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Abstract

Real-time, reactive, and embedded systems are increasingly used throughout soci-
ety (e.g., flight control, railway signaling, vehicle management, medical devices, and
many others). For real-time, interrupt-driven software, timely interrupt handling is
part of correctness. It is vital for software verification in such systems to check that all
specified deadlines for interrupt handling will be met. Such verification is a daunting
task because of the large number of different possible interrupt arrival scenarios. For
example, for a Z86-based microcontroller, there can be up to six interrupt sources and
each interrupt can arrive during any clock cycle. Verification of such systems has tradi-
tionally relied upon lengthy and tedious testing; even under the best of circumstances,
testing is likely to cover only a fraction of the state space in interrupt-driven systems.

This paper presents the Zilog Architecture Resource Bounding Infrastructure (ZARBI),
a tool for deadline analysis of interrupt-driven Z86-based software. The main idea is to
use static analysis to significantly decrease the required testing effort by automatically
identifying and isolating the segments of code that need the most testing. Our tool
combines multi-resolution static analysis and testing oracles in such a way that only
the oracles need to be verified by testing. Each oracle specifies the worst-case execution
time from one program point to another, which is then used by the static analysis to
improve precision. For six commercial microcontroller systems, our experiments show
that a moderate number of testing oracles are sufficient to do precise deadline analysis.

keywords: Real time, multi-resolution static analysis, testing oracles

1 Introduction

Real-time systems have become pervasive in the world. Commerce, health care, transporta-
tion, and telecommunication all rely increasingly on real-time sensing and control. Particu-
larly for applications in areas that are a matter of life and death, the correctness of real-time
software is of paramount importance.

∗Purdue University, Dept of Computer Science, W Lafayette, IN 47907, USA, brylow@purdue.edu, phone:
765–494–7843.

†University of California Los Angeles, Dept of Computer Science, Los Angeles, CA 90095-1596, USA,
palsberg@ucla.edu, phone: 310–825–6320.

1



1.1 Background

Correctness of real-time software can be thought of as having two parts. The first issue is
correctness of input-output behavior, and the second is timeliness of that behavior. Verifi-
cation and validation of input-output behavior has been widely studied; there are now many
static-checking tools available, including type checkers [12], bytecode verifiers [31], and model
checkers [13], as well as numerous tools for supporting the test process. Verification of timing
properties is more difficult, but steady progress has been made toward understanding the
foundations of checking the timing properties of real-time software in recent years [6, 5].
However, major open issues still remain. These issues are due to the low-level nature of real-
time systems, with most still implemented either in assembly language or at lower levels,
such as FPGAs or custom-built ASICs. Even when real-time software is written in a higher-
level language such as C, it is desirable to check the real-time properties of the compiled
code because it can be difficult to predict the effects of the compiler. Most previous work
on analysis of assembly code [58, 7, 47] is not concerned with timing properties.

The goal in this project is to provide tool support for checking timing properties of real-
time assembly code. This work focuses on interrupt-driven software, where a signal from a
source outside the direct control of the software can cause computation to be interrupted by
control being transferred to an interrupt handler. Typical interrupts in such systems occur
because new sensor data is available, a signal pulse arrives at the controller, an internal timer
goes off, or for many other reasons. The specification of an interrupt-driven system will
usually list deadlines for the handling of each type of interrupt. It is part of the correctness
of the system that all deadlines are met. Reasoning about the timing behavior of interrupt-
driven software is complicated because interrupts can be enabled and disabled by the software
itself, an interrupt handler can be interrupted, and interrupts can arrive in a myriad of
different scenarios. It is critical to know whether an interrupt arrives at a point where it is
enabled and can be handled right away, or whether it arrives 50 clock cycles later, when the
system has just disabled interrupt handling and will be doing other work for the next two
million clock cycles. In summary, the interrupts and the main computation can interact in
potentially bizarre ways. Programs in such a style can be found, for example, in the area of
sensor networks [23] where a sensor node may not have space for a sophisticated scheduler
and analysis of interrupts is known to be difficult [47, 29].

Tool support for real-time interrupt-driven software strives to answer the following ques-
tion.

Deadline Analysis: Will every interrupt be handled before its deadline?

One can approach this question in a testing-based manner: try a suite of interrupt schedules
and measure whether all deadlines are met. Developing a good suite of interrupt schedules is
a difficult problem because of the fine granularity of the timing domain. Even if a clock cycle
is as long as one microsecond, it is very difficult to engineer or discover interrupt schedules
that lead to any reasonable coverage of the program. Statement coverage would be easy in
this setting, but is not a useful coverage criteria because it does not take into account the
interplay of different interrupts and the times when they occur. Branch coverage is more
accurate but far more expensive; at every program point where an interrupt is enabled, there
is an implicit branch to the handler. Covering all branches can therefore be an intractable
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task. In summary, the problem with a test-based approach is that it is difficult to test a
sufficiently wide variety of schedules to gain confidence in the software.

An alternative is a static-analysis-based approach to deadline verification. A good
illustration of the difficulties faced by that approach is given in our earlier paper with
Damgaard [9], which showed that for six commercial microcontrollers the maximal stack
size for interrupt-driven assembly code could be estimated successfully by a static analysis.
The experiments of that paper also illustrated that static analysis of timing properties cannot
work without information about the behavior of external devices. For example, if the code
uses a loop to busy-wait on a new value from a port, static analysis will view it as an infinite
loop, even if the programmer knows that an external device will deliver a new value every
100 milliseconds. Once the static analysis has detected an infinite loop on the path from A

to B, it will determine that if an interrupt occurs when the execution is at program point
A and the handler for the interrupt has exit point B, the handling may never terminate, let
alone meet its deadline. In summary, the static analysis approach of [9] predictably failed
to perform useful deadline analysis.

Our thesis is that we should combine static analysis and testing. In practical terms, the
fundamental challenge is:

Challenge: Can static analysis significantly decrease the required testing effort?

There are previous success stories of combining static analysis and testing. For example, in
the area of regression testing, rather than re-running the software on the whole test suite
every time a change has been made, one can use static analysis to conservatively estimate
which test inputs must be tried again [26]. In the interrupt-driven setting, static analysis
can reduce the required testing effort, allowing the testing effort to be more focused, which is
exactly what is desired with a combined static-analysis/testing approach to deadline analysis.

Our approach uses test oracles [49] for certain worst-case execution time (WCET) ques-
tions that cannot possibly or easily be answered by static analysis. The oracles assert to the
static analysis that if execution reaches program point A, then it will reach program point B

at most t microseconds later. When A and B are close, then a much smaller testing effort is
required to verify such an oracle than to do the entire deadline analysis. Moreover, if more
than one oracle is needed for a program, the work of validating the different oracles can be
done in parallel. Our goal is to combine static analysis with timing oracles to improve the
precision of the deadline analysis.

Deadline analysis cannot be performed without WCET analysis. However, most research
on deadline analysis assumes that WCET analysis has already been successfully completed,
and most published papers on WCET analysis do not consider the needs of deadline analysis.
Many papers in this area concentrate on estimating the execution time from one program
point to another, usually from start to finish, sometimes even focusing on a particular input,
and they rarely handle interrupts [42, 53, 18, 20, 8, 56, 14]. Deadline analysis is more
complicated than simple WCET analysis because the interrupts can occur at any time and
their handlers can be enabled or disabled at any program point. In deadline analysis, the
starting point for the analysis is not given. It is a task of the analysis to identify the worst-
case program point at which an interrupt can occur and then estimate the WCET to the
exit point of the handler for that interrupt.
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Figure 1: Coloring a Flow Graph

In summary, deadline analysis for interrupt-driven assembly code remains a difficult and
little-studied problem.

1.2 Experimental Results

We have designed and implemented ZARBI (Zilog Architecture Resource Bounding Infras-
tructure), a tool for integrated deadline and WCET analysis of interrupt-driven assembly
code. In slogan form:

deadline analysis = static analysis + testing oracles.

For six commercial microcontroller programs, each on the order of 1000 lines of code, we
found that at most 17 oracles were sufficient for each program. In our experience, an expert
user can add the oracles in less than an hour, in an interactive fashion, until the deadline
analysis is complete.

Our tool uses a multi-resolution analysis, which allows it to explore difficult segments
of the control flow graph in sufficient depth to bound the latency while staving off the
intractable complexity that would arise from using such fine-grained analysis over the whole
program.

Our static analysis proceeds by building and coloring a flow graph. Each node is given
one of five colors: Green, Magenta, Blue, Yellow, and Red. Intuitively, Green means that
the time bound can be found, Magenta means that starvation is possible, Blue means that
starvation is possible later in the computation, Yellow means that the analysis thinks that
the time bound might not be calculable, and Red means that the analysis is certain that
there is no time bound. For our test suite, no red nodes were found, we were able to eliminate
all yellow nodes by adding oracles, and we observed that very few nodes were magenta.

Figure 1 illustrates a flow graph at the time the deadline analysis is complete, that is,
when all yellow nodes have been eliminated. Notice that “other Handler” can starve an
interrupt that is to be handled by “Handler.”

Our tool is intended to be used as part of a three step process. For a given interrupt,
(1) add oracles until all nodes are green, magenta, or blue, (2) use simulation and testing to
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find a WCET for the magenta clouds, and (3) combine the WCET’s from the green, blue,
and magenta clouds to compute the WCET for handling the interrupt.

The remaining sections of the paper proceed according to the following outline: Section 2
covers related work. Section 3 reviews control flow graph terminology and concepts that are
used throughout the technical sections of the paper. Section 4 explains the coloring of
control flow graphs for deadline analysis purposes, and section 5 shows how testing oracles
have been integrated into our tool. Section 6 describes the multi-resolution analysis we have
developed for deadline analysis. Section 7 details implementation issues encountered while
implementing our prototype, and section 8 presents our results and walks the reader through
a session with ZARBI. Section 9 summarizes and closes.

2 Related Work

In the general case, the problem of bounding stack sizes and maximum execution times is
equivalent to the halting problem [48]; it is a basic theorem of computer science that these
questions are undecidable. Much work has been done on tools that operate on decidable
subsets of programming languages, for example, Berkeley Packet Filters [35], or Agere Sys-
tems’ C-NP language [1] for programming network processors, which do not allow backward
branching.

Most research in the area of calculating real-time software resource bounds stems from
Puschner and Koza’s work [45], which uses the following conditions to guarantee decidability:
no asynchronous interrupts, no recursion, no indirect calls, no goto instructions, and only
strictly bounded loops.

In the 1990’s, researchers worked to relax several of these restrictions, with a variety
of trade-offs. However, despite the fact that asynchronous interrupts are the most salient
feature of actual real-time systems, they remain the least researched topic on the above list.

2.1 The False Path Problem

Altenbernd identified that a key issue in accurate worst-case execution time (WCET) analy-
sis is the False Path Problem [4]. In constructing a control-flow graph, the abstraction often
contains paths that cannot actually take place in a real program execution. In order to cal-
culate tight bounds on execution time, the algorithm must search for the longest executable
path in the graph, rather than the longest structural path in the graph. This is equivalent
to an NP-complete problem that exists in hardware design; finding the longest executable
path in a network of logic gates is substantially more difficult than finding the longest struc-
turally connected path [33]. Altenbernd used symbolic execution to track possible values of
key conditional variables, thereby pruning unrealizable paths out of the control-flow graph.
This is essentially the same technique used by our tool to prune away a substantial number
of unrealizable interrupt handler paths from the control-flow graphs.
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2.2 Testing Oracles

There are previous success stories of combining static analysis and testing. For example, in
the area of regression testing, rather than re-running the software on the whole test suite
every time a change has been made, one can use static analysis to conservatively estimate
which test inputs must be tried again [26]. In our setting, static analysis can reduce the
required testing effort, allowing the testing effort to be more focused, which is exactly what
we desire to achieve with a combined static-analysis/testing approach to deadline analysis.

Our approach uses test oracles [49] for certain worst-case execution time (WCET) ques-
tions that cannot possibly or easily be answered by static analysis. The oracles assert to the
static analysis that if execution reaches program point A, then it will reach program point B

at most t microseconds later. When A and B are close, then a much smaller testing effort is
required to verify such an oracle than to do the entire deadline analysis. Moreover, if more
than one oracle is needed for a program, the work of validating the different oracles can be
done in parallel. Our goal is to combine static analysis with timing oracles to improve the
precision of the deadline analysis.

2.3 Worst-Case Execution Time Analysis

Deadline analysis cannot be performed without WCET analysis. However, most research on
deadline analysis assumes that WCET analysis has already been successfully performed, and
most published papers on WCET analysis do not consider the needs of deadline analysis.
Many papers in this area concentrate on estimating the execution time from one program
point to another, usually from start to finish, sometimes even focusing on a particular input,
and they rarely handle interrupts [42, 53, 18, 20, 8, 56, 14]. Deadline analysis is more
complicated than simple WCET analysis because the interrupts can occur at any time and
their handlers can be enabled or disabled at any program point. In deadline analysis, the
starting point for the analysis is not given. It is a task of the analysis to identify the worst-
case program point at which an interrupt can occur and then estimate the WCET to the
exit point of the handler for that interrupt.

Work in automatic detection of induction variables [36], and bounding of unnatural loops
in low-level languages [27] is applicable to loops present in the commercial microcontroller
systems examined later in this paper. Healy and Whalley’s approach [28] concentrates on the
branch instructions themselves. By searching backward to find all of the assignments that
influence registers used in the branch comparison, they are able to classify all jumps as one
of unknown, fall-through, or jump. The search continues until all registers in the expression
can be replaced by immediate values, or a control-flow merge point is encountered. This
intra-procedural analysis allows tighter bounds to be calculated for many loops.

2.4 Call Graphs and Model Checking

A static analysis of assembly code may attempt to approximate the values in specific registers
or on the stack. This problem is closely related to the problems of call-graph construction
and points-to analysis for object-oriented programs. Accurate, scalable analyses for these
purposes exist in the programming languages community [41, 55].
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The FLAVERS system at University of Massachusetts, (FLow Analysis for VERifying
Specifications), is a flexible framework for flow analysis of concurrent programs [16, 37].
FLAVERS has even been extended to analyze infinite executions [38], which are common
in embedded systems. However, the FLAVERS system has a much higher-level abstraction
of concurrent tasks; separate tasks do not have completely shared stack and data registers.
Such a high-level analysis thrives on a more rigidly specified interface between tasks than
can exist at the Z86 microcontroller level.

The stack-size checking algorithm in ZARBI can be seen as a demand-driven version
of an algorithm for model checking of pushdown systems like Podelski [44]. The algorithm
presented in our work differs from Podelski [44] in that it generates edges on demand, thereby
ensuring that many unreachable nodes are automatically pruned away. This demand-driven
quality, combined with tight approximation of feasible IMR values, prevents the exponential
state-space explosion that would occur in more näıve analyses.

Maximum execution time is formulated as a graph theoretic problem in Puschner and
Schedl [46], using T-graphs and ILP solvers..

Like Brylow et al. [9], Wegener and Mueller [57] shows that static analysis and evolu-
tionary testing can be used in concert to seek both upper and lower bounds on worst-case
execution time.

2.5 Tools

The ASTEC group [19] represents control flow using a basic unit called a scope, which is
intuitively a looping construct. All scopes have an iteration counts associated with them;
non-looping code is a scope with zero or one iteration. Scopes are assembled into a scope
tree, which implicitly represents all possible control flow in the program. Scopes are a very
general concept, to which a wide variety of execution facts can be attached, including flow
information facts [18] to describe feasible execution paths, or facts about low-level factors
like pipeline effects on the execution time [20]. Scope trees are processed into a system of
constraints using an implicit path enumeration technique (IPET) analysis to determine the
maximum execution count for each point in the program. The ASTEC infrastructure now
includes support for flow analysis of C programs [24].

The USES group has used abstract interpretation [15, 39] and ILP solvers to extensively
model the Motorola “ColdFire” MCF 5307 processor [21]. Their modular architecture breaks
down the overall WCET problem into smaller parts: a value analysis approximates possible
addresses of memory accesses; a cache analysis characterizes all memory accesses as hits or
possible misses; a pipeline analysis takes into account the speedup caused by subsequent
instructions passing through the pipeline in succession; a final path analysis calculates the
WCET of the program. Each analysis can make use of information provided by the previous
analysis in the chain. The USES group’s tool has been applied to test programs supplied by
AIRBUS [21].

Commercial ILP solvers like CPLEX[30] and lp solve[40] have been employed to analyze
advanced processor features like cache and pipeline analysis[3, 22], and branch prediction[34].
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2.6 Summary of Related Work

Much work has been done on timing schema for high-level languages, and on mitigating
the timing effects of pipelines and caches in modern processors. Symbolic execution and
implicit path merging are among several techniques intended to eliminate false paths in
representative control-flow graphs in order to keep static analysis tractable in size. Model
checking and type system advances have been used to verify many useful software properties.
Nevertheless, previous work in the area of bounding resources for real-time software can be
separated into two categories:

• Work that ignores preemptive interrupts altogether, and

• Work that assumes interrupt handlers are trivially isolatable from the main process.

All of the real-time systems examined in our work have interrupt handlers heavily in-
tegrated with the main program; they share the same system stack, have no memory pro-
tection, and in many cases affect control flow within the main program. Prior research
does not attempt analysis of interrupt handlers as an integral part of the real-time system,
and thus cannot provide useful bounds on interrupt-driven systems. Furthermore, for most
prior work, the exponential increase in state-space that occurs when taking interrupt-handler
control-flow into account would make analysis largely intractable.

This paper presents techniques for analysis of interrupt-driven programs that mitigate
much of the exponential increase in state-space during analysis.

3 Control Flow Graphs

This section reviews common control flow graph terminology and concepts that will be
used throughout the remainder of the paper. Readers familiar with this material can safely
skip ahead to the next section. As a preview, we will be using control flow graphs in which
nodes represent program states, edges represent possible transitions between states, and edge
weights can represent either timing information or changes in stack height; stack analysis
graphs can have zero- and negative-weighted edges.

A control flow graph [2] is an abstraction of program states and the transitions between
them. Details and examples of control flow graph construction are given in later sections.

Control flow graphs (hereafter abbreviated as CFG’s) are a special case of the general
graph data structure. A graph G is defined as the tuple 〈V, E〉, consisting of a finite set
of vertices V and edges E ⊆ V × V . A vertex is also sometimes called a node. A control
flow graph is a tuple 〈G, w, terminus〉, where w is a weight function that maps edges e ∈ E

to integers (w : E 7→
�

) and terminus is the designated vertex (terminus ∈ V ) to be the
starting or ending point of a search in the CFG.

The CFG is a digraph [50], meaning that all edges e ∈ E are directed, or one-way; the
first vertex in e is the source, and the second vertex is the destination. Let A(v) be the set
of edges e ∈ E such that v is the destination vertex for e. Let Ω(v) be the set of edges e ∈ E

such that v is the source vertex for e. A(v) is vertex v’s incoming edge set, and Ω(v) is v’s
outgoing edge set.
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The vertices in a CFG are an abstraction of the possible states in the corresponding
program. As such, each vertex may be associated with a wide range of state information.
In the context of our analysis, a CFG vertex will consist of the triplet 〈PC, σ, IMR〉, where
PC is the program counter value associated with program point, σ is a call string suffix
(explained below), and IMR is an approximation of the interrupt mask register’s value.
(The purpose of the IMR will be explained in the next section.)

Call string suffixes are calculated using stacks. In general terms, a stack is a last-in, first-
out data structure. The stack has at least two operations defined, push and pop. An element
x pushed onto a stack σ results in a new stack, xσ. The pop operation on a stack xσ returns
element x and stack σ. Let the pop operation be undefined for an empty stack, written “{}”.
A call site [2] is a program point from which another program point (subroutine or function)
is invoked. A CFG that distinguishes program states within a function by distinct call sites
is context sensitive [39]. Context sensitivity can be expressed quite naturally as a stack of
call sites at each node in the CFG. A stack of call sites is also known in the literature as a
call string [51, 39]. The CFG’s constructed in our analysis contain call strings or call string
suffixes at each vertex.

3.1 Control Flow Paths

Resource-bounding algorithms deal extensively with paths in CFG’s. A control flow path,
or path, π is a sequence of vertices v0, ..., vk such that ∀i ∈ {0, ..., k − 1} : 〈vi, vi+1〉 ∈ E. A
simple path is a path in which each vi in π is distinct. A cycle [50] consists of a simple path
from v0 to vk, with an additional edge from vk back to v0. A vertex vk is reachable from
vertex v0 if there exists a path from v0 to vk. A vertex v0 is upstream of vk if there exists a
path from v0 to vk, but not vice-versa.

The resources to be analyzed in a CFG can be represented as edge weights. The weight
function w maps each edge to an integer cost. G is therefore a weighted digraph, or net-
work [50]. Every path π has a path weight or cost C(π) =

∑
i∈{0,...,k−1} w(vi, vi+1). Let a null

path be a path in which ∀i ∈ {0, ..., k − 1} : w(vi, vi+1) = 0.
With call string suffixes present at every vertex, the CFG contains a notion of valid or

realizable paths in the CFG. Realizable paths πreal ∈ G are those in which the sequence of
program states corresponding to vertices along πreal preserve the procedure call semantics of
the original program. That is, for all πreal outgoing from vertex vcall, πreal returns from the
procedure subgraph to call site vcall, rather than some other call site.

The longest path [50] in the graph is defined as the path with the largest cost, which is
not necessarily the path with the largest number of edges. An analysis for bounding stack
size or interrupt latency in a CFG is at its core a longest realizable path problem. The
chief difficulty in finding the longest realizable path in these graphs is in first constructing
a suitable CFG that expresses external information not normally available to control flow
analysis.

3.2 Control Flow Cycles

Many of the algorithmic details of resource bound analysis in this paper deal with the
different types of cycles in CFG’s. A negative cycle refers to a cycle π in which C(π) < 0.
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A cycle is said to be positive if C(π) > 0. A zero-weight cycle is one in which C(π) = 0. A
zero-weight cycle which is also a null path is a null cycle.

The longest path in a graph is undefined if the graph contains negative cycles. While it
is possible to construct actual programs that result in negative cycles in CFG’s, (when edge
weights represent change in stack height, for example,) such programs are outside the scope
of our analysis. Negative cycles can be detected in O(V 3) using Floyd’s Algorithm [50].

The longest path in a CFG is not defined for graphs with positive cycles. (At least, it is
not defined in the context of this paper.) If a positive cycle exists in the graph, a path can
become arbitrarily long by passing through the cycle multiple times. A graph with neither
negative nor positive cycles is bounded. Given a graph G that has no negative edges, positive
cycles can be checked for by a bounded depth-first search, in which a graph is not bounded
if the cost of a path exceeds a given boundary, m. For stack size analysis it is assumed that
there is a known bound on allowable stack size for the program; the maximum allowable size
is used as m when checking for positive cycles in the graph. This check can be performed in
time O(V · m), which is linear in V when m is constant.

A graph with no negative edges and no positive cycles cannot contain any cycles except
those that are zero-weight cycles. Zero-weight cycles without negative-weighted edges can
only be null cycles. Null cycles cannot contribute to the longest path, and thus can be
collapsed into a single vertex without changing the cost of the longest path. Null cycles
can be detected in a graph with no negative edges and no positive cycles in at worst O(V 2)
time [50].

A digraph with no cycles is a directed, acyclic graph, or DAG. For DAG’s, the longest
path problem can be solved in linear time, O(V ) [50].

4 Coloring Control Flow Graphs

Deadline analysis of the control flow graph for a program entails categorizing vertices ac-
cording to their proximity to the deadline. In broad terms, these categories can be thought
of as “close”, “far”, and various shades of “don’t know”. This section presents a realistic
example fragment of interrupt-driven code, and demonstrates how the corresponding CFG
can be colored to assign each vertex into one of the categories.

Deadline analysis begins with stack size analysis. This section presents a running example
to illustrate the analysis (Section 4.1), constructs an initial flow graph (Section 4.1.1), and
finds the bound for the program’s stack (Section 4.1.2). Next, the graph is reweighted with
execution times on the edges instead of stack deltas, and graph coloring begins (Section 4.2).
An iterative process of adding time summary oracles (Section 5) and recoloring the graph
with additional resolution (Section 6) continues until the analysis is complete.

4.1 Example

The example program shown in Figure 2 is a short excerpt of Z86 assembly code designed
to exhibit interrupt latency characteristics hostile to static analysis. As a result, the cor-
responding flow graph in Figure 3 is larger than one would expect for a code segment of
this size. There are two vectored interrupt handlers, IRQVC0 and IRQVC1, both of which do
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.ORG %00h ;INTERRUPT VECTOR TABLE

.WORD #IRQVC0 ; Vector IRQ0

.WORD #IRQVC1 ; Vector IRQ1

.ORG %0Ch

INIT: ;INITIALIZATION

0C CALL PROC ; Call a little procedure.

0F CALL PROC ; Call it a second time to introduce

; an artificial yellow cycle.

12 LD IMR, #81h ; Enable global interrupts and IRQ handler 0.

OUTLOOP: ;OUTPUT LOOP

15 LD P3, r1 ; Send the contents of r1 out data port 3.

17 DJNZ r1, OUTLOOP ; Dec r1, jump to top of loop if not zero.

19 CLR IMR ; Disable interrupts.

BSYLOOP: ;INPUT LOOP

1B TM P2, #80h ; Check the high bit on data port 2.

1E JR NZ, BSYLOOP ; If the bit is 1, continue looping.

20 LD IMR, #83h ; Enable global interrupt handling,

; and both handlers 0 and 1.

LOOP: ;MAIN PROGRAM

23 JP LOOP ; An infinite loop.

;SUBROUTINES

PROC: ; This subroutine just pushes a value

26 PUSH r0 ; onto the stack, and then pops it back

28 POP r0 ; off before returning. Its sole purpose

2A RET ; is to confuse the analysis tool and

; demonstrate the benefits of adaptive

; slicing.

;INTERRUPT HANDLERS

IRQVC0: ; Both of these handlers do nothing except

2B IRET ; execute the return from interrupt

IRQVC1: ; instruction. Even so, the complexity

2C IRET ; that arises from having both in play

.END ; at the same time causes all five colors

; from our analysis to appear.

Figure 2: Example Program

nothing but execute the return-from-interrupt instruction, IRET. The procedure PROC pushes
a value from a register onto the stack, pops it off, and returns. The main loop, LOOP branches
to itself infinitely. The OUTLP loop outputs the bytes 255 through 1 to an external data port
and terminates, while the BSYLP loop waits until data from an external port arrives with 0
as the most significant bit.
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Figure 3: Example Program Flow Graph With Stack Annotation Edges

The two-digit hexadecimal numbers along the leftmost column of the figure are the ROM
addresses that would be generated for this program if it were actually compiled into machine
code. These addresses will be used throughout the rest of this section to refer to specific
lines in the example.

4.1.1 Example Flow Graph

Figure 3 shows the flow graph constructed for the example program in Figure 2. Each vertex
in the graph has three pieces of information:

• Code address – the value of the instruction pointer when the processor begins executing
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Figure 4: Summary Edge Closure in Stack Analysis Graphs

the instruction. The upper leftmost node in the graph (“INIT”) contains address “0C”,
which is the first instruction executed by the Z86 processor on powerup.

• IMR value – the bits in the Interrupt Mask Register control vectored interrupt handling
by the Z86 processor. The layout of the IMR is “M.543210”, where bit “M” controls
global interrupt handling, and the lower order bits enable the six correspondingly-
numbered interrupt sources. The seventh bit is reserved. The node at INIT has IMR
value “00”, indicating that all interrupts are turned off, while the node at LOOP has IMR
value “83”, indicating that vectored interrupt handling is turned on and the handlers
for interrupts 1 and 0 are enabled.

• Call string suffix – initially, this field contains the top element on the system stack,
“{}” for an empty stack, or “?” when the exact value on the top of the stack is
irrelevant. As shown later, multi-resolution analysis may add additional items of stack
context to the call string suffix of a vertex as needed.

Solid edges in the graph represent possible control flow between vertices. When the
transition between two vertices involves a change in the stack, the edges have been annotated
with “!” and “?”. The notation “!3” indicates an operation that pushes three bytes onto
the stack – an interrupt. (When an interrupt handler is invoked, the Z86 pushes two bytes
of return address and one byte of condition code bits onto the stack.) The notation “?2”
indicates two bytes being popped off of the stack – a return from a procedure call. Dashed
edges in the graph represent stack summary edges, as defined in the next subsection.

4.1.2 Stack Size Analysis

Prior to coloring a CFG for deadline analysis, it must be known that the program represented
by the CFG has bounded stack size. The methods we employ for checking this property are
discussed extensively in our earlier paper with Damgaard on static checking of interrupt-
driven software [9].
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Stack size analysis begins with a CFG in which the edge weight function equals the change
in stack height seen by the program when moving between the source state and destination
state. Such labels can be seen in the example graph of Figure 3. For the Z86 architecture,
the edge weights can range over [−3, 3].

A summary edge eΣ in the graph has weight zero, a source vertex v0, and a destination
vertex vk such that there exists a path πΣ from v0 to vk in which the edge e+ = (v0, v1) has
a positive weight, edge e− = (vk−1, vk) has an equal but opposite negative weight, and the
subpath from v1 to vk−1 is a null path. An example summary edge is shown in Figure 4. The
first and last edges in πΣ are said to be matched, since they have the same absolute value of
weight, with opposite polarity. Because πΣ consists of two matched edges and a null path,
the total cost of πΣ is zero.

A graph is said to be closed with respect to summary edges if and only if every non-
zero-weighted edge is part of a zero-weighted path πΣ, and thus associated with a summary
edge eΣ. Closed graphs cannot contain a negative edge e− that does not have a matching
e+. Likewise, a closed CFG cannot contain an e+ that does not have a matching e−, or a
summary edge eΣ with a non-zero weight. These conditions correspond to the type-checking
of stack elements to ensure that pushes match pops, procedure calls match returns, etc.

Summary edges summarize well-structured zero-weight paths in such a way that all
negative-weighted edges can be deleted from the graph without altering the length of the
longest paths. In a summary edge closed graph, any path from terminus through a negative-
weighted edge must pass through an equal and opposite positive-weighted edge. If a longest
path passes through a negative-weighted edge, then there exists another path of equal length
passing through the associated summary edge instead. If a longest path does not pass
through a negative-weighted edge, then again no negative-weighted edges were required.
Summary edge closure is a key property that allows all negative-weighted edges to be re-
moved from the graph without altering the length of any longest paths.

A graph with no negative cycles can be closed with respect to summary edges in time
polynomial in V [32]. Termination of the closure algorithm guarantees that the program has
a known, bounded stack height. This bounded stack height is a requirement for the deadline
analysis algorithm to terminate.

4.1.3 k-CFA

At this stage of the analysis, the control flow analysis is 1-CFA [52], meaning that each
vertex contains a call string suffix of at most one call site. This is relatively imprecise and
inexpensive as control flow analyses normally go, but has proven sufficient to bound stack
height in a solid majority of the interrupt-driven software we have examined. A 0-CFA
analysis (one in which no stack context is stored at the vertices) is not sufficiently precise
even for stack height analysis in realistic programs. Later sections describe how deadline
analysis requires some portions of the graph to store additional stack context, k-CFA for
values of k greater than 1. This more costly control flow analysis incurs additional cost both
in analysis time and in size of the vertex state space.
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4.2 Initial Coloring of the Example Graph

The designer of the example program in Figure 2 would like to know if the tasks correspond-
ing to interrupts 0 and 1 will meet their deadlines. This requires information about the
minimum inter-arrival time for each interrupt source. But even before that kind of data can
be considered, there is another key piece of information that any such analysis must have:
the WCET of the program with respect to interrupt latency. The maximum possible delay
between the arrival of an interrupt request and subsequent handling of that request must be
known in order to make any accurate statement about the system’s ability to meet deadlines.

In order to perform deadline analysis for a given interrupt, we first annotate the CFG
with a new edge weight function – each edge cost now reflects the number of machine cycles
taken by the program to transition from one program point to another. Calculating the
worst-case interrupt latency is now another instance of the longest path problem on the new
CFG. However, the longest path cannot yet be calculated because the CFG may contain
many cycles which cannot be eliminated without additional information about the program.

We classify the vertices in the flow graph into five colors. Three of those colors will be
explained here; two more will be covered in Section 6.

• Green nodes in the graph are those from which computation will inevitably reach the
handler of interest. For a green node, the analysis can compute the WCET from the
node to the handler in linear time (see Section 5.1).

• Red nodes are those from which it is impossible to reach the handler of interest. In our
model of computation, this would be a significant program error, such as an infinite
loop with interrupt handling disabled. The test suite of production microcontroller
software contained no such errors, so red will not be discussed any further.

• Yellow nodes are those which could not be definitively classified as green or red for the
handler of interest.

When the analysis colors the example system flow graph (Figure 3) with respect to
interrupt handler 1, the nodes with addresses 2C, 23, and 20 are colored green, as is the
node for the lowest instance of the interrupt zero handler, 2B, off of the LOOP node. Nodes
1B and 1E are colored yellow because the analysis cannot statically determine how long it
will take to complete the BSYLP loop. Finally, since the remaining nodes in the graph above
BSYLP can reach interrupt handler 1 only through BSYLP, they too will be colored yellow in
the initial round.

Eliminating all yellow nodes in the graph would allow the analysis to give firm bounds on
the execution time of any path in the program leading to the interrupt handler. The yellow
nodes fall into five basic categories:

• External Yellow nodes comprise a cycle that depends on external input. These cannot
be resolved through static analysis, and will require some form of additional information
about the external environment of the controller. (For example, the node with PC value
1B in Figure 3 is part of an external yellow cycle.)

• Ultra Yellow nodes comprise a cycle in the graph corresponding to some kind of un-
bounded loop.
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• Starvation Yellow nodes are yellow because the interrupt handler of interest can be
starved (delayed indefinitely [11]) by another interrupt source calling its own handler
frequently enough to prevent the processor from making progress toward the handler of
interest. (Nodes 15, 17, and 19 in the example can be starved by the handler starting
at 2B.)

• Artificial Yellow nodes comprise unrealizable cycles that appear in the graph as a result
of implicit path merging. (The cycle of 0F, 26, 28, and 2A in the example is an artificial
yellow cycle.)

• Upstream Yellow nodes are yellow only because they are upstream of other yellow
nodes. (Nodes 0C and 12 in the example are upstream yellow.)

Intuitively, yellow represents a “don’t know” category of nodes which lie along positive
cycles in the CFG. External and ultra yellow nodes can be dealt with through the use of
oracles, as explained in the next section. Artificial yellow nodes are eliminated using adaptive
slicing, as outlined in the section on multi-resolution analysis. Starvation yellow nodes will
be assigned a new color, to be dealt with by simulation and testing. Finally, upstream yellow
nodes will disappear when the other four classes of yellow nodes are eliminated.

5 Testing Oracles

Real-time, interrupt-driven software can contain loops that cannot be bounded through
static analysis. Synchronous communication with off-chip resources, decisions predicated on
external data, or interaction with the user can be expressed as loops whose bounds depend
on additional information outside the realm of the system source code.

The BSYLP area of the example system is such a loop. It is a simplified version of a busy-
wait loop found in several of the production microcontroller systems we have examined.
Typically, such a loop could be waiting for a peripheral device to signal that it has received
the last command, and can be issued further commands. The designers of the system would
know that the manufacturer of the device guarantees the maximum response time for this
operation will be, for example, 40ms, a fact that cannot be ascertained from the source code.
In order to take advantage of this external information the analysis uses an oracle, an entity
that answers questions about latency that cannot be answered by static analysis.

An oracle gives an assertion of the form:

Address1 → Address2 = Latency

which says that the program will take at most Latency machine cycles to get from Address1

to Address2.
When constructing the initial control flow graph, information provided by the oracle is

used to insert time summary edges from a node N in the graph with address Address1 to
a node M in the graph with address Address2 such that M and N have the same IMR
value and stack context. It was initially anticipated that the analysis would need more
complex syntax for specifying oracle edges, such as pattern matching on IMR values or
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Figure 5: Time Summary Edge

stack arithmetic. However, in the six production microcontroller systems examined, the
address-matching-only edges have proven sufficient to bound all of the external yellow loops.

The semantics of these time summary edges is such that the color of the destination node
can be safely extended backward to the source node of the summary edge. This does not
in itself imply anything about maximum latency between nodes that lie along a path from
the source to the destination. The time summary applies strictly to the maximum latency
between two nodes touched by the time summary edge.

5.1 Time Summary Edges

At this stage of the analysis, the CFG has an edge weight function w that associates each
edge in the graph with a positive integer execution time count. The final WCET to the
interrupt handler will be calculated as a multi-source longest path problem [50], which can
be computed in linear time once the graph has been transformed into an acyclic digraph.

Given a weight function ranging over positive integers, there can be no negative cycles
in the graph. However, positive cycles are common in deadline analysis CFG’s because they
correspond to the iterative control flow produced by looping constructs. Positive cycles must
be removed from the graphs before deadline analysis can take place, because the algorithm
does not consider the longest path to be defined in CFG’s with positive cycles.

Given a positive cycle πcycle and a maximum cost bound Cmax that has been asserted by
the oracle to be the maximum cost of any path along πcycle, the cycle can be replaced with
a time summary edge of weight Cmax as shown in Figure 5.

The validity of assertions made by the user to the oracle are taken for granted by the
current system. In order for the deadline analysis algorithm to remain conservative, time
summary edges must be conservative. That is, a time summary edge can overestimate the
true execution time of the loop it summarizes, but it cannot underestimate. If underestimated
time summary edges exist in a graph, the deadline analysis algorithm is not guaranteed to
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Figure 6: Time Summary Oracle in the Example

arrive at correct bounds.
Time summary edges cannot be used to summarize cycles in all cases; there exist ill-

formed loops for which no single time summary edge is sufficient. Section 8.2 presents
results of a practical study of time summary edges required for real programs.

In practice, one would want to concentrate system testing or simulation on areas with
time summary edges to gain confidence in the validity of the assertions. However, the key
point to be made is that the static analysis has greatly reduced the sheer volume of program
states that must be tested. In each of the production microcontrollers analyzed, there were
fewer than 20 overall assertions to the oracle, each of which covered only a handful of nodes
in the graph, out of tens or hundreds of thousands of nodes in the graph overall.

Static analysis can reduce the size of the latency testing problem from an utterly in-
tractable scale down to a subset of the program small enough that one could conceivably
use exhaustive simulation to ascertain the remaining WCET information, or apply other
finer-grained and less-scalable analyses.

5.2 Time Summary Edges in the Example

For the example program, a time summary oracle specifies that the BSYLP loop takes at most
320,000 machine cycles (40ms on the example architecture). The input to the oracle is:

[0x001B] -> [0x0020] = 320000

The resulting change to the graph is shown in Figure 6. The time summary edge from 1B

to 20 (which is already a green node) allows 1B to be recolored green. This in turn causes
1E to be recolored green as well, so this oracle edge has eliminated BSYLP as an obstacle to
determining maximum interrupt latency for the entire program.

We use oracles in three ways:
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• External event delays – bounds for loops that rely on data external to the system, such
as bytes arriving on the input ports of the processor.

• Internal loop bounds – many of the for-loop style constructs could be bounded using
well-known static analysis techniques [36, 18]. However, implementing the proper
structural loop analysis for assembly language source, without any annotations from the
programmer, could be far more expensive than ascertaining the loop bounds manually.
Many of the loops found in the benchmarks are trivially bounded by casual examination
of the code, and the time summary oracle construct is sufficiently general to bound
the maximum loop execution time. This would not be a preferred use of the tool in
practice. An industrial strength version of ZARBI would infer these bounds statically,
or interactively assist the programmer in annotating the code with proper bounds. The
current tool leaves this for future work.

• Internal data dependent loop bounds – a small number of loops in the test suite relied
not on immediate constants near the top of the loop, but rather on data elsewhere in the
program. The most common example of this was a display routine that iterated over
a zero-terminated ASCII string. Techniques exist to automatically infer these kinds
of bounds, but for simplicity of implementation, these were not employed. Instead,
bounds on these loops were manually ascertained, and equivalent time summary edges
were inserted.

Fully two thirds of the input provided to the time summary oracle for these experiments
were loop bounds that could either be statically checked as annotations or statically inferred
by other means. The remaining third of the input was for external event delays of the kind
that could not possibly be determined statically. A very small number of the input items
were for loops dependent on internal data, which could probably be determined with a very
thorough flow analysis of all registers in the program.

The interface provided to assist the user in giving these assertions to the oracle is quite
straightforward. After initial coloring of the graph, the tool produces a list of border yellow
nodes – yellow nodes that are one edge away from green nodes. Typically, these will be
branch or jump instructions that comprise the bottom of a loop. In the case of the example
program, the prototype tool would produce the result,

Border Yellow instructions:

L001E: JR NZ, L001B

directing the user to the BSYLP loop.

6 Multi-Resolution Analysis

Initial construction of the control flow graph includes estimates of the possible IMR values
and top stack elements for each node. Abstracting away the rest of the machine state im-
plicitly merges control flow paths, thereby allowing the size of the graph to remain tractable
– typically much less than a million nodes, rather than the 227 nodes which is the worst case
for this model. (7 bits of IMR, 10 bits of stack element, and 10 bits of PC = 27 bits per
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Figure 7: Example Program Adaptive Slicing

node.) However, the imprecision of having nodes distinguished by only one element of stack
context (analogous to 1-CFA in flow analysis parlance [52]), can result in artificial cycles
appearing in the control flow graph.

Such is the case in the example program, where procedure PROC is called twice within
a segment where interrupt handling is disabled. Ignoring for a moment the question of
how to bound latency from node 12, the INIT segment of the graph would still be colored
yellow because of the path [0F,00,{}], [26,00,{12}], [28,00,{?}], [2A,00,{0F}], and back to
[0F,00,{}]. This is a false path [4], which does not correspond to realizable control flow –
the second call to PROC will return to the originating call site, not the previous call site.

The approach to multi-resolution analysis shown here improves the control flow graph by
eliminating many unrealizable paths.

False paths are a well known problem in control flow analysis; one solution is to employ
k-CFA with larger values of k. However, it could be expensive to recompute the entire
control flow graph with a higher value of k, as this quickly causes a combinatorial explosion
in graph size for interrupt-driven software. Instead, the CFG is constructed using multi-
resolution analysis, where the value of k (the size of the call string suffixes) is increased only
in the areas of the graph where it is necessary to alleviate ambiguity in latency analysis.
Thus, nodes like [28,00,{?}] in the example are adaptively sliced into non-yellow nodes with
greater stack context, [28,00,{?,0F}] and [28,00,{?,12}], as shown in Figure 7. This approach
is inspired by Plevyak and Chien [43]. Independently of our work, Guyer and Lin [25] have
also used multi-resolution analysis.

Multi-resolution analysis takes place automatically; the algorithm iteratively identifies
nodes that are both border yellow and stack popping instructions (POP, RET, and IRET), and
adaptively slices these nodes and their associated graph segments to the necessary depth.
This technique represents a substantial savings in graph complexity, reducing the size of the
graph by 20% to 60% compared to running the analysis of the production programs with
a fixed, non-adaptive k-CFA. However, the reduction in graph size can come at the cost of
increased analysis time, as mentioned below.

While the multi-resolution analysis reduces the number of nodes and edges in the graphs
in all cases, when compared with the running time of straight k-CFA, it runs faster in
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some cases, but slower in others. In two cases, the multi-resolution analysis is an order of
magnitude slower than straight k-CFA. This wide variation in relative run times is highly
dependent on the structure of the program under analysis – the depth that the adaptive
slicing must go to in order to disambiguate latency, the number of call sites involved, and
the lengths of the subroutines being sliced are all factors in the cost of multi-resolution
analysis. For this reason, the prototype tool includes a command-line option which tells it
to use straight k-CFA with a specific k, rather than automatic multi-resolution analysis, so
that the user can choose whichever method performs better for their given program input.

The multi-resolution analysis is guaranteed to terminate because the control flow graphs
have a bounded stack size, as verified by a previous phase of the tool. The full details of the
adaptive slicing can be found in [10].

Time summary oracles allow the deadline analysis to resolve both external and internal
yellow loops. Multi-resolution analysis slices apart artificial yellow nodes. Of the five types
of yellow nodes, all that remain are starvation yellow and upstream yellow.

Because these nodes are yellow for a fundamentally different reason than the other nodes
dealt with thus far, a new color is designated for them.

• Magenta nodes are those which are one edge away from either green or magenta nodes
in the graph, AND are one edge away from a non-green interrupt handler.

Magenta nodes are set aside as a special case for which maximum latency of the green
interrupt handler cannot be bounded without additional, detailed meta-knowledge about
the characteristics of the other non-green interrupt handlers involved, (such as inter-arrival
times of interrupts, jitter, etc). These nodes are also different in that the straightforward
oracle-inserted time summary edges cannot help render these nodes green, even if the oracle
provides bounds on the WCET of the segment of magenta nodes. This is because each
magenta node can be starved, since the non-green interrupt handler can in the worst case
execute so frequently that the computation does not make progress from the magenta node.
(This is a point on which the Z86E30 documentation is vague; it is not clear whether an
interrupt can occur frequently enough to completely halt progress in the non-interrupt code.
In the absence of a clear answer, the worst case is assumed. But whatever the processor-
specific behavior, either no progress or very little progress will be made in the main program
under the worst-case interrupt arrival conditions, and starvation will be severe in either case.)

The WCET of contiguous clusters, or clouds, of magenta nodes cannot be reasoned about
at the individual node level, unlike all of the other analyses presented here. For this reason,
the problem of bounding magenta clouds is left as future work beyond the scope of this
paper. Fortunately, the current analysis has revealed that on average, fewer than 2% of the
nodes in the production microcontroller suite are magenta; in several cases, there are no
magenta nodes at all.

Those yellow nodes which are upstream of the newly designated magenta nodes are also
assigned a new color.

• Blue nodes are those for which the deadline analysis algorithm can precisely bound the
WCET to reach a cloud of magenta nodes.
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Color CTL formula Intuition

UltraGreen ≡ H ∨ EX(H) : Head of handler of interest
or one edge away.

Green ≡ AF (UltraGreen) : Inevitable that computation
will reach an UltraGreen node.

Red ≡ ¬EF (UltraGreen) : Not possible to reach
an UltraGreen node.

Magenta ≡ EF (UltraGreen) ∧ EX(handler) : Can reach both a Green
∧ AX(handler ⇒ ¬(Green ∨ Red)) and a non-Green handler

Blue ≡ EF (Magenta) ∧ ¬EX(handler) : Inevitable that computation
∧ AF (Magenta ∨ Green) will reach a Magenta node.

Y ellow ≡ ¬(Green ∨ Red ∨ Magenta ∨ Blue) : Don’t Know.

Figure 8: Coloring of a Graph for Latency Analysis

Intuitively, blue nodes are well-behaved segments of the graph which would be green if
there were not a magenta cloud of potential interrupt starvation between them and the green
handler, as suggested by Figure 1.

7 Implementation Issues

We now present details of our implementation of graph coloring and adaptive slicing. The
implementation does those tasks in an integrated fashion.

7.1 Coloring Algorithm

The algorithm for coloring a graph is presented in Computation Tree Logic notation [17] in
Figure 8. H is a predicate that is true for a node which represents the first instruction of
the interrupt handler of interest. Predicate handler is true for a node which represents the
first instruction of any interrupt handler (so, H ⇒ handler). We use CTL notation to talk
about edges and paths to a node that satisfy a condition p:

EX(p) means there is an edge from the current node to a node that satisfies p.
AX(p) means every edge from the current node is to a node that satisfies p.
EF (p) means there is a path from the current node to a node that satisfies p.
AF (p) means every path from the current node reaches a node that satisfies p.

A node is UltraGreen if it either satisfies H or there is an edge to a node that satisfies
H (as expressed with EX(H)). In other words, handling of the interrupt has just started
or will start in the next computation step. The definition Green ≡ AF (UltraGreen) means
that Green nodes are those for which all outgoing paths inevitably reach UltraGreen nodes.
Thus, for UltraGreen nodes we can compute the WCET from the node to the handler.
Notice that all UltraGreen nodes are also Green. A Red node cannot reach the handler
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of interest (as expressed with ¬EF (UltraGreen)). A Magenta node can reach the handler
of interest (as expressed with EF (UltraGreen)), but it also has an edge to some other
handler (as expressed with EX(handler)) which is neither Green nor Red (as expressed with
AX(handler ⇒ ¬(Green ∨ Red))). This other handler may be able to prevent the current
node from reaching any UltraGreen nodes if the interfering interrupt or interrupts occur
repeatedly. A Blue node can reach a Magenta node (as expressed with EF (Magenta)) but it
cannot reach any handler in one step (as expressed with ¬(EX(handler)), and every path will
lead to either and Magenta node or a Green node (as expressed with AF (Magenta∨Green)).
In other words, a Blue node is upstream from Magenta nodes and we can compute the
WCET from the node to the Magenta nodes. It is straightforward to show that every
node has exactly one of the colors Green, Red, Magenta, Blue, and Y ellow. The ZARBI
implementation of the coloring algorithm is detailed in [10].

Let us consider the insertion of a time summary edge A → B = bound, where A, B

are nodes in the graph. We require that (1) A can reach B, (2) A is Y ellow or Blue, and
(3) B is Green. In other words, the time summary edge is a shortcut from A to B which
creates a one-step link from a Y ellow or Blue node to a Green node. The insertion of
A → B = bound is done by inserting an edge from A to B and removing all other edges
from A. It is straightforward to show that if we recalculate colors after inserting such time
summary edges, the only possible color changes are that Y ellow, Magenta, and Blue nodes
may have become Green. The insertion procedure can easily be extended to allow the
simultaneous insertion of multiple time summary edges.

Returning to the control flow graph from Figure 3, the three nodes at 15, 17, and 19 are
colored magenta. The interrupt handler nodes, 2B, hanging off of the magenta section are
considered blue. The entire segment above OUTLP, with the help of the slicing explained in
the previous section, is colored blue.

All edges in the CFG are annotated with execution cycles; all timing information is taken
from the Z86 reference manual [59]. The entire flow graph of the example program is now
green, blue, or magenta. The magenta cycles cannot be statically bounded, but the green and
blue nodes can be broken into directed, acyclic subgraphs, each of which can be evaluated
for WCET by a recursive traversal in which

WCET (B) = max(WCET (A) + edgeAB)

where A ranges over all nodes that connect directly to node B, and edgeAB is the cost of
the edge from A to B. Running this traversal over the green nodes in the example program
produces a WCET time of 320010 machine cycles between the magenta node at 19 and the
interrupt handler at 2C. The same calculation over the blue subgraph reveals a maximum
WCET of 102 machine cycles from the start of the program to the start of the magenta
nodes.

Combining this information with additional knowledge about the magenta section, such
as, it will take at most 200 cycles to get from 12 to 1B through the magenta section, bounds
the maximum interrupt latency to be 320312 cycles.

23



7.2 Adaptive Slicing

Our deadline analysis includes adaptive slicing, an automated technique for increasing the
resolution of the analysis in areas of the graph where abstraction causes ambiguity. An
example is presented in Section 6; the details of the implementation are presented here, with
pseudocode shown in Figure 9.

In the overall scheme of deadline analysis, multiresolution analysis takes place after the
initial coloring of the graph with respect to a given handler. The first pass scans backward
from the ultragreen handler to collect a list of all yellow nodes which are one edge away from
green or ultragreen nodes. These nodes are the border yellow nodes and are the primary
candidates for both adaptive slicing and time summary oracle assertions.

repeat

BorderY ellowSet ⇐ getBorderY ellow()
for all borderY ellow such that borderY ellow ∈ BorderY ellowSet do

if borderY ellow is a pop node then

if ∃edge ∈ Ω(borderY ellow) such that destination(edge) ∈ Y ellow then

if destination(e) not in non-green handler then

for all node ∈ destination(Ω(borderY ellow)))) do

maxOutgoingK ⇐ max(contextAt(node), maxOutgoingK)
end for

if maxOutgoingK + 1 > contextAt(borderY ellow) then

deletionList ⇐ all nodes backward reachable from borderY ellow without
traversing push edges
rebuildList ⇐ all nodes one push edge back from deletionList

delete the deletionList

buildContext ⇐ maxOutgoingK + 1
rebuild graph segment with workList ⇐ rebuildList

end if

end if

end if

end if

end for

until No changes have been made in G

Figure 9: Adaptive Slicing Algorithm

Not all border yellow nodes can be recolored green through adaptive slicing or time
summary oracles – some could be yellow because of loops and path mergings elsewhere in
the graph. These are upstream yellow nodes, because their yellow classification depends
entirely upon structures elsewhere in the graph. However, regardless of what percentage of
the border yellow nodes is upstream yellow, it is still the case that some number of border
yellow nodes can be recolored green with the help of slicing or oracles.
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The multiresolution analysis next iterates through the list of border yellow nodes and
discards any nodes which are not pop nodes. Pop nodes correspond to one of three opcodes
in the Z86 assembly language – POP, RET, and IRET. Only the border yellow pop nodes
are of interest for adaptive slicing, because they are the merge points in a backward traversal
where stack context is lost. In other words, if a green node in the program has an incoming
pop edge from a yellow POP instruction, it is the implicit merging of the node for the POP
instruction with another node in a different stack context which causes an artificial yellow
cycle to appear in the graph.

While filtering non-pop nodes out of the list, the analysis also checks each border yellow
pop node candidate to see that it has at least one outgoing yellow edge that does not lead to
a non-green interrupt handler. Pop nodes that are yellow only because of outgoing edges that
lead in one step to a non-green interrupt handler cannot be recolored green with additional
stack context; they will be colored magenta in a later graph coloring pass.

Finally, for each remaining candidate border yellow pop node, a maxOutgoingK tally is
made, giving the maximum stack context value of any node reachable in one outgoing edge
from the candidate. If a candidate node’s maxOutgoingK is larger than the candidate’s
maximum stack context minus 1, the candidate is placed on the final adaptive slicing list.
This condition prevents adaptive slicing from taking place on candidates where the stack
context is already at least one more than all of the outgoing edge destinations. These nodes
cannot be successfully recolored through slicing, as they already have full precision with
regard to the stack information available at all of their successor nodes. An important
caveat is that these nodes may not be their final color just because they were filtered out in
the current pass; they may still need additional stack context to be colored green, but not
before some outgoing destination node is itself sliced into nodes with greater context.

In practical terms, the maxOutgoingK test also provides an important component to
the stopping criteria for the multiresolution analysis. Without this test on candidate nodes,
the analysis could loop indefinitely trying to add greater stack context to a graph segment
that is yellow for some other reason.

The multiresolution analysis iterates through the final list of nodes selected for adaptive
slicing. For each node in the list, two new lists are calculated: the deletion list is the transitive
closure of all nodes that can be reached by backward traversal of non-push nodes; the rebuild
list is the set of push nodes bordering the deletion list. Push nodes can correspond to PUSH
or CALL instructions. In the case where the deletion list includes the first instruction of an
interrupt handler, the push nodes can be any instruction from which that interrupt handler
can be reached in one edge.

The nodes on the deletion list are deleted. The nodes in the rebuild list are used to
seed the initial worklist when the graph builder is called to reconstruct the deleted graph
segment. Before reconstruction, however, the stack context ceiling is set to one item higher
than whatever the highest stack context number was among all the nodes in the delete list.
After reconstruction, the entire graph is recolored.

The overall stopping criteria for the multiresolution analysis is expensive to calculate.
Adaptive slicing on any given run can push back the green frontier to expose new border
yellow pop nodes that were not candidates in the previous scan. Thus, the entire process
must be repeated – the entire loop in Figure 9 – until the list of final slicing candidates is of
zero size.
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Program Lines IRQs Purpose
CTurk 1367 2 Agricultural control
GTurk 1687 2 Agricultural control
ZTurk 1612 2 Agricultural control
DRop 1162 3 Reverse osmosis control
Rop 1172 3 Reverse osmosis control
Serial 795 3 RS-485 network relay
Micro00 84 2 Example from [9]
ICSE01 55 1 Example from [9]
FSE03 35 2 Example from Section 4.1

Figure 10: Benchmark Characteristics

The existing adaptive slicing algorithm is not optimal in that a lot of work is needlessly
duplicated during the analysis. In practice, large segments of graph can be built, deleted,
rebuilt with greater stack context, deleted again, and rebuilt with even more stack context.
A cleverer algorithm would instead update existing nodes with greater context, rather than
completely recalculating control flow each time. However, this would add substantial com-
plexity to the implementation, as the adaptive slicer would need a different graph building
engine, distinct from the primary graph builder.

The complexity of the multiresolution analysis is surprisingly large, due both to the
complexity of the stopping criteria, and the complexity of completely recoloring the graph
after each slicing. Knowing when to stop looking for candidates for slicing requires global
knowledge of the graph, and thus cannot be inexpensively implemented in a system that
focuses on per-node operations. The current prototype is designed around the assumption
that most analysis will focus on a single node and its immediate neighbors, and thus collecting
global information can be more expensive.

8 Experimental Results

The following sections present experiments applying the prototype implementation of our
analysis to a test suite of commercially available microcontroller systems. Following these
results, Section 8.4 presents a narrative of a representative session with the tool, starting
from a fresh program, and iterating the deadline analysis until all nodes are either green,
blue, or magenta.

8.1 Benchmark Characteristics

The benchmarks (see Figure 10) used to evaluate our deadline analysis techniques are a
collection of real-time, interrupt-driven systems programmed in Z86 assembly language and
lent to us for analysis by Greenhill Manufacturing, Ltd. (www.greenhillmfg.com).

These systems operate on a descendant of the Z80 processor, the Z86E30 microcontroller,
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Percentage green
Prog IRQ1 IRQ2 IRQ3

CTurk 100% 5% .
GTurk 100% 2% .
ZTurk 100% 2% .
DRop 99% 62% 40%
Rop 99% 66% 37%
Serial 100% 54% 49%
Micro00 56% 45% .
ICSE01 100% . .
FSE03 100% 28% .

Percentage blue
Prog IRQ1 IRQ2 IRQ3

CTurk 0% 87% .
GTurk 0% 94% .
ZTurk 0% 94% .
DRop 1% 36% 58%
Rop 1% 32% 60%
Serial 0% 44% 49%
Micro00 38% 49% .
ICSE01 0% . .
FSE03 0% 57% .

Percentage magenta
Prog IRQ1 IRQ2 IRQ3

CTurk 0% 7% .
GTurk 0% 3% .
ZTurk 0% 3% .
DRop 1% 1% 1%
Rop 1% 1% 2%
Serial 0% 1% 1%
Micro00 5% 5% .
ICSE01 0% . .
FSE03 0% 14% .

Percentage yellow
Prog IRQ1 IRQ2 IRQ3

CTurk 0% 0% .
GTurk 0% 0% .
ZTurk 0% 0% .
DRop 0% 0% 0%
Rop 0% 0% 0%
Serial 0% 0% 0%
Micro00 0% 0% .
ICSE01 0% . .
FSE03 0% 0% .

Figure 11: Results With Completed Oracles

with 256 bytes of RAM, 4K of program ROM, and a 12MHz clock. The resources available
to such a chip are moderate at best, but this is true of millions of units of similar 4-, 8-
and 16-bit embedded systems sold this year. The software for these systems was written by
hand, in Z86 assembly language, and varies in size from about 800 to 1600 lines of code. The
prototypes for each of these systems underwent months of testing prior to actual production,
but the overall properties of these systems were still poorly understood, largely due to the
lack of proper analysis tools like the one we present here.

The test suite also includes the example program from Figure 2, called “FSE03”, as well
as examples from [9], called “ICSE01,” and “Micro00.” The commercial program “Fan” (in-
cluded in earlier papers,) has been omitted because the stack size analysis cannot currently
bound its maximum stack height (due to both positive and negative cycles in the corre-
sponding CFG); bounded stack height is a precondition to running the deadline analysis
algorithm.

8.2 Measurements

The results shown in Figure 11 give the final percentages of nodes by color after completion of
the deadline analysis. For clarity of presentation, interrupt sources in the tables are numbered
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Adaptive Slicing fixed k-CFA
Program Max k Nodes Edges Nodes Edges
CTurk 9 35750 51329 63904 84594
GTurk 10 140817 184724 215603 272421
ZTurk 10 127892 168104 190813 241118
DRop 5 19206 25244 46246 58510
Rop 5 21837 28731 54900 69597
Serial 3 8158 10753 19352 24775
Micro00 1 339 619 339 619
ICSE01 1 46 74 46 74
FSE03 2 18 33 21 33

Figure 12: Adaptive Slicing vs. Fixed k-CFA

as “IRQ1”, “IRQ2”, and IRQ3. This does not imply any kind of priority relationship between
the various interrupt sources, nor are these the actual interrupt source numbers from the
Z86 processor; they are merely organized into columns. (E.g., Cturk has interrupt handlers
for Z86 IRQ3, IRQ4, and IRQ5, and these are labeled 1st, 2nd, and 3rd IRQ respectively in
the table.) Note that the tool rounds percentages down in most cases, or up in the case of
percentages less than 1%, so the tables in Figure 11 may not total precisely to 100%.

Yellow nodes were entirely eliminated, and the percentages of green and blue were high.
The magenta present in the final graphs was uniformly low, less than 2% on average. Several
of the benchmarks had 0% magenta for a given IRQ, which means the analysis can safely
and completely bound interrupt latency for those particular handlers from anywhere in the
program.

The ZARBI deadline analysis tool is implemented in Java, and took less than the 128
Megabytes of available RAM to complete the analysis in all cases. The running time of
the tool increases as the number of oracle assertions allows the tool to slice deeper into the
graphs. Run-time varied from less than 2 seconds up to an hour for the largest benchmark
(with full multi-resolution analysis), with an average run-time of 15 minutes overall. The
current implementation has been optimized toward rapid prototyping and easy debugging
of the tool, with little regard for running time and space requirements. It is expected that
an industrial-strength version of the tool could be constructed to run more efficiently.

Figure 12 shows the sizes of the graphs generated by the analysis, both with adaptive
slicing, and with a fixed k-CFA, where the value for k is fixed to the depth needed by the
adaptive slicing.

As mentioned earlier, employing multi-resolution analysis results in a substantial savings
in graph complexity, with multi-resolution graphs 20% to 60% smaller than the equivalent
fixed k-CFA graphs. While the fixed k-CFA graphs can be constructed substantially faster in
some cases, the reduction in yellow nodes offered by the multi-resolution analysis is usually
far more valuable. When using the tool to iteratively discover time summary assertions for
reducing yellow nodes, (as demonstrated in Section 8.4,) anything that causes larger graphs
potentially creates more yellow nodes, adding more data to the output of the tool, and
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Number of Summary Edges
Program Total External Internal Data
CTurk 15 5 9 1
GTurk 17 5 11 1
ZTurk 17 5 11 1
DRop 16 6 9 1
Rop 16 6 9 1
Serial 2 1 1 0
Micro00 0 0 0 0
ICSE01 1 0 1 0
FSE03 1 1 0 0

Figure 13: Oracle Information Provided

making the entire process increasingly difficult.
Figure 13 characterizes the number and types of assertions that were provided to the

time summary oracle in order to eliminate all yellow nodes in the test suite.
In all cases, there was only one contiguous magenta cloud for each program that had any

magenta nodes.

8.3 Assessment

The complete elimination of yellow nodes from the control flow graphs of the commercial
microcontrollers was the primary goal in the deadline analysis experiments, and this was
accomplished by the algorithms presented.

The high percentage of green and blue nodes makes it possible to completely bound
interrupt latency for some of the interrupt sources in some of the benchmarks, and greatly
decreases the remaining work to be done in bounding the others.

The low percentage of magenta nodes in the graphs, combined with the fact that magenta
nodes are constrained to a single, contiguous cloud in all of the benchmarks, paves the way
for automatically bounding these most troublesome parts of the graph in the future. The
only case where magenta levels reached a double digit percentage was the FSE03 example
program, which was constructed to have a prominent magenta segment. In many cases, the
magenta section is small enough that the total uninterrupted WCET of the magenta cloud
could be less than the minimum period of the interfering interrupt handler(s), making it pos-
sible to reason about these sections with a first-order worst-case response time analysis [54]
or by detailed simulation and testing.

The number of time summary oracle assertions necessary to eliminate yellow nodes from
the benchmarks is small and manageable. Well over half of the assertions are of the type
that could be automatically inferred by local data flow analysis.

The original motivating challenge for this work was to see if static analysis could signifi-
cantly reduce the required testing effort. Our answer is a definitive, “yes.” Our tool allows
the testing problem to be reduced from needing to cover the entire state space of the system
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down to concentrating on a handful of key passages in the code corresponding to oracle
assertions and magenta sections. It is difficult to quantify just how much of a reduction in
testing we can achieve, given that bounding interrupt latency for benchmarks such as ours
is a largely intractable problem without our analysis technique. With the static analysis we
propose, proper testing of such systems is not only possible, it can now be undertaken with
standard test coverage techniques.

8.4 User Experience

This section details the complete process of starting with a raw program, and iterating
with the deadline analysis to add time summary oracle assertions until all yellow nodes are
eliminated.

This example will use one of the medium sized benchmarks, Rop.

Raw
Code

Add
Assertions

  Stack
Analysis

   Graph
 Coloring

Yellow
Nodes?

N

Y

Done

Figure 14: Tool Usage Flow Diagram

The overall process of the deadline analysis is shown in Figure 14. After an initial stack
analysis, the user iterates the graph coloring deadline analysis, adding assertions until all of
the yellow nodes are eliminated.

The initial run of the tool takes 23 seconds and outputs:

Border Yellow instructions:

L0667: JR ULT, L0680

L0675: JR ULT, L0680

L00D2: JR EQ, L00E3

L066C: JR UGT, L067C

L067A: JR ULE, L0681

L0312: JR C, L0308

L062D: JR ULE, L061C

L0268: JR UGE, L02B7

L0080: JR EQ, L00F2

L02BA: JR UGE, L02C3

L034C: JR EQ, L0354
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L0396: PUSH %FBh

L04E6: DJNZ r14, L04E0

Edges = 24503 Green Yellow Magenta Blue

Nodes = 18559 12522 6029 2 6

Percent = 67% 32% 1% 1%

The list of potential yellow nodes is long for the initial run, because it is not trivial for
the tool to distinguish between key yellow loops that must be broken and loop instructions
that happen to be on the yellow border for other reasons.

Looking through some of the tool’s suggested locations in the code, the user’s attention
is immediately drawn to a potential loop to bound – the DJNZ instruction at L04E6 is part
of a double loop that debounces the input from a mechanical switch attached to the system.
The design of the system specifies that this mechanical contact should not bounce for more
than 10ms when in good working order.

The double loop is actually two intertwined loops (which would be difficult to implement
in most higher level languages), but can be bounded with a pair of assertions to the time
summary oracle:

[0x04E0]->[0x04E8]=80000 ; Debounce. (10ms) [E]

[0x04DC]->[0x04E8]=80000 ; Debounce. (10ms) [E]

The syntax on the left describes the source and destination nodes, and the length of time
to assert. To the right of the semi-colon, a comment documents the reason for the assertion,
and the time translated into seconds. (80,000 machine cycles equals 10 milliseconds with an
8MHz clock.) The full grammar of the time summary oracle file format can be found in [10].

The user reruns the tool, with the new oracle assertions. After 31 seconds, the tool
responds:

Border Yellow instructions:

L0667: JR ULT, L0680

L0675: JR ULT, L0680

L00D2: JR EQ, L00E3

L066C: JR UGT, L067C

L067A: JR ULE, L0681

L0312: JR C, L0308

L062D: JR ULE, L061C

L0268: JR UGE, L02B7

L0080: JR EQ, L00F2

L02BA: JR UGE, L02C3

L034C: JR EQ, L0354

L0396: PUSH %FBh
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L04DA: JR NZ, L04D6

Edges = 24513 Green Yellow Magenta Blue

Nodes = 18559 12528 6023 2 6

Percent = 67% 32% 1% 1%

Note that the node total has remained the same, but six nodes that were yellow are now
green. The DJNZ instruction at L04E6 is no longer listed as a border yellow node, and a
new border node is listed in its place. The tool also outputs the number of red nodes in the
graph, if any, but none of these graphs contained red nodes.

The loop at L04DA is a holding pattern that waits for the human operator to release one
of the push buttons. The user interface segments of this microcontroller system are only
executed when the system is in a programming mode, so attention to interrupt handlers is
not important here. The user assumes that no one is pushing the button, and the branch
will never be taken.

The loop at L0312 waits on an external device that the microcontroller has synchronous
communication with. The manufacturer guarantees a maximum 40ms delay before the device
responds.

The loop at L062D has a visible bound, but calls several levels of complex subroutines.
This is the sort of loop that would be extremely tedious to estimate by hand with any
accuracy, but which could probably be automatically bounded by a local data flow analysis
around the loop and its subroutines. For now, the user puts in an outrageous overestimate
of 3 full seconds; this area should be simulated in depth in order to tighten the estimate
later.

The jump instruction JR EQ, L0354 at L034C is part of a loop that writes ASCII strings
to a connected LCD panel one byte at a time. The number of iterations for the loop
is dependent upon the length of the string passed into the subroutine, but the system is
designed to have a 16 character LCD display, and none of the zero-terminated ASCII string
constants in the program are longer than 17 characters. The subroutine called from within
the loop is green from some other call sites, so with some work, the user can conservatively
bound the loop to be 17 characters times at most 40ms, for a total of 680ms.

The oracle is provided with the next set of assertions. The bracketed letters on the far
right of the comment are personal notes about the type of assertion. An “[E]” indicates
“external delay loops,” which are impossible to statically bound. An “[A]” indicates loops
dependent on internal data, and the letter “[D]” indicates a more difficult class of internal
data-dependent loops.

[0x04D6]->[0x04DC]=30 ; No button press. [E]

[0x061C]->[0x062F]=24000000 ; Punt. (3sec) [A]

[0x0308]->[0x0314]=320000 ; Display. (40ms) [E]

[0x033D]->[0x0354]=5440000 ; 17 char (680ms) [D]
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This run takes 36 seconds, and has reduced the number of suggested border nodes to
look at. The PUSH instruction continues to appear in the list only because some other yellow
obstacle is preventing the slicer from identifying the correct segment to which additional
stack context should be added.

Border Yellow instructions:

L0396: PUSH %FBh

L0608: DJNZ r12, L0601

L0650: JR ULE, L063F

L042A: JR Z, L041C

Edges = 25044 Green Yellow Magenta Blue

Nodes = 18992 16470 2431 2 89

Percent = 86% 12% 1% 1%

The loop at L042A is part of another software debouncing area. The user will assume no
button press.

The loop at L0650 is a twin to the loop at L062D above, so the user duplicates the
assertion edge with new source and destination addresses.

The DJNZ instruction at L0608 is part of a nested loop that was designed to wait 20ms
before sending more data to a peripheral chip.

More assertions are added, and the tool is rerun.

[0x0420]->[0x0427]=46 ; No button press. [E]

[0x0420]->[0x042C]=66 ; No button press. [E]

[0x063F]->[0x0652]=24000000 ; Punt. (3sec) [A]

[0x0601]->[0x060A]=166086 ; EEPROM write (20ms) [A]

[0x0603]->[0x060A]=166086 ; EEPROM write (20ms) [A]

Border Yellow instructions:

L0396: PUSH %FBh

L05E5: DJNZ r13, L05D8

L05F6: DJNZ r13, L05EA

Edges = 25088 Green Yellow Magenta Blue

Nodes = 19020 17562 1367 2 89

Percent = 92% 7% 1% 1%

After 39 seconds of analysis, the percentage of green nodes has topped 90%, and the
remaining yellow nodes are in the single digit range. The user is in the home stretch now.

Both of the suggested DJNZ instructions belong to loops with obvious bounds. While
somewhat tedious, the user is able to total up the execution time of the dozen instructions
in the bodies of the loops, and multiply them by the bounds.
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[0x05EA]->[0x05F8]=144 ; RDLP1 (8*18cyc=18uS) [A]

[0x05D8]->[0x05E7]=1200 ; SENDBF (8*150c =150uS) [A]

Border Yellow instructions:

L0396: PUSH %FBh

L0490: DJNZ r14, L048D

Edges = 28728 Green Yellow Magenta Blue

Nodes = 21837 21242 504 2 89

Percent = 97% 2% 1% 1%

After a 1 minute, 19 second analysis, the program has 97% green nodes.
The next border node belongs to a loop with obvious bounds calling a 40ms subroutine.

There are two very similar loops with slightly different bounds on the page above L0490.
The user adds assertions for all three.

[0x048D]->[0x0492]=1601000 ; DSPBCK 5x (201ms) [A]

[0x046C]->[0x0471]=1601000 ; DSPBCK 5x (201ms) [A]

[0x0445]->[0x044A]=1280800 ; DSPBCK 4x (161ms) [A]

The final run of the tool takes 1 minute, 26 seconds, but produces zero yellow nodes.

Edges = 28731 Green Yellow Magenta Blue

Nodes = 21837 21746 0 2 89

Percent = 99% 0% 1% 1%

There is still much testing to be done for this embedded system. The user has presented
16 assertions to the oracle, 10 of those based upon manual inspection of the code, rather
than external design criteria. Simulation and testing of the system should aim to validate
and/or tighten these unchecked assertions.

While the two magenta nodes in the system seem to be a small window of opportunity for
interrupt starvation, they comprise an infinite loop with a non-green interrupt source turned
on. In other words, the system turns off all other interrupts, and waits for a particular,
different interrupt to occur before returning to normal operation. Thus, deadline analysis
for this system and this particular interrupt handler depends ultimately upon knowing the
upper bound on the time the system will have to wait for this other interrupt source to be
triggered.

Overall understanding of the example system’s timing behavior has increased as a result
of the deadline analysis. Testing and simulation can concentrate on the lines of code for
which assertions have been provided, and on the magenta nodes, both of which comprise
a tiny fraction of the total state space for the code. The prototype implementation also
produces flow graphs that depict the colors of code regions, or can dump the graph in a
flat file format suitable for import into other visualization tools. Additional implementation
details are presented in [10].

34



9 Conclusion

For interrupt-driven assembly code, our tool makes it significantly easier to perform deadline
analysis. We use static analysis to reduce the required testing effort to concentrate on the
validity of certain testing oracles. Our multi-resolution analysis allows for compact and
efficient representation of timing properties while smoothly incorporating the oracles. For
each of our test programs, at most 17 oracles are sufficient, and these can be added in an
interactive fashion until the deadline analysis is complete. In our experience, an expert user
can go from a bare program of about 1000 lines of assembly code to a completed deadline
analysis in less than an hour, not counting the testing of the oracles.

While the current incarnation of the tool uses a Z86 front end, the abstractions used in
the graph analysis are applicable to a wide range of other processors which use bit-maskable,
vectored interrupt handling, such as the Motorola 68000 family and many RISC DSP chips.

Several valuable lessons were learned while experimenting with our tool on real code
“found in the wild.” First, for designers of deadline analysis tools it is absolutely crucial
to find good techniques for presenting and visualizing the vast amount of data available
when analyzing even moderately sized interrupt-driven systems. For interrupt-driven system
designers, it is key to note that stack boundedness is a precondition for this kind of deadline
analysis. We have one commercial microcontroller system for which we cannot provide a
deadline analysis because its stack behavior is too byzantine for the current incarnation of
the stack analyzer to handle. Finally, for low-level, interrupt-driven systems of this kind
it is essential that the full interrupt capabilities of the microcontroller be used as sparingly
as possible. Global interrupts should be kept disabled whenever possible, and individual
interrupts should be masked off when not needed. Judicious use of interrupts greatly reduces
the complexity of the analysis problem, and ultimately reduces the size of the magenta
sections that require further modeling after our deadline analysis. While we believe our work
has shown that existing techniques can tackle deadline analysis for well-written, medium-
sized interrupt-driven systems, it is surely the case that sloppy or naive implementation of
an interrupt-driven system can still render the problem into intractability.

Future work includes improvements in (1) discovery of loop variables bounds, (2) static
analysis of magenta clouds, based on specifications of minimum inter-arrival times for inter-
rupts, and (3) the interface for visualization of the graph.
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