Building a Quantum Engineering Undergraduate Program Abraham Asfaw, Alexandre Blais, Kenneth R. Brown, Jonathan Candelaria, Christopher Cantwell, Lincoln D. Carr, Senior Member, IEEE, Joshua Combes, Dripto M. Debroy, John M. Donohue, Sophia E. Economou, Emily Edwards, Michael F. J. Fox, Steven M. Girvin, Alan Ho, Hilary M. Hurst, Zubin Jacob, Blake R. Johnson, Ezekiel Johnston-Halperin, Robert Joynt, Eliot Kapit, Judith Klein-Seetharaman, Martin Laforest, H. J. Lewandowski, Theresa W. Lynn, Corey Rae H. McRae, Celia Merzbacher, Spyridon Michalakis, Prineha Narang, William D. Oliver, Jens Palsberg, David P. Pappas, Michael G. Raymer, David J. Reilly, Mark Saffman, Thomas A. Searles, Jeffrey H. Shapiro, and Chandralekha Singh (Invited Paper) Abstract—Contribution: A roadmap is provided for building a quantum engineering education program to satisfy U.S. national and international workforce needs. Background: The rapidly growing quantum information science and engineering (QISE) industry will require both quantum-aware and quantum-proficient engineers at the bachelor's level. Research Question: What is the best way to provide a flexible framework that can be tailored for the full academic ecosystem? Methodology: A workshop of 480 QISE researchers from across academia, government, industry, and national laboratories was convened to draw on best practices; representative authors developed this roadmap. Findings: 1) For quantum-aware engineers, design of a first quantum engineering course, accessible to all STEM students, is described; 2) for the education and training of quantum-proficient engineers, both a quantum engineering minor Manuscript received August 3, 2021; revised November 19, 2021; accepted November 28, 2021. Date of publication February 4, 2022; date of current version May 5, 2022. This work was supported in part by the U.S. National Science Foundation under Grant EEC-2110432. The work of Alexandre Blais was supported by the Canada First Research Excellence Fund. The work of Lincoln D. Carr, Hilary M. Hurst, Eliot Kapit, and Theresa W. Lynn was supported by NSF QLCI-CG under Grant OMA-1936835. The work of Sophia E. Economou, Steven M. Girvin, and Thomas A. Searles was supported by the U.S. Department of Energy, Office of Science, National Quantum Information Science Research Centers, Co-Design Center for Quantum Advantage (C2QA) under Contract DE-SC0012704. The work of Ezekiel Johnston-Halperin was supported by NSF C-ACCEL under Grant 2040581. The work of H. J. Lewandowski was supported by NSF QLCI under Grant OMA-2016244. The work of Corey Rae H. McRae and David P. Pappas was supported by NIST NQI and QIS efforts, as well as the U.S. Department of Energy, Office of Science, National Quantum Information Science Research Centers, Superconducting Quantum Materials and Systems Center (SQMS) under Contract DE-AC02-07CH11359. The work of Spyridon Michalakis was supported by Caltech's Institute for Quantum Information and Matter (IQIM), a National Science Foundation (NSF) Physics Frontiers Center under Grant PHY-1733907. The work of Michael G. Raymer was supported by the NSF Engineering Research Center for Quantum Networks (CQN), led by the University of Arizona under Grant NSF-1941583. The work of Mark Saffman was supported by NSF QLCI-HQAN under Award 2016136. This article was presented in part at the Quantum Undergraduate Education & Scientific Training (QUEST) Workshop and at the SPIE Photonics for Quantum Symposium. (All authors contributed equally to this work.) (Corresponding author: Lincoln D. Carr.) Please see the Acknowledgment section of this article for the author affiliations. Digital Object Identifier 10.1109/TE.2022.3144943 accessible to all STEM majors, and a quantum track directly integrated into individual engineering majors are detailed, requiring only three to four newly developed courses complementing existing STEM classes; 3) a conceptual QISE course for implementation at any postsecondary institution, including community colleges and military schools, is delineated; 4) QISE presents extraordinary opportunities to work toward rectifying issues of inclusivity and equity that continue to be pervasive within engineering. A plan to do so is presented, as well as how quantum engineering education offers an excellent set of education research opportunities; and 5) a hands-on training plan on quantum hardware is outlined, a key component of any quantum engineering program, with a variety of technologies, including optics, atoms and ions, cryogenic and solid-state technologies, nanofabrication, and control and readout electronics. Index Terms—Quantum engineering, quantum information science (QIS), undergraduate education. ## I. Introduction to Quantum Engineering UANTUM information science combines the understanding of nature at its most fundamental level-quantum mechanics-with information theory. From an applications standpoint, advancements in this field now rely on incorporating an engineering approach to better design, integrate, and scale quantum technologies. For example, the landmark quantum advantage result achieved in 2019 [1], in which a quantum computer met a computational benchmark not achievable on the same time scale with present classical computing resources, made heavy use of a range of engineering disciplines to construct a machine capable of quantum speedup. This is one example of the many recent advances in quantum information science (QIS) spanning algorithms, architectures, and qubit technologies, including atoms and ions, semiconductors, superconductors, as well as supporting hardware in integrated optics, and microwave and RF control and readout [2]-[5]. This new chapter of discovery and innovation is centered on novel devices that employ nonclassical states, superposition, and entanglement to create technological advantage over classical systems. In addition, devices based on these aspects of quantum physics