Computing Surveys 28(2):358-359, June 1996.

Type Inference for Objects

Jens Palsberg*
MIT

Type systems for object-oriented languages have been studied for more than
a decade.

Fundamental question. Can we design an object-oriented lan-
guage and a type system such that we get all three of (1) type
inference, (2) subtyping, and (3) principal types?

So far there is no satisfactory answer to this question. We can, however, obtain
any two of the three items. The following is a brief examination of the concepts
and of state-of-the-art.

Type inference. Types are useful because they can help a compiler generate
good code and because “well-typed programs cannot go wrong.” In languages
such as Pascal and Ada, variables must be declared with a type, and the com-
piler can then verify whether a given program is indeed well-typed. This veri-
fication is called type checking. Type inference is the computation of missing
type annotations. It allows us to omit some or all of the type annotations in
our programs, and it is successfully used in functional languages such as ML
and Haskell.

Subtyping. Most successful type systems for object-oriented languages have
a notion of subtyping, i.e., an ordering of the types. This ordering is often used
to allow the compiler to deduce that if an expression e has type s, and s is
a subtype of ¢, then e also has type t. For example, if types are of the form
[l1 : ti,...,ly : t,] where each [; is a field name and each t; is a type, then
we may define “s is a subtype of ¢” to mean “s has at least the fields of ¢,
and common fields in s and ¢ have the same type.” This definition allows an
object with many fields to be used in a place where objects with fewer fields
are expected.

*Lab. for Computer Science, Massachusetts Institute of Technology, NE43-340, 545 Tech-
nology Square, Cambridge, MA 02139, USA; email: palsberg@theory.lcs.mit.edu.



Principal types. In ML and Haskell, type inference produces principal types.
A principal type summarizes all possible types of a given program fragment.
This enables a modular style of type inference where we can forget the text of
a program fragment once its principal type has been inferred. Principal types
would be particularly useful in connection with inheritance, where the type of
a derived class should only rely on the type, not the text, of its base class.

Type inference + subtyping. Palsberg [8] gave an efficient type inference
algorithm that handles the form of subtyping from the example above. His
algorithm is defined for an object-oriented language where each typable program
fragment does not necessarily have a principal type. Mitchell and others have
studied notions of constrained type, that is, a standard type together with set
of subtype constraints. Mitchell [7] showed how to infer principal constrained
types for A-terms. In some cases, the principal constrained type involves a
constraint set which is as big as the A-term itself [5]. Eifrig, Smith, and Trifonov
[3] showed how to infer polymorphic constrained types for classes and objects.
A typable program fragment does not necessarily have a principal type in their
system. For a A-calculus, Jim [6] defined a type system with polymorphic types,
intersection types, and subtyping, where each A-term has an inferable principal
typing. It is open if his approach can be applied to a language with objects.

Type inference + principal types. Rémy, Wand, Ohori and Buneman,
and others have demonstrated that principal types can be inferred for a wide
range of object-oriented constructs when subtyping is not considered [4, Ch.3—
5].

Subtyping + principal types. When type annotations are given, type in-
ference is the same as type checking, and “principal” is the same as “minimal in
the type ordering.” Cardelli and Wegner [2] introduced a typed calculus with
subtyping and bounded polymorphism, and Curien and Ghelli [4, Ch.8] showed
that each program fragment has a minimal type. Type checking is decidable, al-
though not in a certain extension of the calculus, as shown by Pierce [4, Ch.12].
Cardelli [4, Ch.11] showed that many object-oriented concepts can be encoded
in the calculus. Bruce’s language TOOPLE [1] is object-oriented, it has a no-
tion of subtyping, program fragments have minimal types, and type-checking is
decidable.

Status. The fundamental question is still open. A satisfactory answer will im-
prove our understanding of objects, provide better tools for existing languages,
and contribute to the design of new languages.

References

[1] Kim B. Bruce, Jon Crabtree, Thomas P. Murtagh, Robert van Gent, Al-
lyn Dimock, and Robert Muller. Safe and decidable type checking in an
object-oriented language. In Proc. OOPSLA’93, ACM SIGPLAN Fighth



Annual Conference on Object-Oriented Programming Systems, Languages
and Applications, pages 29-46, 1993.

Luca Cardelli and Peter Wegner. On understanding types, data abstraction,
and polymorphism. ACM Computing Surveys, 17(4):471-522, December
1985.

Jonathan Eifrig, Scott Smith, and Valery Trifonov. Sound polymorphic
type inference for objects. In Proc. OOPSLA’95, ACM SIGPLAN Tenth
Annual Conference on Object-Oriented Programming Systems, Languages
and Applications, pages 169184, 1995.

Carl Gunter and John Mitchell. Theoretical Aspects of Object-Oriented Pro-
gramming. MIT Press, 1994.

My Hoang and John C. Mitchell. Lower bounds on type inference with
subtypes. In Proc. POPL’95, 22nd Annual SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 176-185, 1995.

Trevor Jim. What are principal typings are what are they good for? In Proc.
POPL’96, 23nd Annual SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 42—-53, 1996.

John C. Mitchell. Type inference with simple subtypes. Journal of Func-
tional Programming, 1:245-285, 1991.

Jens Palsberg. Efficient inference of object types. Information and Compu-
tation, 123(2):198-209, 1995. Preliminary version in Proc. LICS’94, Ninth
Annual IEEE Symposium on Logic in Computer Science, pages 186-195,
Paris, France, July 1994.



