NJR: A Normalized Java Resource

Jens Palsberg
University of California, Los Angeles (UCLA)
palsberg@ucla.edu

Abstract

We are on the cusp of a major opportunity: software tools
that take advantage of Big Code. Specifically, Big Code will
enable novel tools in areas such as security enhancers, bug
finders, and code synthesizers. What do researchers need
from Big Code to make progress on their tools? Our an-
swer is an infrastructure that consists of 100,000 executable
Java programs together with a set of working tools and an
environment for building new tools. This Normalized Java
Resource (NJR) will lower the barrier to implementation of
new tools, speed up research, and ultimately help advance
research frontiers.

Researchers get significant advantages from using NJR.
They can write scripts that base their new tool on NJR’s
already-working tools, and they can search NJR for programs
with desired characteristics. They will receive the search re-
sult as a container that they can run either locally or on
a cloud service. Additionally, they benefit from NJR’s nor-
malized representation of each Java program, which enables
scalable running of tools on the entire collection. Finally,
they will find that NJR’s collection of programs is diverse be-
cause of our efforts to run clone detection and near-duplicate
removal. In this paper we describe our vision for NJR and
our current prototype.

CCS Concepts -« Software and its engineering — Gen-
eral programming languages; - Social and professional
topics — History of programming languages;

Keywords Software tools, 100,000 Java programs, static and
dynamic analyses, plug-and-play environment, reproducible
results

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for compo-
nents of this work owned by others than ACM must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.

ISSTA Companion/ECOOP Companion’18 , July 16-21, 2018, Amsterdam,
Netherlands

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5939-9/18/07...$15.00
https://doi.org/10.1145/3236454.3236501

Cristina V. Lopes
University of California, Irvine
lopes@uci.edu

ACM Reference Format:

Jens Palsberg and Cristina V. Lopes. 2018. NJR: A Normalized Java
Resource. In (ISSTA Companion/ECOOP Companion’18), July 16—
21, 2018, Amsterdam, Netherlands. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3236454.3236501

1 Introduction

Javais one of the most used programming languages. Among
the massive evidence for that point, we will give three exam-
ples that all are based on data for 2016. First, pypl.github.io
listed Java as by far the most sought-after target for lan-
guage tutorials on Google Trends. Second, codingdojo.com
ranked Java as second to only SQL in language skills sought
in job postings on indeed.com. Third, tiobe.com ranked Java
as the most popular programming language by a wide mar-
gin. As we can see, people in massive numbers want to learn
Java, use Java, and deploy Java. How come?

Java enjoys a trifecta of advantages that few languages
can match. First, it is well designed and has the meticulous
Java Language Specification that spells how every corner of
the language works. Second, it has massive attention from
the academic community that has helped produce textbooks,
suggest improvements, and weed out problems. Third, it has
impressive tool support that help programmers with pro-
gramming, debugging, understanding, etc. The tool support
has evolved over the years to become more sophisticated,
meet new demands, and enable new opportunities.

We are on the cusp of a major opportunity: tools that take
advantage of Big Code [15]. Specifically, the huge Java li-
braries and massive number of Java applications are in them-
selves an enabler for novel tools. Big Code has a close cousin
in Big Data, which has enabled novel analytics, insights, and
business processes. Similarly, we see signs that Big Code will
enable novel tools in areas such as security enhancers, bug
finders, and code synthesizers [19]. The Big Code is a repos-
itory of ideas, techniques, and best practices that, once har-
nessed into easy-to-use tools, can make programming easier.
Thus we arrive at a key question: what do researchers need
from Big Code to make progress on their tools?

We can get insights from Big Code at several levels of de-
tail and sophistication. First, we can think of code as text and
use it for text-based search of interesting code snippets that
can inspire our own programming effort. Second, we may
go further and request that the search returns code that is
syntactically correct, which makes it easier to try out. Third,
we might want to use types in the search to help narrow
down the functionality of code that we find. Those ideas

https://doi.org/10.1145/3236454.3236501
https://doi.org/10.1145/3236454.3236501
pypl.github.io
codingdojo.com
indeed.com
tiobe.com

ISSTA Companion/ECOOP Companion’18, July 16-21, 2018, Amsterdam, Netherlands Jens Palsberg and Cristina V. Lopes

are embodied in existing tools, so time has come to eye the
ultimate prize: code that runs and thus is immediately use-
ful. Here the research community hits a road block: existing
collections of Java code are either small, without ability to
build and run, or both. We need a large collection of exe-
cutable Java programs that enable building new tools. How
do we get that?

We envision a collection of 100,000 Java programs that is
searchable, a catalogued set of popular tools that all work
on the collection, and an environment that enables script-
able interaction. In particular, a script that runs a tool on the
entire collection should be a few lines of code. Our prelimi-
nary results suggest that we can achieve such great conve-
nience by normalizing the representation of each Java pro-
gram. The normalization enables searchability, scriptability,
and reproducibility. In short, we believe that the time has
come to establish a Normalized Java Resource (NJR).

N7FR will consist of 100,000 executable Java programs, a set
of working tools, and an environment for building new tools.

The Normalized Java Resource will lower the barrier to
implementation of new tools, speed up research, and ulti-
mately help advance research frontiers.

2 Our Vision for NJR

The Problem. The task of building NJR faces a problem that
is large yet surmountable: scale. The problem of scale shows
its face in three different guises. First, we need large-scale
processing of Java programs that treats the programs uni-
formly rather than treating each one as a special case. Sec-
ond, we need a large number of existing tools to succeed
on the Java programs such that they can become building
blocks for new tools. Third, we need a large scale of project
diversity such that tools ingest a wide variety of coding ideas.

We have downloaded 1,481,468 Java projects from GitHub
[13] (which excludes forks and invalid URLs). We found that
few of those Java projects have build scripts, let alone spec-
ified inputs that enable the projects to run. Moreover, our
experience is that popular tools often fail to work out of the
box on the projects that we have tried. This is the reality that
researchers face every day: great Java projects that fit their
needs are hard to come by, and when they do, they come in
a trickle rather than on a large scale. We have found that
researchers spend much time, too much time we think, on
looking for benchmarks and massaging benchmarks such
that they fit their needs.

Until now, the benchmark suites of the world tend to be
due to heroic efforts by single individuals or small groups
of people. In most cases where a researcher determines that
the prevailing benchmark suite is a poor fit for a new class of
tools, the researcher will shy away from assembling a new
benchmark suite. One reason is time: a benchmarking ef-
fort would take so much time that it would outweigh the

New tool

}

Plug-and-play
environment

script search
Reproducible

they all work Executable

>
Java programs

A catalogued
set of tools

Figure 1. Our vision: the Normalized Java Resource (NJR).

potential gain. Another reason is academic reward: assem-
bling a benchmark suite is often a thankless task that re-
searchers rarely view as a research effort. NJR will enable
researchers to build their own benchmark suite via search
on our 100,000 Java programs.

Inside every large code corpus is a small code
corpus struggling to get out.

“Inside every large language is a small lan-
guage struggling to get out” — Tony Hoare.

Objectives. Figure 1 illustrates our vision for NJR. A tool
builder gets a plug-and-play environment that provides 1)
scriptable interaction with our catalogued set of tools and 2)
the ability to search our collection of 100,000 executable Java
programs. Those tools all work on all the Java programs and
are set up to run in a way that leads to reproducible results.

We believe that the scale of 100,000 Java projects is suf-
ficient to support a new direction of research and develop-
ment. Moreover, our experiments suggest that 100,000 Java
projects is realistic with the current raw material.

Part of our effort is to get from those 1,481,468 Java projects
to 100,000 highly useful Java projects. This cannot be done
by hand in a reasonable amount of time; blood, sweat, and
tears won’t get us there. We need to automate the process,
particularly the tasks of creating build scripts, running tools,
and enabling search. Our experiments show that crashes are
lurking at every step of the way. This is sobering for us yet
good news for researchers who will use NJR; we will do
the heavy lifting and they will benefit. Ultimately we want
to have so much automation that the next time somebody
shows up with 1.5 million Java projects, we will be able to
distill 100,000 useful Java projects fairly automatically.

We envision a diverse collection of 100,000 normalized
Java projects that are executable, scriptable, and searchable.
We get them from GitHub, we filter them, and we normalize
their representation to enable large-scale processing with re-
producible results. Such processing includes execution, static
and dynamic analysis, and search for projects with specific

NJR ISSTA Companion/ECOOP Companion’18 , July 16-21, 2018, Amsterdam, Netherlands

dynamic characteristics. For each search of the collection,
NJR returns both a file with Java projects and a container
(e.g., Docker) for a cloud service such as Amazon EC2. Thus,
aresearcher can run tools on those projects both locally and
on a cloud service. Researchers will be both beneficiaries
and contributors to NJR. They benefit from searching for
Java projects that fit their need, and once their tools run on
NJR, they contribute to an ever-increasing collection of mea-
surements. Notice the powerful network effect: the more
people run tools on NJR, the more data we get for search,
and the more data we get for search, the more people will
want to search and run on NJR.

Significance. NJR will speed up innovation in the area of
Java-oriented tools. Those tools include security enhancers,
bug finders, and code synthesizers. Such tools often build on
other tools such as tools for call-graph construction, code
coverage, and program instrumentation. NJR will enable a
researcher to identify existing tools, search for Java programs,
and be sure that those tools work on those Java programs.
Thus, the researcher can leverage existing tools and focus on
working with Java programs that are well suited to demon-
strate the value of her tool. In total, NJR will enable faster
implementation and evaluation of new tools.

NJR will make experiments easier that they typically are
today. Many researchers build tools for Java and struggle
with current benchmark suites such as DaCapo [1] when
they want to evaluate their tools. DaCapo is a small bench-
mark suite that is particularly good for evaluation of perfor-
mance-oriented tools, including virtual machines, but prob-
lematic for development and evaluation of many other kinds
of tools. Specifically, security enhancers, bug finders, and
code synthesizers can benefit from Big Code and have lit-
tle use for DaCapo’s convenient approach to repeatedly ex-
ecuting a program. Another example is Boa [7], which en-
ables large-scale mining based on text processing of Java
programs, but has no support for execution. Intuitively, while
DaCapo is small and executable, Boa is large and nonexe-
cutable, and we want NJR to be the best of both worlds: large
and executable.

We will provide a web interface that enables easy search
for Java programs with desired characteristics, and we will
provide examples of how to write a script that runs a tool
on the entire collection. A search can be based on both static
measurements and dynamic measurements.

The 100,000 Executable Java Programs. We will create a
set of Java programs that enable execution, scalable process-
ing and reproducible results. Here are our plans.

First, we will enable execution of the 100,000 Java pro-
grams. Most of the programs from GitHub came without
build scripts, while the rest have a mixture of ant, maven,
and gradle scripts. We have found that the programs with-
out build scripts tend to have problems that break straight-
forward attempts to build. Those problems include, starting

with the most frequent: dependencies on external libraries,
non-standard file-encodings, duplicate versions of the same
code that is not supposed to be compiled, wrong version of
the libraries, and old versions of Java. The huge number of
programs means that we must create build scripts automat-
ically, we cannot treat each one as a special case. We will
develop a build-script synthesizer that with a high rate of
success will create working build scripts.

Second, we will enable scalable processing of the 100,000
programs. We will achieve scalability through uniformity.
Our idea is to normalize both the structure of each Java
program (in a semantics-preserving manner) and the build
script. The resulting Java program conforms to a standard
structure and it includes a cache of all dependencies. Each
normalized Java program references the local copy of the
dependencies explicitly, which freezes the environment in
which the program operates. A key idea behind normaliza-
tion is that the normalized build script is the same across all
normalized Java programs. Thus, we will write the normal-
ized build script once and for all, and for each use we will
pass as arguments a few pieces of key information.

Third, we will enable reproducible results by caching de-
pendencies and using Nix (http://nixos.org/nix) to write the
normalized build script. Nix is a purely functional scripting
language that forces us to make all dependencies explicit.

GitHub contains more duplication that meets the eye. Our
preliminary work on SourcererCC [13] shows only 60 per-
cent of Java files are distinct. We will use clone detection to
ensure a high degree of diversity of our collection of Java
programs. We may design and implement novel techniques
for clone detection enable us to quantify the level of diver-
sity of our collection. As three additional diversity measures,
we will use program size, call-graph size, and API use.

NJR will for each Java program have a link to its GitHub
repository. This will enable researchers to find out about the
age of the project, the activity level, and other versions.

A Catalogued Set of Tools. Which tools do researchers build
on? In an online survey and at three NJR workshops in 2017,
we found that the most popular tools are for call-graph con-
struction (Doop [2], Soot [18], WALA [8]), for code coverage
(EMMA [5], EvoSuite [9], JaCoCo [10]), and for program in-
strumentation (ASM [3], Javassist [4]). Thus, those tools are
prime candidates for the NJR catalogue of tools. We want
every tool in the catalogue to work on all the 100,000 Java
programs, which we will achieve by brute force: try every
combination. Thus, if even one tool fails on a program, we
will remove it from the collection. In practice, we will en-
gage with the authors of each tool, report a bug, and hope
the bug can be fixed fairly quickly. Thus, part of the NJR
project may serve as a massive bug-finding expedition, fo-
cused on popular tools rather than general software.

http://nixos.org/nix

ISSTA Companion/ECOOP Companion’18, July 16-21, 2018, Amsterdam, Netherlands Jens Palsberg and Cristina V. Lopes

We will also run tools that collect static data about each
Java program. Such data includes size (LOC, number of meth-
ods, etc), whether the program uses assertions, and so on.
We plan to run the Understand tool (https://scitools.com) to
collect such measurements.

The Plug-and-Play Environment. A researcher (we will
call her Alice) who wants to build a new tool gets a plug-
and-play environment that provides 1) scriptable interac-
tion with our catalogued set of tools and 2) the ability to
search our collection of 100,000 executable Java programs.
Ultimately, if she wants to run her tool on every Java pro-
gram, she will write a single script:

for each Java program p in the collection:
run the tool on p

Similarly, if she wants to call one of the tools in the NJR
catalogue, this should be equally easy. We will provide ex-
amples of scripts that will be easy to modify.

We will store scripts rather than the results produced by
scripts. However, we do want to store some information,
namely information that will be useful for future searches.
We will create a database with 100,000 entries, one for each
program, and with data about each program that was col-
lected by tools. Thus, each tool that runs on our entire col-
lection has the potential to produce useful information that
we will store in the database. This is a major step towards au-
tomatic classification of the Java programs. We will provide
a web interface to query the database, and the search result
will be a container that contains the retrieved programs plus
scripts. This will make it easy to download the desired Java
programs and then run them, either locally or on a cloud
service such as Amazon EC2.

Overall, we picture an interaction where a researcher 1)
receives a container with a few programs, 2) gets her tool to
work on those program and sends us her tool plus scripts,
and 3) we run her tool on the entire collection and eventu-
ally add her tool to the NJR catalogue. Thus, she is both a
beneficiary and a contributor to NJR.

Limitations. While NJR will go beyond today’s capabili-
ties, it won’t do everything for everybody. Here we list the
three main limitations.

The first limitation is that NJR won’t include multiple ver-
sions of programs. Some benchmark suites such as Qualitas
[17] do include multiple versions, which enables studies of
software evolution. NJR focuses on diversity over versions
so we will pick the most recent version of a program.

The second limitation is that we won’t spend time on
turning a popular system into a great benchmark, which
can take months (say the DaCapo authors). Thus, NJR may
exclude popular distributed systems written in Java such as
Cassandra, Hadoop, and Zookeeper. NJR focuses on automa-
tion over popularity so we will go with what our tools can

00000 Javac —
Petablox ——
Wiretap ——

of reachable methods

20000 40000 60000 80000 100000 120000 14000C

of benchmarks

Figure 2. Running tools on 125,846 Java programs.

give us. However, we may make exceptions if the effort-to-
benefit is in our favor. For example, we may include Point-
erbench, which consists of 34 challenging small programs.

The third limitation is that we won’t include any library
that has no main method. NJR focuses on execution over
libraries so we insist on that every Java program has a main
method and runs.

3 A Prototype of NJR

We have implemented a prototype of NJR that has rudimen-
tary versions of much of the envisioned functionality.

First, we have implemented a build-script synthesizer that,
using heuristics, has created build scripts for 190,000 Java
projects. For example, for the missing dependencies, before
any compilation happens, we first collect all libraries we can
find (from Maven, etc.), and place them in our own central
repository; we then compile the projects pointing the build
script to this repository. For encoding and JDK version is-
sues, we try several compiler configuration options. We will
continue to improve our build-script synthesizer, and we es-
timate that we will be able to create build scripts for 800,000+
Java projects. The result of our preliminary work is a set
of 125,846 normalized Java programs that all build and run.
Some of them are identical except for their main methods.
A typical example is a GitHub repository that contains code
plus three main methods: one for the main functionality and
two for unit tests. For those near-clones, we hope that dy-
namic measurements can help us sort out which one to keep
in the collection and which ones to toss out. Another as-
pect we must consider is that some of the executions give
“surprises”, such as requests for input or spawning of GUIs.
We will work on detecting and classifying such surprises
and work on how to handle them. Thus, while 125,846 exe-
cutable Java programs is a good start, the reality is that we
have far fewer that eventually we will want to keep in the

https://scitools.com

NJR ISSTA Companion/ECOOP Companion’18 , July 16-21, 2018, Amsterdam, Netherlands

collection. We will continue to add to our collection, while
improving the techniques that we described above.

Second, we have run the static analyses Petablox [14],
the static analysis Doop [2], and our own dynamic analysis
Wiretap on all our 125,846 Java programs. Our Nix scripts
required a major time investment up front to get all the de-
tails right, yet that investment has payed off handsomely in
scalability and reproducibility.

Figure 2 shows results of our experiments with Petablox
and Wiretap on the 125,846 Java programs. Specifically, Fig-
ure 2 shows, for each Java program, the number of applica-
tion methods compiled by javac, the number of application
methods found to be reachable by Petablox, and the number
of actually executed application methods as determined by
Wiretap. Notice that Figure 2 orders the programs accord-
ing to the number of methods, from most to fewest. This
ordering has the pleasant effect that if we ask, for example,
“how big are the largest 20,000 programs?”, then Figure 2
shows that largest 20,000 programs execute at least 9 appli-
cation methods. Thus, Figure 2 is good for answering ques-
tions that have “at least” in the answer.

In summary, our prototype of NJR has a large collection
of “nondiverse”, executable programs, a small set of tools,
and some support for scriptable interaction. Our goal is to
get from here to the vision in Figure 1.

4 Research Opportunities enabled by NJR

In an online survey and at three NJR workshops in 2017,
researchers said that for their research, the most important
and useful characteristic of a collection of Java programs is
that they all compile and run. Most of the respondents also
called for a large, diverse, categorized set of Java programs.

Cross-Cutting Research Opportunities. Researchers have
intersecting needs that could be met by research supported
by NJR. The three biggest such cross-cutting research oppor-
tunities are: ground truth, standard call graphs, and hybrids
of static and dynamic analysis. We will detail each opportu-
nity in turn.

First, most researchers who develop static analyses have
a need for ground truth. The interesting case is any static
analysis that produces approximate information about the
run-time behavior of a program. For such a static analysis,
researchers want to use the ground truth to compute such
metrics as precision, recall, and accuracy for their static anal-
ysis. The ground truth involves running a program on all
inputs, for all possible execution paths, and for as long as
it takes (which can be indefinitely, in case the computation
never terminates). While the ground truth is hard to come
by, NJR provides hope because the Java programs compile
and run. Specifically, the more inputs we can try and the
more execution paths we can try, the closer we can come
to knowing the ground truth about a program. NJR will be

a solid basis for pursuing the impossible dream of know-
ing the ground truth. We believe that many approaches to
finding ground truth are possible and that NJR can support
innovation in this area.

Second, most researchers who develop almost any kind of
analysis needs a call graph as a first step, and they wish they
could have standard call graphs to enable easy comparison
of techniques. A call graph has the methods of a program as
it nodes, and possible control-flow (method calls) between
the nodes as its edges. The three most commonly used tools
to construct a call graph are Doop, Soot, and WALA. How
do they compare? If my paper uses Doop as the basis for do-
ing a task and your paper uses WALA as the basis for doing
the same task, how much does Doop-WALA influence the re-
sults and any comparison of our papers? NJR provides hope
for improving the situation by enabling large-scale compar-
isons of call-graph-construction algorithms and enabling ef-
forts to standardize them. The Soundiness Manifesto [12]
talked about the choices that a static analysis has to make
and that some of those choices may well be unsound. NJR
can help demonstrate the effect of those choices for every
corner of Java. Standardization has been sorely lacking in
the area of static analysis; NJR may help change that.

Third, many researchers are excited about the possibility
of developing hybrids of static and dynamic analysis. Cur-
rently, they face an uphill battle with getting tools to work
together. NJR will have a catalogued set of both static anal-
yses and dynamic analysis on which researcher can build.
For example, researchers can use such analysis to determine
quantitative aspects such as: is the execution long-running?
is it data-intensive? which APIs does it use? This may en-
able researchers to classify programs into domains such as
scientific computing, big data, and virtual reality.

Area-Specific Research Opportunities. Our Java resource
ushers in a new age of picking and working with great bench-
marks. Much tool development can benefit from access to
the Big Code that NJR provides, particularly in the impor-
tant areas of security enhancement, bug finding, and code
synthesis. NJR will enable faster building and evaluation of a
variety of tools. A tool developer can rely on that many pop-
ular tools already work for our 100,000 Java projects, and
then build their own tools on top. Additionally, developers
can search for Java projects that are particularly suited to
demonstrate the value of their tool.

First, suppose a researcher (Alice) wants to build a Java
deadlock detector that combines a variety of techniques into
a single, novel approach. She wants to explore inputs that ex-
ercise different aspects of the Java project; use static analysis
to narrow down the potential deadlocks, and use concolic
execution to drive execution towards a deadlock. NJR will
offer a large number of Java projects and enable easy search
for concurrent projects of a desired size and complexity and
for which the needed tools are known to work. Thus, Alice’s

ISSTA Companion/ECOOP Companion’18, July 16-21, 2018, Amsterdam, Netherlands Jens Palsberg and Cristina V. Lopes

starting point can be tools for generating test inputs, build-
ing static analyses, and doing concolic execution that work
out of the box on the benchmarks. Alice needs no familiarity
with those tools and might use their cached outputs.

Second, suppose Alice has designed a novel approach to
discover security vulnerabilities. She bases her implementa-
tion on some of the static and dynamic analyses that work
out of the box on NJR, and she searches NJR for input pro-
grams that use specific libraries. Finally she writes a simple
script that enables NJR to run her tool on those Java pro-
grams, deliver easily reproducible results, and compare with
security tools that run on NJR already. Thus, Alice is both a
beneficiary and a contributor to NJR.

Third, suppose Alice wants to build a Java code synthe-
sizer that can help programmers complete a half-finished
piece of code. The synthesizer has a pre-computed summary
of a massive, existing body of code and can match the pro-
grammer’s code against that summary. The result is that the
tool makes a suggestion to the programmer for how to com-
plete the code. The needed summaries may be computed by
large-scale static and dynamic analyses. NJR will be a mas-
sive body of code that will enable new directions of research
on synthesizers. Those new directions can go beyond the
state of the art for Java that tends to focus on code as text,
and instead work with the NJR that consists of projects that
build and run.

5 Existing Related Resources

Many collections of Java programs exist; we will discuss six
of them and why we still need NJR.

DaCapo. The 2009 version of DaCapo [1] consists of 14 Java
programs. The main focus of DaCapo is performance and
each of the Java programs has non-trivial memory loads.
Thus, DaCapo is excellent for answering such questions as
how much speed-up does my optimization provide? We share
three key objectives with DaCapo: 1) each Java program
compiles and runs, 2) the Java programs are diverse, and
3) the results are reproducible. However, in contrast to Da-
Capo, for NJR we have little interest in performance.

Boa. Boa [7] is a large collection of programs in several
languages, including 380,000 Java programs (mainly from
GitHub). The main focus of Boa is repository mining via
static analysis. Thus, Boa is excellent for answering such
questions as how do programmers use assert statements? and
what can we learn from applying source code metrics? Addi-
tionally, Boa supports working with multiple revisions of
Java programs and can help answer such questions as how
much has unit testing been adopted over time? Boa has no
support for compiling a Java project and no current support
for detection similarities or clones across Java programs.

Qualitas, XCorpus and Hermes. The Qualitas corpus [17]
consists of 112 Java programs in a total of 754 versions, all

fit for static analysis, yet not buildable and not executable.
Qualitas has its main strength in enabling studies of soft-
ware evolution based on a sequence of versions of each pro-
gram. The XCorpus corpus [6] builds on Qualitas, consists

executable Java programs, and provides many inputs for each
program to ensure high coverage. The Hermes system [16]

supports search, filtering, and selection of Java programs

from the Qualitas corpus. Currently, search in Hermes is

based on static measurements, while we plan the search in

NJR to be based on dynamic measurements.

JaConTeBe. JaConTeBe [11] contains 8 benchmarks that all
run and have known concurrency bugs. We share the goal
to catalogue bugs in the programs in NJR.

6 Conclusion and Acknowledgments

Our prototype of NJR already has many capabilities and we
plan to release NJR 1.0 in 2019.

We are supported by the National Science Foundation un-
der award number 1730229 and award number 1730697.

We thank Rohan Achar, Christian Kalhauge, Pedro Mar-
tins, Duyet Nguyen, and Colin Terndrup for their work on
the current prototype of NJR.

We thank Craig Anslow, Steve Blackburn, Eric Bodden,
Jens Dietrich, Ben Hermann, Antony Hosking, Jeff Huang,
Kathryn McKinley, Mayur Naik, Yannis Smaragdakis, and
Ewan Tempero for discussions and encouragement.

References

[1] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKin-
ley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M.
Hirzel, A. Hosking, M. Jump, H. L. Intel, J. E. B. Moss, A. Phansalkar,
D. Stefanovic, T. VanDrunen, D. v. Dincklage, and B. Wiedermann.
2006. The DaCapo benchmarks: Java Benchmarking Development
and Analysis. In OOPSLA’06, ACM SIGPLAN Conf. on Object-Oriented
Programming Systems, Languages, and Applications. 169-190.

Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly Declara-

tive Specification of Sophisticated Points-to Analyses. In OOPSLA’09,

ACM SIGPLAN Conf. on Object-Oriented Programming Systems, Lan-

guages and Applications. 243-262.

E. Bruneton, R. Lenglet, and T. Coupaye. 2002. ASM: a code manipula-

tion tool to implement adaptable systems. In Adaptable and extensible

component systems.

Shigeru Chiba. 2000. Load-time Structural Reflection in Java. In

ECOOP’00, European Conf. on Object-Oriented Programming. Springer-

Verlag (LNCS 1850), 313-336.

[5] EMMA Developers. 2018. EMMA, a free Java Code Coverage Tool.
(2018). http://emma.sourceforge.net, accessed Jan 6, 2018.

[6] Jens Dietrich, Li Sui, Shawn Rasheed, and Amjed Tahir. 2017. On the
Construction of Soundness Oracles. In SOAP’17, 6th ACM SIGPLAN
Int. Workshop on State Of the Art in Program Analysis.

[7] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen.
2013. Boa: A Language and Infrastructure for Analyzing Ultra-Large-
Scale Software Repositories. In 35th Int. Conf. on Software Engineering
(ICSE 2013).

[8] T.J. Watson Libraries for Analysis. 2018. WALA. (2018). http://wala.
sourceforge.net, accessed Jan 6, 2018.

[9] Gordon Fraser and Andrea Arcuri. 2013. Whole Test Suite Generation.
IEEE Transactions on Software Engineering 39, 2 (2013), 276-291.

[2

—

E

—

[4

flaa)

http://emma.sourceforge.net
http://wala.sourceforge.net
http://wala.sourceforge.net

NJR ISSTA Companion/ECOOP Companion’18 , July 16-21, 2018, Amsterdam, Netherlands

[10] Marc R. Hoffmann, Evgeny Mandrikov, and Mirko Friedenhagen.
2018. JaCoCo: Java Code Coverage for Eclipse. (2018). http://www.
eclemma.org/research/index.html, accessed Jan 6, 2018.

Ziyi Lin, Darko Marinov, Hao Zhong, Yuting Chen, and Jianjun Zhao.

2015. A Benchmark Suite of Real-World Java Concurrency Bugs. In

ASE’15, IEEE Int. Conf. on Automated Software Engineering. 178-189.

[12] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondrej Lho-

tak, J. Nelson Amaral, Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P.

Khedker, Anders Mgller, and Dimitrios Vardoulakis. 2015. In Defense

of Soundiness: A Manifesto. CACM 58, 2 (February 2015), 44-46.

Cristina Lopes, Petr Maj, Pedro Martins, Vaibhav Saini, Di Yang, Jakub

Zitny, Hitesh Sajnani, and Jan Vitek. 2017. DejaVu: A Map of Code

Duplicates on GitHub. In OOPSLA’17, ACM SIGPLAN Conf. on Object-

Oriented Programming Systems, Languages and Applications.

Ravi Mangal, Xin Zhang, Aditya Nori, and Mayur Naik. 2015. A User-

Guided Approach to Program Analysis. In FSE’15, ACM SIGSOFT Int.

Symposium on the Foundations of Software Engineering.

Veselin Raychev, Martin T. Vechev, and Andreas Krause. 2015. Pre-

dicting Program Properties from Big Code. In POPL’15, ACM Annual

Symposium on Principles of Programming Languages. 111-124.

[16] M. Reif, M. Eichberg, B. Hermann, and M. Mezini. 2017. Hermes: as-
sessment and creation of effective test corpora. In SOAP’17, the 6th
ACM SIGPLAN Int. Workshop on State Of the Art in Program Analysis.

[17] Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li, Markus

Lumpe, Hayden Melton, and James Noble. 2010. The Qualitas Corpus:

A curated collection of Java code for empirical studies. In APSEC’10,

Asia Pacific Software Engineering Conf.. 336-345.

Raja Vallé-Rai, Etienne Gagnon, Laurie Hendren, Patrick Lam, Patrice

Pominville, and Vijay Sundaresan. 2000. Optimizing Java Bytecode us-

ing the Soot Framework: Is it Feasible?. In CC 00, Int. Conf. on Compiler

Construction. Springer-Verlag (LNCS).

[19] Eran Yahav. 2015. Programming with Big Code. In 13th Asian Sympo-
sium on Programming Languages and Systems (APLAS’15). 3-8.

[11

—

[13

[t

(14

=

[15

—

[18

—

http://www.eclemma.org/research/index.html
http://www.eclemma.org/research/index.html

	Abstract
	1 Introduction
	2 Our Vision for NJR
	3 A Prototype of NJR
	4 Research Opportunities enabled by NJR
	5 Existing Related Resources
	6 Conclusion and Acknowledgments
	References

