
Equality-Based Flow Analysis versus Recursive Types

JENS PALSBERG

Purdue University

Equality-based control-flow analysis has been studied by Henglein, Bondorf and Jørgensen, De-
Fouw, Grove, and Chambers, and others. It is faster than the subset-based 0-CFA, but also more
approximate. Heintze asserted in 1995 that a program can be safety checked with an equality-
based control-flow analysis if and only if it can be typed with recursive types. In this article we
falsify Heintze’s assertion, and we present a type system equivalent to equality-based control-flow
analysis. The new type system contains both recursive types and an unusual notion of subtyping.
We have s ≤ t if s and t unfold to the same regular tree, and we have ⊥ ≤ t ≤ > where t is a
function type. In particular, there is no nontrivial subtyping between function types.

Categories and Subject Descriptors: D.3.2 [Programming Languages]: Language Classifica-
tions—applicative languages; F.3.3 [Logics and Meanings of Programs]: Studies of Program
Constructs—type structure

General Terms: Algorithms, Languages, Theory

Additional Key Words and Phrases: Flow analysis, type systems

1. INTRODUCTION

Control-flow analysis is done to determine approximate sets of functions that may
be called from the call sites in a program. In this article we address an instance of
the question

How does flow analysis relate to type systems?

Our focus is on

(1) equality-based control-flow analysis which has been studied by Henglein [1992],
Bondorf and Jørgensen [1993], DeFouw et al. [1998], and others, and

(2) recursive types which, for example, are present in a restricted form in Java
[Gosling et al. 1996], in the form of recursive interfaces where equality and
subtyping are based on names rather than structure.

Equality-based control-flow analysis is a simplification of subset-based control-flow
analysis [Heintze and McAllester 1997; Palsberg 1995; Shivers 1991]. We will use
the following abbreviations:

—0-CFA⊆ : subset-based control-flow analysis and

Author’s address: Department of Computer Science, Purdue University, West Lafayette, IN 47907;
email: palsberg@cs.purdue.edu.
Permission to make digital/hard copy of all or part of this material without fee is granted
provided that the copies are not made or distributed for profit or commercial advantage, the
ACM copyright/server notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery, Inc. (ACM). To copy
otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c©

2 · Jens Palsberg

—0-CFA= : equality-based control-flow analysis.

0-CFA⊆ is also known as, simply, 0-CFA. We can illustrate the difference between
0-CFA⊆ and 0-CFA= by considering how they analyze a call site e1e2 in a functional
program. Suppose λx.e is a function in that program. We want a flow analysis to
express that

if λx.e becomes the result of evaluating e1, then flow relations are es-
tablished (1) between the actual argument e2 and the formal argument
x and (2) between the body e and the call site e1e2.

With a subset-based analysis, the flow relations are subset inclusions. This models
that values flow from the actual argument to the formal argument, and from the
body of the function back to the call site. With an equality-based analysis, the
flow relations are equations. Thus, the flow information for the actual and formal
argument is forced to be the same, and the flow information for the body and
the call site is also forced to be the same. Intuitively, the equations establish a
bidirectional flow of information.

0-CFA= is more approximate than 0-CFA⊆. Both have been implemented many
times for various purposes. In general, for functional and object-oriented languages,
0-CFA⊆ can be executed in cubic time. For programs with finite types, 0-CFA⊆

can be executed in quadratic time [Heintze and McAllester 1997], and particular
flow-oriented questions such as “identify all functions called from one specific call
site” can be answered in linear time [Heintze and McAllester 1997]. For compari-
son, 0-CFA= can always be executed in almost-linear time [Henglein 1992]. Which
one of 0-CFA⊆ and 0-CFA= is the better choice in practice? For a language like
ML [Milner et al. 1990] where functions have finite polymorphic types and where
data may have recursive types, experiments by Heintze and McAllester [1997] in-
dicate that it is a good choice to use 0-CFA⊆. They implemented a variant of the
quadratic-time algorithm for 0-CFA⊆ which treated data in a much simplified way.
For the problem of pointer analysis, there are algorithms which are close cousins of
0-CFA⊆ and 0-CFA= [Steensgaard 1996]. For this problem, the condition of finite
types does not hold in general. Shapiro and Horwitz [1997] presented an experimen-
tal comparison of the two algorithms, and they confirm the theoretical conclusion
that 0-CFA= is faster and more approximate than 0-CFA⊆. For an object-oriented
language like Java, the condition of finite types is seldomly satisfied because of, for
example, binary methods [Bruce et al. 1995]. DeFouw et al. [1998] experimentally
compared a family of flow-analysis algorithms whose time complexities are at most
cubic time. Both 0-CFA= and some of its variants do well in that comparison. Ash-
ley [1996] has also presented a flow analysis with time complexity less than cubic
time. It remains open how it relates to 0-CFA=. Bondorf and Jørgensen [1993]
implemented both 0-CFA⊆ and 0-CFA= for Scheme as part of the partial evaluator
Similix. For Scheme, the condition of finite types does not hold in general. They
concluded that the two analyses have comparable precision for their application
and that 0-CFA= is much faster. In summary, 0-CFA= has in experiments proved
to be a preferable alternative to 0-CFA⊆ for many applications.

Flow analyses such as 0-CFA can be formulated using constraints (see for example
Palsberg [1995] and Palsberg and Schwartzbach [1994]). This approach proceeds in
two steps: (1) derive flow constraints from the program text and (2) compute the

Equality-Based Flow Analysis versus Recursive Types · 3

least solution of the constraints. The least solution is the desired flow information.
The precision of the analysis stems from the choice of constraints. For example,
one choice leads to 0-CFA⊆, and another choice leads to 0-CFA=. The kind of flow
constraints used, for example, by Palsberg [1995] always admits a least solution.

We can turn a flow analysis into a predicate which accepts and rejects programs,
by extending it with safety constraints. For example, for a call site e1e2 in a
functional program, a safety constraint might express: “does the flow information
for e1 denote only functions?” Safety constraints do not always have a solution.
They can be derived from the program text, just like flow constraints. This means
that we can do a flow-based safety analysis of a program in two steps: (1) derive
flow and safety constraints from the program text and (2) decide if the constraints
are satisfiable. Such a safety analysis performs a task akin to type inference, in the
sense that “safe” is like “typable.”

Palsberg and O’Keefe [1995] showed that a program can be safety checked with
0-CFA⊆ if and only if it can be typed in Amadio and Cardelli’s type system with
subtyping and recursive types [Amadio and Cardelli 1993]. The proof of this con-
nection makes explicit the close relationship between flow and subtyping.

Heintze [1995] asserted that a program can be safety checked with 0-CFA= if and
only if it can be typed with recursive types. This assertion is reasonable because it
says that, intuitively, if we replace subset inclusions by equalities, then the need for
subtyping disappears. Heintze’s assertion is also consistent with the observation
that both 0-CFA= and type inference with recursive types can be executed in
almost-linear time. Perhaps surprisingly, Heintze’s assertion is false. For example,
consider the λ-term:

E1 = λf.λg.g(f0)(f(λx.x)).

The variable f is applied to both the number 0 and the function λx.x. Thus,
the λ-term E1 does not have a type in a type system with recursive types but no
subtyping. Still, a 0-CFA=-based safety analysis accepts this program, by assigning
both f and g the empty flow set (see Section 2 for details).

For another example, consider the λ-term

E2 = (λf.λg.g(f(λa.0))(f(λb.λx.x)))(λy.0).

It reminds a bit of the previous example, but now f is applied to (λa.0) and
(λb.λx.x). Again, the λ-term e2 does not have a type in a type system with recursive
types but no subtyping. For E2, a conservative flow analysis cannot assign the
empty flow set to f because that flow set should at least contain (λy.0). Still, a
0-CFA=-based safety analysis accepts this program, by assigning y a flow set which
contains both (λa.0) and (λb.λx.x).

Given that Heintze’s assertion is false, we are left with two questions:

(1) which type system corresponds to 0-CFA= and

(2) which control-flow analysis corresponds to recursive types?

Palsberg and O’Keefe’s result [1995] implies that E1 and E2 can be typed if we have
both recursive types and Amadio/Cardelli subtyping. Their result also seems to
indicate that adding both recursive types and all of the Amadio/Cardelli subtyping
to match 0-CFA= would be overkill. Thus, to answer the first question, it makes

4 · Jens Palsberg

sense to ask “how much subtyping is necessary and sufficient to match 0-CFA=?”
To answer the second question we must ask “what restrictions on 0-CFA= must we
impose to match recursive types?”

In this article we answer the first question, and we give a partial answer to the
second question. We show that a program can be safety checked with 0-CFA= if
and only if it can be typed with recursive types and an unusual restriction of Ama-
dio/Cardelli subtyping. We have s ≤ t if s and t unfold to the same regular tree,
and we have ⊥ ≤ t ≤ > where t is a function type. In particular, there is no non-
trivial subtyping between function types. To see why nontrivial subtyping between
function types is not required to match 0-CFA=, consider the program (λx.e)e′. Let
〈x〉 be a flow variable for the binding occurrence of x, and let [[(λx.e)e′]], [[λx.e]],
[[e]], [[e′]] be flow variables for the occurrences (λx.e)e′, λx.e, e, e′, respectively. If
ϕ is a map from flow variables to flow sets, which satisfies the 0-CFA= constraints,
then in particular it satisfies

ϕ([[e′]]) = ϕ(〈x〉)

ϕ([[e]]) = ϕ([[(λx.e)e′]]).

We can also use 〈x〉, [[(λx.e)e′]], [[λx.e]], [[e]], [[e′]] as type variables, and for a type
system such as simple types where there is no nontrivial subtyping between function
types, we get, among others, the following constraints on type correctness:

[[λx.e]] = 〈x〉 → [[e]]

[[λx.e]] = [[e′]] → [[(λx.e)e′]].

Unification gives that a typing must satisfy the constraints

[[e′]] = 〈x〉

[[e]] = [[(λx.e)e′]].

Thus, we get the same form of relationships between the types as there are between
the flow sets. If we allow nontrivial subtyping between function types, then the
constraints on type correctness become [Palsberg and O’Keefe 1995]

[[λx.e]] ≥ 〈x〉 → [[e]]

[[λx.e]] ≤ [[e′]] → [[(λx.e)e′]].

In particular, this opens the possibility for a nontrivial relationship

〈x〉 → [[e]] ≤ [[e′]] → [[(λx.e)e′]]

and hence

[[e′]] ≤ 〈x〉

[[e]] ≤ [[(λx.e)e′]].

These constraints are closely related to the flow constraints used in 0-CFA⊆ [Pals-
berg and O’Keefe 1995].

We also show that if a program can be safety checked with a certain restriction
of 0-CFA=, then it can be typed with recursive types. Our restriction of 0-CFA=

is that all flow sets must be nonempty and consistent. Consistency means that (1)

Equality-Based Flow Analysis versus Recursive Types · 5

if two functions λx.e and λy.e′ occur in the same flow set then the flow sets for x
and y are equal and (2) the flow sets for e and e′ are equal.

In slogan-form, our results read

0-CFA= = Recursive types + A tiny drop of subtyping.

Recursive types ⊇ 0-CFA= − Inconsistency − Emptiness.

The key to understanding the second result is that both empty flow sets and flow
sets with two or more inconsistent functions have no counterparts in a type system
with just recursive types. The restricted version of 0-CFA= does not fully match
recursive types, because a program may have a type for which no flow set exists.

In the next section, we present Heintze’s definition of 0-CFA=. In Section 3 we
present the new type system, and in Sections 4 and 5 we prove our results. Our
example language is a λ-calculus, defined by the grammar

e ::= x | λx.e | e1e2 | 0 | succ e,

where succ denotes the successor function on integers.

2. EQUALITY-BASED CONTROL-FLOW ANALYSIS

Given a λ-term P , assume that P has been α-converted such that all bound variables
are distinct and different from the free variables. Let Var(P) be the set of λ-bound
variables in P . Let XP be the set of variables consisting of one variable 〈x〉 for each
x ∈ Var(P). Let YP be a set of variables disjoint from XP consisting of one variable
[[e]] for each occurrence of a subterm e of P . (The notation [[e]] is ambiguous because
there may be more than one occurrence of e in P . However, it will always be clear
from context which occurrence is meant.) The set Abs(P) is the set of occurrences
of subterms λx.e of P . The set CL(P) is Powerset(Abs(P)) ∪ {{Int}}. Flow-based
safety analysis of a λ-term P can be phrased in terms of a constraint system over
XP ∪ YP where the variables range over CL(P):

—For every occurrence in P of a subterm of the form 0, the constraint

[[0]] = {Int};

—for every occurrence in P of a subterm of the form succ e, the two constraints

[[e]] = {Int}

[[succ e]] = {Int};

—for every occurrence in P of a subterm of the form λx.e, the constraint

{λx.e} ⊆ [[λx.e]];

—for every occurrence in P of a subterm of the form e1e2, the constraint

[[e1]] ⊆ Abs(P);

—for every occurrence in P of a λ-variable x, the constraint

〈x〉 = [[x]];

6 · Jens Palsberg

—for every occurrence in P of a subterm of the form λx.e, and for every occurrence
in P of a subterm of the form e1e2, the constraints

{λx.e} ⊆ [[e1]] ⇒ [[e2]] = 〈x〉

{λx.e} ⊆ [[e1]] ⇒ [[e]] = [[e1e2]].

The last two constraints create a connection between a call site e1e2 and a poten-
tial callee λx.e. Notice that two of the constraints are not equalities, but subset
inclusions. This is the key reason why subtyping is needed to match this safety
analysis.

This constraint system mixes flow constraints and safety constraints. The safety
constraints are

—for succ e: [[succ e]] ⊆ {Int} and

—for e1e2: [[e1]] ⊆ Abs(P),

and the rest are flow constraints. Notice that because Int and functions cannot
occur in the same flow set we have that a constraint such as [[0]] = {Int} has the
same effect as [[0]] ⊇ {Int}.

Denote by C(P) the system of constraints generated from P in this fashion.
Let Cmap(P) be the set of total functions from XP ∪ YP to CL(P). A function
ϕ ∈ Cmap(P) satisfies C(P) if it satisfies all constraints in C(P). We say that P is
0-CFA= safe if C(P) is satisfiable.

For example, consider again

E1 = λf.λg.g(f10)(f2(λx.x)),

where we have labeled the two occurrences of f as f1 and f2, for notational conve-
nience. We have

Var(E1) = {f, g, x}

XE1
= {〈f〉, 〈g〉, 〈x〉}

YE1
= {[[E1]], [[λg.g(f10)(f2(λx.x))]], [[g(f10)(f2(λx.x))]], [[g(f10)]],

[[f2(λx.x)]], [[g]], [[f10]], [[f1]], [[0]], [[f2]], [[λx.x]], [[x]]}

The constraint system C(E1) has the pointwise ⊆-least solution ϕ1:

ϕ1([[E1]]) = {E1}

ϕ1([[λg.g(f10)(f2(λx.x))]]) = {λg.g(f10)(f2(λx.x))}

ϕ1([[g(f10)(f2(λx.x))]]) = ϕ1([[g(f10)]]) = ϕ1([[f2(λx.x)]]) = ϕ1(〈g〉)

= ϕ1([[g]]) = ϕ1([[f10]]) = ϕ1(〈f〉)

= ϕ1([[f1]]) = ϕ1[[f2]]) = ϕ1(〈x〉) = ϕ1([[x]]) = ∅

ϕ1[[0]]) = {0}

ϕ1[[λx.x]]) = {λx.x}

Next consider again

E2 = (λf.λg.g(f1(λa.0))(f2(λb.λx.x)))(λy.0),

Equality-Based Flow Analysis versus Recursive Types · 7

where we have labeled the occurrences of f as f1 and f2, for notational convenience.
The constraint system C(E2) has the pointwise ⊆-least solution ϕ2:

ϕ2(〈y〉) = ϕ2([[λa.0]]) = ϕ2([[λb.λx.x]]) = {λa.0, λb.λx.x}

ϕ2([[0]]) = {Int}

ϕ2(〈f〉) = ϕ2([[f1]]) = ϕ2([[f2]]) = {λy.0}

ϕ2(〈g〉) = ϕ2([[g]]) = ϕ2(〈a〉) = ϕ2(〈b〉) = ϕ2(〈x〉) = ϕ2([[x]]) = ∅

etc.

3. THE TYPE SYSTEM

We use v to range over type variables drawn from a countably infinite set Tv.
Types are defined by the grammar

t ::= t1 → t2 | Int | v | µv.t | > | ⊥,

with the restriction that a type is not allowed to contain anything of the form

µv1. . . . µvn.v1.

We identify types with their infinite unfoldings under the rule

µv.t = t[v := µv.t].

Such infinite unfolding eliminates all uses of µ in types. It follows that types are a
class of regular trees over the alphabet

Σ = {→, Int,>,⊥} ∪ Tv.

There is a subtype relation ≤ on types:

t ≤ t for all types t,
⊥ ≤ t for all types t except Int, and
t ≤ > for all types t except Int.

It is straightforward to show that ≤ is a partial order. Notice that ⊥ is a lower
bound, and > is an upper bound for only the function types but not Int. A more
suggestive notation might be ⊥→ for ⊥ and >→ for >.

A type environment is a partial function with finite domain which maps λ-
variables to types. We use A to range over type environments. We use the notation
A[x : t] to denote an environment which maps x to t, and maps y, where y 6= x, to
A(y). A type judgment has the form A ` e : t, and it means that in the type en-
vironment A, the expression e has type t. Formally, this holds when it is derivable
using the rules below.

A[x : t] ` x : t (1)

A[x : s] ` e : t

A ` λx.e : u
(s→ t ≤ u) (2)

A ` e1 : u A ` e2 : s

A ` e1e2 : t
(u ≤ s→ t) (3)

8 · Jens Palsberg

A ` 0 : Int (4)

A ` e : Int

A ` succ e : Int
(5)

Notice that there is no subsumption rule; instead subtyping can only be used in
a restricted way in rules (2) and (3). We say that e is RS-typable if A ` e : t is
derivable for some A, t. (RS stands for “restricted subtyping.”) The type system
has the subject reduction property; that is, if A ` e : t is derivable, and e beta-
reduces to e′, then A ` e′ : t is derivable. This can be proved by straightforward
induction on the structure of the derivation of A ` e : t.

Here follow type derivations for the two λ-terms E1, E2 from Section 1. The first
type derivation uses the abbreviation A = ∅[f : ⊥][g : ⊥].

A ` g : ⊥
A ` f : ⊥ A ` 0 : Int

A ` f0 : ⊥
A ` g(f0) : ⊥

A ` f : ⊥
A[x : ⊥] ` x : ⊥

A ` λx.x : ⊥ → ⊥
A ` f(λx.x) : ⊥

A ` g(f0)(f(λx.x)) : ⊥

∅[f : ⊥] ` λg.g(f0)(f(λx.x)) : ⊥ → ⊥

∅ ` λf.λg.g(f0)(f(λx.x)) : ⊥ → (⊥ → ⊥)

Notice the four uses of subtyping. Notice also that the only possible type for f is
⊥.

The second derivation uses the abbreviation A′ = ∅[f : (> → Int)][g : ⊥].

A′ ` g : ⊥
. . .

A′ ` f(λa.0) : Int

A′ ` g(f(λa.0)) : ⊥

. . .

A′ ` f(λb.λx.x) : Int

A′ ` g(f(λa.0))(f(λb.λx.x)) : ⊥

∅[f : (> → Int)] ` λg.g(f(λa.0))(f(λb.λx.x)) : ⊥ → ⊥

∅ ` λf.λg.g(f(λa.0))(f(λb.λx.x)) : (> → Int) → (⊥ → ⊥)

∅[y : >] ` 0 : Int

∅ ` λy.0 : > → Int

∅ ` (λf.λg.g(f(λa.0))(f(λb.λx.x)))(λy.0) : ⊥ → ⊥

Notice that the only possible common type for both (λa.0) and (λb.λx.x) is >.
The reason why there is no subsumption rule of the form

A ` e : s

A ` e : t
(s ≤ t)

is that we want to disallow the use of subsumption immediately after a use of the
rule for variables. If we add a subsumption rule, then more λ-terms become typable.
For example, consider

E3 = (λf.λg.g(f(λx.0))(ff))(λy.y).

If we have a subsumption rule, then we can give λy.y the type > → >; we can give
both λx.0 and the last occurrence of f the type >; and it is then straightforward to
complete a type derivation for E3. Notice that the fragment of the type derivation
for the last occurrence of f is of the form

A ` f : > → >

A ` f : >
(> → > ≤ >).

Equality-Based Flow Analysis versus Recursive Types · 9

Without a subsumption rule, this type derivation is not possible. Indeed, no type
derivation using rules (1)–(5) is possible. To see that, let s1 be the type of λy.y,
and let s2 be the type of f . From λy.y we have t → t ≤ s1, where t is the type
of x. Moreover, from (ff) we have s2 ≤ s2 → u, where u is the type of (ff). We
have s1 = s2, so t→ t ≤ s1 = s2 ≤ s2 → u; hence t→ t = s1 = s2 = s2 → u; hence
s1 = s2 = t = u = µα.(α → α). Consider now (f(λx.0)). The type of λx.0 is of the
form s′ → Int or >. In both cases, it cannot be an argument of a function of type
µα.(α → α). We conclude that E3 is not RS-typable.

4. THE EQUIVALENCE RESULT

Theorem 4.1. A λ-term P is 0-CFA= safe if and only if P is RS-typable.

We prove this theorem in two steps. Lemma 4.3 shows that if P is 0-CFA= safe,
then P is RS-typable. To prove that lemma we use the technique from Palsberg and
Pavlopoulou [1998]. Lemma 4.4 shows that if P is RS-typable, then P is 0-CFA=

safe. To prove that lemma we use a technique which is more direct than the one
used to show a similar result, for 0-CFA⊆, in Palsberg and O’Keefe [1995].

4.1 From Flows to Types

First we consider the mapping of flows to types. Given a program P , a map ϕ ∈
Cmap(P), and S ⊆ Abs(P), we say that S is ϕ-consistent if for all λx1.e1, λx2.e2 ∈
S we have ϕ(〈x1〉) = ϕ(〈x2〉) and ϕ([[e1]]) = ϕ([[e2]]). Given a program P and
ϕ ∈ Cmap(P), define the equation system Γ(P, ϕ):

—For each S ∈ range(ϕ), let vS be a type variable, and

—if S = ∅, then Γ(P, ϕ) contains the equation

vS = ⊥;

—if S = {Int}, then Γ(P, ϕ) contains the equation

vS = Int;

—if S = {λx1.e1, . . . , λxn.en}, n > 0, then there are two cases: either S is ϕ-
consistent and then Γ(P, ϕ) contains the equation

vS = vϕ(〈x1〉) → vϕ([[e1]]);

otherwise Γ(P, ϕ) contains the equation

vS = >.

Every equation system Γ(P, ϕ) has a unique solution. To see this, notice that for
every type variable, there is exactly one equation with that variable as the left-
hand side. Thus, intuitively, we obtain the solution by using each equation as an
unfolding rule, possibly infinitely often.

Lemma 4.2. If ϕ ∈ Cmap(P), ϕ(w1) ⊆ ϕ(w2) ⊆ Abs(P), and ψ is the unique

solution of Γ(P, ϕ), then ψ(vϕ(w1)) ≤ ψ(vϕ(w2)).

Proof. Support first that ϕ(w1) = ∅. We then have ψ(vϕ(w1)) = ⊥. Since
ϕ(w2) ⊆ Abs(P), we have ⊥ ≤ ψ(vϕ(w2)); hence ψ(vϕ(w1)) ≤ ψ(vϕ(w2)).

10 · Jens Palsberg

Suppose then that ϕ(w1) is ϕ-inconsistent. From ϕ(w1) ⊆ ϕ(w2) we then have
also that ϕ(w2) is ϕ-inconsistent, so ψ(vϕ(w1)) = > = ψ(vϕ(w2)).

Suppose finally that ϕ(w1) = {λx1.e1, . . . , λxn.en}, n > 0, and that ϕ(w1) is
ϕ-consistent. There are two cases. If ϕ(w2) is ϕ-inconsistent, then ψ(vϕ(w1)) =
ψ(vϕ(〈x1〉)) → ψ(vϕ(〈e1〉)) ≤ > = ψ(vϕ(w2)). If ϕ(w2) is ϕ-consistent, then ψ(vϕ(w1)) =
ψ(vϕ(〈x1〉)) → ψ(vϕ(〈e1〉)) = ψ(vϕ(w2)).

Lemma 4.3. If ϕ satisfies C(P), A = λ(x ∈ Var(P)).ψ(vϕ(〈x〉)), ψ is the unique

solution of Γ(P, ϕ), and e is a subterm of P , then we can derive A ` e : ψ(vϕ([[e]])).

Proof. We proceed by induction on the structure of e. In the base case, consider
first e ≡ x. We have A(x) = ψ(vϕ(〈x〉)), so we can derive A ` x : ψ(vϕ(〈x〉)). This is
the desired derivation because ϕ(〈x〉) = ϕ([[x]]).

Consider then e ≡ 0. We have ϕ([[0]]) = {Int}, so ψ(vϕ([[0]])) = Int; and we can
derive A ` 0 : ψ(vϕ([[0]])).

In the induction step, consider first e = succ e′. We have ϕ([[e]]) = ϕ([[succ e′]]) =
{Int}, so ψ(vϕ([[e]])) = ψ(vϕ([[succ e′]])) = Int. From the induction hypothesis we have
that we can derive A ` e′ : Int, and we can then also derive A ` succ e′ : Int.

Consider next e ≡ λx.e′. We have {λx.e′} ⊆ ϕ([[λx.e′]]), and from Lemma 4.2 we
get ψ(v{λx.e′}) ≤ ψ(vϕ([[λx.e′]])). From the induction hypothesis, we have that we
can derive A ` e′ : ψ(vϕ([[e′]])), and we have A = A[x : ψ(vϕ(〈x〉))]. Thus, we can also
derive A ` λx.e′ : ψ(vϕ([[λx.e′]])) because ψ(vϕ([[λx.e′]])) ≥ ψ(v{λx.e′}) = ψ(vϕ(〈x〉)) →
ψ(vϕ([[e′]])).

Finally, consider e ≡ e1e2. We have ϕ([[e1]]) ⊆ Abs(P), and for every λx.e′ ∈
ϕ([[e1]]) we have ϕ([[e2]]) = ϕ(〈x〉) and ϕ([[e′]]) = ϕ([[e1e2]]). From the induction
hypothesis, we have that we can derive A ` e1 : ψ(vϕ([[e1]])) and A ` e2 : ψ(vϕ([[e2]])).
There are two cases. If ϕ([[e1]]) = ∅, then ψ(vϕ([[e1]])) = ⊥ ≤ ψ(vϕ([[e2]])) →
ψ(vϕ([[e1e2]])), and we can derive A ` e1e2 : ψ(vϕ([[e1e2]])). If ϕ([[e1]]) 6= ∅, then
we use ϕ([[e1]]) ⊆ Abs(P) to conclude that ϕ([[e1]]) = {λx1.e

′
1, . . . , λxn.e

′
n}, n > 0.

Moreover, ϕ(〈xi〉) = ϕ([[e2]]) = ϕ(〈xj 〉) for all i ∈ 1..n, j ∈ 1..n, and ϕ([[e′i]]) =
ϕ([[e1e2]]) = ϕ([[e′j]]) for all i ∈ 1..n, j ∈ 1..n. Hence, ϕ([[e1]]) is ϕ-consistent. Thus,
ψ(vϕ([[e1]])) = ψ(vϕ(〈x1〉)) → ψ(vϕ([[e′

1
]])) = ψ(vϕ([[e2]])) → ψ(vϕ([[e1e2]])), so we can

derive A ` e1e2 : ψ(vϕ([[e1e2]])).

For example, consider again the λ-term

E1 = λf.λg.g(f0)(f(λx.x)),

and recall the function ϕ1 from Section 2 which satisfies C(E1). The constraint
system Γ(E1, ϕ1) is

v∅ = ⊥

v{Int} = Int

v{λx.x} = v∅ → v∅

v{λg.g(f0)(f(λx.x))} = v∅ → v∅

v{E1} = v∅ → v{λg.g(f0)(f(λx.x))}.

When we plug this into the construction in the proof of Lemma 4.3, we get the
type derivation for E1 shown in Section 3. We leave it to the reader to carry out

Equality-Based Flow Analysis versus Recursive Types · 11

the construction for E2 and ϕ2. It will lead to the type derivation for E2 shown in
Section 3.

4.2 From Types to Flows

Next we consider the mapping of types to flows. If ∆ is the type derivationA ` P : t,
then define f∆ to map types to elements of CL(P):

f∆(⊥) = ∅

f∆(Int) = {Int}

f∆(>) = Abs(P)

f∆(s→ s′) = the set of occurrences λx.e of P where ∆ contains

a judgment of the form A′[x : s] ` e : s′ for some A′.

Define also ϕ∆ ∈ Cmap(P) such that

ϕ∆(〈x〉) = f∆(s) for an occurrence λx.e of P where ∆ contains
a judgment of the form A′[x : s] ` e : s′ for some A′,

ϕ∆([[e]]) = f∆(s) for an occurrence e of P where ∆ contains
a judgment of the form A′ ` e : s for some A′.

Lemma 4.4. If ∆ is the type derivation A ` P : t, then ϕ∆ satisfies C(P).

Proof. We consider in turn each of the constraints in C(P). For an occurrence
of 0 and the constraint [[0]] = {Int}, we have that ∆ contains a judgment of the
form A′ ` 0 : Int, and ϕ∆([[0]]) = f∆(Int) = {Int}.

For an occurrence of succ e and the constraints [[e]] = {Int} and [[succ e]] = {Int},
we have that ∆ contains judgments of the forms A ` e : Int and A ` succ e : Int,
and ϕ∆([[e]]) = f∆(Int) = {Int} and ϕ∆([[succ e]]) = f∆(Int) = {Int}.

For an occurrence x and the constraint 〈x〉 = [[x]], we have that ∆ contains a
judgment of the form A[x : s] ` x : s for some s, and ϕ∆(〈x〉) = f∆(s) = ϕ∆([[x]]).

For an occurrence λx.e and the constraint {λx.e} ⊆ [[λx.e]], we have that ∆
contains judgments of the forms A′[x : s] ` e : s′ and A′ ` λx.e : u where s → s′ ≤
u. There are two cases. If u = >, then ϕ∆([[λx.e]]) = f∆(>) = Abs(P) ⊇ {λx.e}.
If u = s→ s′, then ϕ∆([[λx.e]]) = f∆(s→ s′) ⊇ {λx.e}.

For an occurrence e1e2 and the constraint [[e1]] ⊆ Abs(P), and the constraints,
for every occurrence λx.e in Abs(P),

{λx.e} ⊆ [[e1]] ⇒ [[e2]] = 〈x〉

{λx.e} ⊆ [[e1]] ⇒ [[e]] = [[e1e2]],

we have that ∆ contains judgments of the forms A′ ` e1 : u, A′ ` e2 : s, and
A′ ` e1e2 : s′, where u ≤ s → s′. There are two cases. If u = ⊥, then ϕ∆([[e1]]) =
f∆(⊥) = ∅ ⊆ Abs(P), and the other constraints are vacuously satisfied. If u = s→
s′, then ϕ∆([[e1]]) = f∆(s→ s′). From the definition of f∆(s→ s′) we have f∆(s→
s′) ⊆ Abs(P). Suppose λx.e ∈ ϕ∆([[e1]]). We have ϕ∆(〈x〉) = f∆(s) = ϕ∆([[e2]])
and ϕ∆([[e]]) = f∆(s′) = ϕ∆([[e1e2]]).

5. CONCLUDING REMARKS

If we remove from Section 3 the types >, ⊥, and the notion of subtyping, then
we get a traditional system of recursive types. Given a program P and a map

12 · Jens Palsberg

ϕ ∈ Cmap(P), we say that ϕ is consistent if for all S ∈ range(ϕ) we have that S is
ϕ-consistent. If we add to Section 2 the conditions

—CL(P) does not contain ∅ and

—Cmap(P) does not contain inconsistent maps

then we get a notion of flow-based safety analysis which we here will refer to as
restricted-0-CFA= safety. It is easy to modify the proof of Lemma 4.3 to show the
following result.

Theorem 5.1. If a λ-term P is restricted-0-CFA= safe, then P is typable with

recursive types.

Intuitively, the theorem says that if we want a flow analysis weaker than recursive
types, then we can start with 0-CFA=, outlaw ∅, and insist on internal consistency
in all flow sets. The converse of Theorem 5.1 is false. For example, if we attempt to
modify the proof of Lemma 4.4, then we run into trouble in the case e1e2, because
there is no guarantee that f∆(s → s′) 6= ∅, where s → s′ is the type of e1. Such a
situation arises with the program

E4 = λx.succ(x0).

With recursive types but not subtyping, there is just one type derivation for E4,
using the abbreviation A = ∅[x : (Int → Int)]:

A ` x : Int → Int A ` 0 : Int

A ` x0 : Int

A ` succ(x0) : Int

∅ ` λx.succ(x0) : (Int → Int) → Int

We have

CL(E4) = { ∅, {λx.succ(x0)}, {Int} }.

Suppose ϕ ∈ Cmap(E4) satisfies C(E4). It it straightforward to show that ϕ([[x]]) 6=
{Int} and ϕ([[x]]) 6= {λx.succ(x0)}, so ϕ([[x]]) = ∅. Thus, E4 is not restricted-0-
CFA= safe, and E4 is therefore a counterexample to the converse of Theorem 5.1.

We leave it as an open problem to find a flow analysis equivalent to recursive
types.

An unusual aspect of Heintze’s definition of 0-CFA= is that Int and functions
cannot occur in the same flow set. To allow that we might define

CL(P) = Powerset(Abs(P) ∪ {Int}),

and change the constraints from Section 2 such that the constraints for 0 and succ e

become

{Int} ⊆ [[0]]

[[e]] ⊆ {Int} (a safety constraint)

{Int} ⊆ [[succ e]].

There is a systematic way of obtaining this modified flow analysis: begin with the
constraints for 0-CFA⊆ [Palsberg and O’Keefe 1995] and

Equality-Based Flow Analysis versus Recursive Types · 13

—change 〈x〉 ⊆ [[x]] to 〈x〉 = [[x]] and

—change

{λx.e} ⊆ [[e1]] ⇒ [[e2]] ⊆ 〈x〉

{λx.e} ⊆ [[e1]] ⇒ [[e]] ⊆ [[e1e2]]

to

{λx.e} ⊆ [[e1]] ⇒ [[e2]] = 〈x〉

{λx.e} ⊆ [[e1]] ⇒ [[e]] = [[e1e2]].

All other constraints remain the same.
The type system that matches the modified flow analysis can be obtained by

changing the type system from Section 3 such that ≤ is the smallest reflexive and
transitive relation on types where ⊥ ≤ t ≤ > for all types t, and such that the type
rules for 0 and succ e become

A ` 0 : t (Int ≤ t)

A ` e : s

A ` succ e : t
(s ≤ Int, Int ≤ t).

Notice that in this modified type system, ⊥ is the least type, and > is the greatest
type.

REFERENCES

Amadio, R. M. and Cardelli, L. 1993. Subtyping recursive types. ACM Trans. Program. Lang.

Syst. 15, 4, 575–631.

Ashley, J. M. 1996. A practical and flexible flow analysis for higher-order languages. In Proceed-

ings of POPL’96, 23rd Annual SIGPLAN–SIGACT Symposium on Principles of Programming

Languages. ACM, New York, 184–194.

Bondorf, A. and Jørgensen, J. 1993. Efficient analyses for realistic off-line partial evaluation.
J. of Func. Program. 3, 3, 315–346.

Bruce, K. B., Cardelli, L., Castagna, G., Eifrig, J., Smith, S. F., Trifonov, V., Leavens,

G. T., and Pierce, B. C. 1995. On binary methods. Theory Pract. Obj. Syst. 1, 3, 221–242.

DeFouw, G., Grove, D., and Chambers, C. 1998. Fast interprocedural class analysis. In Proceed-

ings of POPL’98, 25th Annual SIGPLAN–SIGACT Symposium on Principles of Programming

Languages. ACM, New York, 222–236.

Gosling, J., Joy, B., and Steele, G. 1996. The Java Language Specification. Addison-Wesley,
Reading, Mass.

Heintze, N. 1995. Control-flow analysis and type systems. In Proceedings of SAS’95, Inter-

national Static Analysis Symposium. Lecture Notes in Computer Science, vol. 983. Springer-
Verlag, Berlin, 189–206.

Heintze, N. and McAllester, D. 1997. Linear-time subtransitive control flow analysis. In
Proceedings of ACM SIGPLAN 1997 Conference on Programming Language Design and Im-

plementation. ACM, New York, 261–272.

Henglein, F. 1992. Dynamic typing. In Proceedings of ESOP’92, European Symposium on

Programming. Lecture Notes in Computer Science, vol. 582. Springer-Verlag, Berlin, 233–253.

Milner, R., Tofte, M., and Harper, R. 1990. The Definition of Standard ML. MIT Press,
Cambridge, Mass.

Palsberg, J. 1995. Closure analysis in constraint form. ACM Trans. Program. Lang. Syst. 17, 1
(Jan.), 47–62.

Palsberg, J. and O’Keefe, P. M. 1995. A type system equivalent to flow analysis. ACM Trans.

Program. Lang. Syst. 17, 4 (July), 576–599.

14 · Jens Palsberg

Palsberg, J. and Pavlopoulou, C. 1998. From polyvariant flow information to intersection and

union types. In Proceedings of POPL’98, 25th Annual SIGPLAN–SIGACT Symposium on

Principles of Programming Languages. ACM, New York, 197–208.

Palsberg, J. and Schwartzbach, M. I. 1994. Object-Oriented Type Systems. John Wiley &
Sons, New York.

Shapiro, M. and Horwitz, S. 1997. Fast and accurate flow-insensitive points-to analysis. In
Proceedings of POPL’97, 24th Annual SIGPLAN–SIGACT Symposium on Principles of Pro-

gramming Languages. ACM, New York, 1–14.

Shivers, O. 1991. Control-flow analysis of higher-order languages. Ph.D. thesis, CMU–CS–91–
145, Carnegie Mellon Univ., Pittsburgh, Pa.

Steensgaard, B. 1996. Points-to analysis in almost linear time. In Proceedings of POPL’96, 23nd

Annual SIGPLAN–SIGACT Symposium on Principles of Programming Languages. ACM, New
York, 32–41.

Received December 1997; revised June 1998; accepted August 1998

