
Simulation of Large Ad Hoc Networks ∗

Valeri Naoumov
Departement Informatik

ETH Zürich
CH 8092 Zürich

Thomas Gross
Departement Informatik

ETH Zürich
CH 8092 Zürich

ABSTRACT
An ad hoc network is formed by wireless mobile nodes
(hosts) that operate as terminals as well as routers in the
network, without any centralized administration. Research
in ad hoc networks often involves simulators since manage-
ment and operation of a large number of nodes is expensive.
However, the widely used simulator NS-2 does not scale; it
is very hard to simulate medium scale networks with 100+
nodes. We describe here improvements to NS-2 to meet the
needs of large ad hoc network simulations. The modified
NS-2 simulator is based on the idea of exploiting the limited
interference of wireless communication. The modified simu-
lator has simulated populations of up to 3000 nodes so far
and works up to 30 times faster than the original version.
We also discuss how the modified simulator is validated.

Categories and Subject Descriptors: I.6.5 [Simulation
and Modeling]: Model Development; I.6.4 Model Validation
and Analysis — NS-2; E.1 [Data Structures]: Graphs and
Networks

General Terms: Algorithms, Experimentation, Perfor-
mance

Keywords: Network Simulation, Scalability, Ad Hoc Net-
works

1. INTRODUCTION
Ad hoc (or self-organizing) networks operate without a

predefined fixed (managed) infrastructure. In the simplest
case, an ad hoc network involves exactly two hosts (e.g., two

∗
ACM, 2003. This is the author’s version of the work. It is posted here by

permission of ACM for your personal use. Not for redistribution. The defini-
tive version was published in the Proceedings of MSWiM (September 2003)
http://doi.acm.org/10.1145/940991.941001

This research was supported, in part, by the NCCR “Mo-
bile Information and Communication Systems”, a research
program of the Swiss National Science Foundation, and by
a gift from the Microprocessor Research Lab (MRL) of Intel
Corp.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSWiM’03,September 19, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-766-4/03/0009 ...$5.00.

notebooks communication via the IR port), but interesting
scenarios involve a larger number of hosts. The benefits and
limits of self-organization can be explored only in large set-
tings – only then can we investigate the scaling of a protocol
or management system.

Simulators are attractive vehicles to explore ad hoc net-
works since it is difficult (and expensive) to manage a large
number of real network hosts (nodes). The NS-2 simula-
tor is frequently used for these simulations since it supports
the popular WaveLAN cards. Several researchers have pro-
posed algorithms and protocols for ad hoc networks, e.g.,
protocols to solve the multi-hop routing problem (each node
must operate as a router, forwarding packets to their final
destinations)[7, 6, 5, 8]. However, exploring these protocols
in scenarios with a small number of nodes (< 100 nodes,
100+m2) may not expose all subtleties. On the other hand,
asymptotic studies may provide upper and lower bounds but
do not suggest changes to the protocol or the MAC inter-
face. Since a simulator can record events of interest, it is an
indispensable aid in the evaluation and evolution of ad hoc
networks.

The simulation of large scenarios is crucial for investiga-
tions of ad hoc networks. While there exist many papers
that compare the performance of different routing protocols
for wireless ad hoc networks, the scalability of routing algo-
rithms often receives little attention. E.g., in [2] the authors
use the NS-2 simulator to compare the performance of DSR
and AODV. The largest scenario simulated (2200 × 600m2

area, 100 nodes, 40 CBR sources simulated for 500 seconds)
supports the main argument why their comparison is bet-
ter than many previous ones. The authors complain that
they could not simulate larger scenarios because of the slow
speed of the NS-2 simulator. Their results show that in
many cases DSR and AODV demonstrate similar behav-
ior, But with 100 nodes, DSR delivers 5-50% fewer packets
than AODV, depending on the traffic load (number of CBR
sources). The lowest percentage of delivered packets shown
by DSR is 45%, compared to 75% for AODV. The best per-
formance with 100 nodes is observed simulating 10 CBR
sources – DSR and AODV were able to deliver 88% and
92% of packets correspondingly.

As an example of how the investigation of protocols’ per-
formance could be continued in [2] we present the results
obtained with the help of the modified NS-2 simulator that
is described in this paper. Figure 1 depicts the percentage
of received packets in the following scenarios:

• 1500× 300m2 area, 50 nodes;

• 2121× 425m2 area, 100 nodes;

0%

20%

40%

60%

80%

100%

50 100 200 550
Number of nodes

#r
ec

ei
ve

d
/ #

se
nt

 [%
]

Send rate = 4 pkts/s

S.r. = 1 pkts/s

S.r. = 0.1 pkts/s

Figure 1: Percentage of packets received (of all packets
sent). Pause time 1 s, packet size 64B.

• 3000× 600m2 area, 200 nodes;

• 5000× 1000m2 area, 550 nodes.

All scenarios were simulated for 600 seconds with the num-
ber of active CBR sources equal to 1/3 of the number of
nodes involved. Nodes move constantly for the duration
of simulation with a speed between 0 and 15 m/s. Three
different send rates investigated: 0.1, 1, and 4 packets/s.
These experiments show that DSR looses significantly its
effectiveness as the network size grows larger and point to
the importance of simulating settings with a large number
of nodes.

A simulator provides a rich experimentation environment
at really low cost. But the problem to obtain a result with
reasonable runtime is a serious issue in the simulation of
large ad hoc scenarios (100s or 1000s of mobile nodes, ar-
eas of approx. 1 − 10 km2). In such a simulator the most
computation-intensive part is the interference computation,
since a system with N pairs of transmitters and receivers re-
quires that O(N2) pairwise interactions are computed. That
is why most of the existing simulators show rather poor per-
formance dealing with large ad hoc networks.

There exist several approaches to solve the above-
mentioned problem of the interference computation. Per-
rone and Nicol[9] exploit the idea of the well-known N -body
algorithm, which is used for calculating the gravitational in-
teractions between objects in simulations of astrophysical
models. Since both the gravitational interaction between
two bodies and the strength of the radio signal between
transmitter and receiver are inversely proportional to the
power of the distance, the authors adapt the Barnes-Hut
algorithm (one of the algorithms for N -body simulation)
to calculate interference in wireless networks. Their results
show that the Barnes-Hut algorithm significantly reduces
the number of pairwise interactions that must be computed,
compared to a brute-force approach.

In this paper we show how the limited interference compu-
tation (LIC) algorithm can be applied to improve the perfor-
mance of the NS-2 simulator. Perrone and Nicol[9] discuss
that LIC-based simulations may show better performance
and accuracy than the N-body approach, but do not pursue
this topic in depth. Furthermore, there exist other signif-

Figure 2: Topography with N mobile nodes.

icant differences between their work and the material we
present here.

First, Perrone and Nicol consider only cellular wireless
networks with a very low density of nodes (1 node and 1 base
station per km2). Cellular networks have connections only
between mobile nodes and the base station(s). Ad hoc net-
works exploit peer-to-peer communication between any set
of nodes that are within transmission range, and there is no
distinction made between “nodes” and “base stations”. Sec-
ond, only stationary networks are considered. We operate
with ad hoc networks populated by mobile nodes with the
variety of densities (from 2 nodes/km2 to 500 nodes/km2)
and different mobility rates – from stationary to highly dy-
namic nodes (with speeds up to 20 m/s).

This paper describes the ideas and algorithms we inte-
grated into the NS-2 simulator [3] as well as the validation
of these changes. Due to these modifications, we realize a
noticeable improvement in CPU time to simulate large ad
hoc networks. That improvement allowed us to investigate
the efficiency of routing protocols on larger scenarios than
have been used in previous studies that were based on NS-2,
and we see how the size of an ad hoc network (negatively)
impacts various performance metrics.

2. NS-2 SIMULATOR
The NS-2 simulator is a discrete event simulator widely

used in the networking research community [3]. It was de-
veloped at the University of California at Berkeley and ex-
tended at Carnegie Mellon University to simulate wireless
networks [4]. These extensions provide a detailed model of
the physical and link layer behavior of a wireless network
and allow arbitrary movement of nodes within the network.
Some of the recently proposed wireless routing protocols
(DSDV, TORA, DSR and AODV) [7, 6, 5, 8] are also inte-
grated into NS-2.

Each run of the simulator accepts as input a scenario file
that describes the exact motion of each mobile node together
with the sequence of packets originated by each node as time
progresses. The way NS-2 works can be easily explained
by an example. We have the topography - a rectangular
simulation area (Figure 2) with N mobile nodes. Each
node has a position and a velocity and moves around on the
topography. The position of a mobile node can be calculated

RT

CST

R1 R2 Distance

S
ig

na
l p

ow
er

Figure 3: Transmission power as a function of distance
from the transmitter.

as a function of time and is used by the radio propagation
model to calculate the propagation delay from one node to
another as well as the power level of a received signal. We
call “receiver” any mobile host receiving a packet.

The power level at which the packet is received is com-
pared to two different values (see Figure 3):

• the receive threshold (RT);

• the carrier sense threshold (CST).

If the power level falls below the CST, the packet is dis-
carded as noise. If the received power level is between CST
and RT, the packet is marked as a packet in error before
being captured. Otherwise, if the power level is above RT,
the packet is received without errors.

Once the receiver starts receiving a new packet, it checks
that its receive state is presently “idle”, meaning it does not
currently process any packet. If the receiver is not idle, one
of two things can happen:

• If the power level of the packet already being received
is at least 10 decibels greater than the power level of
the newly received packet, we assume capture of the
current packet, discard the new packet, and allow the
receiving interface to continue with its current receive
operation.

• Otherwise, a collision occurs, and both packets are
dropped.

Consider some mobile node M willing to transmit (Figure
2). Beyond the distance R2, the transmission power level of
M ’s signal is below the CST. The simulator must compute
the mobile nodes that are within this range (so they are af-
fected by M ’s signal). Therefore NS-2 simulator checks for
every node in the topography that is currently participating
in a data exchange whether the power level of M ’s signal
is above CST or not. This check causes a large number of
unnecessary steps that increase the cost of the computation
exponentially in N , since a system with N pairs of transmit-
ters and receivers requires that O(N2) pairwise interactions
are computed.

3. IMPROVEMENTS TO NS-2
The problems one experiences using NS-2 to simulate

large ad hoc networks can be divided into two main types:
fundamental problems and system idiosyncrasies. The first
type of problems restricts the use of NS-2 due to the very
high runtime of the simulator, the second seriously limits
the number of scenarios that can be simulated.

There are three (C++) classes of the NS-2 simulator im-
plementation that are essential for understanding our mod-
ifications:

• The Channel class simulates the actual transmission
of the packet at the physical layer. Method send() of
this class allows the MAC object to transmit a packet
on the channel for a specified duration of time.

• The MobileNode class has double X, Y as the node’s
coordinates, and update position() is the method re-
sponsible for the node’s movement.

• NS-2 is an event-driven simulator. The class Scheduler
runs by selecting the next earliest event, executing it to
completion, and returning to execute the next event.
Method schedule() of this class puts an event in the
calendar queue.

3.1 Solving fundamental problems
NS-2 is slow when used with large ad hoc network scenar-

ios. E.g., to simulate 300 mobile nodes randomly moving
over the area of 3×3km2 with intensive random traffic con-
nections, 10 seconds of simulated time require around 1000
seconds on a PC with a 1GHz Pentium-III and 512MB. So
if we want to make 10 runs with the same scenario type
and increase the simulation time to 600 seconds (at least
that much time is required to explore the behavior of the
network), the whole simulation will take more than a week.
Such a performance is not very useful, especially when in-
vestigating protocols.

Since radio signals decay exponentially with increasing
distance between transmitters and receivers, after some dis-
tance from the sender, no receiver is further affected by the
transmitter’s signal. This distance of course depends on the
carrier sense threshold. Exploiting this fact we report on
two ways to enhance NS-2 performance, both based on ad-
ditional data structures to keep track of the nodes’ position:
the Grid and the List.

3.1.1 Grid-based node organization
We divide the simulation area into cells1 to form a grid

(Figure 4). The grid itself is a 3D array of pointers able
to store, if necessary, all mobile nodes in the topography if
they are all located in the same cell. This organization of
the array allows each cell to know which mobile nodes are
currently located in it and which not. Every time the posi-
tion of a node is required to be known, the update position()
method of the class MobileNode is triggered2. In this method

1These “cells” have no relationship to the cells of the mobile
phone net or of [9].
2Since this method is invoked every time the position needs
to be known, even if the node has not moved at all or is
still in the same cell, node mobility does not influence the
cost to maintain this data structure. Further optimization is
possible but would complicate a fair performance evaluation.

Figure 4: Simulation area divided into cells, with cells af-
fected by M ’s transmissions in grey.

we integrate functions that calculate the position of a node
in the grid to determine the cell a node belongs to.

We include in the method Channel::sendUp() a function
responsible for getting the list of nodes affected by the cur-
rent transmission. First the function determines the radius
determined by CST and then selects those nodes that be-
long to the grid’s cells covered by a circle with this radius.
Subsequently, only nodes in these cells are involved in a
computation, while the original NS-2 considers all nodes on
a channel. See Figure 4 for an example, where node M is
ready for transmission.

Depending on the size of the simulation area, the number
of mobile nodes, and the maximum transmission power, the
algorithm chooses the appropriate division of the topogra-
phy into cells (the number of cells per X and Y side). The
average chosen cell size is about R2/2. With this cell size
we can achieve the optimal performance of our simulator. If
we have cells noticeably smaller than R2/2 (see Figure 5)
then a smaller number of mobile nodes resides in the affected
cells but outside the area that is covered by the circle with
radius R2. On the over hand, the more cells we have, the
more computation is involved to determine the set of nodes
affected by the current transmission session, since for each
cell and every mobile node on a network the algorithm must
check whether a node belongs to a given cell or not.

If a “transmitting node” has originated a packet to trans-
mit, our algorithm gets the position of this node and deter-
mines the CST radius depending on the transmission power.
Then the algorithm calculates which cells are covered (en-
tirely or partially) by the CST circle and gets the list of mo-
bile nodes that reside in those cells. Next it traverses the list
and calculates the signal propagation time between the cur-
rent node (receiving node) from the list and the transmitting
node. Then the time of the next event (start time of packet
receiving process) and the type of this event (receive) are
passed to the Scheduler, where the rest of event-processing
takes place.

3.1.2 List-based node organization
Another data structure that can be used to improve NS-2

performance is a double-linked list of mobile nodes, ordered
by their X-coordinates. We add new members to the Mo-
bileNode class, MobileNode *prevX, *nextX and a new static

member xListHead, to keep track of nodes. When a new
node is created its constructor simply appends the node to
the list3. Once the coordinates are assigned, the list is sorted
in ascending order based on the X-coordinate.

Every time a node moves its position, the list is updated.
Once the Channel::sendUp() method is called, our algorithm
determines the set of nodes that are affected by the current
transmission. This set is formed by the nodes in the list
with X-coordinates from X −R2 to X + R2 that have their
Y-coordinates in the range Y −R2 to Y +R2, where (X, Y)
are the coordinates of the current (transmitting) node.

To get the most out of this improvement, a user must
always set the X-side of a simulation area to be larger than
the Y-side. This choice limits the number of nodes in the
X-list that belong to [X −R2, X + R2]. This restriction can
be trivially met by renaming the sides, if necessary.

3.1.3 Computational cost
These changes have the potential to save a significant

amount of time if the simulation area is noticeably larger
than R2 and the number of randomly distributed mobile
nodes is large enough. If the simulation are is less than
2 ·R2 then no benefit is gained.

In case of large areas, we use the following rule to divide
the simulation area when the grid data structure is used.
A is the size of the simulation area, R2 is the radius cor-
responding to CST, l is the side of a cell we are trying to
determine, (X, Y) are the coordinates of the transmitting
node, T0 is the CPU time to check if a node hears the trans-
mission or not4. T1 is the CPU time spent to check whether
a node belongs to a certain cell and N is the total number
of nodes involved in the simulation. From here we have:

• CPU time to check all nodes in the network whether
they hear the current transmission: TCPU0 = T0 ·N ;

• CPU time to determine the set of nodes located in the
cells affected by the current transmission: TCPU1 =
T1 ·N · (2·R2

l
)2,

where 2 · R2/l is the number of cells per side of the
affected area;

• CPU time to check all nodes from the above set
whether they hear the current transmission: TCPU2 =

T0 ·N · (2·R2)2

A
,

where (2·R2)
2 is the size of the affected quadratic area.

The modifications to NS-2 are beneficial if TCPU0 >
TCPU1 + TCPU2 , or in total

T0 ·N > T1 ·N · (2 ·R2

l
)2 + T0 ·N · (2 ·R2)

2

A

From here we find that the size of a cell’s side must be:

l >

√√√√k1 ·
4 ·R2

2

1− 4·R2
2

A

, (1)

3In the NS-2 simulator, the coordinates of the node in the
simulation area are not yet known at this time.
4T0 includes the time needed to find the distance between
two nodes, to calculate the signal propagation delay, to put
a receive-event in the calendar queue, to get the event out
of the queue later, and to execute it to completion (i.e., one
of receive packet, discard packet, or receive in error).

Figure 5: Tradeoffs for the size/number of cells: smaller cells contain on average fewer nodes beyond the transmission range
but incur higher bookkeeping overhead since more cells must be checked.

where k1 < 1 is the constant that represents the ratio T1/T0.
From this we conclude that when the simulation area A is

less than (2 ·R2)
2 this model cannot be used directly. In this

case our algorithm sets the number of cells for the X and Y
side equal to 1, and the overall performance does not change.
The cost of maintaining the grid is minor and amounts to
only around 2% to the total runtime of the original NS-2
simulator.

The list-based data structure can also successfully be used
in almost all scenarios. More over, simulations that are
based on this model run 5-60% faster than those based on
the grid, as we discuss in Section 4. The cost of picking up
the involved nodes from the list is lower than the cost of
finding those nodes in the grid, and this difference accounts
for the performance improvement. The cost of updating a
node’s position in the List is also low and is compatible with
the same cost in the grid.

Let T3 be the time needed to check if a node in the list
belongs to the quadratic region affected by a transmission.
Then the time to check all the nodes in the X-list that belong
to the interval from X − R2 to X + R2 whether they also
fall inside the region Y −R2 to Y + R2 is

TCPU3 = T3 ·
2 ·R2√

A

The time (TCPU2) to check the set of nodes that belong to
the quadratic region whether they fall inside the circle with
radios R2 stays the same as in the grid.

Then the inequality looks like follows: TCPU0 > TCPU3 +
TCPU2 , i.e.,

T0 ·N > T3 ·
2 ·R2√

A
+ T0 ·N · (2 ·R2)

2

A

From here we have the quadratic inequality over R2:

4R2
2

A
+ k2 ·

2√
A
·R2 − 1 < 0

where k2 < 1 is the constant that represents the ratio T3/T0.

This inequality can be resolved if

R2 <

√
k2
2+4

A
− k2√

A
4
A

or simply

R2 <

√
A

2
(2)

since k2 << 2. So the only restriction for the use of the list
data structure is that the side of a simulation area must be
larger than 2 ·R2

There exist other cases when these changes do not improve
performance, e.g., when all nodes are located in some small
region of the simulation area, or when the density of nodes
is very low so there is no interaction between the nodes.
However, we speculate that the first situation does not occur
frequently in a simulation, and really sparse ad hoc networks
exhibit other problems.

3.2 Solving system problems
System idiosyncrasies cause another class of problems for

the simulation of large ad hoc networks with long simulated
times. Although these problems are “conceptually” not very
interesting, they can impose hard limits on what the simu-
lator can be used for. The bottleneck of the NS-2 simulator
is a high dependence on the current Tcl/Tk release.

Tcl is used in NS-2 to describe scenarios, i.e., connection
and movement patterns. The Tcl part of the simulator is
also responsible for writing the data into the output trace
file.

In the trace file, each entry describes one of the events
types. Either a send, receive, drop, or forward operation is
applied to a packet. Recording one entry may require up
to 300B. With a large number of nodes and intensive traffic
the output file can grow correspondingly. But the maximum
file size that Tcl can handle is 2.1GB. This size can be used,
e.g., to simulate for 50 seconds a highly dynamic ad hoc
network with 800 nodes distributed over an area of 5km2.
With 2000 nodes this time is even less – 10..20 seconds are

sufficient to reach the file size limit. But certainly a longer
time is required to obtain a realistic picture of a network’s
behavior.

This problem can be overcome if we remove file I/O from
the Tcl/Tk part. We realized that by pipelining the sim-
ulator’s output directly into a text (or archive) file. Then
the only file size limitation that exists is determined by the
operating and/or file system on the host machine – it’s hard
to get around this limit. Fortunately, modern OSs support
big files and we have produced files with sizes > 20+ GB.

Another Tcl-dependent problem has the same source - the
absence of support for long integers. Each event (described
above) in the simulator has its unique ID, represented by an
unsigned integer, and this event ID is incremented for each
event. 32 bits are not enough to simulate large populations
of nodes with intensive traffic. In our experience, in the
above mentioned scenarios, we run out of unique IDs within
70-150 seconds of simulated time.

This problem can be solved by changing the event-counter
type to float. In Tcl, the float type uses twice the number
of bits as integers. With this modification, we can simulate
2000 mobile nodes with intensive traffic moving around the
area of 20km2 for 2400 seconds. Then the simulation ex-
hausts the space on a state-of-the art disk drive. Although
the changes are easy to describe, the actual problem is seri-
ous.

4. EXPERIMENTS
The goal of these experiments is to compare the perfor-

mance of the original NS-2 with the performance of the mod-
ified simulator for large ad hoc wireless networks. All ex-
periments are carried out on a commodity PC with a 1 GHz
Pentium-III and 512MB RAM.

4.1 Grid-based setup
We use 100 different scenario files with varying movement

patterns and traffic loads to run the DSR routing proto-
col against each of these scenario files on both versions of
the simulator. We concentrate on the DSR wireless routing
protocols since previous studies rated it to attractive ([1]
compares the performance of the following routing protocol:
DSDV, TORA, DSR and AODV).

Different movement patterns were created varying the
simulation time, the number of nodes, the size of simula-
tion area, the pause time, and the range of a node’s speed.
The pause time is the time that a node rests between two
moves. Each node begins the simulation by waiting for pause
time seconds. Then it selects a random destination within
the simulation area and moves there with a speed randomly
chosen from the range of permitted node speeds. When a
node reaches its destination, the node pauses again for pause
time seconds and then proceeds in the same way for the du-
ration of the simulation.

We experimented with various numbers of TCP and CBR
sources and two packet sizes (512 and 1024 bytes). All
peer-to-peer connections are started at times uniformly dis-
tributed between 0 and the corresponding simulation time
for a given movement pattern.

The results presented here were measured with the help of
the DSR protocol. In principle, the efficiency of the modified
NS-2 simulator must not depend on the routing protocol. To
confirm this claim, we also performed several experiments
with TORA, DSDV, and AODV. The results obtained in

1000m x 1000m

0

500

1000

1500

2000

2500

0 100 200 300 400 500
Number of nodes

Ti
m

e,
 s

original
new

Figure 6: Runtime of original and modified (grid-based)
simulator, area: 1km× 1km.

those experiments confirm that our extensions work inde-
pendently of the routing protocol.

Figures 6, 7, and 8 show the performance of the original
and the grid-based modified NS-2 simulator on different sce-
narios, and Figure 9 highlights the speedup of the modified
simulator in comparison with the original one.

For each experiment we apply the same scenario (chosen
from the set of pre-generated scenarios) for both simulator
versions and then compare runtime and output trace files. In
all cases we obtained absolutely identical network behavior
(we observe byte-to-byte correspondence between any two
output trace files generated from the same scenario setup).
This result means the extensions do not introduce any errors
into the final simulation results.

We can see from the figures that as the execution time
for the original version of the NS-2 simulator grows expo-
nentially, whereas the time of the modified simulator grows
linearly for the range that is depicted here. The exception
is the scenario with a simulation area of 1000× 1000m2. In
this case, the CST induced radius is about 550m (at trans-
mission power of 0.28 W). This radius is about half the side
of the simulated area. Therefore it is difficult to realize a
noticeable improvement when using the modified NS-2 sim-
ulator (since only nodes placed at opposite sides of the simu-
lation area do not interfere with each other). As a result the
original and modified simulators exhibit similar runtime be-
havior. The situation is different with areas of size 3×3km2,
5×5km2 and 10×10km2. Here the modified NS-2 simulator
works 4 to 20 times faster than the original. We notice a
more pronounced improvement in execution time with big-
ger numbers of mobile nodes in larger simulation areas.

4.2 List-based setup
Figure 10 depicts the relative advantage of the list-based

representation over the grid-based simulator. The list-based
simulator realizes an additional performance benefit due to
lower cost of identifying the set of nodes affected a trans-
mission, as discussed in Section 3.1.3. We see that at low
densities of nodes in each scenario, the difference between
the grid-based setup and the list-based setup is not high,

3000m x 3000m

0

500

1000

1500

2000

2500

3000

3500

0 100 200 300 400 500
Number of nodes

Ti
m

e,
 s

original
new

Figure 7: Runtime of original and modified (grid-based)
simulator, area: 3km× 3km.

5000m x 5000m

0

1000

2000

3000

4000

5000

0 200 400 600 800 1000
Number of nodes

Ti
m

e,
 s

original
new

Figure 8: Runtime of original and modified (grid-based)
simulator, area: 5km× 5km.

only 5-15% in favor of the list. However, as the number of
nodes grows, the difference becomes more significant, reach-
ing about 60% in the scenario with 500 nodes and an area
of 5× 5km2.

5. VALIDATION
To validate the modified NS-2 simulator we repeated the

experiments reported in [1]. We use the same setup as de-
scribed in [1] and present results for the simulation of 50
wireless mobile nodes communicating with each other and
moving around in a rectangular 1500m×300m flat space for
900 seconds of simulated time.

To create movement and communication scenarios we use
the scripts mentioned above. We run our simulation with
movement patterns generated for 7 pause times: 0, 30, 60,
120, 300, 600, and 900 s and generate scenario files with
70 different movement patterns, 10 for each value of pause
time. The node speed ranges from 0 to 20 m/s.

As traffic sources we choose constant bit rate (CBR)
sources with the sending rate set to 4 packets/s. We use

0

5

10

15

20

0 500 1000 1500 2000
Number of nodes

S
pe

ed
up

, t
im

es

10 x 10 sq.km

5 x 5 sq.km

3 x 3 sq.km

1 x 1 sq.km

Figure 9: Speedup of the grid-based simulator relative to
the original one.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 100 200 300 400 500
Number of nodes

S
pe

ed
up

, t
im

es

1x1 sq. km
3x3 sq. km
5x5 sq. km

Figure 10: Speedup of the list-based setup compared to
the grid-based one.

three different communication patterns corresponding to 10,
20, and 30 sources. The packet size is 64 B. All communica-
tion patterns are peer-to-peer, and connections are started
at random times chosen between 0 and 180 seconds. The
70 movement patterns taken in conjunction with the 3 com-
munication patterns lead to a total of 210 different scenario
files.

Figure 11 shows the percentage of data packets received
(of all packets sent). The results obtained by the modified
simulator (“new”) are identical to the number reported in
[1]. I.e, the output trace files have byte-to-byte correspon-
dence. Since the list-based and the grid-based modifications
of NS-2 always produce absolutely identical results, we in-
clude only a single figure.

6. MEMORY CONSUMPTION
The additional memory consumption of the modified NS-

2 simulator is small in comparison with the size of memory
occupied by the original system. The additional amount of
memory needed for the modified algorithm to store the 3D

85

90

95

100

0 100 200 300 400 500 600 700 800 900
Pause Time (sec)

#r
ec

ei
ve

d
/ #

se
nt

 (%
) original

new

Figure 11: Percentage of data packets received (of packets
sent) for DSR, original and modified simulator. 10 CBR
sources.

array of pointers (the grid) is expressed by the formula:

PtrSize · CellsPerX · CellsPerY ·NumberOfNodes,

where PtrSize is the size of the pointer type in bytes (4 for
the current implementation), CellsPerX and CellsPerY
are the number of cells for the X and Y side of the simulation
area, and NumberOfNodes is the total number of nodes.

Table 1 shows the amount of memory occupied by the
original NS-2 simulator when 1/3 of the nodes act as traffic
sources constantly sending data to some destinations5.

If we set the number of cells for the X and Y sides to 20
and set the number of nodes to 500, the additional memory
consumption is 800KB. It is less than 1% of the memory
occupied by the original NS-2 with this number of nodes.

The additional memory consumption for the list-based
setup is even smaller:

2 · PtrSize ·NumberOfNodes,

since each node has only two additional fields, MobileNode
*prevX, *nextX.

7. CONCLUDING REMARKS
The original NS-2 simulator shows poor performance for

large ad hoc wireless networks. To alleviate this scaling
problem, we base the computation of the interactions on
the truncation algorithm, which exploits the real-life prop-
erties of signal propagation. Consequently, NS-2 performs
much more effectively (up to 30 times faster) when simulat-
ing larger areas and/or larger numbers of mobile nodes than
the original, unmodified simulator.

The validation shows that our modifications of the NS-
2 simulator produce the same results as the original system
and do not introduce any new errors. Of course, every simu-
lator abstracts from the real system, and NS-2 delivers only
an approximation of a real wireless network.

The price for this performance improvement is an increase
in the amount of memory that is required. However, the

5These measurements are carried out using the ns2.1b6 ver-
sion of NS-2. The more recent version ns2.1b9a-gcc32 has
noticeably higher memory consumption.

Number of nodes Memory(MB)

10 8
50 13
100 23
300 73.1
500 138.7

Table 1: Memory allocated by original NS-2 simulator.

additional memory consumption is negligible in comparison
with the size of memory that is needed in any case. Given
the memory size of today’s workstations, this tradeoff in
favor of a reduced execution time seems to be worthwhile.

The simulation of large scenarios is crucial for ad hoc net-
works. The benefits of self-organization appear attractive,
but they must be demonstrated in large-scale settings. This
modified simulator offers one path to investigate such sce-
narios 6. Given the interest in ad hoc networks and the
well-established role of NS-2 for network simulations, we
hope the modified simulator enables interesting research in
ad hoc networks.

8. ACKNOWLEDGEMENT
We thank Cary Kornfeld for his suggestion to keep mobile

nodes in a sorted list and for insightful comments on earlier
drafts. Comments by the reviewers are appreciated.

9. REFERENCES
[1] J. Broch, D. Maltz, D. Johnson, Y. Hu, and J. Jetcheva. A

performance comparison of multi-hop wireless ad hoc network
routing protocols. In MOBICOM’98, pages 85–97, 1998.

[2] S. Das, C. Perkins, and E. Royer. Performance comparison of
two on-demand routing protocols for ad hoc networks. In
INFOCOM’2000 (1), pages 3–12, 2000.

[3] K. Fall. ns notes and documentation. The VINT Project, 2000.

[4] D. Johnson. Validation of wireless and mobile network models
and simulation. In DARPA/NIST Network Simulation
Validation Workshop, Fairfax, Virginia, USA, May 1999.

[5] D. Johnson, D. Maltz, and J. Broch. DSR: The Dynamic
Source Routing Protocol for Multihop Wireless Ad Hoc
Networks. In Ad Hoc Networking, C. Perkins (ed), Chapter 5,
pages 139–172, 2001.

[6] V. Park and S. Corson. The Temporally-Ordered Routing
Protocol (TORA) Specification.
draft-ietf-manet-tora-spec-00.txt, Internet Draft, IETF,
Octorber 1999. (Work in progress).

[7] C. Perkins and P. Bhagwat. Highly dynamic
destination-sequenced distance-vector routing (DSDV) for
mobile computers. In ACM SIGCOMM’94 Conference on
Communications Architectures, Protocols and Applications,
pages 234–244, 1994.

[8] C. Perkins, E. Belding-Royer, and S. Das. Ad Hoc On Demand
Distance Vector (AODV) Routing.
draft-ietf-manet-aodv-10.txt, Internet Draft, IETF, March
2002. (Work in progress).

[9] L. Perrone and D. Nicol. Using n-body algorithms for
interference computation in wireless cellular simulations. In
MASCOTS 2000 Intl. Workshop Modeling, Analysis and
Simulation of Computer and Telecommunication Systems,
pages 49–56, 2000.

6Available for download from www.lst.inf.ethz.ch

