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Abstract

Computer simulation is the most common approach to
studying wireless ad-hoc routing algorithms. The results,
however, are only as good as the models the simulation
uses. One should not underestimate the importance ofvali-
dation, as inaccurate models can lead to wrong conclusions.
In this paper, we use direct-execution simulation to vali-
date radio models used by ad-hoc routing protocols, against
real-world experiments. This paper documents a common
testbed that supports direct execution of a set of ad-hoc
routing protocol implementations in a wireless network sim-
ulator. The testbed reads traces generated from real experi-
ments, and uses them to drive direct-execution implemen-
tations of the routing protocols. Doing so we reproduce
the same network conditions as in real experiments. By
comparing routing behaviormeasuredin real experiments
with behaviorcomputedby the simulation, we are able to
validate the models of radio behavior upon which protocol
behavior depends. We conclude that it ispossibleto have
fairly accurate results using a simple radio model, but the
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routing behavior is quite sensitive to one of this model’s pa-
rameters. The implication is that one should i) use a more
complex radio model that explicitly models point-to-point
path loss, or ii) use measurements from an environment typ-
ical of the one of interest, or iii) study behavior over a range
of environments to identify sensitivities.

1. Introduction

Using simulation one must take the precaution that the
model may not reflect the reality. Validation of a wireless
network simulation is particularly difficult because not only
must the implementation of the simulated protocol be val-
idated against its design specifications, but also the model
must be able to capture lower-level characteristics of the
wireless environment with a proper level of abstraction [3].
The validation problem is amplified when the routing pro-
tocol deployed in a real system is implemented and main-
tained as a separate code base from the one used in simula-
tion.

Direct-execution simulation alleviates the problem of
maintaining separate code bases for the same routing proto-
col by executing the same code designed for real systems di-
rectly inside a wireless network simulator. We compile the
routing protocol’s source code with the simulator’s source
code with only moderate changes as necessary. The proto-
col’s logic is executed inside the simulator and is driven by



the simulator’s time advancing mechanism. In a discrete-
event simulation, the routing protocol code is invoked as
a result of the simulator processing events stored in the
event queue. Since each protocol instance communicates
with other simulated mobile stations by sending and re-
ceiving packets through well-defined system calls, we sub-
stitute these system calls with calls to the simulator. The
packets are redirected to go through the simulated wireless
network—all transparent to the protocol implementation.
Using direct-execution simulation is desirable for prototyp-
ing a protocol implementation, which, after initial simula-
tion evaluation, can be deployed directly in a real network.

Our interest in direct-execution simulation is that it can
help us validate the wireless network simulator using the re-
sults from real experiments. We run the same routing proto-
col and application traffic generator code both in simulation
and in the real experiment. The difference is that in the real
experiment packets are transmitted via the wireless chan-
nel and are subject to delays and losses due to signal fading
and collisions during the transmission. In simulation, these
packets are translated into simulation events scheduled with
delays calculated by the radio channel model. Depending
on the modeling details, the simulation result may or may
not reflect what would happen in reality. Direct-execution
simulation provides us a valuable opportunity to investigate
the effect of details of a wireless network model on the fi-
delity of the simulation study.

This paper documents our effort in supporting direct ex-
ecution of a set of wireless ad-hoc routing protocol imple-
mentations and using direct-execution simulation to vali-
date the underlying wireless network models by compar-
ing the results from real-world experiments. We ported
five routing protocol implementations for direct execution:
APRL, AODV, GPSR, ODMRP, and STARA. Versions of
all five protocols were implemented as part of the ActComm
project, whose goal is to provide information access through
a wireless network to soldiers in the field.1 One contribution
of our research is to provide a common testbed for direct
execution of these protocols in simulation. More impor-
tantly, we instrumented the testbed to enable validation of
various wireless network models. We embedded the routing
protocol code with various logging functions. Each laptop
computer running the routing protocols in the real exper-
iment has a Global Positioning System (GPS) device and
periodically records its location information and average re-
ceiving signal quality from other laptops. We later trans-
formed these logs into traces of node mobility and radio
connectivity. We adapted the simulator to read the traces
and combined them with different stochastic radio propa-
gation models to reproduce the test scenario inside simula-
tion. We compared the results from running these routing
protocols in simulation with those collected from the real

1http://actcomm.thayer.dartmouth.edu/.

experiment. Such comparison helps us understand the ef-
fect of different wireless network models on the behavior of
ad-hoc routing algorithms.

We present two set of experiments in this paper. The first
one compares two implementations of the AODV routing
protocol, both running in simulation. One AODV imple-
mentation was specifically designed for the simulator—the
protocol sends and receives packets, and schedules time-
outs using the special functions provided by the simula-
tor. The other AODV implementation was developed by the
ActComm project, designed for the real network, and was
directly executed in the simulator. The goal of this exper-
iment is to validate both protocol implementations and to
identify the overhead introduced by direct-execution simu-
lation in terms of memory usage and execution time. The
second set of experiments compares the results from a real
field test with those from simulation. In the real experiment,
we ran the routing protocols on 40 laptop computers, each
equipped with a wireless device and a GPS unit. The lap-
tops were carried by people walking randomly in a large
field. In simulation, we applied different radio propaga-
tion models together with the traces derived from the real
experiment. We directly executed the routing protocol im-
plementations in simulation and compared the behavior of
these protocols in both environments. The goal of this study
is to highlight the importance of modeling decisions on the
validity of a wireless simulation study.

The paper is organized as follows. Section 2 provides an
overview of the implementations of the ActComm routing
protocols and outlines the architecture of our wireless net-
work simulator on which we directly execute these protocol
implementations. In Section 3 we briefly describe issues re-
lated to direct-execution simulation. Section 4 presents the
augmented simulation testbed designed for validation pur-
poses. We focus on the experiments and results in Section 5.
Section 6 concludes the paper.

2. Background

2.1. The Routing Protocols

We ported five protocols for direct execution. Any-Path
Routing without Loops (APRL) is a proactive distance-
vector routing protocol [5]. Rather than using sequence
numbers, APRL uses ping messages before establish-
ing new routes to guarantee loop-free operation. Ad-
hoc On-Demand Vector (AODV) is an on-demand rout-
ing algorithm—routes are created as needed at connection
establishment and maintained thereafter to deal with link
breakage [10]. Greedy Perimeter Stateless Routing (GPSR)
uses GPS positions of the mobile stations to forward pack-
ets greedily along a path toward the target’s physical loca-
tion [6]. GPSR uses a perimeter-following algorithm to for-



ward packets around the boundaries of empty regions that
contain no laptops (and hence cause greedy forwarding to
fail). On-Demand Multicast Routing Protocol (ODMRP)
maintains a mesh, instead of a tree, for alternate and redun-
dant routes for each multicast group [7]. It does not depend
on another unicast routing protocol and, in fact, can be used
for unicast routing. System and Traffic Dependent Adaptive
Routing Algorithm (STARA) uses shortest-path routing [2].
The distance measure is calculated by the mean transmis-
sion delay instead of the hop count.

We implemented these protocols for the ActComm
project in C++ on Linux. All five implementations per-
form their routing in user space using IP tunneling and UDP
sockets. An IP tunnel is a virtual network device with two
endpoints: one as a regular network interface, and the other
as a Unix file. Packets sent to the network interface, via
a standard UDP socket for example, can be read from the
file by any (authorized) user process, while packets written
to the file are delivered by the kernel as if they had arrived
over the network interface. Each mobile station has a virtual
IP address (e.g., 11.0.0.1) associated with the network inter-
face of the tunnel, and a physical IP address (e.g., 10.0.0.1)
associated with the network interface of the physical wire-
less device. The application communicates using virtual IP
addresses. The kernel IP routing table in each mobile sta-
tion is configured to forward packets with virtual destina-
tion addresses to the IP tunnel device. At the source of a
transmission, the packet sent from the application is for-
warded through the IP tunnel to the routing protocol read-
ing the device file. The routing protocol then converts the
virtual addresses to physical addresses and selects the next
hop to forward the packet to according to its routing table.
Packets are forwarded to their neighbors using UDP sock-
ets through the physical (wireless) network device. Once
the packet reaches its destination, the physical addresses are
translated back into virtual addresses and the routing proto-
col writes the packets to the device file that represents the
IP tunnel, which then deliver the packet to the application
via the virtual network interface.

2.2. The Wireless Network Simulator

We developed a high-performance simulator called
SWAN as an integrated, flexible, and configurable environ-
ment for evaluating different wireless ad-hoc routing proto-
cols, especially in large network scenarios. SWAN is built
based on a parallel discrete-event simulator called DaSSF,
which has proved successful in simulating large-scale wired
networks.2 We ported and implemented several protocol
models that are used frequently in a wireless ad-hoc net-
work. The protocol models can be readily assembled into a
protocol stack within each simulated mobile station. Using

2http://www.cs.dartmouth.edu/research/DaSSF.

SWAN, one can dynamically configure each protocol and
the underlying wireless network using a specially designed
configuration language.

In this paper, we study the effect of various radio sig-
nal propagation models on the behavior of the routing algo-
rithms in simulation. In particular, we examine three sim-
ple but frequently used stochastic radio propagation mod-
els: a Friis free-space model, a two-ray ground reflection
model, and a generic propagation model. The Friis free-
space model assumes an ideal radio propagation condition:
the signals travel in a vacuum space without obstacles. The
power loss is proportional to the square of the distance be-
tween the transmitter and the receiver. The two-ray ground
reflection model adds a ground reflection path from the
transmitter to the receiver. The model is more accurate than
the free-space model when the distance is large and when
there is no significant difference in elevation between the
mobile stations. The generic propagation model describes
the radio signal attenuation as a combination of two effects:
small-scale fading and large-scale fading. The small-scale
fading captures the characteristic of rapid fluctuation in sig-
nal power over a short period of time or a small change
in the node’s position—a result primarily due to the exis-
tence of multiple paths that the signals travel. The clas-
sic models that predict the small-scale fading effect include
Rayleigh and Ricean distributions. Large-scale fading is
mostly caused by the environmental scattering of the sig-
nals and can be further divided into two components: the
distance path loss is the average signal power loss as a func-
tion of distance and is proportional to the distance raised to
a specified exponent; the shadow fading effect describes the
variations in signal receiving power measured in decibels
and can be modeled as a log-normal distribution. Readers
can refer to a textbook on wireless communications (such
as Rappaport’s book [11]) for a detailed discussion on the
radio propagation models.

3. Direct Execution

In simulation, multiple instances of a routing protocol
must run simultaneously, driven by the same event queue.
Conceivably, each routing protocol can run as a separate
process and interact with the simulation kernel through
inter-process communication mechanisms. We only need
to substitute the system calls related to either communica-
tions (i.e., sending or receiving packets) or time (e.g., query-
ing for the current wall-clock time or potentially blocking
the user process causing noticeable delays) with calls to the
simulator. The replacement can be done at link time after
compilation. The major attraction of this approach is that
no source code modification is necessary. The drawback,
however, lies in its complexity and the potential overhead
introduced by the inter-process communication.



We chose an easier yet faster approach that allows multi-
ple instances of the same routing protocol to execute in the
same address space. The method involved moderate modifi-
cations to the source code. Similar approaches can be found
in the literature [1, 8, 9]. We ported all five ActComm rout-
ing protocols together with related programs, such as the ap-
plication traffic generator used in the real experiment. The
number of lines changed accounts for only3.8% and most
changes were related to creating and configuring the rout-
ing protocols individually in each simulated mobile station,
separated from the protocol’s control flow.

3.1. Encapsulations

We modified the protocol code slightly to allow multiple
instances of a routing protocol to run simultaneously inside
the simulator. Since all these instances are executed in the
same address space, we need to provide wrappers so that
these instances can be identified and separated in the same
execution environment.

We created a protocol session object to represent each
routing protocol instance in the simulator. The protocol’s
interaction with the operating system, such as system calls
for sending and receiving packets, was replaced by method
invocations of the protocol session. These methods redi-
rect the calls to simulator. We also replaced global vari-
ables, which are data objects specific to a routing protocol
instance, with member data of the protocol session. We re-
placed the originalmain function in the routing protocol
implementations with a method of the protocol session that
configures and initializes the instance.

3.2. Communications

The routing protocol implementations use system calls
for communications, such assendto for sending messages
through UDP sockets. As mentioned earlier, we replaced
these system routines with those supplied by the simula-
tor. Rather than replacing them manually at all places of the
source code, we provided a base class that contains meth-
ods with the same names as the system routines and with the
same parameters. In this way, all classes in the protocol im-
plementations default to call the methods in the base class.
The base class contains a reference to the protocol session
that represents the routing protocol instance. The methods
in the base class forward control through the reference to
the protocol session, which passes on the messages through
the simulated protocol stack.

We added support in the simulator for UDP sockets. A
UDP protocol session manages the UDP sockets on top of
the IP layer and its primary function is to multiplex and de-
multiplex UDP datagrams. We replaced system calls re-
lated to UDP sockets, such assocket , bind , sendto ,

recvfrom , andsetsockopt , with methods that interact
with the UDP protocol session. We also implemented the
IP tunnel device in the simulator. The device is treated as a
network interface below the IP layer in the protocol stack.
Packets sent by the application with virtual destination ad-
dresses (via UDP sockets) are diverted to the tunnel device
by the IP layer. The routing algorithm accesses the IP tunnel
through a regular file descriptor. We replaced the file access
functions, specificallyopen , read , write , andclose ,
to distinguish the file descriptor for the tunnel device from
other regular files. We did not replace operations to regular
files since they are used by the directly executed code for
logging purposes.

3.3. Timings

The routing protocols executed inside the simulator must
be driven by simulation time rather than real time, which
means that we must deal with all time-sensitive system calls
carefully. We replacedgettimeofday , which returns the
wall-clock time of the mobile station, with a call to the sim-
ulator querying for the current simulation time. We also
replacedselect , which causes the running process to be
blocked until any one of the specified set of file descriptors
is ready for reading or writing, or the given timeout inter-
val has been elapsed. The ActComm protocol implemen-
tations all center on an event loop that contains one call to
the select function. When the control returns from this
function—upon timeouts or incoming messages—the algo-
rithm invokes the corresponding event handlers to process
the event. We bypassed the the event loop and directly in-
voked the event handlers whenever a timeout occurred or a
message arrived at the protocol session.

One also has to be aware of the ramifications from the
lack of a CPU work model in the wireless simulator. The
simulator uses function invocations for packets to travel up
and down the protocol stack, without advancing the simula-
tion time. This bears no side-effect for a carefully designed
protocol model, where the packet processing time is simu-
lated with proper random delays, but may create problems
for a directly executed protocol implementation that pays no
special attention to the packet processing time. If in simula-
tion we assume zero packet processing time, the behavior of
all instances of a routing protocol could be synchronized in
simulation time. This time synchrony could then lead to an
unnaturally high probability of packet loss due to collisions
at the radio channel. To deal with this problem, we intro-
duced packet jitters at the interface between the simulator
and the directly executed code. Each time a message goes
through a UDP socket, we added a random delay to model
the time needed by the operating system for processing the
packet.



4. Support for Simulation Validation

In this section we discuss our support to validate a wire-
less simulation by comparing results from the real exper-
iment and the direct-execution simulation. Validation of
simulations in general and wireless ad-hoc network simu-
lations in particular has been a focal point surrounding the
applicability of simulation studies. Johnson first suggested
using the logging information from running ad-hoc routing
algorithms during the real experiment to simulate identical
node movement and communication scenarios [4]. Takai
et al. studied the effect of wireless physical layer and radio
channel modeling on the performance evaluation of ad-hoc
routing algorithms [12, 13].

Our research uses real experiments as the base for com-
parison. In particular, we ran the routing protocol imple-
mentations together with other applications, such as the
traffic generator, directly in the simulator. We derived both
mobility and radio connectivity traces from the real exper-
iment and combined them with a stochastic propagation
model in an attempt to recreate the real network conditions
in simulation. We compared the results against those from
the real experiment to assess the validity of the radio prop-
agation model.

In all five ActComm routing protocol implementations
we embedded a sophisticated logging mechanism, as shown
in Figure 1. When the routing protocol runs, it generates
an event log that includes all types of events related to the
routing algorithm, such as sending or receiving a control
message. We used the event log both for analyzing the per-
formance of the routing algorithm and for debugging. We
also instrumented the traffic generator with logging func-
tions to record each packet sent and received. We later used
this application log to calculate application-level statistics,
such as packet delivery rate and end-to-end delay. The traf-
fic generator executed directly in the simulator also read this
log to recreate the exact traffic behavior.

In the real experiment, we ran a third program called
the service moduletogether with the routing protocol and
the application traffic generator. The program periodically
queried the attached GPS device at the mobile station to log
its current position. The program also usediwspy to pe-
riodically record link quality information.iwspy allows
the user to set a list of network addresses. The wireless de-
vice driver gathers the link quality information, in signal-to-
noise ratio (SNR), whenever a packet is received from one
of those addresses, that is, from any other laptop. The ser-
vice module collected the link quality information and aver-
aged it over the last sampling interval. Also, it periodically
broadcasted beacon messages that contain position informa-
tion of all known mobile stations. The original ActComm
applications used them to keep every soldier in the field up-
dated with the positions of other soldiers. We recorded the
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Figure 1. Logs are generated and compared
for validating simulation results.

beacon messages and used them to refresh the link quality
information.

In simulation, the routing protocols are running directly
inside the simulator together with the application traffic
generator and the service module. We chose to directly
execute the service model since we need to reproduce the
beacon messages and their effect on the MAC/PHY states
of the wireless network.

We further processed the position log from the real ex-
periment to produce a mobility trace, which shows how
each mobile station moved during the experiment. In addi-
tion, we generated a node connectivity trace from the bea-
con logs recorded by the mobile stations during the real ex-
periment. The mobility trace states whether a mobile sta-
tions can receive a packet from another mobile station over
the wireless channel at a given time. The beacon log con-
tains the times at which the beacon messages from other
mobile stations were received. Receiving a beacon success-
fully indicates a link from the sender to the receiver, while
missing several consecutive beacons indicates that the re-
ceiver may be beyond the transmission range of the sender.

The signal quality log recorded a series of averaged
signal-to-noise ratios for packets received at each mobile
station from other stations in the network. We did not in-
clude the signal quality log in this study. We are currently
investigating the use this log to reconstruct the connectivity
of the network, as it may provide a better alternative to the
beacon log.

We used the radio connectivity trace as a baseline to de-
termine whether two mobile stations could directly commu-
nicate with each other. The connectivity information, how-
ever, does not capture the state of interference—collisions
could happen due to the presence of “hidden terminals.” For



example, if node B can hear both node A and node C situ-
ated on either side, but node A cannot talk to C and vice
versa because of the distance, it is possible that node B can-
not faithfully receive a packet from A if node C is transmit-
ting another packet to node B. Although the 802.11 MAC
layer protocol, which arbitrates packet transmissions over
the radio medium, allocates the radio channel before each
transmission, it cannot totally prevent collisions. In this
case, the simulator must use an interference model to sim-
ulate what would happen when two packets arrive at the
receiver—one of the packets can be accepted if its receiving
power is significantly higher than the other, or both packets
can be lost due to interference. Since the interference model
relies on the receiving signal power to determine packet re-
ceptions, we still need a radio propagation model to simu-
late the signal power attenuation.

5. Performance and Validation Studies

We conducted two experiments for validation: one com-
paring the direct-execution simulation of the ActComm
AODV protocol implementation with an AODV protocol
model implemented natively in the simulator, and the other
comparing a real experiment with the simulated wireless
network.

5.1. AODV vs. AODV

Our first experiment compared the direct execution of
the ActComm AODV protocol implementation with an
AODV protocol model implemented natively in SWAN.
We ran both protocol implementations in simulation un-
der the same simulated network conditions, with the same
application traffic pattern, and the same radio propagation
model. Our goal is to validate both protocol implementa-
tions against each other and determine how much overhead
direct-execution simulation requires.

In the simulation experiment, we tested a network of 50,
100, and 200 mobile stations, out of which we chose 20
mobile stations as traffic sources. We deployed these mo-
bile stations in a square area, sized so that each mobile sta-
tion had seven neighbors on average (796, 1126, and 1592
meters for each dimension, respectively). We used the ran-
dom way-point node mobility model: each node moves to a
randomly selected point in the area with a speed chosen uni-
formly between 1 and 10 meters/s; when reaching the point,
it pauses for 60 seconds before selecting another point to
move to. We chose the IEEE 802.11 protocol for the MAC
and PHY layer with standard parameters according to the
IEEE specification (with 11 MB/s bandwidth), and we used
the generic radio propagation model (with an exponent of
2.5 and shadow fading log-normal standard deviation of 6
dB) to compute radio signal power attenuation. We used

a simple application traffic generator: each source period-
ically sends one packet (of 1 KB in size) to a randomly
selected peer with an exponentially distributed inter-arrival
time.

The behaviors of the two implementations differed
slightly owing to variations in treatment of the AODV spec-
ifications. In addition, the ActComm AODV protocol ran
in user space using IP tunneling and UDP sockets, while
SWAN AODV ran directly on top of IP. The messages
from the application traffic generator, when delivered to
the ActComm AODV protocol through the IP tunnel, were
wrapped with UDP and IP headers. Both the data and con-
trol messages used by ActComm AODV were also aug-
mented with UDP headers through UDP sockets. Nonethe-
less, we found that, with varying traffic load, the overall
packet ratio—which is the total number of packets received
by the application layer divided by the total number of pack-
ets sent—differed only slightly between these two imple-
mentation (less than 3%). The similarity in the behavior of
the two implementations ensures that using the two imple-
mentations to assess the cost of direct execution is mean-
ingful.

Figures 2 and 3 show the difference in total execution
time and peak memory usage between the two implementa-
tions of the AODV protocol. Clearly, the ActComm AODV
(direct-execution) implementation requires more computa-
tional resources, but marginally so. The greatest increase
in the execution time (about 18%) is at larger network size
and heavier traffic load. The increased execution time is
mostly caused by the overhead of copying and serialization
of real packets. The memory overhead of ActComm AODV
(over 100%) is more significant. We attribute it to the ad-
ditional data structures used by the direct-execution proto-
col session, the IP tunnel device, and the UDP socket layer,
which are proportional to the number of simulated mobile
stations. Moreover, in simulation, the directly executed
routing protocol and the application send and receive real
packets with real message headers and real payloads. The
overhead grows with increasing traffic intensity as packets
stay longer in the wireless network due to more contentions.

In conclusion, direct-execution simulation requires more
computational resources, especially in memory usage. The
benefit of directly executing a routing protocol implementa-
tion in simulation is the assurance that the protocol imple-
mentation exhibits the same behavior as in a real network. A
routing protocol model implemented natively in the simula-
tor, however, may benefit from computational optimizations
such as eschewing actual message headers and payloads.
Thus, a protocol model, once validated, can be used in situ-
ations where the resource requirement is critical, such as in
a simulation of a large-scale wireless network. On the other
hand, the extra costs of direct-execution are not so onerous
that it disqualifies the technique as a means of experimen-
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tation. There are obvious advantages to maintaining a com-
mon code base between a protocol’s actual implementation,
and that used to study its behavior in a simulator.

5.2. Simulation vs. Reality

As the second step in our validation, we compared the
results from an outdoor routing experiment with our simu-
lation results. In particular, we compared the results from
the real experiment with the simulation results using differ-
ent radio propagation models. The purpose of this study is
to reveal the sensitivity of the performance of the routing
protocols to the underlying wireless models.

5.2.1 The Real Experiment

The outdoor routing experiment took place on a rectangular
athletic field measuring approximately 729 by 1408 feet (or

222 by 429 meters). Each of the 40 laptop computers used
in this experiment had a Lucent (Orinoco) 802.11B wire-
less card operating in peer-to-peer mode at 2 MB/s. Each
laptop had a Garmin eTrex GPS unit attached via the serial
port. These GPS units did not have differential GPS capa-
bilities, but were accurate to within 10 meters during the
experiment.

For this particular outdoor experiment, we included
APRL, AODV, ODMRP and STARA (GPSR was still un-
der development). The laptops, whose clocks were set to the
time reported by the GPS unit, automatically ran each rout-
ing algorithm for 15 minutes, with two minutes of network
quiescence between each algorithm to handle cleanup and
setup chores. After each routing algorithm had been run-
ning for one minute, providing time to reach an initial sta-
ble routing configuration, the laptops automatically started a
traffic generator that generated “streams” of UDP packets.
The number of packets in each stream was Gaussian dis-
tributed with mean 5 and standard deviation

√
2; the time

between streams was exponentially distributed with mean
15 seconds; the time between packets inside a stream was
exponentially distributed with mean 3 seconds; every packet
contained approximately 1200 data bytes; and the target
laptop for each stream was uniformly randomly selected
from among the other laptops. We chose these numeri-
cal parameters to approximate the (moderate) traffic volume
observed during an earlier demonstration of a military ap-
plication. The routing algorithm parameters, such as the
beacon interval for APRL and the forwarding group life-
time for ODMRP, were set to “standard” values taken from
the literature and our own experience.

During the course of the experiment, the laptops were
continuously moving. The athletic field was divided into
four equal-sized quadrants, one of which was approxi-
mately eight feet lower in elevation than the rest of the field.
The hills from the higher to lower elevation were steep and
short, and thus did obstruct the wireless signal, increasing
the frequency with which the routing algorithms needed to
find a multi-hop route. At the start of the experiment, the
40 participants were divided into equal-sized groups of 10
each, each of which was instructed to randomly disburse
in one of the four quadrants. The participants then walked
continuously, always picking a quadrant different than the
one in which they were currently located, picking a random
position within that quadrant, walking to that position in a
straight line, and then repeating. This approach was cho-
sen since it was simple, but still provide continuous move-
ment to which the routing algorithms could react, as well as
similar laptop distributions across each of the four routing
algorithms.

Each laptop recorded extensive logs as described in Sec-
tion 4. At the end of experiment, we discovered that seven
laptops failed to generate any data or routing traffic due to



misconfiguration or hardware problems. Thus, the experi-
ment, in practice, reduced to a 33-laptop experiment and the
logs from these 33 laptops were used as the starting point for
comparing the real-world and simulated results.

5.2.2 The Simulation

We processed the logs from the real experiments to derive
the mobility and radio connectivity traces for each laptop
for the duration of running each routing algorithm. We ran
the simulation for each algorithm for the designated period.
We directly ran the routing protocol and the service mod-
ule in each simulated mobile station. We modified the ap-
plication traffic generator to read the application log and
generate the same packets as in the real experiment. We
focused only on the 33 laptops that actually transmitted, re-
ceived, and forwarded packets in the real experiments. To
reproduce the traffic pattern in simulation, the application
traffic generator on each of the 33 nodes still included the 7
crashed nodes as their potential packet destinations.3

The mobile stations in simulation followed the mobil-
ity trace generated from the real experiment. We exam-
ined three radio propagation models: a free-space model,
a two-ray ground reflection model, and a generic propaga-
tion model. The simulator delivered each transmitted packet
to all neighbor stations that could receive the packet with
an average signal power beyond a minimum threshold. We
used the propagation models to determine the power loss for
each packet transmission and calculate the signal-to-noise
ratio to quantify the state of interference at the receiver—
whether a packet that arrived at a mobile station could be
received successfully, or dropped due to significant power
loss or collisions. We combined the three models with the
connectivity trace derived from the beacon logs, leading to
six different radio propagation models in simulation: three
using the connectivity traces and the other three not. In the
first three cases, we used the connectivity trace to deter-
mine whether a packet from a mobile station could reach
another mobile station, and then we used the radio propa-
gation models to determine the receiving power for the in-
terference calculation. Comparison of models with mea-
sured connectivity with those without give us a means of
determining whether the model contains accurate predictive
power for connectivity.

5.2.3 The Results

We first examine the packet delivery ratio. Figure 4 shows
the packet delivery ratio from the real experiment and the
simulation runs with six radio propagation models (three of

3Therefore, the packet-delivery ratios, both from the real experiment
and the simulation, should be lower than expected, since those packets
with unknown destinations could not be delivered.
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Figure 4. Comparing the data delivery ra-
tio from the real experiment with various ra-
dio propagation models. “With connectivity”
means the connectivity trace was used.

which used the connectivity trace derived from the real ex-
periment to determine the reachability of the signals). Each
simulation result is an average of five runs; the variance is
insignificant and therefore not shown. The generic propaga-
tion model in the experiment used typical parameters to de-
scribe the outdoor environment of the real experiment: we
used2.8 as the path-loss exponent and 6 dB as the standard
deviation for shadow fading.

We found that the simple generic propagation model of-
fered an acceptable prediction of the performance of the
routing algorithms, although different propagation models
predicted vastly different protocol behaviors. The differ-
ence is significant in some cases that could result in mis-
leading conclusions, for example, when comparing the per-
formance of AODV and ODMRP. The inaccuracy in the
model prediction introduced by the propagation model is
non-uniform and can undermine a performance comparison
study of different protocols.

For AODV, APRL, and STARA, the figure shows a large
exaggeration of the packet delivery ratio using the free-
space model and the two-ray ground reflection model. Both
models overestimated the transmission range of radio sig-
nals causing shorter routes and therefore better packet de-
livery ratio. Even with the connectivity trace, the mod-
els overestimated the signal quality, failing to capture the
lossy characteristic of the radio propagation environment.
The performance of ODMRP was underestimated in sim-
ulation. ODMRP is a multicast routing algorithm that de-
livers packets using multiple paths to their destinations. It
has a higher demand on the network bandwidth. The over-
estimated transmission range and signal quality in the free-
space and two-ray models caused more contentions and cre-
ated a negative effect on the simulated throughput.

The packet delivery ratio does not reflect the entire ex-
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Figure 5. The hop-count histogram of AODV
in real experiment and in simulation.

ecution environment of the routing algorithm. Figure 5
shows a histogram of the number of hops that a data packet
traversed in AODV, before it either reached its destination
or dropped along the path. For example, a hop count of
zero means that the packet was dropped at the source node;
a hop count of one means the packet went one hop: ei-
ther the destination was the source’s neighbor or the packet
failed to reach the next hop. The figure shows the frac-
tion of the data packets that traveled in the given number
of hops. We see clearly the free-space and two-ray models
resulted fewer hops by exaggerating the transmission range.
We also see that the connectivity trace was helpful in pre-
dicting the route lengths, which confirms that the problem
with the free-space and two-ray models using the connec-
tivity trace was that they did not consider packet losses due
to the variations in receiving signal power.

The generic propagation model with typical parameters
to represent the outdoor test environment offered a rela-
tively good prediction of the performance of the routing al-
gorithms. However, one must carefully choose the correct
parameters to reflect the wireless environment. The expo-
nent for the distance path loss and the standard deviation in
log-normal distribution for the shadow fading are heavily
dependent on the environment under investigation. In the
next experiment, we ran a simulation with the same num-
ber of mobile stations and with the same traffic load as in
the real experiment. Figure 6 shows AODV performance
in packet delivery ratio with the same network setting but
varying the path-loss exponent and the shadow log-normal
standard deviation.

The AODV behavior was more sensitive to the path-loss
exponent than to the shadow standard deviation. That is, the
signal propagation distance had a stronger effect on the al-
gorithm’s performance. A shorter transmission range means
packets must travel through more hops (via longer routes)
before reaching its destination, and therefore has a higher
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Figure 6. Sensitivity of AODV performance to
parameters of large-scale fading model.

probability to be dropped. A larger shadow standard de-
viation caused the links to be more unstable, but the ef-
fect varied. On the one hand, when the path-loss exponent
was small—the signals had a long transmission range, the
small variation in the receiving signal strength did not have
a significant effect on routing, causing only infrequent link
breakage. On the other hand, when the exponent was large,
most nodes were disconnected. A variation in the receiv-
ing signal power helped establish some routes which were
impossible if not for the signal power fluctuation. Between
the extremes, a larger variation in the link quality generally
caused more transmission failures, and therefore resulted
slightly lower packet delivery ratio.

The critical implication of this sensitivity study is that
we cannot just grab a set of large-scale fading parameters,
use them, and expect meaningful results for any specific
environment of interest. On the one hand, pre-simulation
empirical work to estimate path-loss characteristics might
be called for, if the point of the experiment is to quantify
behavior in a given environment. Alternatively, one may re-
quire more complex radio models (such as ray-tracing) that
include complex explicit representations of the domain of
interest. On the other hand, if the objective is to compare
protocols, knowledge that the generic propagation model is
good lets us compare protocols using a range of path-loss
values. While this does notquantifybehavior, it may allow
us to makequalitativeconclusions about the protocols over
a range of environments.

To summarize, we used simple stochastic radio propaga-
tion models and the traces generated from a carefully de-
signed real experiment. Direct-execution simulation pro-
vided a common baseline for comparing the behavior of
routing protocols both in the real experiment and in sim-
ulation. We found that it is critical to choose a proper wire-
less model that reflects a real-world scenario for studying
the performance of ad-hoc routing algorithms. In contrast



to earlier studies [12], we found that using a simple stochas-
tic radio propagation model with parameters typical to the
outdoor environment can produce acceptable results. We
must recognize, however, the results are sensitive to these
parameters. It is for this reason we caution that the conclu-
sions drawn from simulation studies using simple propaga-
tion models should apply only to the environment they rep-
resent. The free-space model and the two-ray model, which
exaggerate the radio transmission range and ignore the vari-
ations in the receiving signal power, can largely misrepre-
sent the network conditions.

6. Conclusions

This paper reports our effort to support direct-execution
simulation of a set of wireless ad-hoc routing protocols to
facilitate validation of wireless network models.

In an experiment, we compared two implementations
of the AODV protocol: one with direct execution and the
other implemented natively in the simulator. We found that
direct-execution simulation requires more computational
resources, especially in memory usage, thus making the
modeled protocol more attractive in a resource-constrained
situation, such as studying protocol behaviors in a large net-
work environment. The CPU overhead of direct-execution,
however, is moderate and in most case cannot keep direct-
execution simulation from being a valuable means of ex-
perimentation with the obvious advantage of maintaining
consistency between a protocol’s actual implementation and
that used in simulation.

We conducted a real experiment running the protocols
on 40 laptop computers in an outdoor environment. We
embedded a sophisticated logging mechanism in the pro-
tocol implementations. All activities related to the rout-
ing algorithms and the applications were recorded in files.
Post-processing these files results in traces that we used in
simulation to reproduce the same network condition. We
found that one can use a simple stochastic radio propaga-
tion model to predict the behavior of the routing protocols
with fairly good accuracy, but the results are quite sensitive
to the model’s parameters. We argue that choosing a proper
wireless model that represents the wireless environment of
interest is critical in performance evaluation of the routing
algorithms.

Our future work includes further analysis to validate dif-
ferent wireless models under different real experimental
conditions. We are currently investigating using the link
quality information collected by the wireless device driver
to improve the accuracy of the connectivity trace. Also, we
want to translate the terrain information of the real experi-
ment into a radio propagation gain matrix for a more real-
istic representation of the wireless environment, and study
the effect of such modeling details on the performance eval-
uation of wireless ad-hoc routing protocols.
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