
SENS: A Sensor, Environment and Network Simulator

Sameer Sundresh, Wooyoung Kim, and Gul Agha∗

Department of Computer Science
University of Illinois at Urbana-Champaign

201 N. Goodwin, Urbana, IL 61801
e-mail:{sundresh|wooyoung|agha}@cs.uiuc.edu

http://osl.cs.uiuc.edu

Abstract

Recent advances in micro electro-mechanical systems
and VLSI lithography have enabled the miniaturization
of sensors and controllers. Such minitiarization facili-
tates the deployment of large-scalewireless sensor net-
works(WSNs). However, the considerable cost of deploying
and maintaining large-scale WSNs for experimental pur-
poses makes simulation useful in developing dependable
and portable WSN applications. SENS is a customizable
sensor network simulator for WSN applications, consist-
ing of interchangeable and extensible components for ap-
plications, network communication, and the physical en-
vironment. Multiple component implementations in SENS
offer varying degrees of realism. Users can assemble
application-specific environments; such environments are
modeled in SENS by their different signal propagation char-
acteristics. The same source code that is executed on sim-
ulated sensor nodes in SENS may also be deployed on ac-
tual sensor nodes; this enables application portability. Fur-
thermore, SENS provides diagnostic facilities such as power
utilization analysis for development of dependable applica-
tions. We validate and demonstrate usability of these capa-
bilities through analyzing two simple WSN services.

1. Introduction

The continuing miniaturization of components by ad-
vances in VLSI and MEMS technologies has allowed re-
searchers to synthesize a full suite of computation, com-
munication, sensing and actuation capabilities on a single
silicon die [15]. Such advances are quickly bringing to
life the idea of large-scalead hocwireless sensor networks
(WSNs), where each embedded node in the network hasin

∗This research has been supported in part by DARPA (F33615-01-C-
1097) and in part by Motorola Center for Communications.

situ computation capability. A typical node in such net-
works includes one or more sensors, perhaps some actua-
tors, and wireless communication circuitry, all orchestrated
by an embedded microprocessor. Recent research in WSNs
has suggested many interesting application scenarios, in-
cluding monitoring [1, 10], precision agriculture, and struc-
tural health monitoring and maintenance of civil infrastruc-
tures (buildings, roads and bridges) [9].

Development of WSN applications with performance
guarantees is a very challenging task. The small form fac-
tor of sensor nodes (e.g., MICA-2 Motes [2]) imposes se-
vere constraints on the availability of resources, such as
power, memory, communication range, and sensing capa-
bility. Such constraints complicate the development of
dependable WSN applications: for example, most WSN
nodes limit their radio range to conserve power and reduce
packet collision, but limited radio range also increases the
effects of location and orientation on the communication er-
ror rate [4]. The difficulty of providing performance predic-
tions makes it imperative for developers to test applications
thoroughly, preferably by using different sets of parameters
in a realistic environment at all phases of the application
development cycle. Simulation is a cost-effective choice
for prototyping and testing such WSN applications, as the
cost, time, and complexity involved in deploying and con-
stantly changing actual large-scale WSNs for experimental
purposes are prohibitively high.

In this paper we describe SENS, a simulator for wireless
sensor networks. SENS has a modular, layered architec-
ture with customizable components which model an appli-
cation, network communication, and the physical environ-
ment (Figure 1). By choosing appropriate component im-
plementations, users may capture a variety of application-
specific scenarios, with accuracy and efficiency tuned on
a per-node basis. To enable realistic simulations, we use
values from real sensors to represent the behavior of com-
ponent implementations. Such behavior includes sound and
radio signal strength characteristics and power usage. Fur-

Derived
Base class A

Application

Network

Physical

Environment

C

B E

D
...

...

Figure 1. SENS is structured as a graph of
components. Dashed box encloses one sen-
sor node.

thermore, SENS is platform-independent: as new WSN
platforms are introduced, their parameter profiles can be
added to the simulator. The ability to develop portable ap-
plications is an important feature, considering that WSN
platforms constantly evolve as new sensor node implemen-
tations emerge.

Another salient feature of SENS is its novel mecha-
nism for modeling physical environments. WSN applica-
tions feature tight integration of computation, communica-
tion and interaction with the physical environment. When a
node drives its actuator, it may affect the environment and
alter network propagation characteristics. Thus, the valid-
ity and effectiveness of simulation results depends heavily
on how accurately the environment is modeled. To provide
users with the flexibility of modeling the environment and
its interaction with applications at different levels of detail,
SENS defines an environment as a grid of interchangeable
tiles. Currently, tile implementations for concrete, grass and
walls are available, each of which has different signal prop-
agation characteristics; users may define other tiles to suit
their needs.

2. Simulator Structure

SENS consists of several simulated sensor nodes inter-
acting with an Environment component. Each node con-
sists of three components, called Application, Network, and
Physical (Figure 1). Each component has a virtual clock;
messages can be sent with any delay past the sender’s cur-
rent virtual time. For example, a node’s Network compo-
nent may simulate the reception of two packets which col-
lide and hence are not received, while at the same virtual
time the node’s Application processes some data. Thus
components are isolated and interchangeable; a user may
employ any of the implementations SENS provides, modify
existing components, or write entirely new ones for custom

Command Arguments Serviced by
Send message, delay, Network

transmissiontime
Schedule message, delay Application
Sense sensorid Phy, Env
Actuate actuatorid, command Phy, Env
Beep duration, delay Phy, Env
Sleep duration, delay Phy, Net

Table 1. Operations in the Application base
class (A in Figure 1).

applications, network models, sensor capabilities, or envi-
ronments.

The user may select various implementations of Appli-
cation, Network, Physical and Environment components.
For example, in early prototyping, one may want to ignore
packet collisions; later on, more realism can be added to
test for robustness. Similarly, nodes may be configured dif-
ferently to simulate a heterogeneous sensor network. This
can be useful when different nodes have varying capabili-
ties (e.g., in a hierarchy), or to test the effect of introducing
updated sensor nodes into an existing network.

2.1. Application Components

An Application component simulates the execution of
software on a single sensor node. A node’s Application
component communicates with its Network component to
send or receive packets and with its Physical component to
read sensor values or control actuators. For convenience,
we supply a C++ base class for Applications, providing the
interface depicted in Table 1. Similarly, an Application may
receive and act upon any message of the types in Table 2;
results are sent back as a message at some later time. Block-
ing behavior can be simulated by ignoring other messages
until the result is received.

Users have two ways to create Applications. First, they
may derive a new class from theApplication class to di-
rectly implement an application. However, such a program
may not run directly on existing WSN platforms. We have
developed a thin compatibility layer to enable direct porta-
bility between our simulator and real sensor nodes. When
compiling source code intended to run on a real sensor node,
we link it with a library which translates sensor node API
calls to SENS Application APIs. This technique allows for
a SENS target for TinyOS [6], similar to the approach used
in TOSSIM [8] and TOSSF [14].

2.2. Network Components

A Network component simulates the packet send and re-
ceive functions of a wireless sensor node. All such com-

Message type
Scheduledmesg(data)
Sensorvalue(sensor,value)
Receivepacket(data)

Table 2. Messages sent to Application com-
ponents (A, B, C in Figure 1).

Element Description
Signal strength Packet signal strength at receiver
Transmissiontime Duration of packet transmission
Sender Identity of sending node
Messagedata Packet contents

Table 3. Contents of messages sent between
Network components (D in Figure 1).

ponents are derived from theNetwork base class, which
specifies the basic Network interface. Each Network com-
ponent is connected to a single Application and the Network
components of neighboring nodes. The format of messages
exchanged between neighbors is fixed (Table 3) to allow
multiple implementations with different characteristics, in-
cluding the following three.
SimpleNetwork simply forwards messages to neighbors
and delivers all messages received to the Application.
ProbLossyNetwork delivers or drops packets based on
some error probability. This probability is expressed as a
traffic-independent component,p, and a traffic-dependent
component based on the recent packet rate. The reasoning
is that network congestion leads to collisions and packet
loss. Thus, we monitor the number of packetsn sent or
received in the past∆t seconds. During low-traffic condi-
tions, a packet is randomly assigned an error with probabil-
ity p. Whenn/∆t exceeds thresholdr, packets are assigned
transmission errors with probability1− (1−p) r

n/∆t . Simi-
larly, an outgoing packet is sent to a particular neighbor with
probability proportional to the simulated signal strength at
the recipient, as computed by the Environment component.
CollisionLossyNetwork calculates collisions between
packets at each receiving node. The component monitors
each packet over the interval[tstart, tstart + duration]. If
a collection of packets are found to have overlapping trans-
mission intervals, only a subset will be delivered, and these
may contain errors due to interference. For each packetp,
we compute the amount of interference during interval[a, b]
as
∑

q

∫ b
a

ss(q, t)dt wheress(q, t) is the signal strength of
interfering packetq at time t. Errors can be simulated by
either dropping the packet or introducing random bit errors
in the appropriate part of the packet. The granularity of
simulated errors can be selected to trade off accuracy and
performance.

Message type Description
Sense(sensor) Application requests

sensor value.
Sensorvalue(sensor,value) Physical’s reply.
Actuate(actuatorid,command) Application requests

actuation.

Table 4. Messages sent between Physical and
Application components (B in Figure 1).

State Current
radio send 8.1 mA
radio receive 7.0 mA
speaker on 3.4 mA
microphone on 2.91 mA
cpu active 2.9 mA
sleep 1.9 mA

Table 5. Current drawn by nodes in different
states. Based on Table 1 from [13].

2.3. Physical Components

Each simulated node includes a Physical component
which models sensors, actuators and power and interacts
with the Environment. Initially, each Physical registers its
node with the Environment. The Environment then replies
with a list of the node’s neighbors, along with radio and
sound signal strength and delay for each neighbor. During
simulation, a node’s Physical acceptsSense(sensorid)
andActuate(actuator id, command) messages from the
Application (Table 4). We currently provide microphone
(sensor) and speaker (actuator) devices.

The Physical component also simulates a node’s power
usage. When the Application or Network enters a different
power mode, they notify the Physical byactuate mes-
sages to turn on or off associated virtual hardware. The
current levels we use to calculate power usage in different
states are listed in Table 5. For example, when a radio mes-
sage is transmitted, the Network component sends the dura-
tion of transmission to the Physical. The current is simply
multiplied by a nominal 3V and power usage accumulated
over time.

2.4. Environment Component

The role of the Environment component is to provide a
useful model of a real environment with which nodes’ sen-
sors and radios might interact. By varying the Environment,
developers can test a wide variety of settings at a fraction of
the effort of setting up actual experiments. To allow mod-
ular, reconfigurable scenarios, an environment is simulated

θ12

θ23

2

1

3

Source

4

(x,y)

Figure 2. Circular wave propagation through
tile in different row and column than source.

23

4 1

23

14

Figure 3. Circular wave propagation from the
source, through a tile in the same row.

as a 2-dimensional grid of interchangeable square tiles. This
generally models sensors on the ground outdoors. Tiles
use experimentally-measured parameters for how radio and
sound waves propagate. SENS provides tiles to simulate
grass, concrete sidewalks, and walls. Concrete is considered
a baseline, and other tiles with greater signal attenuation or
delays are calledobstacles.

The Environment component models circular wave prop-
agation through the 2-D grid of tiles. Since a tile may be
anywhere on the map, propagation rules must use only lo-
cal information about a wave. This information is modified
by tiles as the wave propagates, and passed on to neighbors
which lie along the propagation paths. Tiles receive and
propagate the following information describing (part of) a
wave:(1) source location(xs, ys), (2) the amount of energy
contained in that part of the wave, and(3) the delay profile
along the edge through which the wave entered a tile.
Ideal 2-dimensional propagation.We perform 2-D circu-
lar wave propagation on a grid of tiles as in Figure 2. Angle
θ13 = θ12 + θ23, the angle from the source spanning tile
(x, y), determines the total energy that passes through the
tile. Angle θ23 represents the fraction that passes through
tile (x, y) and the tile above,(x, y + 1), while θ12 the frac-

d

g(1/2) g(0)g(1)

f(0)

f(1)

f(1/2)

Figure 4. Time-squared propagated along a
circular wave via 3 samples per edge.

tion through tiles(x, y) and (x + 1, y). The situation is
similar for tiles containing the source or tiles in the same
row or column as the source (Figure 3).
Measurement. Signal strength (SS) measured by a sensor
depends on energy density. This is obtained by dividing the
amount of energy traveling through a tile by the arc length
over which it is distributed. We approximate this arc by
the longest line segment tangent to the circular wavefront,
which must end at either corner1 or 3 of the tile. The length
of this segment can be computed as〈| cos θ|, | sin θ|〉 ·〈1, 1〉,
or simply| cos θ|+ | sin θ|. Thus, when a sensor measures a
signal with energye, we obtain the perceived signal strength
s using thismeasurement function:

s = M(e) =
e

| sin θ|+ | cos θ|
Lossy and 3-dimensional propagation. Signals sustain
loss traveling through real media. SS at distancer from
the source is often a function of1/r. Since SS varies with
1/(2πr) for 2-D circular waves, we can raise the SS to the
nth power to achieve order1/rn attenuation. In particular,
we model 3-D spherical waves by propagating the square-
root of the actual energye and using a revised measurement
function.

s = M(
√
e) = π

(√
e

| sin θ|+ | cos θ|

)2

(1)

Obstacle tiles attenuate signals. This is achieved either
by directly modifying propagated energye, or by attenuat-
ing measured SSM(e) and then applyingM−1.
Simulating delays. Slow-moving signals, such as audio,
have a non-negligible propagation time which must be con-
sidered in simulation. Since waves may travel along indirect
paths, the straight-line distance between source and sensor
is not sufficient for simulating delays.

We represent the delay incurred by the part of a signal
which crosses each point along a line segment parametri-
cally as(xu, yu) for 0 ≤ u ≤ 1, as in Figure 4. When a

Tile Range Delay Attenuation/echo
concrete 28m 0s 1.0/0.0×
grass 14m 0s 0.95/0.0×
wall 8m 0.018s 0.7/0.3×
random error 68cm 0.002s −

Table 6. Sound propagation parameters.

Maximum range 100m
Directional variation 16%
Attenuation through wall 0.80×
Packet rate 14/s

Table 7. Radio propagation parameters.

signal propagates from tilea to adjacent tileb, we pass the
delays at three points along their common edge in addition
to energy. Tileb, in turn, uses the delay values along its
input edges together with the speed of propagation through
its body and angle of propagation (from the source) to de-
termine the delay samples along each of its output edges.
When a signal encounters an obstacle, it may be delayed
and attenuated; after this, it may either be re-emitted along
its original course or a different direction. The first case is
handled by using a slower propagation speed, while the sec-
ond by generating a new wave with a non-zero initial delay.
To maintain good performance, we only allow one genera-
tion of secondary waves.
Tiles and parameters. We have used MICA-2 wireless
sensor nodes [2] placed10cm above the ground to measure
parameters of the environment and the sensor node. Tables
6 and 7 summarize measurements and simulation parame-
ters used to model them. A maximum communication range
of r is implemented using an initial SS of

√
4πr2. Thus SS

measured using Equation 1 at distances beyondr are less
than a detection noise floor of1.0. To achieve the lower dis-
tances for grass and wall tiles, we introduce attenuation fac-
tors; each time part of a wave passes through such a tile, its
energy is multiplied by the corresponding attenuation fac-
tor. For walls, initial waves also cause echo waves with a
listed SS and a new source reflected across the wall. Since
nodes may measure sound travel times, we added a uniform
random error of up to 0.002s to sound event arrival times.

3. Simulation Examples

Now we present two example applications to illustrate
the features of SENS. We created several random envi-
ronments, ranging from 0% to 100% obstacle tiles (grass,
walls), with the remaining tiles concrete.A random environ-
ment with25% obstacles is depicted in Figure 8. All simu-
lations were run usingCollisionLossyNetwork .

3.1. Spanning Tree

Our first example is a service which generates a (partial)
spanning tree via flooding. The service is initiated at time 0
by a root node in the middle of a400m× 400m region con-
taining 1000 nodes. The root broadcasts a single spanning
tree message containing its ID. When a node receives such
a message, it reads the sender’s ID, stores it as its parent,
broadcasts a new spanning tree message containing its own
ID, and goes to sleep.

Figure 5 shows how spanning tree coverage varies with
obstacle density. The coverage peaks at 914 of 1000 nodes
for 25% obstacles. It then drops quickly as we add more
obstacles, as some nodes become entirely cut off from the
root. Tree coverage also decreases with obstacle density.
As it turns out, the problem under very low obstacle den-
sity is collisions (Figure 5); obstacles decrease radio range,
and hence increase usable network capacity until the point
that the network is partitioned. Note that ollisions greatly
outnumbered (broadcast) messages sent because they were
counted at each receiving node.

3.2. Simplified Localization

Many sensor network applications need location infor-
mation to correlate measurements. We use the simulator to
study a simple localization service based on acoustic rang-
ing. Simulations were performed in a50m × 50m envi-
ronment with 6 anchor nodes and 200 non-anchors (Figure
8). Anchors are nodes with known locations; all others are
non-anchors with unknown locations. Anchors periodically
broadcast their ID and location over the radio, immediately
followed by a0.1s beep. When a non-anchor receives such a
radio message, it measures the delay until it hears the beep
to estimate the distance to the anchor. Furthermore, non-
anchors take the median of the past 10 measurements from
an anchor to filter out erroneous data. To simplify the ex-
ample, we made non-anchors estimate their location by av-
eraging anchors’ locations, weighted by the inverse of the
approximate distance to each anchor:

(x, y) =
1
r1

(x1, y1) + ...+
1
rn

(xn, yn) (2)

Figure 6 compares simulated to experimental sound
propagation times. An anchor node is adjacent to a1m-
high wall. The wall creates in indirect sound path, resulting
in longer propagation times to the left. Discrepancies are
due to both random error and difference in temperature and
humidity between simulator calibration and the experiment.

A node is consideredsuccessfully localizedif it has com-
puted its own location to within10m (the large tolerance
compensates for the error in Equation 2). Figure 7 shows

720

740

760

780

800

820

840

860

880

900

920

0 0.2 0.4 0.6 0.8 1
2000

4000

6000

8000

10000

12000

14000

16000

18000

N
um

be
r

of
 n

od
es

N
um

be
r

of
 m

es
sa

ge
 c

ol
lis

io
ns

Obstacle density (obstacles/tile)

Number of nodes in tree
Number of collisions

Figure 5. Spanning tree: num-
bers of nodes, collisions.

wall

anchor
40

60

80

100

120

140

160

180

−6 −4 −2 0 2 4 6 8

D
el

ay
 in

 2
40

0H
z

ra
di

o
tic

ks

Distance from buzzer (m)

Simulation
Experiment

Figure 6. Sim. vs experiment:
sound propagation delay.

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 0 0.2 0.4 0.6 0.8 1
 60

 80

 100

 120

 140

 160

 180

 200

L
oc

al
iz

at
io

n
er

ro
r (

m
)

N
um

be
r o

f n
od

es

Obstacle density (obstacles/tile)

Nodes successfully localized
Average localization error

Figure 7. Nodes successfully
localized, average error.

Real vs. localized

Anchor
Grass/walls

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50
 0 5 10 15 20 25 30 35 40 45 50

Figure 8. Example random map; arrows point
from real to localized non-anchor positions.

that the number of successfully localized nodes varies in-
versely, roughly linearly with obstacle density. This lin-
ear decline indicates that anchor-based acoustic ranging has
fairly predictable behavior with respect to obstacles, as op-
posed to the accelerating drop-off in spanning tree coverage.

A view of the environment, anchor nodes and a subset
of 20 localized non-anchor nodes is presented in Figure 8.
Nodes with several barriers between themselves and any an-
chor tend to have worse errors. Furthermore, localized posi-
tions are primarily skewed towards those anchors to which
they have a more direct path. This is because direct paths
appear shorter than indirect paths obstructed by walls and
provide a stronger signal than those where sound signals are
attenuated by grass. In general, the component structure of
SENS allows users to quickly run and visualize their appli-
cations like in the figure because obstacles, network models,
etc. can simply be plugged in rather than re-written.

The decrease in localization error for large obstacle den-
sities in Figure 7 may seem surprising. However, based on
the low number of nodes successfully localized, it is appar-
ent that for high obstacle densities, nodes either have rel-
atively direct sound paths to anchor nodes or cannot hear
them at all.

3.3. Power Usage

We now consider the power usage of the previous exam-
ple, using parameters from Table 5. Rather than per-node
power usage, we look at per-nodeeffectivepower usage,
i.e., power divided by the number of successfully localized
nodes. Figure 9 depicts how efficiently power was spent
(anchors were omitted as their power usage was near min-
imum). Note that average power usage closely follows the
maximum, while the minimum falls behind. This indicates
that a small number of nodes are entirely cut off from the
anchors for high obstacle density, while many nodes receive
an anchor’s radio messages but time out without detecting
the tone. Thus when a non-anchor can receive radio mes-
sages but consistently does not hear sounds from a given
anchor, it should ignore that anchor and sleep rather than
listening. Figure 10 shows the improved power usage for
this blacklisting policy: minimum, average, and maximum
power usage are all decreased, and the average follows the
minimum more closely than the maximum.

3.4. Simulator Performance

To be useful, a simulator should offer a strong perfor-
mance advantage over setting up real sensor networks. Fig-
ure 11 shows that this is the case for our simulator. The
figure depicts runs of the simplified localization with vary-
ing numbers of randomly positioned nodes. Forn nodes,
we used a

√
n ×
√
n environment withn/16 anchors and

50% of the tiles assigned as obstacles. For a network of
8192 nodes, we simulated 1000 virtual seconds of the ap-
plication in only 136 seconds of real time on a 2.5GHz Pen-
tium 4 with 512MB RAM running Linux 2.4.20; of this,
124 seconds were spent on environment initialization, with
a mere 12 seconds dedicated to actual execution. The per-
formance ratio would improve for longer simulation runs as
we amortize the cost of environment initialization, which
can be quadratic in the number of nodes. Note that applica-

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 0 0.2 0.4 0.6 0.8 1

E
ff

ec
tiv

e
po

w
er

 u
sa

ge
 (m

A
*V

*s
/n

od
e)

Obstacle density (obstacles/tile)

Maximum
Average

Minimum

Figure 9. Effective power us-
age by non-anchors.

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 0 0.2 0.4 0.6 0.8 1

E
ff

ec
tiv

e
po

w
er

 u
sa

ge
 (m

A
*V

*s
/n

od
e)

Obstacle density (obstacles/tile)

Maximum
Average

Minimum

Figure 10. Effective power us-
age with blacklisting.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10 100 1000 10000

E
xe

cu
tio

n
tim

e
(s

)

Number of nodes

Total execution time
Application simulation

Environment initialization

Figure 11. Real time for 1000
sim. seconds of localization.

tion simulation time increases more slowly past 512 nodes.
This corresponds to a22m × 22m environment, which is
close to the maximum sound range used, so node degree
stops increasing.

4. Related Work

Arguably, the most straightforward way to develop a
simulator for a WSN application is to build it from the
ground up to exploit application-specific details. Although
not efficient in terms of development effort, application-
specific simulators abound in the WSN literature. We feel
that scarcity of flexible simulation frameworks with appro-
priate architectural support contributed to this proliferation.

Apart from the “do-it-yourself” class of simulators, there
are a few widely adopted network simulators, including OP-
NET [11] andns-2[19]. Wireless capabilities have been ad-
dressed by extending existing simulators, as in the Monarch
project [18, 17], or specifically building new ones, such as
GloMoSim [5]. These simulators focus on protocols and al-
gorithms for layers of the network stack, but do not directly
support sensor networks.

Recently, several simulation frameworks have emerged
to specifically address WSNs. These range from exten-
sions of existing tools to application-oriented simulators.
Although these frameworks have some shared objectives
(e.g., a notion of environment), they visibly differ in de-
sign goals, architecture, and extent of abstraction provided
for applications.

At one end of the spectrum are simulators that focus
on wireless protocol stacks for sensor networks, includ-
ing UCLA’s SensorSim [12] and Georgia Tech’s Sensor-
SimII [20]. 1 UCLA SensorSim extendsns-2, providing
power and communication protocol models and support for
hybrid simulations which interact with real wireless sen-
sors. Georgia Tech SensorSimII organizes a sensor node

1Despite the similar names, these are actually independent projects.

into three components, application, network, and link; sen-
sors directly interact with applications. Aside from Sen-
sorSim’s notion of power, neither takes into account tight
resource constraints on sensor nodes, limiting the realism
of results. Furthermore, many applications do not need de-
tailed protocol stack simulation to ensure expected behav-
ior; rather, validation of functional correctness and perfor-
mance guarantees is necessary at the WSN level.

TOSSIM [8] is a discrete-event simulator for TinyOS [6,
16] applications on MICA Motes [2]. It aims to facilitate
source-level application and OS debugging, so that pro-
grams can be directly targeted to Motes without modifi-
cation. TOSSIM assumes all nodes share the exact same
code image, simulates at bit granularity, and assumes static
node connectivity known a priori (modulo a very simple
form of node mobility). In these regards, TOSSIM is
more of a TinyOS emulator than a general WSN simula-
tor. TOSSF [14] can be viewed as a scalable version of
TOSSIM. TOSSF is an adaption of SWAN, a simulator for
wireless ad hoc networks. In particular, it allows a hetero-
geneous collection of sensor nodes and dynamic network
topology. Since both of these simulators are tightly coupled
with TinyOS and Motes, they may be inappropriate for early
prototyping or developing portable WSN applications.

At the other end of the spectrum are application-oriented
simulators, including SENS, Siesta [7] and EmStar [3].
Siesta has a modular, layered architecture, with the physi-
cal system model and application as pluggable components
interacting via sensors and actuators. However, the latest
release is geared towards application and middleware com-
ponent simulation, and does not provide adequate flexibility
to model an underlying wireless network. Communication
capabilities are encoded point-to-point between neighbors,
and network characteristics such as communication delay
and error rate are not supported. EmStar is a framework for
developing applications on WSNs, encompassing pure sim-
ulation, distributed deployment on iPAQs, and a hybrid sim-
ulation mode similar UCLA SensorSim. As in TOSSIM,

simulation is at the source level so that code need not be
modified for each mode.

5. Conclusion

We have presented SENS, a Sensor, Environment and
Network Simulator. SENS features a modular architecture
to permit simulation of a range of different WSN scenarios.
In particular, we have implemented components to support
sensor nodes communicating via wireless broadcast in an
environment represented by tiles which modulate sound and
radio propagation. We have demonstrated the utility of this
approach in analyzing the behavior of WSN applications
under a variety of different environmental scenarios.

Simulation of WSNs is an ongoing effort. As such,
each of the components of the SENS architecture have
avenues for enhancement. Applications would benefit
from automatically-generated timing information. The net-
work stack could be made more flexible by implement-
ing higher-level protocol abstractions.The Physical compo-
nent’s power model could be improved to include a real-
istic battery model and its effects on component behavior,
which will improve confidence in the long-term viability
of a WSN. Simulations could be sped up by caching envi-
ronment behavior rather than re-computing it for each run.
Furthermore, environment simulation could be enhanced
by characterizing a wider variety of objects, allowing 3-D
maps, and supporting wave phenomena such as diffraction.
Finally, application development using SENS will certainly
reveal further opportunities for improvement. We expect
that the SENS style of system simulation will help facilitate
the development of robust WSN applications.

SENS is available on the WWW at:
http://osl.cs.uiuc.edu/sens

References

[1] A. Cerpa, J. Elson, D. Estrin, and L. Girod. Habitat Monitor-
ing: Application Driver for Wireless Communications Tech-
nology. InProceedings of the ACM SIGCOMM Workshop on
Data Communications in Latin America and the Carribean,
pages 20–41, 2001.

[2] Crossbow Technology, Inc. MICA: Wireless Measurement
System, 2003. http://www.xbow.com/
Products/Productpdf files/Wirelesspdf/MICA.pdf.

[3] J. Elson, S. Bien, N. Busek, V. Bychkovskiy, A. Cerpa,
D. Ganesan, L. Girod, B. Greenstein, T. Schoellhammer,
T. Stathopoulos, and D. Estrin. EmStar: An Environment for
Developing Wireless Embedded Systems Software. Techni-
cal report, Center for Embedded Networked Sensing, Uni-
versity of California, Los Angeles, 2003. CENS Technical
Report 009.

[4] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler,
D. Estrin, and S. Wicker. An empirical study
of epidemic algorithms in large scale multihop
wireless networks. Technical report, Intel Re-
search, 2002. IRB-TR-02-003. http://www.intel-
research.net/Publications/Berkeley/12052002102219.pdf.

[5] GloMoSim. http://pcl.cs.ucla.edu/projects/glomosim/.

[6] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System Architecture Directions for Network Sen-
sors. InProceedings of ASPLOS 2000, 2000.

[7] A. Ledeczi, M. Maroti, and I. Bartok.Simple NEST Appli-
cation Simulator (Siesta 02-05-02), October 2001. Draft.
http://www.isis.vanderbilt.edu/projects/nest/downloads.asp
(part of the latest Siesta distribution).

[8] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accu-
rate and Scalable Simulation of Entire TinyOS Applications.
In Proceedings of the First ACM Conference on Embedded
Networked Sensor Systems (SenSys), November 2003. (to
appear).

[9] J.P. Lynch, K.H. Law, A.S. Kiremidjian, E. Carryer, T.W.
Kenny, A. Partridge, and A. Sundararajan. Validation of a
wireless modular monitoring system for structures. InSPIE
9th Annual International Symposium on Smart Structures
and Materials, March 2002.

[10] A. Mainwaring, J. Polastre, R. Szewczyk, and D. Culler.
Wireless Sensor Networks for Habitat Monitoring. InPro-
ceedings of the First ACM Workshop on Wireless Sensor Net-
works and Applications, pages 88–97, 2002.

[11] OPNET. http://www.opnet.com.

[12] S. Park, A. Savvides, and M. B. Srivastava. SensorSim: A
Simulation Framework for Sensor Networks. InProceedings
of the 3rd ACM International Workshop on Modeling, Analy-
sis and Simulation of Wireless and Mobile Systems (MSWiM
2000), pages 104–111, 2000.

[13] S. Park, A. Savvides, and M. B. Srivastava. Simulating Net-
works of Wireless Sensors. InProceedings of the 2001 Win-
ter Simulation Conference, 2001.

[14] L.F. Perrone and D.M. Nicol. A Scalable Simulator For
TinyOS Applications. In E. Ÿucessan, C.-H. Chen, J.L.
Snowdon, and J.M. Charnes, editors,Proceedings of the
2002 Winter Simulation Conference, 2002.

[15] Smart Dust Project. http://robotics.eecs.berkeley.edu/˜ pister/SmartDust/.

[16] The Berkeley Wireless Embedded Systems Project.
http://webs.cs.berkeley.edu/, 2003.

[17] The CMU Monarch Project. The CMU Monarch Project’s
Wireless and Mobility Extensions tons, August 1998. Re-
lease 1.1.0 Beta.

[18] The CMU Monarch Project, 2003. Moved to
http://www.monarch.cs.rice.edu/.

[19] ns-2. http://www.isi.edu/nsnam/ns/.

[20] C. Ulmer. Wireless Sensor Probe Networks - SensorSimII,
2000. http://users.ece.gatech.edu/˜ grimace/
research/sensorsimii/.

