
Simulation of Large-Scale Heterogeneous Communication Systems

Lokesh Bajaj, Mineo Takai, Rajat Ahuja, Rajive Bagrodia
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095

Abstract- Large-scale hybrid networks that include wireless,
wired, and satellite-based communications are becoming
common in both military and commercial situations. This paper
describes a scalable simulation environment that effectively
utilizes parallel execution to reduce the simulation time of
detailed high-fidelity models of large communication networks.
The paper also presents a set of case studies that evaluate the
performance of large wireless networks with thousands of nodes
*and compares the impact of different lower layer protocols on
the performance of typical applications.

I. INTRODUCTION

High-level design problems for the digital communication
infrastructure in the battlefield environment, as envisaged for
DOD programs like the Warfighter Information Network
(WIN), are extremely challenging in a number of dimensions:
the scale is large; network traffic is a mix of voice, data, and
imagery; connectivity can change dynamically in
unpredictable ways; and the quality of service requirements
are often severe. Fig. 1 presents a sample military
communication scenario that includes wireless, wireline,
satellite, and airborne communication assets. The total
number of communication devices in such scenarios is often
in the thousands, and for even modest deployments it can
scale up to the tens of thousands. For joint force exercises,
having a hundred thousand communication units is not
unrealistic.

UAV Network

Fig. 1: Warfighter Information Network (WIN)

The multitude of proposed solutions at each protocol layer
for wireless, wireline, and satellite networks has led to an
explosion in possible design choices for these networks. The
size of these networks makes experimentation and
measurement prior to deployment impossible, yet the risks of

This research was supported by ARPA/CSTO under Contract DABT-63-94-
C-0880, and by ARPA under Contract DAAB-07-97-C-D321.

deploying these new technologies in critical situations require
assurance that they will work. Detailed, high fidelity
simulation of the communication infrastructure can provide
invaluable insights to help the DOD make appropriate
choices. Under current funding from DARPA, we are
developing a scalable simulation facility whose objective is to
simulate networks with up to a hundred thousand nodes
linked by a heterogeneous communications capability that
includes multicast, asymmetric communications using direct
satellite broadcasts, multi-hop wireless communications using
ad hoc networking, and traditional Internet protocols. The
scalability of the simulator to very large networks will be
achieved primarily by exploiting parallelism on state-of-the-
art parallel computers. We have already demonstrated the
feasibility of using parallel model execution to achieve
dramatic reductions in execution times of such models. For
instance, we have been successful in running a detailed
simulation of a large wireless network with 10,000 mobile
radios. Using parallel execution, it was possible to reduce the
execution time sufficiently such that a model with 10,000
wireless nodes could be simulated on six processors in less
time than a network with half as many nodes using purely
sequential execution.

A number of network simulators, both commercial and
university research projects, have been developed [6, 8]. Well
known commercial simulators include BoNeS from Cadence,
COMNET from CACI, and Opnet from Mil3 [2]. None of
these tools have been used for the large-scale simulations
described in this paper. Widely used public domain
simulators include NS developed at LBNL, and this is being
used to develop an Internet simulator called VINT at ISI [8].
NS is basically a transport-level simulator that supports
several flavors of TCP (include SACK, Tahoe and Reno) and
router scheduling algorithms. Models can be described using
a variation of the Tool Command Language, Tcl. The VINT
effort is a recent start that aims to develop a comprehensive
simulator for the Internet; it does not address the use of
parallel execution, and to the best of our knowledge has not
been used for detailed high fidelity simulation of large
networks.

The next section gives an overview of the parallel library
of network models that is being developed and presents the
results of a few selected experiments to demonstrate the
scalability of the simulator to very large networks. The
following sections present case studies in the use of the
simulator to evaluate the performance of a real-world
application – replicated file systems in a wireless
environment.

II. GLOMOSIM LIBRARY

GloMoSim (for Global Mobile Information System
Simulator) is a scalable simulation library for wireless
network systems [5]. It is built on top of the PARSEC
simulation environment [3] that provides parallel discrete-
event simulation capability. In contrast to existing network
simulators such as OPNET and NS, GloMoSim has been
designed and built with the primary goal of simulating very
large network models that can scale up to a million nodes
using parallel simulation to significantly reduce execution
times of the simulation model.

As most network systems adopt a layered architecture,
GloMoSim is being designed using a layered approach
similar to the OSI seven-layer network architecture. Simple
APIs are defined between different simulation layers. This
allows the rapid integration of models developed at different
layers by different people. Actual operational code can also
be easily integrated into GloMoSim with this layered design,
which is ideal for a simulation model as it has already been
validated in real life and no abstraction is introduced. For
example, a TCP model was implemented in GloMoSim by
extracting actual code from the FreeBSD operating system.
This also reduces the amount of coding required to develop
the model.

A common API between every two neighboring models on
protocol stacks is predefined to support their composition.
These APIs specify parameter exchanges and services
between neighboring layers. For example, interfaces between
the Data Link (MAC) layer and the network layer are defined
as messages with the following formats in the simulation
library:

Packet Handling APIs:
Data packet from network to MAC layer for transmission:

Packet_network_to_mac (destId, payload, packetSize)
Data packet from MAC to network layer on reception:

Packet_mac_to_network (sourceId, payload, packetSize)

For outgoing packets sent from the network to the MAC
layer, the destId field refers to the next hop for this particular
packet. For incoming packets sent from the MAC to the
network, the sourceId field refers to the previous hop on
which this packet arrived. The payload and packetSize fields
refer to the actual data and the size of the data that is being
received or sent for all packets. Each protocol module at a
given layer is required to comply with the APIs defined for
that layer.

Table I lists the GloMoSim models currently available at
each of the major layers. GloMoSim also supports two
different mobility models. Nodes can move according to a
model that is generally referred to as the “random waypoint”
model [7]. A node chooses a random destination within the
simulated terrain and moves to that location based on the
speed specified in the configuration file. After reaching its
destination, the node pauses for a duration that is also

specified in the configuration file. The other mobility model
in GloMoSim is referred to as the “random drunken” model.
A node periodically moves to a position chosen randomly
from its immediate neighboring positions. The frequency of
the change in node position is based on a parameter specified
in the configuration file.

TABLE I
MODELS CURRENTLY IN THE GLOMOSIM LIBRARY

Layer Models
Physical
(Radio propagation)

Free space, Rayleigh,
Ricean, SIRCIM

Data Link
(MAC)

CSMA, MACA, MACAW,
FAMA, 802.11

Network
(Routing)

Flooding, Bellman-Ford, OSPF, DSR,
WRP, LAR, DREAM, Fisheye

Transport TCP, UDP
Application Tcplib, Synthetic, Replicated File System

In PARSEC, a simple approach to designing a network
simulation model is to create each network node as an entity.
Although this approach is easy to understand, it has
scalability problems. If an entity has to be instantiated for
each node, the memory requirements would increase
dramatically for a model with a large number of nodes
because each entity requires additional memory to work as an
independent process. The performance of the simulation
would also degrade due to context switching overheads
among many entities. Hence, initializing each node as a
separate entity inherently limits the scalability and
performance of the simulation.

To circumvent these problems, node aggregation was
introduced into GloMoSim. With node aggregation, a single
entity can simulate several network nodes in the system. A
separate data structure representing the complete state of each
node is maintained within the entity. When the simulation
code for a particular node is being executed, it does not have
access to the data structures of other nodes in the simulation.
The node aggregation technique implies that the number of
nodes in the system can be increased while maintaining the
same number of entities in the simulation. In fact, the only
requirement is that we need only as many entities as the
number of processors on which the simulation is being run.
Hence, a sequential simulation needs only one entity in the
simulation. With the node aggregation technique, the memory
and context switching problems are eliminated.

In GloMoSim, each entity represents a geographical area
of the simulation. Hence, the network nodes that a particular
entity represents are determined by the physical position of
the nodes. For example, suppose we specify a geographical
area of 100 by 100 meters in the simulation and set the
number of x and y partitions to be 2 for a particular
simulation. There would be four partitions in the simulation,
where each partition is represented by a single entity. Fig. 2
shows how the terrain would be divided into the four
partitions. One particular partition in the simulation would

encompass the area represented by the coordinates (0, 0), (49,
0), (0, 49), and (49, 49).

Fig. 2: A simulation with geographical area of 100 by
100 meters, which is divided into four partitions.

In a basic usage of GloMoSim, each entity represents a
regular rectangular region (partition). Thus, a partition can
have, at most, eight neighboring partitions. When a network
node sends out a message, the message has to be sent to at
most the eight neighboring entities in the simulation. This is
much simpler than the simple design mentioned previously. If
each entity represents a single network node, broadcasting a
message from a node is very difficult. The first option to
implementing broadcasting is that each entity constantly
keeps track of the other entities that are within its power
range. This option is difficult since the network topology
would constantly change as mobility is introduced into the
simulation. The second option is that when a node sends a
message, it would be sent to all the other entities in the
simulation. The receiving entity will accept the message as
long as it is in the power range of the sender. This becomes
highly inefficient as the number of nodes in the simulation
increases. Hence a simple message transmission becomes
very complicated when node aggregation is not used. With
node aggregation, each entity can examine which node can
receive a packet within the entity and send messages only to
the neighboring entities where the packet can be reached.

The node aggregation technique gives another benefit to
the simulation performance. As each entity needs to examine
packet receptions only for the nodes located in the region it is
simulating, using many partitions reduces the total search
space for packet delivery. In Fig. 3, for instance, if a packet
sent by a node located in Partition (0, 0) cannot be reachable
to the boarder of the partition, no message needs to be sent to
the other partitions. Therefore, the other partitions do not
have to examine the reception of the packet, which reduces
the region to be examined for the packet by a factor of four
compared to using single partition. Fig. 3 shows the impact of
multiple partitions for the models with 2500 and 5000
wireless nodes. Both simulation models consist of wireless
nodes running CSMA at the MAC layer, each of which is
randomly placed in a 2000 x 2000m free-space region. As
seen in Fig. 3, the executions for both models become faster
as the number of partitions increases. The effect of multiple
partitions is larger for the model with 5000 nodes as the
reduction in the execution time is related to the number of
wireless nodes to be examined for each radio transmission.

0

800

1600

2400

3200

1 6 11 16

Number of partitions

E
xe

cu
ti

o
n

 t
im

e
[s

]

2500 nodes

5000 nodes

Fig. 3: Execution times against the number of partitions.

It might appear that the addition of node aggregation
would cause difficulty for protocol developers who are only
interested in developing the simulation model for their
particular model. But this is not the case, as we have created
several layers of abstractions in GloMoSim. For the most
part, the developer writes pure C code. The presence of the
PARSEC runtime and interactions with the runtime are
completely hidden from the user. In the experience of our
own group, modelers prefer to work within our structured
environment of node aggregation rather than the alternative.

GloMoSim is aimed at simulating models that may contain
as many as 100,000 mobile nodes with a reasonable
execution time. GloMoSim has already been used to simulate
10,000 nodes up to the MAC layer using parallel execution of
the model on shared memory architectures. Fig. 4 indicates
parallel performance of GloMoSim on a Sun SPARCserver
1000. Speedup rates are calculated based on the sequential
execution of each model. The same configuration as the
experiments on multiple partitions is used with a different
number of wireless nodes. Twelve partitions are used for all
the executions to balance the workload of each processor. As
shown in Fig. 4, GloMoSim achieved better parallel
performance for models with a higher number of wireless
nodes because more activities occur concurrently in those
models, which increases the parallelism of models.

1

2

3

4

5

6

1 2 3 4 5 6

Number of processors

S
p

ee
d

u
p

1000 nodes

2500 nodes

5000 nodes

10000 nodes

Ideal

Fig 4: Parallel performance with different number of nodes.

0

500

1000

1500

2000

2500

3000

0 2500 5000 7500 10000 12500

Number of nodes

E
xe

cu
ti

o
n

 t
im

e
[s

]

Sequential

2 processors

3 processors

4 processors

6 processors

Fig 5: Execution times with varying number of nodes.

Users, especially those who need to simulate large-scale
models, can benefit from this parallel simulation capability of
GloMoSim. Fig. 5 shows increases of execution times against
the number of mobile nodes in the model. With the same
number of processors, the execution time increases
dramatically as the number of mobile nodes in the model
increases. However, the execution time with six processors
for the 10000 node model is shorter than the sequential
execution for the 5000 node model. This implies that the user
can run a simulation model consisting of twice the number of
mobile nodes in the same amount of time with six processors.

Parallel simulation requires synchronization of the
simulation clock among multiple processors. The PARSEC
simulation environment provides four variations of
conservative protocols and an optimistic protocol for the
synchronization. The current GloMoSim kernel has parallel
execution directives for conservative protocols and will be
capable of executing models using optimistic protocols in the
future. The experiments done in this section used the null
message protocol, which is one of the most basic
conservative protocols widely used for many applications.

III. CASE STUDY: SIMULATION OF A
REPLICATED FILE SYSTEM

Optimistically replicated file systems have been suggested
as an effective method to provide users access to shared files,
even when they are temporarily disconnected [10]. Such file
systems work on the following principles: replicas, or copies,
of a file are stored on multiple computers. Using optimistic
replication, a user’s read or write operations are directed to
the local replica. This can lead to file consistency problems
when concurrent updates are made to multiple replicas of a
given file. A process called reconciliation, which involves
two replicas on separate computers, addresses such
inconsistencies. During reconciliation, replicas are compared
and updates are propagated between the two computers.
When a server generates a reconciliation request, it will also
specify the target server based on the reconciliation topology,
which is distinct from the physical topology in which the
servers may be organized. Examples of reconciliation
topology include tree, ring, and star topologies.

60 Servers in Ring Topology

0

2

4

6

1 2 3 4 5 6 7 8

Number of Processors

S
pe

ed
up Null

Message

ISP

120 Servers in Ring Topology

0

2

4

6

1 2 3 4 5 6 7 8

Number of Processors

S
pe

ed
up Null

Message

ISP

Fig. 6: The speedups with ring topology for 60 and 120 servers,
in comparison to the global event list algorithm.

The design of a scalable replicated file system involves a
number of considerations. At the fundamental level, it is
necessary to identify the costs paid due to greater availability
and reliability, effects of file access patterns on performance,
impact of data exchange method, data propagation topology,
data synchronization interval, and lastly, how all these
metrics change as the system is scaled up to hundreds of
replicas. Some of the common metrics that have been
proposed to evaluate the quality of service offered by a
replicated file system include the stale read and write rate as
well as cost measurements of CPU and network bandwidth
usage. A stale read or write occurs when a user reads or
writes out-of-date data [11]. A simulation model [11] for an
optimistically replicated file system called Rumor [9] was
initially developed using the PARSEC simulation
environment by researchers in the OS group to investigate
design alternatives for a small number of replicas. As the
system was scaled up to hundreds of replicas and a detailed
model of the network stack replaced the abstract network
model, the execution time of the model was found to increase
dramatically.

The Rumor simulation with an abstract model of the
network was subsequently parallelized in an attempt to
reduce its execution time [4]. The speedup for the ring
reconciliation topology with respect to the global event list
algorithm is shown in Fig. 6. The results with the null
message protocol, as well as the Ideal Simulation Protocol
(ISP), are presented. ISP is provided in PARSEC to measure
the parallelism available in a simulation model. It does this
by first taking a complete program trace. ISP provides a
lower bound on the execution time of a model by executing it
with perfect knowledge about messages that are safe to

process [2]. The partitioning strategy for a ring topology is
simple: a contiguous subset of the servers is placed on each
processor. With eight processors, speedup of close to 5 is
achieved for both the 60 and 120 server case. The system also
scales nicely, as the speedups for the 60 and 120 server case
are very similar. The speedups achieved with the null
message algorithm and ISP are very similar. This shows that
all the parallelism has been extracted from the model.

IV. CASE STUDY 2: REPLICATED FILE SYSTEMS

USING DETAILED NETWORK MODELS

The previous two sections have shown the scalability of
GloMoSim and Rumor simulations in a stand-alone mode.
But there is also significant interest in using replicated file
services in wireless environments for both military and
civilian applications. The communication stack in a wireless
ad hoc network is extremely complex. Furthermore, with the
large number of protocols designed for the wireless
communication at various layers in the protocol stack, there
are several possible ways of configuring the communication
stack. Most protocols have configurable parameters, further
increasing the number of possible network configurations.
Thus, unlike the case with wired networks where a reasonable
number of validated abstract models have been developed for
different scenarios, an abstract network model cannot
adequately represent the inherent complexities of a wireless
communication stack. To obtain accurate simulation results
for data replication services, it is imperative to model in
detail all the layers in the communication stack from the
physical to the application layer. It has been shown that the
performance of the Rumor application is sensitive to the
choice of lower level wireless protocols and to the selection
of appropriate parameters for a specific protocol (e.g., the
size of TCP retransmission window at the transport layer) [1].

Fig. 7 shows the impact of MAC layer protocol choice on
the average reconciliation time. In the absence of mobility,
the average reconciliation time is almost independent of the
specific MAC layer protocol. With the introduction of
mobility, there are noticeable differences in the performance
of the replication service under different MAC layer
protocols. MACA performs the worst, as it does not sense the
carrier when it needs to transmit data. If a particular node is
receiving data and needs to transmit at the same time, the
incoming packet is lost [1].

V. CONCLUSION

Detailed high-fidelity models of large networks represent a
significant challenge for the networking community. As the
military moves towards deploying a digital communication
infrastructure, it is imperative that the performance of the
communication devices be thoroughly studied prior to
deployment in order to understand the limits of the network
and its ability to handle diverse traffic under stringent
operating conditions. This paper presented a simulation

library called GloMoSim whose goal is to support accurate
performance prediction of large-scale network models using
parallel execution on a diverse set of parallel computers. The
library has already been used to simulate networks with
thousands of wireless nodes and provides a rich set of models
for both existing and novel protocols at multiple layers of the
protocol stack. It has been used to undertake numerous
performance studies among alternative protocols both at
UCLA and other organizations. The GloMoSim library is
currently available for download at the following Web site:
http://pcl.cs.ucla.edu/projects/domains/glomosim.html

REFRENCES

[1] R. Ahuja, R. Bagrodia, L. Bajaj, and M. Takai, “Evaluation of Optimistic
File Replication In Wireless Multiphop Networks,” unpublished.
[2] H. Akhtar, “An Overview of Some Network Modeling, Simulation, &
Performance Analysis Tools,” Proceedings of 2nd IEEE Symposium on
Computers and Communications, 1997.
[3] R. Bagrodia, R. Meyer, et al., “PARSEC: A Parallel Simulation
Environment for Complex Systems,” IEEE Computer, October 1998.
[4] L. Bajaj, R. Bagrodia, and R. Meyer, “Case Study: Paraellelizing a
Sequential Simulation Model,” Proceedings of the 13th Workshop on Parallel
and Distributed Simulations, PADS 1999.
[5] L. Bajaj, M. Takai, R. Ahuja, K. Tang, R. Bagrodia, and M. Gerla,
“GloMoSim: A Scalable Network Simulation Environment,” Technical
Report, UCLA Computer Science Department – 990027.
[6] S. Bhatt, R. Fujimoto, A. Ogieski, and K. Perumalla, “Parallel Simulation
Techniques for Large-Scale Networks,” IEEE Communication Magazine,
August 1998, pp. 42-47.
[7] D. B. Johnson and D. A. Maltz, “Dynamic source routing in ad hoc
wireless networks,” In Mobile Computing, edited by Tomasz Imielinski and
Hank Korth, chapter 5, pages 153-181. Kluwer Academic Publishers, 1996.
[8] S. McCanne and S. Floyd, UCB/LBNL/VINT Network Simulator – NS
(version 2), http://www-mash.cs.berkeley.edu/ns/
[9] P. Reiher, G. Popek, M. Gunter, J. Salomone, D. Ratner, “Peer-to-Peer
Reconciliation Based Replication for Mobile Computers,” European
Conference on Object Oriented Programming, Second Workshop on
Mobility and Replication, June 1996.
[10] M. Satyanarayanan, “Coda: A Highly Available File System for a
Disconnected Workstation Environment,” Proceedings of the 2nd Workshop
on Workstation Operating Systems, September 1989.
[11] A. Wang, P. Reiher, R. Bagrodia, and G. Popek, “A Simulation
Evaluation of Optimistic Replicated Filing in a Mobile Environment,”
Proceedings of the 18th IEEE International Performance, Computing, and
Communications Conference, February 1999.

0

200000

400000

600000

800000

0 2 4 6 8

Mobility(km/hr)

R
ec

on
ci

lia
tio

n
tim

es
(m

s)

CSMA MACA FAMA 802.11

Fig. 7: Average reconciliation time as mobility speed
is varied for different MAC layer protocols.

