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A constrained type consists of both a standard type and a constraint set. Such types enable effi-
cient type inference for object-oriented languages with polymorphism and subtyping, as demon-
strated by Eifrig, Smith, and Trifonov. Until now, it has been unclear how expressive constrained
types are.

In this paper we study constrained types without universal quantification. We prove that they
accept the same programs as the type system of Amadio and Cardelli with subtyping and recursive
types. This result gives a precise connection between constrained types and the standard notion
of type.

Categories and Subject Descriptors: D.3.2 [Programming Languages|: Language Classifica-
tions—applicative languages; F.3.3 [Logics and Meanings of Programs]|: Studies of Program
Constructs—type structure

General Terms: Languages, Theory
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1. INTRODUCTION

A constrained type consists of both a standard type and a constraint set. For
example,

Azaz: (v—w)\ {v<v—w}

Here, v and w are type variables. This typing says that the A-term Az.zz has every
type of the form v — w where v, w satisfy the constraint v < v — w.

When combined with universal quantification, such types enable efficient type in-
ference for object-oriented languages with polymorphism and subtyping, as demon-
strated by Eifrig, Smith, and Trifonov [1995b; 1995a]. Very similar forms of con-
strained type are presented by Aiken and Wimmers [1993] and Curtis [1990]. Other
forms of constrained type have been investigated, including forms that restrict the
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use of self-referential constraints [Mitchell 1991; Kaes 1992]. Our results do not
directly apply to those forms. Until now, it has been unclear how expressive con-
strained types are.

In this paper we study constrained types without universal quantification. Our
starting point is the constrained types presented by FEifrig, Smith, and Trifonov
[1995b]. When removing the universal quantification from their types, we get types
of the form ¢ \ C where ¢ is a simple type and C is a constraint system. In the
remainder of this paper, the term “constrained type” refers to such types. Our
example language is a A-calculus generated by the grammar:

E ::=z | x.E | E1Ey | 0| succ E .

We prove that our constrained types accept the same programs as the type system
of Amadio and Cardelli with subtyping and recursive types [Amadio and Cardelli
1993]. In their type system, types can be presented by the following grammar:

ti=t; —ta|Int|o|pvt|T|L

Here, — is the function type constructor, Int is the type of integers, v is a type
variable, uv.t is a recursive type, and T and L are the greatest and the least types,
respectively. Our result thus gives a precise connection between constrained types
and standard types.

To illustrate what type derivations look like in the two type systems, consider
the A-term

Az.z(succ x)

In the Amadio/Cardelli type system, we can derive that this term is typable, as
follows. Define A = @z «— L].

AFz: L 1 <Int
Az L 1L <Int— L Az :Int
Atz :Int— L Al succ x:Int
At z(succ ) : L
Ok Arx(succz) : L — L

In the constrained type system, we can derive that this term is typable as follows.
Define B = @[z + v], where v is a type variable.

Bb.z:v\0 v\ 0 <QlInt\ {v < Int}
BbE.z:Int\ {v<Int}
BtbF.succz:Int\ {v <Int}

Bt z(succ z) :w \ {v <lInt, v < Int — w}
0t Az.z(succ ) s v — w \ {v <Int, v < Int — w}

Brez:v\0

One may understand the constrained type system as producing a representation
of a range of possible types rather than just a single type. For instance, in this
example no constraints are imposed on w in the constrained type derivation, so it
may be any type and not just L.

Type inference for the Amadio/Cardelli type system is computable in O(n?)
time, where n is the size of the A-term [Palsberg and O’Keefe 1995]. Similarly, type
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inference for the constrained type system is computable in O(n?) time [Eifrig et al.
1995b).

Palsberg and O’Keefe proved that the Amadio/Cardelli type system accepts the
same programs as a certain flow analysis [Palsberg and O’Keefe 1995]. Thus, the
result of our paper implies a precise connection between constrained types and flow
analysis.

In the following two sections we recall the definitions of the Amadio/Cardelli
type system and the constrained type system, and in Section 4 we prove our result.

2. THE AMADIO/CARDELLI TYPE SYSTEM

We first define the notions of type and term. Instead of writing types in the syntax
suggested above, we represent them as regular trees [Amadio and Cardelli 1993;
Kozen et al. 1995]. Such trees are in turn represented by terms. Our motivation for
using this representation is that it leads to a simpler definition of subtyping than
the syntax suggested above.

DEFINITION 2.1. Let ¥ = {—,Int, L, T} be the ranked alphabet where — is
binary and Int, L, T are nullary. A type is a regular tree over . A path from the
root of such a tree is a string over {0, 1}, where 0 indicates “left subtree,” and 1
indicates “right subtree.” O

Notice that Definition 2.1 does not cover types containing type variables. This
does not change the set of typable terms. We have chosen Definition 2.1 because it
is used in the paper [Palsberg and O’Keefe 1995] which contains a result that our
theorem relies on.

DEFINITION 2.2. We represent a type by a term, that is, a partial function
t:{0,1}* = %

with non-empty, prefix-closed domain D(t) where ¢ maps each path from the root

of the type to the symbol at the end of the path. It is required that if t(a) €

{Int, L, T}, then {i | i € D(t)} =0, and if t(a) =—, then {i | ai € D(¢)} = {0,1}.

The set of all such terms is denoted T%;. O
Types are ordered by the subtype relation <, as follows.

DEFINITION 2.3. The parity of a € {0,1}* is the number mod 2 of zeros in a.
The parity of « is denoted wa.. A string « is said to be even if mra = 0 and odd if
ma = 1. Let <g be the partial order on ¥ given by

1 <g— and — <¢ T and
1 <plInt and Int<y T .

Let <i be its reverse

T<;— and — <; 1 and
T<iyInt and Int<y L.
For s,t € Ty, define s <t if s(a) <o t(a) for all & € D(s) N D(t). O

Kozen et al. [1995] showed that the relation < is equivalent to the order defined
by Amadio and Cardelli [1993]. The relation < is a partial order, and if s — ¢ <
s — ', then s’ < s and ¢t < ¢’ [Amadio and Cardelli 1993; Kozen et al. 1995].
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Next, we present the type rules. If FE is a A-term, ¢ is a type, and A is a type
environment, i.e., a partial function assigning types to variables, then the judgment
At E :t means that E has the type t in the environment A. Formally, this holds
when the judgment is derivable using the following six rules:

AFO0:Int (1)

AFE :Int
Al succ E : Int

At x:t (provided A(z) =1¢) (3)

Alx — s]F E: t
AFXzE:s—t

AFFE:s—t AFF:s (5)
AFEF : ¢t

AFE:s s<t
AFE:t (6)
The first five rules are the usual rules for simple types, and the last rule is the rule
of subsumption.
The type system has the subject reduction property, that is, if A - F : ¢ is
derivable, and E [(-reduces to E’, then A+ E’ : t is derivable. This is proved by
straightforward induction on the structure of the derivation of A+ FE : t.

3. CONSTRAINED TYPES

We begin with defining what will be called a simple type. The set of simple types
is generated by the following grammar:

tu=ty —ta|Int|v
Here, v is a type variable.

DEFINITION 3.1. A constraint is an inequality of the form ¢ < ¢/, where ¢,t' are
simple types. A constraint system is a finite set of constraints.
A constraint system C'is closed if the following two conditions hold.

—Ifs—t<s —tisinC, then s’ <sandt <t arein C.
—If r < s and s <t both are in C, then r <t isin C.

If C is a constraint system, then the closure of C is the smallest closed constraint
system which contains C. If C, C’ are two constraint systems, we denote by C'& C’
the closure of C' U C".

A constraint system is consistent if it does not contain constraints of the forms
Int <t —t' ort— t' <lInt, where t,t' are simple types. |

A constrained type is of the form ¢ \ C where ¢ is a simple type and C' is a closed
constraint system. Constrained types are ordered by the subtype relation <, as
follows.
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DEFINITION 3.2. For constrained types t \ C and ¢ \ C’, define t \ C <¢' \ C’
if either CW{t <t'} CC’',ort=¢ and C C C". O

Notice that < is a partial order.

It is possible to change the definition of closure by additionally closing under
reflexivity; in this case, the second case of Definition 3.2 may be removed. We take
the approach of Definition 3.2 to be consistent with [Eifrig et al. 1995b)].

Next, we present the type rules. If F is a A-term, ¢ \ C is a constrained type,
and A is a simple type environment, i.e., a partial function assigning simple types
to variables, then the judgment A . F : ¢t \ C holds when it is derivable using the
following six rules:

AF.0:Int\ 0 (7)
AF.E:Int\ C -
Abt.succ E:Int\ C
AbF.x:t\ 0 (provided A(x) =1) 9)
—s| :
Alx — sk E:t\ C (10)
Ab. e E:s—t\C
AF.E:s—t\C1 AF.F:s\Cy (11)
Al—cEFtt\ClL‘HCQ
: <t !
AL E:t\C t\Cgt\C (12)

AR E: '\ C
Notice that there is a rule for each syntactic construct and also a subsumption
rule. It is the subsumption rule that makes it possible to add constraints to the
constraint set. If A+, E : ¢\ C is derivable and C' is consistent, then we say
that E has the constrained type t \ C in the environment A. The existence of a
derivation of A+, E : ¢\ C does not imply that F is typable, since C need not be
consistent. In the proof of Lemma 4.2 below we will prove that certain derivations
exist without considering the issue of consistency.
Soundness of a more general set of rules than (7)—(12) is established in [Eifrig
et al. 1995b] by subject reduction, which establishes that if A+, E : ¢\ C and C
is consistent, execution of E will not result in type errors.

4. EQUIVALENCE

We now establish that the Amadio/Cardelli type system and the constrained type
system are equivalent in power. To prove the result independently would be a
significant effort, but using facts already proven in [Palsberg and O’Keefe 1995]
and [Eifrig et al. 1995b], it is not difficult.

Given a A-term F, we now describe how to generate a certain constraint system,
found in [Palsberg and O’Keefe 1995]. Assume that E has been a-converted so
that all bound variables are distinct. Let X be a set of type variables consisting
of one type variable (z) for each A-variable & occurring in F, and let Yz be a set
of variables disjoint from X g consisting of one variable [F] for each occurrence of
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a subterm F of E. (The notation [F] is ambiguous because there may be more
than one occurrence of F' in E. However, it will always be clear from context
which occurrence is meant.) The following constraint system uses X g UYgy as type
variables.

—for every occurrence in F of a subterm of the form 0, the inequality
Int < [0] ;
—for every occurrence in F of a subterm of the form succ F', the two inequalities

Int < [succ FJ
[F] < Int;
—for every occurrence in E of a subterm of the form Az.F', the inequality
() = [F] < [Az.F] ;
—for every occurrence in F of a subterm of the form GH, the inequality
[G] < [H] — [GH] ;
—for every occurrence in F of a A-variable z, the inequality

(z) < [a] .
Denote by T'(E) the system of constraints generated from F in this fashion. The
closure of T'(E) will be written T'(E).
If C' is a constraint system and ¢ is a function that maps the type variables used

in C to elements of Tx such that all constraints are satisfied, then ¢ is a solution
of C'. We say that C is solvable if it has a solution.

THEOREM 4.1. For a A-term E, the following two conditions are equivalent:

(1) E is typable in the Amadio/Cardelli type system.
(2) T(E) is consistent.
PRrROOF. In [Palsberg and O’Keefe 1995] there is a notion of closure which we

here will call restricted closure. It is defined as follows. A constraint system C' is
restricted-closed if the following two conditions hold.

—Ifs—t<s —tisin C, then s’ <sandt <t arein C.
—If r <wv and v < t both are in C, then r <t isin C.

Here, v is a type variable. If C'is a constraint system, then the restricted closure of C'
is the smallest restricted-closed constraint system which contains C'. The restriction
is to close only under transitivity through variables. The different definitions of
closure are solely an artifact of slight differences of approach in the two papers
[Eifrig et al. 1995b; Palsberg and O’Keefe 1995].

We will prove that the following five properties are equivalent:

(1) E is typable in the Amadio/Cardelli type system.
(2) The restricted closure of T'(E) is solvable.

(3) The restricted closure of T'(F) is consistent.

(4) T(E) is solvable.



Constrained Types and their Expressiveness . 7

(5) T(E) is consistent.

In [Palsberg and O’Keefe 1995] it is proved that (1), (2), and (3) are equivalent.
To prove (2) = (4), suppose the restricted closure of T'(E) has solution . Then
also T'(F) has solution ¢, and since the rules that define the closure of a constraint
system preserve solutions, T'(E) has solution ¢.
It is immediate that (4) = (5), since no inconsistent constraint set can be solv-
able. Finally, since the restricted closure of T(E) is a subset of T(E), we have that
(5) = (3). O

For a A-term FE, let Ap be the simple type environment which maps each -
variable z occurring in E to (z).

LEMMA 4.2. For a A-term E, we can derive Ag . E: [E] \ T(E).

PROOF. We can prove the following stronger property. For a A-term E, we can
for every subterm F of E derive Ag -, F : [F] \ T(E). This is proved by induction
on the structure of F.

In the base case, consider first F = 0. We have that Ag F. 0 : Int \ 0 is
derivable. Moreover, the constraint Int < [0] is in T(E). Thus, Int \ #<[0] \ T(E),
so Ag F. 0 : [0] \ T(E) is derivable. Consider then F = x. We have that
Ag ez (x) \ 0 is derivable. Moreover, the constraint (z) < [«] is in T(E). Thus
() \ 0D [z] \ T(E), so Ag .z : [2] \ T(E) is derivable.

In the induction step, consider first F' = succ G. By the induction hypothesis, we
have that Ag F. G : [G] \ T(E) is derivable. Moreover, the constraint [G] < Int
is in T(E). Thus, [G] \ T(E) <Int \ T(E), so Ag F. G : Int \ T(E) is derivable.
From rule (8) we get that Ag . succ G : Int \ T(E) is derivable. Also the
constraint Int < [succ G] is in T(E). Thus, Int \ T(E) < [succ G] \ T(E), so
Ag Fesucc G : [succ G] \ T(E) is derivable.

Consider then F' = Az.G. By the induction hypothesis, we have that Ag . G :
[G] \ T(E) is derivable. Noting that Ap = Ag[r «— (x)], we get from rule (10)
that Ag F. A\v.G : (z) — [G] \ T(E) is derivable. Moreover, the constraint
() — [G] < [M.G] is in T(E). Thus, (z) — [G] \ T(E) < [Mx.G] \ T(E), so
Ap e MG : [M2.G] \ T(E) is derivable.

Finally, consider F = GH. By the induction hypothesis, we have that both
Ag Fe G : [G] \ T(E) and Ag +. H : [H] \ T(E) are derivable. Moreover,
the constraint [G] < [H] — [GH] is in T(E). Thus, [G] \ T(E) < [H] —
[GH] \ T(E), so Ag - G : [H] — [GH] \ T(E) is derivable. From rule (11) we
get that Ap F. GH : [GH] \ T(E) is derivable. O

THEOREM 4.3. For a A-term E, if T(E) is consistent, then E is typable in the
constrained type system.

PROOF. Immediate from Lemma 4.2. O

Together, Theorem 4.1 and 4.3 show that if E is typable in the Amadio/Cardelli
type system, then it is also typable in the constrained type system.

To prove the converse, we first present a new set of type rules, taken from [Eifrig
et al. 1995b]. If F is a A-term, ¢ \ C is a constrained type where C is a constraint
set, and A is a simple type environment, i.e., a partial function assigning simple
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types to variables, then the judgment A ; E : ¢ \ C holds when it is derivable
using the following five rules:

AF;0:Int\ 0 (13)
Al—iE:LL\C (14)
At;isucc E:Int\ CW{t <Int}
Ab;z:t\ 0 (provided A(z) =1t) (15)
Alx — v E:t\ C (16)
Abi . E:v—t\C
AklEtl\Ol AFZFtQ\CQ (17)

Al—iEFIU\ClL'UCQL‘H{tl §t2—>’U}

In both rule (16) and rule (17), v is a type variable. Notice that there is a rule
for each syntactic construct but no subsumption rule. It is clear by inspection that
there is at most one typing derivation for each term E modulo names chosen for
fresh variables. This set of rules thus serves to define an inference algorithm, which
we may show is complete.

THEOREM 4.4. If Ab. E : ¢t \ C is derivable and C is consistent, then there
exists a constrained type t' \ C' where C' is consistent, such that A+; E : t' \ C’
is derivable.

PROOF. See [Eifrig et al. 1995b]. O

THEOREM 4.5. If At; E:t\ C is derivable and C is consistent, then T(E) is
consistent.

PRrROOF. Consider a derivation of A ; E : ¢ \ C, where C is consistent. Let
X = Y denote the two constraints X < Y and Y < X. Define the constraint
system D as follows.

—For every occurrence of a subterm F' of E, find the unique judgment in the
derivation of A F; F : ¢\ C which involves F, and let that judgment be of the
form A'+; F: ¢\ C’. Add the constraint [F] =t to D.

—For every occurrence of a subterm GH in F, find the associated judgment in the
derivation of At; E : ¢\ C of the form A’ +; GH : v \ C'"W{t; <ty — v}, where
v is a type variable. Add the constraint [G] < [H] — [GH] to D.

—For every A-variable x occurring in F, find the judgment in the derivation of
A F; E :t\ C which involves the abstraction which binds z, and let that
judgment be of the form A’ -; Ax.F : v — ¢t \ C’, where v is a type variable.
Add the constraints (z) = v and (z) — [F] < [Az.F] to D.

Notice that C'W D is consistent: the first operation above clearly preserves con-
sistency. The second operation also preserves consistency, as the new constraints
in the closure will always mirror existing constraints, with [G] replacing t1, [H]
replacing t9, and [H] replacing v. The third operation preserves counsistency by a
similar argument.

Thus, since T(E) is clearly a subset of C & D, T(E) is consistent. |
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Together, Theorem 4.1, 4.4, and 4.5 show that if F is typable in the constrained
type system, then it is also typable in the Amadio/Cardelli type system.
In summary, we have proved our result.

COROLLARY 4.6. A A-term E is typable in the Amadio/Cardelli type system if
and only if it is typable in the constrained type system.

5. CONCLUSION

The Amadio/Cardelli type system [Amadio and Cardelli 1993], a certain kind of
flow analysis [Palsberg and O’Keefe 1995], and a simple constrained type system
[Eifrig et al. 1995b] accept the same programs, unifying three different views of

typing.
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