding for each fragment of the
split; if the scope is the entire future history of the type checker, then we cannot afford to
do this.



Chapter 8

Conclusion, Critical Evaluation, and
Future Work

Refinement type inference shows signs of being a useful type inference system. The
types have an intuitively appealing meaning, type inference can be described with read-
able inference rules, type inference provably has some useful properties, and a working
implementation exists.

As with any work of this size, this one has shortcomings. Some of the shortcomings
represent tradeoffs made to ensure that refinement type inference is efficiently decidable.
Other shortcomings could be remedied by experimenting, adding new language features,
proving more theorems, or by improving the implementation.

8.1 Tradeoffs Made for Tractable Type Inference

There are numerous situations where a program has a property that can be expressed as a
refinement type, but refinement type inference cannot infer as strong a type as one would
like.

Refinement type inference only makes the distinctions specified by the programmer in
<�0 \ :3F�G20 declarations. Even if a true property of a program can be described in terms of
those distinctions, if one must use other distinctions to infer this, refinement types cannot
infer that the property is true. For example, consider the declarations from Chapter 1 that
distinguish lists of length zero, one, and two or more from each other:

)�E1:2E,:3F�G/0 � 8 � � 	j�J� ]>. L \ * � a * � � � � 8 � � 	
<�0 \ :�F3G20 � 


�
� 	 � ��� ]R.

E � ) � � ��� �18�
 	 6 � � \ * �^aJ�%���d� ]R. �
E � ) � 8 6 � � � \ * �^aJ�%��� \ * �^aJ�%��� � @9D ����� �k�
E � ) ��� D ����� � -2*1:�:2*�� �k8 � � 	#�

300
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Then the function

�3� �`��J\ E a 0 \ * �^aJ��� � \ * � aJ�c� �d� ]R. �k� * �\ * �^aJ� e � \ * �^a � e � � ]R. �?�d���\ * � aJ�c� �d� ]R. �
L e �� � ]R.

will always return a list of length one, but it will not have the refinement type� �
� � ��� �18�
�	%6 �
because we can only determine that the function will always return a

list of length one by recognizing a list of length exactly two, and we have assumed that no
<�0 \ :3F�G20 declaration has been made that will distinguish lists of length exactly two. It is
easy to express this distinction as a <�0 \ :3F�G/0 statement:

<�0 \ :3F�G/0 ��	��'618 � � 	j� \ * �^aJ�%���j\ * �^aJ�%��� � ]R. �k�

In general, <�0 \ :�F3G20 statements are descriptions of regular tree automata [GS84], and
sets of values that are not recognizable by a finite tree automaton cannot be described with
a <�0 \ :�F3G20 statement. For example, we can make the usual distinction among the booleans

)�E1:2E,:3F�G/0 4k67618;� :=<R+/0J* � 	�� � � 	 L � E3. a 0J* � 	 � � � 	

<�0 \ :�F3G20 	 	j� :�<R+/0 ��� � � � 	#�
E � ) 
 �T� E�. a 0 � � � � � 	 �

and write a function to test whether two lists have the same length:

� + �`a E��^03.�0 � _�: � � \ * � a ��� � :2. �2�k� ��\ * �^aJ� F � :2.,F �?� �Ua E�� 0�.�0 � _3: � :/. � :2.1FL a E��^03.�0 � _�: � � ]>. � ]>. � :=<R+/0L a E��^03.�0 � _�: � e e �J� E�. a 0
With this definition, for any list

�
we know that

a E��^0�.30 � _�: � ��� returns :�<R+/0 , but we
cannot declare any finite set of distinctions within

8 � � 	
to cause

a E��^03.�0 � _�: � to have the
refinement type @ D ����� � @ D � ��� ��	 	

. The problem here is that the infinite set of possible
lengths cannot be encoded in the state of a finite tree automaton. Similarly, refinement type
inference cannot reason about closed expressions in a representation of the lambda calculus
because the infinite number of possible sets of bound variables cannot be encoded in the
state of a finite tree automaton.

Another shortcoming is that refinement type inference does not know when a function
is deterministic and unaffected by side effects. Thus, if

�
is some list, we will not be able to

infer that the expression

] � a E�� 0�.30 � _3: � ��� : � 0 � :=<>+20J0�. a 0 � *,: �ka E��^03.�0 � _�: � ��� �

has the refinement type
	 	

. If refinement types were able to use the information thata E��^03.�0 � _�: � is deterministic and does not use side effects, it could infer that the ] �
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statement has the type
	 	

even if it could not infer that
a E��^0�.30 � _�: � ��� can be given the

type
	 	

.

A different shortcoming stems from the fact that refinement type inference is defined in
terms of expressions with explicit ML types, but the programmer writes expressions with
implicit ML types. In general, a term with implicit ML types may correspond to multiple
terms with explicit ML types. To predict the behavior of refinement types, the programmer
needs to know which one of these the compiler will select. Fortunately, the prototype
implementation (and every Standard ML implementations that uses the simplest algorithm)
always selects the explicitly typed term containing the most general types.

The need to insert a <�0 \ :�F3G20 declaration before refinement type inference provides
more information than ordinary ML type inference can also be regarded as a shortcoming.
However, it is hard to imagine doing without <�0 \ :�F�G/0 declarations. In the normal case,
refinement type inference will be used to find errors in a recently modified program.
Analyzing the program to automatically find the important distinctions to make is likely
to be hopeless when the program is incorrect. The often-suggested option of omitting
<�0 \ :3F�G20 statements and instead automatically creating one refinement containing each
value constructor is unworkable; refinement type inference will give some information in
this case, but the information will rarely be useful. For example, it would not have been
useful for any of the examples in the introduction.

8.2 Experience Yet to Be Gained

Sometimes it is not clear which distinctions need to be made in a <�0 \ :3F�G20 declaration to
get the desired conclusion. In the function

� + � .�E a : \ * � a�� .�E a : E aT\ * �^aJ� � ) � � ]R. �?�d� .3E a :L .�E a : \ * � a���\ * �^aJ� � ) � :/. �k� � .�E a : \ * � a :/.
we need to use a <�0 \ :3F�G20 declaration to distinguish lists of length two to be able to infer
that .3E a : \ * �^a

has the type
� @ D ����� �
� � ��� �18�
 	 6 �

. If we give the type of lists of length two
the name

�H8 6 � �
, the following argument shows why we need to distinguish

� 8 6 � �
to get

the best type for .3E a : \ * �^a
: All values of type

� @ D � ��� are in one of
� 


�
� 	��

,
� � ��� �18�
 	 6 �

,
or

� 8 6 � �
. Each of these cases falls squarely into one of the branches of the definition of

.�E a : \ * � a
: if the argument is of type

�H8 6 � �
, then we will always get to the recursive call

.�E a : \ * � a
; if the argument is of type

� � ��� �,8�
 	 6 �
, then we return the argument; and if the

argument is in
� 


�
� 	��

, then we raise an exception because of a missing case.

If we omit the declaration of
8 6 � �

, then we can no longer say that all values of type� @ D � ��� are in one of several smaller types. If the argument to .�E a : \ * � a
has type

� @&D ����� ,
then the first case of .�E a : \ * �^a

is reachable, and we return .3E a : , which is the argument to
.�E a : \ * � a

and therefore has the type
� @ D � ��� . Thus, from the viewpoint of type inference,

.�E a : \ * � a
appears to be able to return a value of

� @ D ����� . This could be fixed by a more
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careful understanding of how patterns bind to variables that gives .�E a : the type
� � ��� �18 
 	%6 �

in this case, or, as we mentioned in the previous paragraph, it could be fixed by adding the
refinement type .�* � _ .

As larger programs are checked with refinement type inference, the programmer will
become more experienced, but there will also be greater opportunity for surprising scenarios
like the one described in the previous paragraph to happen. It is unclear whether this process
will lead to sufficiently rare surprises in the long run; more experience is necessary.

More experience is also necessary to determine how fast and how useful refinement type
inference will be for large programs. The largest program run through the type checker so
far is the conjunction normal form example in Section 1.2, which is only 50 lines of SML
code.

8.3 Future Work in Language Design

The correct interaction between refinement types and signatures is not clear. For example,
suppose we have a structure

S ] a : that implements lists and operations on them such as
E,G3G20 � ) , and suppose another structure uses

S ] a : and uses a statement to make a distinction
between empty and nonempty lists. Getting the best possible refinement type for E,G3G20 � )
in the second structure requires re-analyzing the code in the context of the added <�0 \ :�F3G20
statement; assuming that type inference respects the privacy of

S ] a : , re-analyzing the code
will require repeating the code in the second structure, which is poor software engineering.

Another option would be to allow
S ] a : to declare the implementation of E1G�G20 � ) in its

signature to give type inference permission to re-analyze E1G�G20 � ) as necessary when new
<�0 \ :3F�G20 declarations are added. Putting expressions in signatures is a big change to SML;
more work is necessary to determine whether this is worthwhile.

Some data types such as string and int are predefined rather than declared with a
)�E1:2E1:�F�G/0 statement. It makes sense to have refinements of these; for example, we could
imagine distinguishing positive integers, negative integers, and zero from each other. How-
ever, this will require a declaration other than a <�0 \ :�F�G/0 statement, since <�0 \ :�F3G20 state-
ments rely upon having a finite number of constructors for each data type. It may be
worthwhile to find some other way to declare refinements of predefined data types.

If we omit the declaration of
8 6 � �

in the list example, .�E a : \ * � a
does not get the right

type. Adding
8 6 � �

brings about the right result because we can then infer that all values
in
	 	 8 � � 	

are in one of the types
	 	 


�
� 	��

,
	 	 � ��� �18 
 	%6 �

, or
	 	 8 6 � �

; without
8 6 � �

, there are
values such as

\ * �^aJ� :=<R+/0 � � �j\ * � a � :=<R+/0 � � �d� ]R. �?�
that are in

�T8 � � 	
but are not in

any smaller type. The example with cnf is not analogous; we can infer an accurate type for
:2* ZR�3�

without having a refinement type that represents all boolean expressions that are not
in CNF. In general, small variations in the <�0 \ :3F�G/0 declaration have a subtle effect on the
outcome of refinement type inference. Perhaps some useful rules of thumb will arise from
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experiments with larger programs.

Every visible <�0 \ :�F3G20 declaration increases the number of cases that refinement type
inference must examine and therefore slows down type inference. Thus it is very important
to have good mechanisms for restricting the scope of a <�0 \ :3F�G20 declaration to a small
extent of code. The problem with this is that it is not immediately obvious what should
happen when we leave the scope of a <�0 \ :�F3G20 declaration. For example, suppose we have
the declarations of

4#67618
,
	 	

, and



on page 301 and consider the statement

.�01:i)�E1:2E1:�F�G/0 � 8 � � 	 �T� ]>. Ld\ * � a * �U�%� � � 8 � � 	 �
Y2E3. �i�W\ * �^aJ� :=<>+20 � � ]R. �

] �
.�0,: <�0 \ :�F3G20 � 
 T� � ]R. L \ * � a �%� ��� 6 �/�

E � ) � 6 �W� \ * �^a * �U�%� ��� 
 ��
] � �c� � 	 	 6 �

�\ * �^aJ� :=<R+/0 � � ]R. �k�
0 � )

0 � )
In Standard ML, the type constructor

8 � � 	
becomes anonymous once we leave the scope of

the outer .30,: statement; this means that the type still exists, but it cannot be named in type
declarations. Should the same happen to the recursive type constructors


 
and

6 �
when

we leave the scope of the outer .�01: statement? The practical and theoretical consequences
of this have not been explored.

It would be better if the specification of the meaning of <�0 \ :�F3G20 declarations in Chap-
ter 3 were more declarative. Also, because many properties of regular tree sets are ef-
fectively decidable, it is possible in principle to do perfect reasoning about <�0 \ :3F�G/0 dec-
larations that do not mention function types. An example of this weakness of <�0 \ :3F�G20
declarations as currently specified is on page 193. It would be more satisfying to have a
specification of the meaning of <�0 \ :�F3G20 statements that was as accurate as possible in that
case.

8.4 Future Theoretical Work

The soundness theorem in Chapter 2 states that if we evaluate a closed expression to get
a value, then the value has any refinement type the closed expression did. It does not
immediately follow that every time we evaluate a subexpression of the form �

� � , all
values computed for � actually had the type � . A more ambitious soundness proof would
show this.

A version of refinement type inference that deals with imperative features such as
references exists and has a soundness proof, but has not yet been written up.
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The type inference system in Figure 3.8 for deriving the splitting relation from <�0 \ :3F�G/0
statements is not directly implementable. The prototype implementation does something
that seems to work well in practice, but it needs to be verified.

Likewise, the instantiation algorithm used by the implementation seems to work well
in practice but it needs to be verified.

8.5 Future Implementations

The present implementation uses memo tables in many places to improve performance.
These memo tables are all implemented as lists; profiling shows that the implementation
spends 80% of its time searching these lists. This could be sped up dramatically by using
arrays and an appropriate hashing scheme.

The implementation does not use true SML syntax. For instance, the syntax for defining
functions is separate from the syntax for destructuring data types. Also, constant value con-
structors like :�<R+20 are not permitted; instead, every value constructor takes one argument,
so the best we can do is :=<>+20 ���

.

The theory allows for four ways a type variable can appear as an argument to a poly-
morphic data type constructor: positive, negative, ignored, or mixed. We only implement
positive and negative. Ignored arguments are treated as though they are positive, and mixed
ones generate an error. Type variables appearing in references behave as though they are
mixed, so the prototype does not implement references either.

Typically the refinement type of a function is very large, and we are only interested
in a small part of it. For example, we can verify that :2* ZR�3�

has the type @&A BcB%D�
���� ��� � �

fairly quickly, but there are several refinements of boolexp, so it takes a while to print
the entire type of :2* ZR�3�

. The implementation needs to be more careful not to print these
expensive-to-compute types.

For a similar reason, when a refinement type error occurs, it is difficult to discover why.
A good approach to this might be to provide an interactive dialogue so the user can ask the
type inference engine questions about how the error occurred. This has been explored for
ML [Wan86].

Refinement type inference can in principle be used to make code more efficient. For
example, in the expression

\ E a 0J.�E a : \ * �^a FU* �\ * �^aJ��� � � ]>. ���� G=</] � : �

refinement type inference could guarantee to the compiler that the value returned by
.�E a : \ * � a

will be a
\ * � a

cell, so the
\ E a 0 statement does not have to verify this.
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instantiation, 7, 14, 63, 224, 242, 281,
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288, 295
int, 303
interpretation, abstract, 3, 282-285
interpretation (

�
), 106, 108, 131, 246, 248,

263, 280
interpretation (

�
), 106, 114, 246, 252

intersection for recursive types (&), 165-
166, 168, 170, 211

intersection for refinement types (
�

), 3,
16, 18, 30, 211

intersection for vectors (
�

), 242
Intersection Membership, 179
intersection, monotonicity of, 36
Intersection Refines, 179, 192, 197
Intersection Value Membership, 183, 209

Join is Decidable, 129
Join, 127� *�] �3�

, 129

.�E a : \ * � a
, 1-2S E1:20R< , 289

lazy lists, 180
lazy representations, 281
lazy value constructors, 1838 � � �

, 181
.�E �RF <�0 �/\ * � , 288
least fixed point, 193
least refinement of an ML type, 16
length of a vector, 228
.�01: statements, 228, 231, 238-239, 294
LET-SEM’, 231
LET-SEM, 231, 238
LET-TYPE, 234, 237-238
LET-VALID, 232
� D � ��� , 2S ] a : , 303
@ D � ��� , 3
list, 1, 7
lists, association, 285
lists, lazy, 180
lists representing substitutions, 7
literal, 8
long, 2

looking up a value in a substitution, 7
.3*�*��3+�G , 7-8
.3*�*,G/0I< , 293
lower bound, greatest, 36

malformed refinement type, 30, 62
� E,G a +�- a : , 293
� E,F�-/0 , 46
membership of a value in a recursive type

( � � � � � �
), 170, 180

memo tables, 305
memoization, 14, 281, 287, 295, 305
Milner-Mycroft type inference, 64
minimal function graphs, 282
Mini-ML, 19
missing case, 6-7
�
���

, 247, 249, 270
mixed type arguments, 240, 270
mixed type variables, 13, 279, 305
ML Compatibility, 77, 235
ML Free Variables Bound, 29, 64, 232,

243
ML type constructors (�^. \ * �^a :�<R+ \ :2*,< ),

277-278
ML type declarations, explicit, 227
ML type identifiers ( �^. \ * � ],) ), 277
ML type inference, compatibility with re-

finement type inference, 68
ML type names (� . \ * ��� E��20 ), 277
ML type schemes, 223, 228, 279
ML Type Soundness, 27, 29, 99, 232, 243
ML type variables, 7
ML types, explicit, 20, 302
ML types, grammar for, 18, 242
ML types, implicit, 19, 302
ML types, quadruples of ( � ), 242
ML types, 25, 279
ML typing relation (VM � � :: � ), 26
ML Value Substitution, 29, 93, 97, 232,

243
� . \ * � ]1) (ML type identifiers), 277
� . \ * ��� E��^0 (ML type names), 277
� . \ * �^a :=<R+ \ :2*,< (ML type constructors),

277-278
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�^. aR\ � 0�� 0 , 279
�^.1:�F , 279
monomorphic refinement type inference,

13
monomorphic refinement types, 15
monotone function, 168, 170
monotonicity of intersection, 36
mtor Refines, 76-77, 79-80, 235
mtor, 76
multiple refinements of type variables,

224

names, ML type (�^. \ * ��� E��20 ), 277
names, refinement type ( <�0 �/\ * �3� E��^0 ),

277
names, type, 277
naming convention, 26
negative type arguments, 240, 270
negative type variables, 13, 258, 279, 286,

305
New Recursive Type Constructors De-

fined, 178, 187, 216
New Value Constructors Closed, 179
New Value Constructors Defined, 178
New Value Constructors Only, 178
new, 166-167, 176, 178
NEW-INFER-EMPTY, 185-186, 189-193,

200-201, 220
NEW-INFER-RECSUB, 193-194, 196-197,

199-202, 205, 213
NEW-RC-RECVALUE, 180, 183, 191, 205,

208, 221
NEW-RECREFINES, 177, 216
NEW-RECSPLIT, 206-208, 216-218� ]>. , 2
���

, 176
��� �

, 176
��� � �

, 176
��� �

, 176
� 6 � 


, 225
��� ���

, 225
Non-free Variables are Ignored, 63, 82, 95� *1: , 283
� *1: , 6

� *,: � E , 290� *,b , 289
� �

, 176
� � �

, 176
� � � �

, 176
� � �

, 176
� �

, 176
� � �

, 176
� � � �

, 176
� � �

, 176
��� , 16, 106-112, 118-123, 125, 129-134,

141, 144-152, 155, 157-160, 163,
247-248

old, 166-167, 178
OLD-EMPTY, 186, 189-191, 193
OLD-RC-RECVALUE, 180, 191, 205-206,

209, 222
OLD-RECREFINES, 177, 198
OLD-RECSPLIT, 207-209
OLD-RECSUB, 193-194, 198-199, 203, 205
omitting <�0 \ :3F�G/0 statements, 302

Only
def

mtor Refines, 766 � 	 � 6 �
, 225

� < , 6
Ordering on

�
, 112-113, 124, 133, 251

pairs, generalized, 247
pending analysis, 14, 281-282, 284
Piecewise Intersection, 67, 74, 84, 89,

236, 260
polymorphic equality, 7
polymorphic refinement type construc-

tors, 240
polymorphic refinement type inference,

13
polymorphic type constructors, 13
polymorphism, 13
positive type arguments, 240, 270
positive type variables, 13, 258, 279, 305
postponing work during instantiation, 292
practical refinement type inference, 6, 13
� ��
 �

, 246
predefined data types, 303
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Predefined Intersection Distributivity De-
cidable, 271

Predefined Intersection Distributivity
Technical, 270

Predefined Intersection Distributivity,
259, 262, 267, 269-270, 297

Predefined Split Intersection, 54, 217
Principal Refinement Types, 115, 238
principal refinement types, 105
Principal Split Existence, 127
Principal Split Implies Useless Splitting

Fragments, 58, 254
principal splits, computing, 126
principal splits, 52, 126
principal types, 3, 224, 241
profiling the implementation, 305
progress, syntactic, 80, 88
properly, varies, 258
properties of constructors, 64
prototype implementation, 6, 14, 275,

302, 305

� E3.�.R<�0 � a
, 263

QUADRUPLE-REF, 244
quadruples of ML types ( � ), 242
quadruples of refinement types ( � ), 242
QUADRUPLE-SUB, 245

� � empty (emptyness for refinement
types), 184, 279

� (quadruples of refinement types), 242
����� � 6 �

, 241, 246, 254
RCON-AND-ELIM-SUB, 34-35, 38, 41, 44,

67, 86, 111, 244-245, 259, 261
RCON-EMPTY, 184, 191
RCON-REF, 31, 38, 72, 122, 244
Rconsimp Sound, 42, 133, 246
< \ * � a ] ��G , 42, 133
RCON-SPLIT, 47-49, 54, 90, 253
RCON-SUB Inversion, 45-46, 124, 134
RCON-SUB, 34-35, 38, 42, 44-45, 49, 86,

111-112, 124, 134, 153, 157, 244-
245, 257, 261, 268

REC-TUPLE-EMPTY, 186, 190-193

<�0 \ :3F�G/0 statements, grammar for, 166,
168

<�0 \ :3F�G/0 statements, 2, 7, 13, 74, 165,
239, 269, 297, 300-301, 303, 305

recursion on the left hand side of
�

, 167,
169, 175, 182

recursion, 63
Recursive Intersection Greatest, 198, 202,

214, 216, 219
Recursive Intersection Lower Bound,

196, 202-203, 218-219
Recursive Split Intersection, 210, 217-218
Recursive Split Soundness, 208
Recursive Subtype Consistency I, 196
Recursive Subtype Consistency II, 196
Recursive Subtype Soundness, 193, 204,

209, 213
Recursive Subtypes Refine, 196, 212,

216-217
recursive type constructors, 165
recursive type, extended, 166
recursive type, membership of a value in

( � � � � � �
), 170, 180

recursive types, 165
Recursive Unique ML Types, 178-179,

216
<�0 �2\ * � ],) (refinement type identifiers),

277
<�0 �2\ * �3� E��20 (refinement type names),

277
references, 305
Refinement and Recursive Split Consis-

tency, 212, 218
Refinement and Recursive Subtyping

Equivalence, 212, 221
Refinement Consistency, 178-179
Refinement Constructor Intersection, 41-

42, 54, 122, 133, 246
Refinement Constructor Splits are

Nonempty, 51, 217
Refinement Constructor Subtyping, 45,

250
Refinement to ML (rtom), 32
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refinement type constructors, polymor-
phic, 240

refinement type constructors, 223
refinement type error, 305
refinement type identifiers ( <�0 �2\ * � ],) ),

277
refinement type inference, compatibility

with ML type inference, 68
refinement type inference, monomorphic,

13
refinement type inference, polymorphic,

13
refinement type names ( <�0 �/\ * �3� E��^0 ),

277
refinement type schemes, 223, 228
Refinement Type Soundness, 99, 103-104,

222, 237, 262, 274
Refinement Type Substitution, 237, 262
refinement type variables, 7
refinement types, constant, 281, 286
refinement types, generalized, 106, 247
refinement types, grammar for, 30, 242
refinement types, monomorphic, 15
refinement types, principal, 105
refinement types, quadruples of ( � ), 242
refinement types, soundness of, 13, 80,

120, 260, 304
refinement typing relation (VR � � : � ),

58
refines ( 	 ), 65, 177

Refines
def�

, 34, 38, 216

reflex-
def�

, 33, 216
REF-TUPLE-EMPTY, 184
regular systems, 169
regular tree automaton, 169, 194, 301
<�01G203E,: , 225
representations, lazy, 281
<�0 a�� E,G203E,- , 291, 295
<�0 a�� E,G201-2E , 291
reshaping, 290
<�01Y , 293
rewrite rules, 225
rewriting <�0 \ :�F3G20 declarations, 168

rtom, 32
rtort, 211
� 	�� �28�
��

, 242
rules, rewrite, 225
� � � � 	

, 30-31, 34, 167, 178

a E��^03.�0 � _�: � , 174, 301
scheme, expression, 229
schemes, ML type, 223, 228, 279
schemes, refinement type, 223, 228
schemes, type, 64
scoping <�0 \ :�F�G/0 statements, 304
selecting the most general types, 302
Self Recsub, 199, 204, 212, 214, 216
SELF-SPLIT, 48-51, 57, 66, 92, 218, 233
SELF-SUB, 35-36, 42-43, 45, 50, 83-84,

109-111, 125, 152, 199, 233, 245,
266

semantics, 243
separating )�E1:2E1:�F�G/0 and <�0 \ :3F�G/0 decla-

rations, 167a 0,: � .�E1_ , 276
signatures, 303
simplification, 173
singleton, 2, 301a � *=] ���

, 134
� 6
�


, 225

� ��� � , 225
Soundness of Empty, 191, 205
Soundness of Refinement Type Empty,

185, 191, 221
soundness of refinement types, 13, 80,

120, 260, 304
Split Constructor Consistent, 49, 66, 90,

214, 217
Split Intersection, 48, 54, 58, 82, 208, 210,

254
Split Positive, 253
Split Substitution, 236, 246
Split Subtype Consistent, 49, 216
Split Types Refine I, 51, 56, 70, 254
Split Types Refine II, 51, 71, 254
split, useful, 57
split, useless, 57
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Splits are Nonempty, 51, 63, 70, 254
Splits Are Subtypes I, 49, 51, 58, 254
Splits Are Subtypes II, 51, 254
splits, computing principal, 126
splits, informative, 52
Splits of Arrows are Simple, 51, 94, 159,

163-164, 254
splits, principal, 52, 126
SPLIT-SUB, 61-62
splitting for recursive types ( � � � � � � ),

206-207
splitting ( � ), 46, 65, 93, 253, 297, 299,

305
Splitting Value Types, 65, 89, 95, 209,

236, 262
SPLIT-TYPE, 46, 51, 59-63, 70, 80-82, 88-

89, 93-95, 99-100, 103-105, 126,
138-139, 141, 144, 146, 236

statements,
\ E a 0 , 243, 257, 259, 263, 265,

298
statements, .30,: , 228, 231, 238-239, 294
statements, <�0 \ :�F3G20 , 2, 7, 165, 239, 269,

297, 300-301, 303
strengthening, 63a :�<2] \ :^] � , 224
@ ����������� , 7
string, 303
substitution for boolean expressions, 7
substitution for expressions, 23, 92
substitutions represented as lists, 7
substitutions, 228-230, 243, 290
Subtype Decidability, 120
Subtype Eliminable Assumptions, 195
Subtype Irrelevancy, 75, 84, 88, 90, 101-

103, 105, 221-222, 236, 262
Subtype Strengthening, 194
Subtype Transitivity, 201, 204, 214, 216,

220a +3-�:3F�G201G , 117, 119, 122, 263, 286
subtypeU

� � �
, 195

Subtypes Refine, 36, 44, 50-51, 56, 63,
70, 122, 158, 196, 212, 236, 246,
251

subtyping for recursive types, algorithmic
( � ; ��� � � � ���

), 195
subtyping for recursive types ( � � � � �

� �
), 169, 193-194

subtyping for refinement types (
�

), 65,
244

sugar, syntactic, 241-243, 249
Syntactic Progress Decidability Suffi-

cient, 138, 151
syntactic progress, 80, 88
syntactic sugar, 241-243, 249
syntax, concrete, 275, 305
syntax, higher-order abstract, 230a F � :3G , 280
systems, regular, 169

@ ACB�B%D , 240-241� (quadruples of ML types), 242
tables, memo, 305
	 ��� �%6 �

, 241, 277
:/0 � *1G�: , 280, 286
term grammars, 169
Termination for

a +3-�:3F�G201G and E�.3.I<�0 �^a
,

125
:/* ZR�3�

, 9, 305K *�*����^E3.�. , 292-295
toplevel, 171-172
:3G , 280, 289
trail, 185, 193

trans-
def�

, 34, 203, 216
Transitivity of

�
, 108, 110, 114, 124, 248

TRANS-SPLIT, 47-48, 50, 53, 56, 58, 91,
127

TRANS-SUB, 35-37, 44-45, 50, 52, 85, 110,
112-113, 121, 123-124, 130-131,
134, 139-140, 153, 155, 158, 164,
245, 267

TRANS-SUBTYPE, 203
tree automaton, regular, 169, 194, 301K <R+20 , 6
:�<R+20 , 7, 223
	 	

, 15, 223-224, 240-241
	 	�� �28�
 �

, 242, 246, 277
	 � � � 	

, 18, 21, 30-31, 178
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Tuple Intersection, 40-41, 55, 130, 246
Tuple Refines, 32, 44, 233
Tuple Subtyping, 33, 42, 45, 250
tupling (

� ��� ���
), 242

TUPLE-AND-ELIM-SUB, 34-35, 39-40, 45,
87, 111, 244

TUPLE-RECREFINES, 177-178, 198
TUPLE-RECSPLIT, 206-207, 209
TUPLE-RECSPLT, 206
TUPLE-RECSUB, 193-194, 198, 200, 203,

206, 222
TUPLE-RECVALUE, 180, 192, 206, 209-210
TUPLE-REF, 31-32, 39, 43, 49, 73, 244
TUPLE-SEM, 24, 102
Tuplesimp Sound, 41, 115, 124, 131, 246
:�+3G2.30 a ] �=G , 41-42
TUPLE-SPLIT, 47-49, 55, 90, 253
TUPLE-SUB Inversion, 45-46, 123, 130,

158
TUPLE-SUB, 34-35, 39-40, 42, 44-45, 50,

87, 111, 115, 121, 123, 130-131,
244

TUPLE-TYPE, 47, 60, 73, 79, 87-91, 98,
102-103, 149, 157, 222

TUPLE-VALID, 27-28, 73, 79
type arguments, ignored, 241, 270
type arguments, mixed, 240, 270
type arguments, negative, 240, 270
type arguments, positive, 240, 270
type arguments, 240-241, 270
type constructors, ML ( �^. \ * � a :�<R+ \ :/*I< ),

277-278
type constructors, polymorphic refine-

ment, 240
type constructors, 13, 223
type declarations, explicit refinement,

273, 280
type identifiers, ML ( �^. \ * � ],) ), 277
type identifiers, refinement ( <�0 �2\ * � ]1) ),

277
type identifiers, 277
type inference, Damas-Milner, 63
type inference, Milner-Mycroft, 64

type names, ML ( �^. \ * �3� E��^0 ), 277
type names, refinement ( <�0 �/\ * ��� E��20 ),

277
type names, 277
type schemes, ML, 223, 228, 279
type schemes, refinement, 223, 228
type schemes, 64
Type Soundness, ML, 27
Type Substitution Preserves Subtyping,

236, 246, 262, 267
type variable capture, 229-230
type variables, free, 229
type variables, ignored, 13, 258, 279, 305
type variables, mixed, 13, 279, 305
type variables, multiple refinements of,

224
type variables, negative, 13, 258, 279,

286, 305
type variables, positive, 13, 258, 279, 305
type variables, 7, 13, 223-224, 228-229,

239, 258, 279, 286, 305
types, constant refinement, 281, 286
types, empty, 167-169, 183
types, generalized refinement, 106, 247
types, grammar for ML, 242
types, grammar for refinement, 242
types, ML, 279
types, principal, 3, 224, 241
types, quadruples of ML ( � ), 242
types, quadruples of refinement ( � ), 242
types, soundness of refinement, 13, 80,

120, 260, 304
typing relation, ML (VM � � :: � ), 26
typing relation, refinement (VR � � : � ),

58
�

(universe), 181
Union-Find problem, 286
� ��� � ��N�� �
	

, 286
Unique Inferred ML Types, 27, 70, 116,

145-146, 232, 243
Unique ML Types, 31, 36-37, 65, 72, 74,

160, 179, 233, 244
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Unique Predefined Refinements, 31-32,
38, 216

Unique Principal Splits, 52
Unique Refinement, 76, 79, 235
UNIT-REF, 32
universe (

�
), 181

useful split, 57
useless split, 57

Y2E3.�.R<�0 � a
, 263

Value Arrow Type, 74, 85-86, 235
Value Constructor Type, 74, 86, 235
value constructors, 242
Value Containment, 220
value, membership in a recursive type

( � � � � � �
), 170, 180

Value Substitution, 29, 51, 92-93, 101,
103-104, 236

Value Tuple Type, 74, 87, 90
values, grammar for, 22, 231

� ER< , 6-7
variable capture, type, 229-230
variables, bound, 230
variables, free type, 229
variables, ignored type, 13, 258, 279, 305
variables, mixed type, 13, 279, 305
variables, multiple refinements of type,

224
variables, negative type, 13, 258, 279,

286, 305
variables, positive type, 13, 258, 279, 305
variables, type, 7, 13, 223-224, 228-229,

239, 258, 279, 286, 305
Variance, 258, 261, 266
Variant Weakening, 258, 261, 266-267
varies properly, 258
VAR-REF, 232, 244
VAR-TYPE, 60, 63, 71, 77, 80, 83, 89, 95,

140, 145, 152, 234-237
VAR-VALID, 27-28, 63, 71, 77, 232
VECTOR-EQUIV, 245
VECTOR-REF, 244
vectors (

�
), 228, 242

vectors, intersection for (
�

), 242

VECTOR-SUB, 245
VM � � :: � (ML typing relation), 26
VM, 26
VR � � � : � , 81
VR � � : � (refinement typing relation),

58
VR (variable to refinement type mapping),

58
Y a +�-3:�F3G20,G , 263

weakened closure of � (
�
� ), 213

Weakened Intersection Simplification I,
213-214, 221

Weakened Intersection Simplification II,
214, 218

Weakened Intersection Soundness, 213
weakening, 63
WEAKEN-TYPE, 59-61, 64, 67, 70, 75, 79-

81, 83-85, 87-89, 91, 94, 99-100,
116, 138-139, 146-150, 206, 209,
221, 236, 257, 259, 261-262, 266,
268

well-formed abstract declaration, 170,
177-178


