
34

A Decoupled Local Memory Allocator

BOUBACAR DIOUF, INRIA
CAN HANTAŞ, Georgia Institute of Technology
ALBERT COHEN, INRIA and École Normale Supérieure de Paris
ÖZCAN ÖZTURK, Bilkent University
JENS PALSBERG, UCLA

Compilers use software-controlled local memories to provide fast, predictable, and power-efficient access to
critical data. We show that the local memory allocation for straight-line, or linearized programs is equiv-
alent to a weighted interval-graph coloring problem. This problem is new when allowing a color interval
to “wrap around,” and we call it the submarine-building problem. This graph-theoretical decision problem
differs slightly from the classical ship-building problem, and exhibits very interesting and unusual complex-
ity properties. We demonstrate that the submarine-building problem is NP-complete, while it is solvable
in linear time for not-so-proper interval graphs, an extension of the the class of proper interval graphs.
We propose a clustering heuristic to approximate any interval graph into a not-so-proper interval graph,
decoupling spill code generation from local memory assignment. We apply this heuristic to a large number of
randomly generated interval graphs reproducing the statistical features of standard local memory allocation
benchmarks, comparing with state-of-the-art heuristics.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processor—Compilers, Optimiza-
tion

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Local memory, scratchpad memory, memory allocation, compiler

ACM Reference Format:
Diouf, B., Hantaş, C., Cohen, A., Özturk, Ö., and Palsberg, J. 2013. A decoupled local memory allocator. ACM
Trans. Architec. Code Optim. 9, 4, Article 34 (January 2013), 22 pages.
DOI = 10.1145/2400682.2400693 http://doi.acm.org/10.1145/2400682.2400693

1. INTRODUCTION
Compilers use software-controlled local memories to provide fast, predictable, and
power-efficient access to critical data. Predictability to data access and power con-
sumption efficiency are often essential to real-time and embedded applications. Most
ARM processors have an on-chip local memory [ARM 1998], and more generally, it is
typical for DSPs and embedded processors to have local memories, also called scratch-
pad memories [Motorola 1998; Instruments 1997]. More specialized processors also
utilize local memories, including stream-processing architectures such as graphical
processors (GPUs) and network processors [NVIDIA 2008; Burns et al. 2003]. Most pro-
cessor(s) may directly access the main memory—typically off-chip DRAM—resources,

This work is supported by the European Commission through the FP7 project TERAFLUX id. 249013.
Authors’ addresses: B. Diouf (corresponding author), INRIA, France; email: boubacar.diouf@inria.fr; C.
Hantas, Georgia Institute of Technology; A. Cohen, INRIA and École Normale Supérieure de Paris, France;
O. Ozturk, Bilkent University, Turkey; J. Palsberg, UCLA.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1544-3566/2013/01-ART34 $15.00

DOI 10.1145/2400682.2400693 http://doi.acm.org/10.1145/2400682.2400693

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 34, Publication date: January 2013.

34:2 B. Diouf et al.

but few exceptions exist. The IBM Cell broadband engine’s synergistic processing units
(SPU) [Kahle et al. 2005] rely exclusively on DMA for instruction and data transfers
with main memory. Our approach is compatible with such memory models.

In systems with local memories, data transfers between the main memory and the
local memory are inserted into the generated code by the compiler or the application.
Previous studies addressed local memory management from different angles, target-
ing for both application/code and data. These efforts considered both static [Avissar
et al. 2002; Sjödin and von Platen 2001; Steinke et al. 2002] and dynamic methods
[Udayakumaran and Barua 2003; Li et al. 2009]. Static methods either place an array
in the local memory or in the off-chip memory during the whole execution of a program.
Dynamic methods place an array in the local memory at a certain moment and in the
off-chip memory at a different moment depending on its access frequency. Dynamic
methods take into account the dynamic behavior of the program.

In this article, we consider an approach to local memory management that decouples
spill code generation from local memory assignment. We show that the local memory
allocation for straight-line programs or linearized programs, where the live ranges of
variables or arrays are represented as intervals, is equivalent to a weighted interval-
graph coloring problem that we call the submarine-building problem. The submarine-
building problem differs slightly from the classical ship-building problem [Golumbic
2004] by allowing a color interval to “wrap around.” We show that the submarine-
building problem is NP-complete, while it is solvable in linear time for not-so-proper
interval graphs, an extension of the the class of proper interval graphs. We propose a
novel approach to approximate any interval graph into a not-so-proper interval graph,
decoupling spill code generation from local memory assignment. We apply this heuristic
to a large number of randomly generated weighted interval graphs reproducing the
statistical features of standard local memory allocation benchmarks. We compare our
approach with state-of-the-art heuristics.

2. MOTIVATION
In a previous paper [Diouf et al. 2009], based on recent progress in register allocation,
we considered a decoupled approach to local memory allocation, and we experimentally
validated this decoupling. This article takes a more theoretical standpoint and seeks
to better understand the optimization problem of local memory management.

Recent research in register allocation leverages the complexity and performance
benefits of decoupling its allocation and assignment phases [Appel and George 2001;
Pereira and Palsberg 2005; Hack et al. 2005; Bouchez et al. 2006b; Brisk et al. 2006].
The allocation phase decides which variables to spill and which to assign to registers.
The assignment phase chooses which variable to assign to which register.

The allocation phase relies on the maximal number of simultaneously living
subvariables, called MAXLIVE, a measure of register pressure. When enough live range
splitting is done, it is sufficient that MAXLIVE is less or equal to the number of available
registers to guarantee that all the subvariables will be allocated and the forthcoming
assignment phase can be done without further spill. In many cases, assignment can
even be achieved in linear time [Hack et al. 2006; Bouchez et al. 2006b]. If at some
program point the pressure exceeds the number of available registers, MAXLIVE needs
to be reduced through spilling.

This decoupled approach permits to focus on the hard problem, namely the spilling
decisions. It also improves the understanding of the interplay between live range
splitting and the expressiveness and complexity of register allocation. This is best
illustrated by the success of SSA-based allocation [Bouchez et al. 2006a, 2006b, 2007;
Hack et al. 2006; Braun and Hack 2009].

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 34, Publication date: January 2013.

A Decoupled Local Memory Allocator 34:3

The intuition for decoupled register allocation derives from the observation that live
range splitting is almost always profitable if it allows to reduce the number of register
spills, even at the cost of extra register moves. The decoupled approach focuses on
spill minimization only, pushing the minimization of register moves to a later register
coalescing phase [Appel and George 2001; Hack et al. 2006; Bouchez et al. 2008]. Here
again, SSA-based techniques have won the game. Specifically, they collapse the register
coalescing with the hard problem of getting out of SSA [Hack et al. 2006; Boissinot et al.
2009; Pereira and Palsberg 2009], as one of the last backend compiler passes.

The domain of local memory management tells a very different story. Some heuristics
exist [Udayakumaran and Barua 2003; Udayakumaran et al. 2006; Kandemir et al.
2001; Li et al. 2009] but little is known about the optimization problem, its complexity,
and the interplay with other optimizations. The burning hot question is of course: does
the decoupled approach hold for the local memory management problem? Surprisingly,
the state-of-the-art of local memory management completely underexploits all the ad-
vances in register allocation. When focusing on arrays, the similarity between register
and local memory allocation is obvious nonetheless.

—Local memory allocation. Deciding which array blocks to spill to main memory and
which array blocks to allocate to the local memory. Spilling is typically supported by
DMA units.

—Local memory assignment. Deciding at which local memory offset to assign which
allocated array block.

In the context of local memory management, the maximum size of simultaneously
living arrays,1 called MaxSize, gives a measure of local memory pressure. Again, like for
register allocation, live range splitting helps to reduce the local memory pressure. Since
arrays are frequently accessed inside loops, local memory management algorithms
often split arrays at loop-entry points; we call these points decision points. Decision
points can also be chosen in a finer manner, after loops or before array accesses. Local
memory pressure can also be reduced by loop transformations like strip-mining, tiling
which reduces the portion of accessed arrays. For all these reasons, the study of a
decoupled approach in the local memory management context seems very appealing.

3. FROM LOCAL MEMORY MANAGEMENT TO WEIGHTED GRAPH COLORING
This section sets the terminology and definitions used in the rest of the article.

3.1. Weighted Graphs
A graph G = (V, E) consists of two sets, V the set of vertices, and E the set of edges.
Every edge (v1, v2) of E has two end points v1 ∈ V and v2 ∈ V . We consider undirected
graphs only, i.e., we do not make difference between the edges (v1, v2) and (v2, v1).

A graph G is called an interval graph if its vertices can be put into one-to-one
correspondence with a set of intervals I of a linearly ordered set such that two vertices
are connected by an edge of G if and only if their corresponding intervals have a
nonempty intersection.

Assuming each vertex v of G = (V, E) is associated with a nonnegative number w(v),
the weight of a subset S ⊂ V is expressed as

w(S) =
∑

v∈S

w(v).

The graph G associated with the function w is called a weighted graph and denoted
Gw. Moreover, Gw is a weighted interval graph if G is an interval graph.

1Not the number of simultaneously living arrays.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 34, Publication date: January 2013.

34:4 B. Diouf et al.

1 1

1

Fig. 1. Two colorings of a weighted graph.

An interval coloring of a weighted graph Gw is a function I mapping each vertex
v ∈ V onto an (open) interval Iv of w(v) + 1 consecutive integers of the real line, such
that adjacent vertices are mapped to disjoint intervals; that is, (v1, v2) ∈ E implies
Iv1

⋂
Iv2 = ∅. We say that I is a k-coloring of Gw if Iv ∈ {0, . . . , k}, ∀v ∈ V . The chromatic

number χ (Gw) is the smallest k for which we can find a k-coloring of Gw.
Figure 1(b) and Figure 1(c) show two colorings of the weighted graph shown in

Figure 1(a). Figure 1(b) presents a 6-coloring of the weighted graph and Figure 1(c)
shows a 5-coloring of the weighted graph. The chromatic number of this graph is 5.

3.2. Straight-Line Programs and Linearized Programs
Given an intermediate representation of an arbitrary program, the intermediate rep-
resentation pseudo-instructions can be numbered according to some order. We define a
linearized program as a program for which such kind of numbering has been performed
and for each variable v in this program, we represent its live range as the live interval
[i, j[, i being the number of the first instruction where v is first defined and j being the
number of the instruction where v is last used. There can be some pseudo-instructions
between i and j where v is not live, but with a successful live range splitting this prob-
lem can become marginal. In the context of just-in-time compilation where compilation
is critical, linearizing programs can pay off because it is fast to linearize a program and
hopefully the produced code could be of relative good quality [Sarkar and Barik 2007].

3.3. Two Sides of the Coin
We demonstrate the equivalence between allocating the local memory for a linearized
program and coloring a weighted interval graph.

From linearized programs to weighted interval graphs. From a linearized program we
construct a corresponding weighted graph called interference graph. For each variable

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 34, Publication date: January 2013.

A Decoupled Local Memory Allocator 34:5

in this program, we create a vertex and associate the size of the variable to this vertex.
We create an edge between two vertices if there is a point in the program where the two
variables are simultaneously live. Thus, an edge connects a pair of vertices if and only
if the variables are simultaneously live. The constructed weighted graph is a weighted
interval graph because each vertex corresponds to an interval defined by the definition
point and the end point of the variable.

From weighted interval graphs to linearized programs. We use a method similar to
the one presented by Lee et al. [2008] to show that, for any weighted interval graph,
we can exhibit a corresponding linearized program.

Chen [1992] and Saha et al. [2007] have shown how to convert an interval graph
with q intervals to an isomorphic program-like interval graph in O(q log q) time. An
interval graph is program-like if the intervals representing the vertices of the graph
have start points and end points that are all different, and the start points and end
points of the intervals form a set {1, . . . , 2q}, where q is the number of intervals.

From a program-like weighted interval graph Gw, we construct in O(q) time the
following straight-line program (with pseudo-C syntax) which consists of a set of 2q
statements.

∀i ∈ {1, . . . , 2q}

typeI vI = · · · ,

where sizeof(typeI) = w(I),
if the interval I of weight w(I) begins at i

· · · = vI,

if the interval I ends at i.

4. WEIGHTED GRAPH COLORING
Thirty years ago, in her seminal paper [Fabri 1979], Fabri already envisaged to model
the so-called problem of “automatic storage allocation” as a weighted graph coloring
problem. She mentions the investigation of special subclasses of weighted graphs that
are likely to occur. We construct a weighted graph Gw from a given linearized program.
Finding an allocation for variables of the linearized program within a local memory of
size k corresponds to finding a k-coloring of Gw.

This section introduces the ship-building problem which is related to weighted
interval graph coloring. It also defines a new variant of the ship-building problem,
called the submarine-building problem, very well suited to the local memory allocation
problems on modern processors, and exhibiting interesting complexity results and
approximation heuristics.

4.1. The Ship-Building Problem
We report here the ship-building problem as presented in the book of Golumbic [2004].
In certain shipyards the sections of a ship are constructed on a dry dock, called the weld-
ing plane, according to a rigid time schedule. Each section s requires a certain width
w(s) on the dock during construction. Can the sections be assigned space on a welding
plane of total width k so that no spot is reserved for two sections at the same time?

Let the sections be represented by the vertices of a graph G and connect two vertices
if their corresponding sections have intersecting time intervals. Thus Gw is a weighted
interval graph. An interval coloring of Gw will provide the assignment of the sections

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 34, Publication date: January 2013.

34:6 B. Diouf et al.

Fig. 2. An example of a 4-submarine-coloring.

to spaces, of appropriate size, on the welding plane. This assignment will be consistent
with the intersecting time restrictions. The reader must be careful to distinguish be-
tween the time intervals which produced the edges of Gw and the color intervals which
provide a solution to the assignment of space on the dock.

A weighted graph built from a linearized program associated with a number k (cor-
responding to the size of the local memory) is an instance of the ship-building problem.
For a graph Gw and a number k, we call ship(Gw, k) an instance of the ship-building
problem.

Determining whether χ (Gw) ≤ k is an NP-complete problem [Golumbic 2004; Lee
et al. 2008],2 even if G is an interval graph and the weight function w is restricted to
the values 1 and 2. It follows that the ship-building problem is also NP-complete.

4.2. The Submarine-Building Problem
Since the local memory size is generally power-of-two, it is common to mask the ad-
dresses (in software or hardware) to let loads and stores wrap around to the local
memory transparently. The submarine-building problem is a new variant of the ship-
building problem. Like in the ship-building problem, a vertex must occupy a contiguous
color interval, but a circular allocation scheme can be adopted permitting a color inter-
val to wrap around. It extends the ship-building problem’s interval coloring to circular
interval coloring. It follows that a solution of the ship-building problem is a solution
to the submarine-building problem, but the converse is not generally true. Figure 2
shows an example of submarine coloring for the weighted graph in Figure 1(a). The
inner circle represents the colors and each circular arc Iv represents a color interval
assigned to the vertex v. The color interval IF wraps around.

For a weighted graph Gw and a number k, we call submarine(Gw, k) an instance of
the submarine-building problem. For the rest of the article we say that Gw is k-ship-
colorable, if ship(G, k) has a solution, and we also say that Gw is k-submarine-colorable,
if submarine(Gw, k) has a solution.

To the best of our knowledge, this variant of the ship-building problem has never
been carefully studied, and it has not been applied to the decoupling of the spilling
and assignment problems in local memory management. Many open questions about

2This has been previously proved by Stockmeyer, but to the best of our knowledge, the proof of Lee et al. is
the first publicly available one [Lee et al. 2008].

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 34, Publication date: January 2013.

A Decoupled Local Memory Allocator 34:7

fragmentation, optimality, complexity, and feasibility are tied to this new variant of
the ship-building problem.

Unfortunately, the submarine-building problem is also NP-complete on weighted
interval graphs as we demonstrate next.

THEOREM 4.1. The submarine-building problem is NP-complete.

PROOF. To show that the submarine-building problem is NP-complete, we first show
that it is a problem in NP, and we then show how to build from an instance ship(G, k) of
the ship-building problem an instance submarine(Gw, k+ 1) of the submarine-building
problem.

A problem in NP. The submarine-building problem is in NP because a solution of the
problem can be verified polynomially.

Reduction. From an instance ship(Gw, k) of the ship-building problem, we build an
instance submarine(Gw, k + 1) of the submarine-building problem. Let f and " be
respectively the minimum of the start points of all intervals in Gw and the maximum
of the end points of all intervals in Gw. The graph G′

w consists of all intervals of Gw and
the interval β: [f, "[of weight one.

Let θ be a solution of ship(Gw, k); θ maps each interval of Gw to a color interval
between 0 and k. We define θ ′, a function mapping each interval α of G′

w to a color
interval between 0 and k + 1.

∀α ∈ G′
w

{
θ ′(α) = θ (α) if α ∈ Gw

θ ′(α) = [k, k + 1[if α /∈ Gw

It follows that θ ′ is a solution of submarine(Gw, k + 1).
Now, we study the converse case. Let θ ′ be a solution of submarine(Gw, k + 1). We

define for a color interval [s, e[, an integer k, and the functions δ and mod.

δ([s, e[, d) = [s + d, e + d[
mod([s, e[) = [s mod (k + 1), e mod (k + 1)[

Let θ ′(β) = [s, s + 1[(β is of weight one). We define for each interval α of Gw the
function θ .

θ (α) = mod(δ(θ ′(α), k − s))

The interval β of G′
w is live from f to ", therefore there is no other interval of G′

w that
occupies the color interval [s, s + 1[. θ ([s, s + 1[) = [k, k + 1[, and the value on which
function θ is equal to [k, k + 1[is [s, s + 1[. Thus, θ assigns to each interval α of Gw an
interval of some color between 0 and k. If two interfering intervals α and α′ have two
nonoverlapping color intervals c and c′ then θ (α) and θ (α′) are nonoverlapping too. It
follows that θ is a solution of ship(Gw, k) if θ ′ is a solution of the submarine(Gw, k + 1).

5. WEIGHTED PROPER INTERVAL GRAPH COLORING
We study the properties of weighted proper interval graphs, a subclass of weighted
interval graphs. This class is interesting because we will show the submarine-building
problem is solvable in linear time for this class: any instance Gw of this class is colorable
with ω(Gw) colors and in linear time. For this subclass, we also have a sufficient criterion
permitting to decouple the ship-building problem.

5.1. Proper Interval Graph
An interval graph G is a proper interval graph if it is constructed from a family of
intervals such that no interval properly contains another [Golumbic 2004]. An interval

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 34, Publication date: January 2013.

34:8 B. Diouf et al.

Fig. 3. An example of a weighted proper interval graph.

graph is a unit interval graph if all of its intervals have the same length. It has been
shown that the classes of proper interval graphs and the unit interval graphs coincide.
A weighted graph Gw is a weighted proper interval graph if G is a proper interval
graph. Figure 3 shows properly ordered weighted intervals of the real line and their
corresponding weighted proper interval graph.

5.2. Proper Ordering
Let us consider the representation of Gw, a weighted proper interval graph, on the
real line, where the vertices of Gw correspond to intervals on the real line. Let us sort
these intervals according to their start points. If two intervals i and i′ start at the same
point, we can place either i before i′ or i′ before i. This kind of ordering can be found
for any weighted proper interval graph, and is called proper ordering in our approach.
A proper ordering of the graph in Figure 3 is: A, B, c, d, E, F. Based on this ordering,
we say that i ≺ i′, if i is before i′.

LEMMA 5.1. If i ≺ i′ then, either i ends before i′ or i and i′ start and finish at the same
time.

PROOF. i ≺ i′ implies that either i starts before i′ or i and i′ starts at the same time:

—i starts before i′. Since i cannot properly contain i′, then i ends before i′.
—i and i′ start at the same time. Since, none of these two intervals cannot properly

contain the other, then they end at the same time.

5.3. Decoupled Submarine-Building Problem
Algorithm 1 performs a k-submarine-coloring of intervals of a weighted proper interval
graph Gw. It takes as input a sequence of intervals of Gw sorted according to a proper
ordering. It assigns to every interval a color interval contiguous to the color interval
assigned to the previous interval (according to the proper ordering) in a clockwise
manner. Finally, it gives a k-submarine-coloring of the graph as output.

ALGORITHM 1: SUBMARINEASSIGNMENTALGORITHM

Input: intervals: an array of properly ordered intervals
Var: index ← 0;
Var: map: an array associating to each interval an offset
1: for all i ∈ intervals do
2: map[i]← index mod k;
3: index = index + weightOf (i);
4: end for
5: return map

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 34, Publication date: January 2013.

A Decoupled Local Memory Allocator 34:9

THEOREM 5.2. For any weighted proper interval graph Gw, Algorithm 1 guarantees a
k-submarine-coloring if and only if ω(Gw) ≤ k.

PROOF.
Direct. k-submarine-coloring of Gw =⇒ ω(Gw) ≤ k.
Any k-submarine-coloring of Gw must assign color intervals that do not overlap to

the intervals of a clique of weight ω(Gw) and this is only possible if ω(Gw) ≤ k.

Reciprocal. ω(Gw) ≤ k =⇒ k-submarine-coloring of Gw.
We will call a point, the moment an interval starts. Let P be the following property:

“at point n, the live intervals i j, i j+1, . . . , in (sorted according to the proper ordering)
are assigned to contiguous color intervals that do not overlap in a clockwise manner,
in this order: color(i j), color(i j+1), . . . color(in)”. The property P is an invariant at every
point of Algorithm 1. If the graph contains m nodes, we have consequently m intervals
and m points. The proof will be done inductively on points.

Just before the point 1, where the first interval i1 starts, none of the color intervals
is used. At point 1, Algorithm 1 assigns to i1 a color interval starting at 0 and property
P is trivially satisfied.

Suppose that property P is satisfied from point 1 to point n, and let us see if property
P is satisfied at point n + 1 (we assume that we have at least n + 1 intervals in the
graph). We call d the number of dead intervals between n and n + 1 (d can be zero, or
n − j), we prove four claims successively:

(1) i j+d is live. Indeed, if i j+d was dead then all intervals preceding it would also be
dead. Therefore, we would have d + 1 intervals that are dead, which contradicts
the definition of d.

(2) All the intervals between i j+d and in are live too. If an interval ik between i j+d and
in is dead then i j+d is also dead because i j+d ≺ ik; this leads to a contradiction with
the first claim.

(3) From the two first claims and the satisfaction of proposition P at point n, we deduce
that all live intervals i j+d, i j+d+1, . . . , in are assigned to contiguous colors that do not
overlap, in a clockwise manner, in this order: color(i j+d), color(i j+d+1), . . . color(in).

(4) Algorithm 1 assigns to the new interval in+1 a color interval contiguous to the last
used color interval (the color of in) in a clockwise manner. Therefore, the color inter-
vals assigned to live intervals are contiguous in a clockwise manner, in this order:
color(i j+d), color(i j+d+1), . . . color(in), color(in+1). The colors do not overlap because
they are all contiguous and they do not exceed ω(Gw) which does not exceed k.

From the fourth claim, we conclude that at the point n + 1 the property P is again
verified.

Hence, using Algorithm 1 guarantees that at every point, all the live intervals are
assigned to contiguous color intervals that do not overlap, and the next starting interval
will be assigned to a color interval. Thus, a k-submarine-coloring can be found for Gw

if ω(Gw) ≤ k.

As far as we are aware, this is the first time a decision problem is shown to be NP-
complete on interval graphs and polynomial on unit interval graphs (which are equiv-
alent to proper interval graphs).

6. WEIGHTED NOT-SO-PROPER INTERVAL GRAPHS
We say that two intervals A and B properly interfere if A interferes with B such that A
strictly starts before B and B strictly ends after A or vice versa.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 34, Publication date: January 2013.

34:10 B. Diouf et al.

Fig. 4. An example of weighted NSP graph.

Fig. 5. Two graphs that are not weighted NSP graphs.

We define a weighted Not-So-Proper (NSP) interval graph as a weighted interval
graph, where each pair of properly interfering intervals A and B is such that A and B
must not be contained in any other interval of the graph.

Figure 4 shows an example of a weighted NSP graph (weights have been omitted in
the figure), whereas Figure 5 illustrates two weighted graphs that are not NSP. The
light gray lines represent intervals that are not contained in other intervals, the solid
black lines represent intervals that are contained, and the black dashed lines represent
the intervals we do not want to have in weighted NSP graphs.

The weighted NSP graphs are the class of graphs that includes the weighted proper
interval graphs and the superperfect graphs defined by Li et al. [2011]. Thus, when the
submarine assignment problem is considered, the weighted NSP interval graphs are
guaranteed to be MaxSize-colorable.

Algorithm 2 performs a submarine assignment for a weighted NSP graph on a local
memory of size MaxSize. It receives as input intervals, a list of intervals sorted by
increasing start point, and returns at the end map, a map that associates to each
interval an offset into the local memory. This algorithm differentiates between intervals
that are not contained in any other interval, called containers and those contained in
an interval. The contained intervals are stocked into stack. The variable container
keeps track of the last starting container. When a new interval, i, starts, it is verified
for containment—the function CONTAINS(container, i) returns true, if i is contained in
container and false otherwise—and if it is not contained in the currently live intervals,
it is set as the new container. Then, all the dead intervals are removed from stack and
the offset is updated. The function WEIGHTOF(i) returns the weight of the interval i. If
i is contained into another interval, it is pushed onto stack. Finally, i is assigned to the
current offset, which is then updated.

7. LOCAL MEMORY ALLOCATION THROUGH WEIGHTED NSP GRAPH COLORING
As explained in Section 3, from a linearized program it is possible to construct a cor-
responding weighted interval graph. If the resulting graph is a weighted NSP interval
graph, when the submarine assignment problem is considered, it is always possible
to use MaxSize as a criterion to ensure that the assignment phase is feasible without
spills. Thus, the allocation algorithm can be decoupled thanks to the MaxSize crite-
rion. For arbitrary interval graphs, the problem is NP-complete and a heuristic-based
solution should be envisaged.

We devised a solution that takes advantage of our submarine assignment algorithm.
This solution that decouples the allocation and assignment, performs the two following
steps:

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 34, Publication date: January 2013.

A Decoupled Local Memory Allocator 34:11

ALGORITHM 2: NSPASSIGNMENTALGORITHM

Input: intervals: a list of intervals sorted by increasing start point
Var: map: an array associating to each interval an offset
Var: stack: a stack used to keep track of contained intervals
1: offset ← 0
2: container ← ⊥
3: for all i ∈ intervals do
4: if container = ⊥ ∨ ¬(CONTAINS(container, i)) then
5: container ← i
6: end if
7: while stack -= ∅ do
8: if ¬(CONTAINS(PEEK(stack), i) then
9: contained ← POP(stack)
10: offset ← (offset + MAXSIZE − WEIGHTOF(contained)) mod MAXSIZE
11: else
12: break out of the loop
13: end if
14: end while
15: if container -= i ∧ (CONTAINS(container, i)) then
16: PUSH(stack, i)
17: end if
18: map[i]← index mod k
19: index = index + WEIGHTOF(i)
20: end for
21: return map

Fig. 6. An example of live intervals.

(1) it approximates an arbitrary weighted interval graph into a weighted NSP graph
through spilling and splitting;

(2) it performs a submarine assignment with Algorithm 2.

7.1. Live Ranges Representation
Each array of a program is represented by a live interval (compound interval) starting
from its first definition to its last use. Within the compound interval, there may exist
some idle subintervals where the array is not accessed at all and other subintervals
where the array is frequently accessed. The latter are called basic intervals. These basic
intervals often correspond to loops, because arrays are generally frequently accessed
through loops. Figure 6 shows an example of compound interval (ci) and the basic
intervals (bi1, bi2, bi3, bi4) that compose ci. Usually it is not recommended to split the
live interval of an array inside a loop, because the incurred memory transfer cost will
be too high, hence in our approach we do not split a compound interval inside one of
its basic interval.

During the execution of a program, an array may occupy different locations in mem-
ory. The sublive range—a subinterval of the array’s compound interval—during which

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 34, Publication date: January 2013.

34:12 B. Diouf et al.

the array occupies a specific location in memory, is called a memory live interval. A
memory live interval is composed of a set of successive basic intervals of the compound
interval. All the basic intervals in a memory live interval belong to the same compound
interval. But, on the other hand, two basic intervals of the same compound interval
may belong to different memory live intervals. If the array occupies a unique location
in memory during all its compound interval, the memory live interval is the same as
the compound interval. If the array is located in the local memory during the memory
live interval, it is called a local-memory live interval. In contrast, if it is in the off-chip
memory, it is called off-chip live interval. Figure 6 shows an example of configuration
that can happen during execution. The array A which has ci as compound interval is
in the local memory during the interval lmli, a local-memory live interval. A is in the
off-chip memory during ocli1 and ocli2, two off-chip live intervals.

7.2. The Approximation Algorithm
Based on the notions of local-memory live interval and off-chip live interval, we de-
vise an approximation algorithm which transforms a weighted interval graph into a
weighted NSP interval graph composed of local-memory live intervals through spilling
and splitting of the live intervals. This approximation is performed by Algorithm 3.

ALGORITHM 3: APPROXIMATE

Input: basics: an array containing all the basic intervals of the program sorted by increasing
start point

Input: lm size: the size of the local memory
Var: active: a list that keeps track of local-memory live interval currently live
Var: map: an array associating to each compound interval its current mem-li
Var: loc-mem-lis: a list containing all the local-memory live intervals
1: for all bi ∈ basics do
2: EXPIREOLDLOCALMEMORYLIVEINTERVALS(active, bi.start)
3: FINDMEM-LI(bi, active, map, loc-mem-lis, lm size)
4: end for
5: return loc-mem-lis

Algorithm 3 receives as input basics, an array containing all the basic intervals of the
program sorted by increasing start point, and lm size the size of the local memory. It
then creates two variables, active and map. At every moment, active keeps track of the
local-memory live intervals that are live and map associates to each compound interval
its latest computed memory live interval. For each basic interval, bi , Algorithm 3 first
removes from active the local-memory live intervals of a compound interval whose
end point is lower than the start point of bi. Afterwards, Algorithm 3 attempts to
add bi into a local-memory live interval. If this is impossible bi becomes part of an
off-chip live interval. When all of the basic intervals of the program are processed,
Algorithm 3 returns loc-mem-lis, the list of all the local-memory live intervals which
are the intervals of the approximated weighted NSP interval graph.

The weighted NSP interval graph is computed iteratively with Algorithm 4. Algo-
rithm 4 aims to assign bi’s array to a location in the local memory based on the currently
active local-memory live interval. It first retrieves the latest memory live interval of
bi’s compound interval (bi.compound) into mem-li. Three different cases can happen.

(1) mem-li does not correspond to any value. It means that this is the first time the array
of the compound interval is accessed. In this case Algorithm 4 creates new mem-li,
a temporary new local-memory live interval with bi, and checks, with the function
ALLOCATEORNOT(), if it can be added to active. If it is the case, new mem-li is added

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 34, Publication date: January 2013.

A Decoupled Local Memory Allocator 34:13

ALGORITHM 4: FINDMEM-LI

Input: bi: the starting basic interval
Input: active: a list that keeps track of local-memory live interval currently live
Input: map: an array associating to each compound interval its current memory live interval
Input: loc-mem-lis: a list containing all the local-memory live intervals
Input: lm size: the size of the local memory
1: mem-li ← map[bi.compound]
2: // If it is the first time when the compound of bi appears
3: if mem-li = ⊥ then
4: new mem-li ← CREATENEWLOC-MEM-LI(bi)
5: if ALLOCATEORNOT(new mem-li, active, lm size, loc-mem-lis, map) then
6: Add new mem-li to active
7: Add new mem-li to loc-mem-lis
8: map[bi.compound] ← new mem-li
9: else
10: off-chip mem-li ← SPILL(bi.start, new mem-li, active)
11: map[bi.compound] ← off-chip mem-li
12: end if
13: // If bi.compound was previously in the off-chip memory
14: else if mem-li is a off-chip-li then
15: new mem-li ← CREATENEWLOCALMEMORYLIVEINTERVAL(bi)
16: if ISBENEFICIALTOLOAD(mem-li, bi)

∧ ACCEPT(new mem-li, active, lm size, loc-mem-lis, map) then
17: mem-li.end ← bi.start
18: Add new mem-li to active
19: Add new mem-li to loc-mem-lis
20: map[bi.compound] ← new mem-li
21: else
22: Mark that bi is also represented by mem-li
23: end if
24: // If bi.compound was previously in the local memory
25: else
26: Mark that bi is also represented by mem-li
27: end if

to active and to loc-mem-lis, and bi’s compound is is associated to new mem-li.
Otherwise, bi will be part of off-chip mem-li, an off-chip live interval, and bi’s
compound is associated to off-chip mem-li.

(2) mem-li corresponds to an off-chip live interval. If the cost of loading bi’s array
is lower than the cost of accessing it from the off-chip memory—the function IS-
BENEFICIALTOLOAD() returns true—and there is enough room for it—the function
ALLOCATEORNOT() returns true—then mem-li’s end point is set to bi’s start point,
new mem-li is added to active and to loc-mem-lis, and bi’s compound is associated to
new mem-li. Otherwise, bi will be part of mem-li, which is an off-chip live interval
in this case.

(3) mem-li corresponds to a local-memory live interval. In this case, Algorithm 4 marks
that bi will be part of mem-li, which is a local-memory live interval in this case.

The function ALLOCATEORNOT() used in Algorithm 4 is described by Algorithm 5.
This algorithm spills or splits either the active local-memory live intervals or spills
new mem-li which corresponds to transforming it into an off-chip live interval. When
Algorithm 5 is invoked, it checks if the sum of the weights of new mem-li and the local-
memory live intervals currently in active—given by the function WEIGHTOF()—is lower

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 34, Publication date: January 2013.

34:14 B. Diouf et al.

ALGORITHM 5: ALLOCATEORNOT

Input: new mem-li: the new memory live interval
Input: active: a list that keeps track of local-memory live intervals currently live
Input: map: an array associating to each compound interval its current memory live interval
Input: loc-mem-lis: a list containing all the local-memory live intervals
Input: lr: a local-memory live interval we want to add to active if possible
Input: lm size: the size of the local memory
1: if WEIGHTOF(active) + new mem-li.weight ≤ lm size then
2: return TRUE
3: else
4: splitting cost ← COSTOFSPILLBEFORESPLIT(lr.start, active)
5: spilling cost ← COSTOFSPILL(lr.start, active)
6: lr spill cost ← COSTOFSINGLESPILL(lr)
7: min ← MINIMUM(splitting cost, spilling cost, lr spill cost)
8: if min = splitting cost then
9: SPILLBEFORESPLIT(lr.start, active, loc-mem-lis, map)
10: else if min = spilling cost then
11: SPILL(lr.start, active, loc-mem-lis, map)
12: else
13: SINGLESPILL(lr, map)
14: end if
15: end if

than lm size, the size of the local memory. In this case, it returns true to report that
new mem-li can be added to active. Otherwise, Algorithm 5 considers three possibilities.

(1) First, it computes the cost of splitting the local-memory live intervals when
new mem-li starts. Note that the local-memory live intervals, currently used at that
moment, which have a basic interval that contains the start point of new mem-li,
could not be split at that moment. Algorithm 5 computes the cost of spilling these
local-memory live intervals first, then if some space is still needed to hold new mem-
li, it computes the cost of breaking some local-memory live interval into a local-
memory live interval which stops now, at the moment when new mem-li starts, and
an off-chip live interval from now. It breaks the local-memory live intervals until
new mem-li can fit.

(2) It computes the cost of spilling some local-memory live intervals until new mem-
li can fit. Algorithm 5 walks over the local-memory live intervals in the order of
increasing spill cost.

(3) It computes the cost of spilling new mem-li.

Algorithm 5 selects the possibility that is the least expensive and updates accordingly
the variables map, active, and loc-mem-lis.

8. EXPERIMENTAL EVALUATION
To evaluate our approach we have generated 2000 graphs (1000 superperfect graphs
and 1000 arbitrary interval graphs) with various properties. We compared our approach
with the polynomial allocator of Li et al. [2009] which is the closest work to ours. We
also compare our approach with the classical best-fit allocator and to a variant of the
best-fit which aims to reduce copies. Notice both best-fit algorithms are exponential in
the size of the local memory: they are very effective for a few hundreds of kilobytes,
but they may not scale to larger allocation problems such as those arising on the local
memories of GPU accelerators.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 34, Publication date: January 2013.

A Decoupled Local Memory Allocator 34:15

Table I. Model Parameters

Constant Latency

latency local memory 8
latency main memory 128

latency move(sv) 8 + 2sv

latency spill(sv) 128 + 4sv

latency reload(sv) 128 + 4sv

The results collected so far are very encouraging and indicate that the proposed
approach competes with the best-fit, and may outperform it on the harder allocation
problems with a small local memory size.

We start with the survey of our experimental methodology, then we provide an
experimental evaluation of our heuristic and discuss the results.

8.1. Methodology
Our comparisons are based upon randomly generated graphs that attempt to reproduce
the characteristics of real-life applications. We were inspired by the common charac-
teristics found in representative numerical benchmarks, such as those we used in our
previous work [Diouf et al. 2009] (BMCM [Berry et al. 1988], MXM, EDGE DETECT [Lee 1998],
and FFT [Lee 1998]) and the Polybench [Pouchet 2012]. These graphs have been used
to evaluate our decoupled approach to the local memory allocation problem.3

Table I lists the parameters that model the local memory used in our experiments.
We modeled a typical DDR memory with burst/pipelined and random-access latencies.
Varying these ratios will change the overall benefits of local memory allocation, but not
the relative performance of the different heuristics/algorithms.

Before we present the results of our evaluation, we first explain how we proceed to
generate the random graphs, then we give a description of the compared algorithms,
and finally we depict the details of our experimental evaluation.

8.1.1. Graph Generation. We generate interval graphs, selecting start (left) and end
(right) points at random. We also try to reproduce the control and data structures
found in real-life applications, adding specific constraints and limits on these graphs.
We control the number of intervals, the minimum length of an interval, the maximum
number of concurrently live intervals, and weight of intervals. Although there is no
specific limit on maximum number of data structures that can be used in an application,
in practice it is not usual to see hundreds of data structures in a single application.
Also data structures in applications are usually not intended to be created and used
at the same line of code. That is, when a data is created it is meant to be used for
some time; they are created, used, and removed from memory when they are no longer
required. By giving a bound on interval length we have ensured that the virtual data
structures created within an application are used for a minimum length of time and
the maximum number of live intervals within the graph is used to limit the maximum
number of data elements concurrently used in an application.

Our graphs are composed of compound intervals which are in turn composed of basic
intervals which have been introduced in Section 7. Each compound interval represents
the whole live range of an array, and the basic intervals represent the subintervals of
the compound interval where the array is frequently accessed. These basic intervals

3Extracting these graphs from real code would strengthen the experimental evaluation, assuming the ex-
traction method implements loop transformations to improve data locality and to partition arrays into small,
homogeneous blocks. Interference graphs may then be built from the live ranges of these array blocks [Diouf
et al. 2009]. How to perform these steps automatically and profitably remains a largely open problem.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 34, Publication date: January 2013.

34:16 B. Diouf et al.

Table II. Parameters for Graph Generation

Parameter Value

maximal loop nest 4
number of loops 20

minimal number of outerloops 5
maximal number of outerloops 5
number of compound intervals 30

maximal number of basic intervals per compound interval 3
The number of different array’s size 10

are called hot portions in the approach of Li et al. [2011]. Usually the array is accessed
frequently through loops and in our implementation, each basic interval corresponds
to an access to an array through a loop. A basic interval begins at the start point of a
loop where an array is accessed and ends at the end point of that loop. Thus to generate
the basic intervals, we first generate some loops that can be imbricated or not. Each
loop has a start point and an end point that differs from start points and end points of
other loops. A loop l1, that contains a loop l2, starts before l2 and ends after l2. For each
array A, we randomly choose some loops where A will be frequently accessed. A basic
interval bi of Acorresponds to a chosen loop l. The start point and the end point of bi are
set to the start point and end point of l. When choosing the basic intervals of A, when
two basic intervals are such that the one is contained in the other, we consider that
the A is accessed in the containing basic interval. Each bi is associated to a randomly
generated frequency and is defined as being a write, meaning that A is modified within
bi, or a use, meaning that A is only read within bi. After all the basic intervals of A
are chosen, we define ci, the compound interval of A: it contains all the basic intervals
of A, starts with the ourtermost loop containing the first basic interval of A, and ends
with the outermost loop containing the last basic interval of A.

To make the generation of interval graphs as generic as possible we use the param-
eters presented in Table II. We were inspired by the frequent characteristics found in
representative numerical benchmarks, such as the four aforementioned kernels and
the Polybench [Pouchet 2012]. The parameters allow to control the number of intervals
in the graph, the number of loops, the maximum depth of a loop, the maximum number
of basic intervals of a compound interval, etc.

8.1.2. Algorithms. We use the randomly generated graphs to evaluate our approach by
comparing it with three other approaches.

Classical best fit. This algorithm, denoted BestFit, walks over the list of basic in-
tervals and attempts to assign every basic interval bi to a portion of the local
memory (in fact, it is the array of this bi which is assigned). If there is enough
space to hold bi, it chooses the space where bi fits the best. Otherwise either bi is
spilled or some previously assigned basic intervals are spilled to make room for bi.

Best-fit variant. This is a variant of of the best-fit, denoted BestFitVariant.
Whenever a basic interval bi ends, it is checked if bi is the last basic interval of
its compound interval ci. If so, bi is removed from the local memory. Otherwise,
bi is left in the local memory until this space is needed for another basic interval
bi′ of another compound interval ci′ (another array) or the next basic interval of ci
starts. The aim of this technique is to assign, if possible, different live ranges of an
array to the same offset in the local memory in order to avoid copy costs.

Superperfect This is our implementation of the approach of Li et al. [2011] de-
noted here SuperPerfect. In this implementation the live range splitting is nat-
urally performed because the frequently accessed portions (called hot portions by

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 34, Publication date: January 2013.

A Decoupled Local Memory Allocator 34:17

BestFitVariant SuperPerfect NSP

M
axSize/16

M
axSize/8

M
axSize/4

M
axSize/2

M
axSize*3/2

M
axSize*2

M
axSize*3

M
axSize*4

Size Of The Local Memory

0

1

2
A

v
e

ra
g

e
 O

f
N

o
rm

a
li

ze
d

 A
ll

o
c

a
ti

o
n

Fig. 7. Average of normalized allocation with respect to best-fit on superperfect graphs.

authors of the approach) of the array’s live ranges are exactly the basic intervals.
Thus, the set of candidates subject to allocation are composed of the compound in-
tervals and their basic intervals. The allocation algorithm will consider either the
compound interval or each of its individual basic intervals for allocation, but not
both at the same time. To approximate a given graph into a superperfect graph, we
go through the loops in their increasing start points, and we mark all the intervals
(the candidates, the basic and compound intervals) defined at the same point as
containing related; notice that two different loops have start points and end points
that differ. When at a start point, an interval j starts when another interval i is al-
ready defined and still live, and i and j are not containing related, we extend i to the
end of j. After this approximation the new formed interval graph is superperfect.

8.1.3. Evaluation Details. Our evaluation was conducted on different local memory sizes.
We varied the size of the local memory in accordance with MaxSize when performing
the experiments; MaxSize—the maximum size of simultaneously living arrays—can
vary significantly between two graphs. Thus, we do think that it is not very relevant
to compare two allocation algorithms on graphs with MaxSize that widely differs when
using a local memory with a fixed size. We focus here on the interesting case where
MaxSize is the maximum size of simultaneously living basic intervals and not of the
compound intervals, which is larger and thus makes the problem easier to solve.

We based our comparison on the cumulative memory access latency incurred by each
method. The allocation of the best quality is the allocation with the lowest access la-
tency. For every interval graph the cost of the allocation performed by BestFitVariant,
SuperPerfect, and our approach, denoted NSP, have been normalized with respect to
BestFit. For a given size of the local memory and a given algorithm, an associated
bar shows the average (Figure 7 and Figure 9) and how the individual allocations are
statistically distributed in the normalized allocation space (Figure 8 and Figure 10), of
all the normalized allocation cost of the given algorithm.

To perform an allocation with our approach we feed Algorithm 3 with the list of basic
intervals of each weighted interval graph. Algorithm 3 will then return a not-so-proper
interval graph composed of local-memory live intervals. The MaxSize of the resulting
graph is less than or equal to the size of the local memory, hence all its associated array
blocks can be placed in the local memory using Algorithm 2.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 34, Publication date: January 2013.

34:18 B. Diouf et al.

BestFitVariant SuperPerfect NSP

M
axSize/16

M
axSize/8

M
axSize/4

M
axSize/2

M
axSize*3/2

M
axSize*2

M
axSize*3

M
axSize*4

Size Of The Local Memory

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00

N
o

rm
a

li
ze

d
 A

ll
o

c
a

ti
o

n

Fig. 8. Distribution of normalized allocation with respect to best-fit on superperfect graphs.

BestFitVariant SuperPerfect NSP

M
axSize/16

M
axSize/8

M
axSize/4

M
axSize/2

M
axSize*3/2

M
axSize*2

M
axSize*3

M
axSize*4

Size Of The Local Memory

0

1

2

3

A
v

e
ra

g
e

 O
f

N
o

rm
a

li
ze

d
 A

ll
o

c
a

ti
o

n

Fig. 9. Average of normalized allocation with respect to the best-fit on arbitrary graphs.

8.2. Results and Discussion
We provide here an evaluation of our approach, on 1000 of randomly generated super-
perfect graphs and 1000 of randomly generated arbitrary interval graphs. The results
presented in this section show the performance of BestFitVariant variant (light gray
bars), SuperPerfect allocator (gray bars), and our approach denoted NSP (black bars).

Figure 7 and Figure 8 present the results obtained on superperfect graphs. For
all local memory sizes, our approach is better than SuperPerfect approach. Since
the graphs are superperfect, there is no need of approximation for both approaches.
Thus, the difference here is on the choice of allocated arrays. This shows that, on the
generated graphs, our approach performs a better allocation. When the size of the
local memory is lower or equal to MaxSize/4, our approach is better than BestFit and
BestFitVariant. For local memory size of MaxSize/2, MaxSize, MaxSize× 3/2, BestFit,
and BestFitVariant give better results. For a size of the local memory going from
MaxSize×2 to MaxSize×4, BestFitVariant, SuperPerfect, and NSP give similar results
with small standard deviation. Algorithms produce approximately the same allocation
because the size of the local memory is big enough to allow a good allocation. Since the

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 34, Publication date: January 2013.

A Decoupled Local Memory Allocator 34:19

BestFitVariant SuperPerfect NSP

M
axSize/16

M
axSize/8

M
axSize/4

M
axSize/2

M
axSize*3/2

M
axSize*2

M
axSize*3

M
axSize*4

Size Of The Local Memory

0

1

2

3

4

5

6

7

8
N

o
rm

a
li

ze
d

 A
ll

o
c

a
ti

o
n

Fig. 10. Distribution of normalized allocation with respect to the best-fit on arbitrary graphs.

three algorithms try to assign to the basic intervals of a same array, the same place
in the local memory, avoiding thus extra copies, they give better results compared to
BestFit. But the small improvements suggest that these copies does not have a big
impact on the global allocation cost.

Figure 9 and Figure 10 show the results obtained on arbitrary graphs. Here again, for
all local memory sizes, our approach gives better results than SuperPerfect approach,
and on arbitrary graphs. Our approach, like BestFit and BestFitVariant, performs
on average allocations twice better than the allocations performed by SuperPerfect
algorithm. This performance degradation, of the SuperPerfect algorithm, is mostly
due to its approximation algorithm which is not meant to be used on graphs that
are not quasi-superperfect, that are interval graphs that have most of their intervals
matching the containment property. Comparing with BestFit and BestFitVariant,
our approach gives similar results to those presented in Figure 8, but with a slightly
higher variability.

9. RELATED WORK
Strong links between register allocation and local memory management have been dis-
covered for more than 30 years by Fabri [1979]. Fabri’s seminal paper also studied the
interplay between local memory management and the loop transformations. Since then
it has been ignored in the field of local memory management and register allocation
[Appel and George 2001; Hack et al. 2006; Bouchez et al. 2006b; Quintáo Pereira and
Palsberg 2008]. While previous studies addressed local memory management from
different angles, targeting both code and data, we are especially interested in data
management [Kandemir et al. 2001; Issenin et al. 2007; Dominguez et al. 2007]. We
target dynamic methods which are superior to static ones except when code size is
extremely constrained [Udayakumaran and Barua 2003]. We elaborate on two recent
series of results targeting stack and global array management in local memories,
embracing the analogies with register allocation. The first approach [Li et al. 2005]
uses an existing graph coloring technique to perform memory allocation for arrays. It
partitions the local memory for each array size, performs live range splitting, and uses
a register allocation framework to perform memory coloring. The second approach
[Avissar et al. 2002; Udayakumaran and Barua 2003; Udayakumaran et al. 2006] allo-
cates data onto the scratchpad memory between program regions separated by specific
program points. More specifically, allocation is based on the access frequency-per-byte

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 34, Publication date: January 2013.

34:20 B. Diouf et al.

of a variable in a region (collected from profile data). Program points are located at
the beginning of a called procedure or before a loop entry.

The closest work to ours is Li et al. [2011], where authors observed that in many
embedded applications most arrays present a specific live range behavior. Specifically,
for any two arrays live ranges are either disjoint or one of the arrays is contained by the
other one (containment property). They showed that, for the tested benchmarks, it is
extremely rare to have two live ranges interfere with one another without containment.
They extend the live range of one of the arrays to contain the other when this happens.
Authors proved that the interference graph of an application with such a property is a
comparability graph which is a superperfect graph and hence optimal interval coloring
for this array interference graph is possible. Based on this observation, they rely on
the maximum weighted clique to guarantee the optimal colorability of the generated
interference graph. When the maximum weighted clique exceeds the size of the local
memory, they use heuristics to spill or split some of the live ranges. While this work is
interesting, it is restricted to applications where most arrays satisfy the containment
property. On the other hand, our work leverages the decoupled allocation/assignment
approach, allowing scalable and more effective algorithms. Moreover, it offers much
more flexibility in terms of integration of architecture constraints and performance
models.

10. CONCLUSION
We implemented a novel compilation-time local memory management approach
through decoupling spill code generation and local memory assignment. We repre-
sent the live range intervals of variables and arrays as a weighted interval graph. We
defined a new decision problem called the submarine-building problem, a variant of
the ship-building problem. The submarine-building problem corresponds to coloring a
weighted interval graph with a cyclic set of colors (corresponding to a wrap-around
local memory). We demonstrate important complexity results on this problem, some of
which are particularly original in graph theory. We provide a new clustering heuris-
tic to approximate interval graphs into not-so-proper interval graphs, on which the
submarine-building problem can be decided in linear time. This approximation effec-
tively decouples the generation of spill code from the local memory assignment problem.
Our preliminary experiments demonstrate the practicality of the approach, and very
favorable allocation results compared to state-of-the-art allocators.

REFERENCES
APPEL, A. W. AND GEORGE, L. 2001. Optimal spilling for CISC machines with few registers. In Proceedings of the

ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’01). 243–253.
ARM. 1998. Document no. arm ddi 0084d, ARM Ltd. ARM7TDMI-S data sheet.
AVISSAR, O., BARUA, R., AND STEWART, D. 2002. An optimal memory allocation scheme for scratch-pad-based

embedded systems. ACM Trans. Embed. Comput. Syst. 1, 1, 6–26.
BERRY, M., CHEN, D., KOSS, P., KUCK, D., LO, S., PANG, Y., POINTER, L., ROLOFF, R., SAMEH, A., CLEMENTI, E.,

CHIN, S., SCHNEIDER, D., FOX, G., MESSINA, P., WALKER, D., HSIUNG, C., SCHWARZMEIER, J., LUE, K., ORSZAG,
S., SEIDL, F., JOHNSON, O., AND GOODRUM, R. 1988. The perfect club benchmarks: Effective performance
evaluation of supercomputers. Int. J. Supercomput. Appl. 3, 5–40.

BOISSINOT, B., DARTE, A., DE DINECHIN, B. D., GUILLON, C., AND RASTELLO, F. 2009. Revisiting out-of-ssa
translation for correctness, code quality and efficiency. In Proceedings of the Annual IEEE/ACM
International Symposium on Code Generation and Optimization (CGO’09). 114–125.

BOUCHEZ, F., DARTE, A., GUILLON, C., AND RASTELLO, F. 2006a. Register allocation: What does the np-
completeness proof of Chaitin et al. really prove? In Proceedings of the Annual Workshop on Duplicating,
Deconstructing and Debugging (WDDD’06).

BOUCHEZ, F., DARTE, A., GUILLON, C., AND RASTELLO, F. 2006b. Register allocation: What does the np-
completeness proof of Chaitin et al. really prove? Or revisiting register allocation: Why and how.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 34, Publication date: January 2013.

A Decoupled Local Memory Allocator 34:21

In Proceedings of the International Workshop on Languages and Compilers for Parallel Computing
(LCPC’06). Lecture Notes in Computer Science. Springer.

BOUCHEZ, F., DARTE, A., AND RASTELLO, F. 2007. On the complexity of register coalescing. In Proceedings of the
Annual IEEE/ACM International Symposium on Code Generation and Optimization (CGO’07).

BOUCHEZ, F., DARTE, A., AND RASTELLO, F. 2008. Advanced conservative and optimistic register coalescing.
In Proceedings of the International Conference on Compilers Architecture and Synthesis for Embedded
Systems (CASES’08). 147–156.

BRAUN, M. AND HACK, S. 2009. Register spilling and live-range splitting for ssa-form programs. In Proceedings
of the International Conference on Compiler Construction (CC’09). Lecture Notes in Computer Science,
vol. 5501. Springer, 174–189.

BRISK, P., DABIRI, F., JAFARI, R., AND SARRAFZADEH, M. 2006. Optimal register sharing for high-level synthesis
of ssa form programs. IEEE Trans. Comput. Aid. Des. Integr. Circ. Syst. 25, 5, 772–779.

BURNS, M., PRIER, G., MIRKOVIC, J., AND REIHER, P. 2003. Implementing address assurance in the intel ixp.
Western Network Processors Conference.

CHEN, L. 1992. Optimal parallel time bounds for the maximum clique problem on intervals. Inf. Process.
Lett. 42, 4, 197–201.

DIOUF, B., OZTURK, O., AND COHEN, A. 2009. Optimizing local memory allocation and assignment through a
decoupled approach. In Proceedings of the 22nd International Workshop on Languages and Compilers
for Parallel Computing (LCPC’09).

DOMINGUEZ, A., NGUYEN, N., AND BARUA, R. K. 2007. Recursive function data allocation to scratch-pad memory.
In Proceedings of the International Conference on Compilers Architecture and Synthesis for Embedded
Systems (CASES’07). 65–74.

FABRI, J. 1979. Automatic storage optimization. In Proceedings of the ACM Symposium on Compiler
Construction. 83–91.

GOLUMBIC, M. C. 2004. Algorithmic graph theory and perfect graphs. Ann. Discr. Math. 57.
HACK, S., GRUND, D., AND GOOS, G. 2005. Towards register allocation for programs in ssa-form. Tech. rep.

2005-27, Universität Karlsruhe.
HACK, S., GRUND, D., AND GOOS, G. 2006. Register allocation for programs in ssa-form. In Proceedings of the

ACM Symposium on Compiler Construction (CC’06). 247–262.
INSTRUMENTS, T. 1997. TMS370Cx7x 8-Bit Microcontroller. Texas Instruments.
ISSENIN, I., BROCKMEYER, E., MIRANDA, M., AND DUTT, N. 2007. DRDU: A data reuse analysis technique for

efficient scratch-pad memory management. ACM Trans. Des. Autom. Electron. Syst. 12, 2, 15.
KAHLE, J. A., DAY, M. N., HOFSTEE, H. P., JOHNS, C. R., MAEURER, T. R., AND SHIPPY, D. 2005. Introduction to the

cell multiprocessor. IBM J. Res. Devel. 49, 4–5.
KANDEMIR, M., RAMANUJAM, J., IRWIN, J., VIJAYKRISHNAN, N., KADAYIF, I., AND PARIKH, A. 2001. Dynamic man-

agement of scratch-pad memory space. In Proceedings of the Design Automation Conference (DAC’01).
690–695.

LEE, C. G. 1998. UTDSP benchmarks. http://www.eecg.toronto.edu/∼corinna/DSP/infrastructure/UTDSP.html
LEE, J. K., PALSBERG, J., AND PEREIRA, F. M. Q. 2008. Aliased register allocation for straight-line programs is

np-complete. Theor. Comput. Sci. 407, 258–273.
LI, L., FENG, H., AND XUE, J. 2009. Compiler-Directed scratchpad memory management via graph coloring.

ACM Trans. Archit. Code Optim. 6, 9:1–9:17.
LI, L., GAO, L., AND XUE, J. 2005. Memory coloring: A compiler approach for scratchpad memory management.

In Proceedings of the International Conference on Parallel Architecture and Compilation Techniques
(PACT’05). 329–338.

LI, L., XUE, J., AND KNOOP, J. 2011. Scratchpad memory allocation for data aggregates via interval coloring
in superperfect graphs. ACM Trans. Embed. Comput. Syst. 10, 28:1–28:42.

MOTOROLA. 1998. M-CORE: MMC2001 Reference Manual. Motorola Corporation.
NVIDIA. 2008. NVIDIA unified architecture GeForce 8800 GT. http://www.nvidia.com/page/geforce8.html.
PEREIRA, F. AND PALSBERG, J. 2009. Ssa elimination after register allocation. In Proceedings of the ACM

Symposium on Compiler Construction (CC’09). O. Moor and M. Schwarzbach, Eds. Lecture Notes in
Computer Science, vol. 5501. Springer, 158–173.

PEREIRA, F. M. Q. AND PALSBERG, J. 2005. Register allocation via coloring of chordal graphs. In Proceedings of
the Asian Symposium on Programming Languages and Systems (ASPLAS’05). 315–329.

PEREIRA, Q. F. M. AND PALSBERG, J. 2008. Register allocation by puzzle solving. SIGPLAN Not. 43, 6, 216–226.
POUCHET, L. N. 2012. Polybench/c, the polyhedral benchmark suite. http://www.cse.ohio-state.

edu/∼pouchet/software/polybench/

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 34, Publication date: January 2013.

34:22 B. Diouf et al.

SAHA, A., PAL, M., AND PAL, T. K. 2007. Selection of programme slots of television channels for giving
advertisement: A graph theoretic approach. Inf. Sci. 177, 12, 2480–2492.

SARKAR, V. AND BARIK, R. 2007. Extended linear scan: An alternate foundation for global register allocation.
In Proceedings of the ACM Symposium on Compiler Construction (CC’07). S. Krishamurthi and M.
Odersky, Eds. Lecture Notes in Computer Science, vol. 4420. Springer, 141–155.

SJODIN, J. AND VON PLATEN, C. 2001. Storage allocation for embedded processors. In Proceedings of the
International Conference on Compilers, Architecture and Synthesis for Embedded Systems (CASES’01).
ACM Press, New York, 15–23.

STEINKE, S., WEHMEYER, L., LEE, B., AND MARWEDEL, P. 2002. Assigning program and data objects to scratchpad
for energy reduction. In Proceedings of the Conference on Design, Automation and Test in Europe
(DATE’02). IEEE Computer Society, Washington, DC, 409.

UDAYAKUMARAN, S. AND BARUA, R. 2003. Compiler-Decided dynamic memory allocation for scratch-pad based
embedded systems. In Proceedings of the International Conference on Compilers Architecture and
Synthesis for Embedded Systems (CASES’03). 276–286.

UDAYAKUMARAN, S., DOMINGUEZ, A., AND BARUA, R. 2006. Dynamic allocation for scratch-pad memory using
compile-time decisions. ACM Trans. Embed. Comput. Syst. 5, 2, 472–511.

Received June 2012; revised September 2012; accepted October 2012

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 34, Publication date: January 2013.

