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Abstract— Denial-of-service attacks are becoming more [45]. Much of the battle between attackers and defenders
frequent and sophisticated. Researchers have proposed atakes place at the TCP-level: more than 90% of the DoS

variety of defenses, including better system configuratio®  5t4cks use TCP [31]. This paper is concerned with tools
infrastructures, protocols, firewalls, and monitoring todls. d methods t lidate TCP imol tati d
Can we validate a server implementation in a systematic and metnods to valicate -Server implementations an

manner? In this paper we focus on a particular attack, SYN answer questions such as:
flooding, where an attacker sends many TCP-connection Challenge: Can we determine efficiently

requests to a victim's machine. We study the issue of whether a TCP server will survive a denial-
whether a TCP server can keep up with the packets from an .
of-service attack?

attacker, or whether the server will exhaust its buffer spae. i TTOERE
We present a tool for statically validating a TCP servers Our main contribution is to show that for a class of

ability to survive SYN flooding attacks. Our tool automati-  attacks such challenges can be answered efficiently and

cally ”a“Sfordea.TCP'S‘f*r"er imp'ememlf‘“o“ i”go Ia timed  fairly accurately usingiming analysisof the server code
automaton, and it transforms an attacker model, given and a novel model of TCP.

by the output of a packet generator, into another timed
automaton. Together the two timed automata form a system
for which the model checker UPPAAL can decide whether B. The Problem
a bad state, in which the buffer overruns, can be reached.

Qur tool has. two advantages over simply tesFing the server Server Client Server Attacker
implementation with a packet generator. First, our tool

is an order of magnitude faster because of aggressive SYN, Spoofed SYN
abstraction of the server code. Second, our tool can be / /

applied to a variety of server software without having to %

install each one in the kernel of an operating system. Thus, More Spoofed SYN
a programmer of defensive measures against SYN flooding /
attacks can get rapid feedback during development.

ACKy 11 SYN, ACK

(a) Three way handshake (b) Attack strategy
. INTRODUCTION . .
Fig. 1. TCP protocol and exploit.

A. Background

Attacks on internet sites are becoming frequent. In- In this paper we focus 08YN flooding attackahich
creasingly sophisticated attacks on the websites of thgploit that TCP [1] requires a three-way handshake to
SCO [37], the RIAA [18], the Al Jajeera [36], thetake place before data can be transmitted between a client
CERT [28], and the White House [29] show that no sitand a server. In the first step of a three-way handshake,
can hope to avoid denial of service (DoS) attacks. Feee Figure 1(a), the client sends a packet $Ydlthe
health-care monitoring and diagnosis over the Internagrver. The packet SYNis a TCP-connection request
Nisley wrote that “a distributed Denial-of-Service attacland x is a sequence number. Second, the server stores
on the monitoring center may prove fatal” [32]. Ina representation of SYNin a buffer and responds to
response, researchers and system administrators heéneeclient with two packets SYNand ACK, ;. Third,
built various degrees of defenses against DoS attacks; the connection to be established, the server needs to
including systems with more resources, more restrictiveait for an appropriate acknowledgment from the client,
protocols, firewalls, monitoring systems, and reactivie the form of an ACK,; packet. When the ACK,
systems [3], [43], [27], [15], [14], [38], [39], [35]. We packet has been received, the server clears the buffer
can divide the defense measures into two categoriesitry for SYN,. If the server does not get a response
detectionof denial of service attacks [43], [27], [39], from the client before a specified timeout time, then the
[41], [8], andresponseo such attacks, either by tryingserver will time out the packet and clear the buffer entry.
to traceback the source [14], [23] or by managing the Notice that when the server receives a SYN packet,
attack such that the impact can be reduced [30], [38he server will allocate a buffer entry. SYN flooding is



an attempt to exhaust the available buffer space suchl) the average inter-packet arrival time, that is, the
that SYN packets from valid clients will have to be mean of a normal distribution with the standard
rejected, thereby leading to denial of service to the  deviation being 25% of the average, and

valid clients. A malicious client can do SYN flooding 2) the timeout time, that is, the length of time the
by repeatedly sending SYN packets, see Figure 1(b), server will keep a SYN packet it its buffer before
without ever sending ACK packets to complete the three-  the server removes the packet.

way handshake. The SYN packets will get stored in theyrthermore we repeated the experiment ten times. Fig-
buffer and unless packets time out fast enough, they wille 2 presents the resulteed means that the server
accumulate in the buffer and exhaust the available spaggccumbed to the attack at least once, whjkeen
If the buffer space is unbounded, the situation is evgfeans that the server didot succumb to the attack.
worse: SYN flooding can lead to taking up all the spac@n black-and-white hardcopiegreenis represented by
resources of the server. small triangles, anded by small dots.) On a system that
SYN flooding attacks are easy to build and havRas dualntel Xeon CPUsunning at 3.06GHz with 512
a strong effect in terms of blocking the service t&B of cache and 4GB of main memory, the ten runs took
other clients. Not only web servers but also any systegitotal of around 850 minutes. We limited ourselves to
connected to Internet providing TCP-based services syshcket traces of ten packets because for larger and more
as FTP or Mail servers are susceptible to SYN floodingalistic traces (of sizes say greater than 100) we could

attacks. The core problem is about timing: “can the TCRot run even one instance of the simulator to completion,
server keep up with the packets from the attacker, or wllyen after running it for more than 8 hours.

the TCP server exhaust its buffer space?” The simulation-based approach produces a graph that
is useful for a system administrator who wants to tune
C. Simulation-based Experiment the timeout time and buffer size and for a developer

of TCP servers who wants to gauge the quality of
60408 , __ - an implementation. Additionally, recent QOS-regulation
R A NN N ' approaches enable a system to dynamically tune the
|
]
|

packet inter-arrival time by filtering the traffic to a TCP
server [21]. However, the simulation-based approach is
time consuming, both because of the simulation time
itself and because the approach requires the OS kernel
to be recompiled and redeployed in the experimental
environment. Further, the presence of monitoring code in
the system impacts the temporal behavior, reducing the
accuracy of the results. Can we do better using timing
analysis?
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We begin with an experiment that examines a state-
of-the-artsimulation-basedpproach to validating TCP !

server implementations. The approach uses one of th packet H med

many network simulators and integrated experimental e suomen

environments [12], [22], [24], [44] to deploy and test the

SYN
FLOOD?|

Analyzer J : Validator

ulates network traffic (from attackers and well-behaved ATASYN

clients) with a packet generator, and thenchecks Fig. 3. Block diagram for ATASYN.

whether the server succumbs to attacks. We chose the

TCP-server implementatidwlIP [19], the accompanying

experimental environmersimhost the packet generator We present a tool called ATASYN (Analyzer for
D-ITG, [9] and the packet sendeBpak[40]. In the Timed Applications—SYN flood detection) for deter-
experiment, we set the buffer size to five, we usealining whether a TCP server will survive a SYN
packet sequences of ten packets, and we tried 10,0@bding attack. Our tool takes the same input as the
combinations of: simulation-based experiment reported above, namely a



TCP-server implementation and a packet sequence. Gund in section IV we show how to represent an attacker
tool is based on timing analysis and can efficientlgs a timed automaton. Finally, in section V we present
derive good approximations of graphs such as the opar experimental results.
in Figure 2. ATASYN embodies three ideas:

Il. FROM TCP CODE TO ATIMED AUTOMATON

ATASYN = model of TCP as a timed automaton Most TCP servers have three main components: a
+ timing analysis packet interrupt handler, packet processing routines, and
+ real-time model checking. a timer interrupt handler. When a TCP server receives

packet, the server will run a packet interrupt handler,
hich in turn call the packet processing routines. With
regular intervals, the timer interrupt handler removes

fast and fairly accurate simulation using ATASYN. timed-out Kets f the buffer. The ti int i
Figure 3 shows a block diagram of ATASYN's two imed-out packets from the buler. The timer interrup
handler also has the task of firing a packet-handler

hases. Theanalyzer phase uses timing analysis to. o " ) .
P yzerp 9 y §_terrupt when it identifies a newly arrived packet in the

As a result, instead of running a slow and highl
accurate simulation using simhost, we can now run

automatically abstract the code of a TCP-server impl S Note that the OS . data struct
mentation into a timed automaton [6], and it transform ~queue. Note that the "queue IS a data structure
éﬁerent from the SYN-buffer.

straightforwardly a packet sequence into another tim ATASYN maps a TCP implementation to a timed

automaton. Thealidator phase combines the two timed tomaton of the form shown in Fiqure 4. The automaton
automata into a system for which the real-time mod&! wnin Figure 4. u

checker UPPAAL [11] can decide whether a bad stat?”':'gwe 4 mtc_)dels hOW.ItIO f;]andlﬁ a stlngletpagk?r':. In the
in which the buffer overruns, can be reached. ATASYI\fj OV\:mgtsehc '0;' we \ﬁ-‘ IS OWk (t)W NO t_ex Eiﬂ ¢ F'e au-4
is an order of magnitude faster than the simulatior%(—)ma on to nandie multipie packets. Ivotice that Figure

based approach because of aggressive abstraction of??agws an informal version of the timed automaton on the

TCP-server code. Moreover, ATASYN can be applie t'and the actual timed automaton on the right. Basic

to a variety of server software without having to instalg]fgremngg(on about timed automata can be found in the

each one in the kernel of an operating system. Thus, . .
P g sy he automaton has seven states. Notice that six of

programmer of defensive measures against SYN roodir]%) ) X
. . e states have two labels, while the seventh state is
attacks can get rapid feedback during developmer&%.l”ed Timeout For the states with two labels, the

ATASYN follows in the footsteps of much work Onﬁrst label is a name of the state (the label is one of

using timed automata to model and verify systems wit .
9 fy sy 21, Aq, Az, Ay, A}, As), while the second label denotes

temporal propert_les [7]. [5]. [26], [1(.)]' . a WCET (the label is one o, Cy,C3,Cy, T,). Ay
When comparing the results of simulation and ATA- . X
. - . ) models the packet interrupt handler; we deto denote

SYN, we will use the following terminology:

- ) ) the WCET of A;. A; models the packet processing
« False positive: The simulation does not report Aroutines; we use’, to denote the WCET of executing
successful attack, but ATASYN does. code from the beginning ofi; to the end ofA4,. A3

« False negative:The simulation does report a suCynodels the clearing of the OS-queue entry; we use

cessful attack, but ATASYN does not. C; to denote the WCET of executing code from the

Ideally, there would be no false positives and no faldgeginning of A4; to the end ofA;. A4 and A/, both
negatives. ATASYN reports 2% false positives and 9%model a run of the timer interrupt handler; we Wseto
false negatives in our experiments. The high speed adédnote the WCET of executing the interrupt handler. The
low error rate of ATASYN makes it a practical tool forhardware timer sends interrupts at a regular interval of
the working system administrator. length T}, and this interrupt wakes up the timer interrupt

The main technical challenge is to devise an abstragandler.7), is a constant that typically is embedded in
tion of TCP which leads to an efficient and accuratdhe TCP-implementation and must be identified by the
SYN-flood vulnerability detector, while abstracting awayiser of ATASYN. All of C;, Cs, C5, C, includes the time
computational details that are irrelevant to buffer ovete execute the timer interrupt handler, possibly several
flow. Our new timed automaton for modeling TCP has times. A5 models the waiting for an ACK packet; the
number of states which is linear in the size of the buffemaximum wait time is the timeout time for SYN packets,
We use worst-case execution time (WCET) analysis [33khich we denote byf,. The last state, labelefimeout
[34], [2], [16], [13], [25], [20] to compute the timings is reached when at least one packet times out.
needed in the timed automaton. Let us now consider how to obtain the WCETSs

In the following section, we describe how we abstract,, Cy,C5,Cy from the TCP-server implementation
TCP code into a timed automaton. In section Il wéwlIP, which is written in C. ATASYN relies on that
present a timed automaton for handling multiple packethie user identifies the beginning and end of each of



o Read a packet from | Packet interrupts
fffffffff the OS queue. are disabled.
r=T T>0C

|
|
! ;
| As Process the packet. 4‘7" < Oy +intrCtr x (Cy +T,) intrCtr + ‘7
! Gy If SYN packet, store in the’ Run the timer interrupt] A
iiiiiii buffer and send SYN+ACK handler Ca T > C1+intrCtr x (Cy +T,)

to the sender. T>C, T<T,
. mtrCtr :=0 T<C
On timer Interrupt
coming after a fixed time. T>T,
TP
?jﬁ T<C, }
_* | Clear the OS queue entry. | Packetinterrupts
are disabled.

T>T, T> Gy
T, A,
Wait for the ACK packet Run the timer interruptCy T < Cy + intrCtr x (Cy +T) intrCtr + T
handler s R

from the sender.
T>T, T > C3+intrCtr x (C4+T,)
On timer Interrupt T<T,
TIME OUT coming after a fixed time. TIME OUT
TP

Fig. 4. Timed automaton for a packet handler.

the four corresponding pieces of code in the C sourt®CET analysis can significantly improve our results.
code. The user does the identification by wrapping each|n the TCP/IP implementation IwIP, each loop in the
code piece in a function. It is difficult to obtain WCETpacket handler and the timer interrupt handler iterates

In contrast, we can get good timing estimates for the,mbner of loop iterations, we use the buffer size.

object code generated by gcc or any othgr C.Comp”er'When a packet is received by the TCP server, the
However, because of the code motion which is part of

gcc’s optimization phase, it can be difficult to identif;})"’mk(:"t interrupt handler (labeled,) is invoked. In

: . . . .. “Figure 4 we want to start the clock from that point so
in the object code where a particular functionality is . .
. . ) - We reset the clock variablE to zero. In timed automata,
implemented. So, we take a middle approach: we first” = .

' ; ransition from one state to another requires that the
use gcc to compile the C-code to register transfer lan-

guage (RTL), which is a format used internally in th uard on the edge be satisfied; accordingly we set the

gce compiler. It is the backend of gcc that translat uards in our transitions such that it semantically agrees

the front end’s abstract syntax tree into RTL. At theo the informal automaton on the left. At the end of

RTL level, it is straightforward to do WCET analysis state, the clock is s_et o a value greater than sum of
: . . . . . 'WCET of the packet interrupt handler, and the time to

Since there is a direct mapping from RTL instructions : . ; -
ecute the invoked timer interrupt handlers. Similarly,

to machine code the timing estimates can be done W8I the end of statel,, the clock is set to value greater
more confidence than for C. We have added a phasge 2 9

in acc iust before the final phase that emits assembA" the time required to execute the code corresponding
gee Jus . P . b[g these states and the time to run the timer interrupt
code. While the actions of the assembler and linker m

affect the timing analysis, our results show that for our ndler every time it Wa.s |nv9ked during the executllon.
application, the overall effect is small. The modeling of the timer interrupt handler requires

further explanation. The transitions from , A5, A3, A5
We employ a well-known WCET analysis [20] whichto Timeoutall model the case where the timer interrupt

takes the pipelining architecture of the Xeon processbhaendler runs and times out at least one packet. The
into account. Our implementation of the WCET analysisansitions fromA, to A, and fromA; to A, model the

is conservative in several ways, including that it does noaise where the timer interrupt handler runs but doms
take into account that Xeon is a super-scalar architectutipe out any packets. It would be semantically correct
or the effect of cache or data dependencies. We chdseadd such transitions td;, A3, but we left them out
that particular WCET analysis because it leads to go@d an optimization. The reason why the optimization is
overall results. It remains to be seen whether a betteorrect is that atd;, As, the packet interrupt handler is



disabled, so there it would have no immediate effect  global timerGTimer that keeps track of global time.

fire a packet-handler interrupt. Furthermore, if a pack@Timeris reset to zero in the first state of theng.

times out while executingd;, it will be timed out The server, on getting the first SYN packet, goes to

when execution reaches;; similarly for A;. Note that the stated,. Now either in this state or iMs, if the

while executing the timer interrupt handler, none of theerver finds another SYN packet for a fresh connection,

interrupts are enabled. then the server starts working on the second packet. The
In summary, the user of ATASYN must identify fourguardGrd on that edge is given by:

pieces of code, the timer period, and the buffer size, ]

and ATASYN then maps the packet handler to a timed InputisReady:& GTimer < T,

automaton. Our model is conservative because 1) tW'e implement the macro InputisReady by a set of
WCET analysis provides upper bounds on_the gxecuﬂg nchronization constructs between the server automaton
time and 2) our model ensures that the timer interrupt 4 the attacker automaton (we omit the details)

handler IS called_ag least as many times as the t'_merThe same strategy continues while processing the rest
interrupt handler is invoked in the actual server. N0t|c8

hat th ber of nodes in the timed is £ Jthe packets. Finally, if the server has already filled up
t att_ € number of nodes in the tlme_ automaton IS TIXEE entries, wheren is the size of the buffer, and another
and independent of the number of lines of code in t

. : I"§YN packet arrives for a new connection, then the packet
TCP implementation. has to be dropped and we have an effective SYN flooding
attack. In the automaton we model that by reaching the
Il. HANDLING MULTIPLE PACKETS final state SYNFlood. If we reach SYNFlood, then the
ATASYN abstracts a server that has multiple buffeattacker can continue the attack and keep all the servers’
entries and handles multiple packets into a timed abuffer entries occupied, resulting in a successful denial-
tomaton. In this section we extend the automaton giveri-service attack.
in section Il to complete the abstraction. Note that our The server has many states from which it cannot be
execution model consists of a single processor with @¥N flooded or which are not important when studying
OS capable of running multiple threads. Hence at amnlye SYN flooding attack. We abstract all those states into
one particular time, only one thread can be active.  one dummy noddimeout For example, from the states
As, and 45 in the firstzone and fromA,, As, Az, and
Le As in the otherzoneswe have an edge téimeoutwith
N the following guard that transfers control to thiEneout
state, if the first packet times out:

(m)

GTimer > T,.

=

We abstract the possible dropping of a packet by setting
up a self loop in the statd; with a guardLc given by:

InputisReady&:& GTimer < T,,.

: We also have some more constraints in the automata
to model the OS Queue and some synchronization con-
Fig. 5. Complete timed automaton for a server. structs for the abstraction of a loss free network (we omit
the details).

Let us now look at the server automaton given in The actual server inserts and removes packets from
Figure 5. We need to be able to analyze and reason abthg buffer. The server removes a packet if the packet
several copies of the code in packet processing routin@mes out or if the server receives a reset packet (RST)
at the same time, namely, as many as there are buféer an acknowledgment packet (ACK). If we want to
entries. For each buffer entry, we replicate the modeiodel all possible states of the buffer, then we would
shown in previous section. In addition, there are edgesed exponentially many states in the server automaton,
connecting each replica and a self loop on the sthte one for each subset of the packets. Fortunately, for
in each replica. Each such replica is calledane and the purposes of ATASYN, we don’t need exponentially
zone andzoneg,; are connected, signifying that whenmany states. The reason is that we distinguish between
it" packet is being processed, the next packet (") packet sequences solely on the basis of whether they can
can come and the server may process this new packetch the SYNFlood state or not. The question that we
Eachzoneg has an individual timefl’; keeping track of ask of UPPAAL for a given packet sequence is: “does
the time in that zone. Along with these, we also havihere exist a run of the automaton which reaches the



SYNFlood state?” A packet sequence that cannot reagbtwork environment around the server) sends packets
the SYNFlood state will count as an unsuccessful attackith a delay controlled by a statistical distribution.
Let us consider a packet sequence containing a packéte distribution is “tester chosen”, can be varied, and
that in the actual server gets inserted into the buffeiloes not influence how we model an attacker. Given a
and later times out and gets removed. Suppose aldistribution we use a packet generator to compute the
that the packet sequence leads to SYN flooding. packet inter-arrival time for a pre-determined number of
our server automaton, at least two paths are possibeckets.
One path will process the packet in the appropriate The generated packet sequence is the one seen by
zone and later, when that packet times out, go to thikee server. For the server, all the packets lost during
Timeoutstate. So, that path does not demonstrate th@ansmission are not of any concern. So, the attacker
SYN flooding. However, there is another path in whicltarts by sending a SYN packet, and then it sends more
we immediatelydrop the packet, using a self loop, andSYN packets at the pre-decided intervals. The attacker
now there is no reason for going to tHémeoutstate, sends the next packet only after the server has read
so instead the server automaton will process the othtbe last packet because all the server cares about are
packets and end up in the SYNFlood state. When thige packets that comes to its notice. The attacker stops
server automaton drops a packet using a self loop in oafter sending the pre-decided number of packets. Notice
zone, it continues in theamezone when the next SYN that ATASYN’s interpretation of a packet sequence is
packet comes. Thus, the server automaton contains odlfferent from what happens when we send the same
forward transitions, i.e., transitions from zone i +1. packet sequence to simhost. The reason is that the net-
For example, let us consider a packet sequena@rk may loose packets, deliver them in a different order,
P1, D2, - - -, Pm+1 Which leads to SYN flooding. Supposeand change the intervals. This difference will eventually
that while control is inzong, processing packets, the be part of the reason why simhost and ATASYN give
first packetp;, stored in the buffer ireong, times out. slightly different results.
In that case, we use a transition to tfigneoutstate. ~ We use the distributed internet traffic generator D-
However, the packet sequenge,...,p,+1 can still |TG [9] as the basis for generating SYN packets at ran-
lead to SYN flooding. We can reach the SYNFlood staigom intervals. D-ITG can generate packets with delays
by the following actions: packet; is dropped inzong, based on different statistical distributions. Our aim is
then zong gets packetp;, zone gets packeps, and to feed some large number of SYN packets, generated
eventually we reach the SYNFlood state. with delays based on some statistical distribution, to the
In summary, we avoid an automaton of exponentigerver and see the effect of the attack. So, we use the D-
size by (1) asking whether the SYNFlood state is reachFG to generate packet inter-arrival times and compute
able, (2) using self loops to drop packets, and (3) usinge time for sending th&'” packet PAT(i)). Since
transitions to theTimeoutstate. The size of our serverwe want to fire the next packet only after the previous
automaton is linear in the buffer size. For a buffer opacket is read and the server is ready for the next packet,
sizem, the server automaton hés< m + 2 states. the packet generator process (represented as an attacker
timed automaton) waits for communication from the
IV. FROM AN ATTACKER TO A TIMED AUTOMATON  server timed automaton to release the next packet.
To generate a timed automaton for the attacker, we
\ __ (GTimer>=T1 o generate one node for each packet and connect the
GTimer <=T1 and GTimer <= T2 . .
Start last input is read) nodes for packets and i + 1 by an edge. We also
@ /\ Q generate a special nod€art node for the attacker
SendSYN\__/  send SYN and connect it to the node corresponding to the first
(GT":s;x T2 packet. We sef? AT (start) to be zero. For each node
lastinputis read) ¢ 1N the attacker timed automata, we set an invariant
GTimer< PAT(i). Each edge between two neighbors
andj, has aguard, GTimer> PAT (i), a synchronizing
guardinputlsRead?, and an assignment to the global
variableinput = SY N.
The model for the attacker is shown in Figure 6.
GTimer<=7n 04SN GTimer <=T3 The automaton will stop after sending a pre-determined
number ) of packets. The number of nodes in the
attacker automaton is + 1, and the number of edges is
n.
We assume that the attacker (or, in general, theAfter the timed automata for the server and attacker

(GTimer >=Tn
and
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I
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Fig. 6. Timed automaton for an attacker.



have been generated, and given values for the packetn the greenarea, the attacks are not successful. The
inter-arrival time and the timeout time, ATASYN runsregion to the right of the red area agrees with the intu-
UPPAAL. Running UPPAAL will check if the server ition that higher timeout time is affordable for environ-
automaton will go to the SYNFlood state, which wouldnents with longer packet inter-arrival delays. Common
indicate SYN flooding. sense says that if an attacker can send packets at a high
rate, i.e., the packet inter-arrival time is small, then the
timeout time should be set to a small value. However,
notice the green region below timeout3=5 x 108, It is

We have implemented our analysis in the optimizatioR€rhaps surprising to see that even for low packet inter-
phase of gcc 3.3 [4] for the x86 architecture, before g@Tival delays, the server did not get SYN flooded. The

V. EXPERIMENTAL RESULTS

reorders the basic blocks. main cause for that is the lower timeout time. Because
the timeout time was so low, earlier packets are getting

60208 — —————— s timed out before all the buffer entries could be filled.
oo e e b sitill, the timeout time was large enough that the TCP
T S T ARSI {1 server would accept some connections. It looks rather

It may be noted that even though this would not lead
Friiln e D% LRI e B T to SYN flooding, it may disallow connections to some
O R e e CiE Lt ng gt Al valid clients whose packets do not come fast enough.
e i T ey W o Note that the boundary between red and green is not

o e el 0 attractive to set the timeout time to abest3.5 x 108

Timeout time (measured in clock frequency)
IS
o
@
e
S
o

amson 15 T T S S E I 1 sharp. This is because for each average packet inter-
i i etk e T el AR arrival time we get sequences of delays based on a
25408 | : {1 statistical distribution. A constant delay packet germrat

} | would give a clearer demarcation between the regions.
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Fig. 7. Output by ATASYN.
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We have used ATASYN to test the light-weightg
TCP/IP protocol implementation IwIP [19]. The IwIPé
implementation can run with or without the underlyingg
OS. The focus of the IwIP implementation is to reduce

£

the RAM usage while still having a full scale TCP,; |
making IwIP suitable for use in embedded systems. The
complete IwIP TCP/IP implementation is around 18K:
lines with around 300 functions. Of this the TCP SYN-

packet-processing-related code is around 2500 lines of A

3e+08 Labt2RA (medt § LA EaRABIIH PL R fme B Sl fhmem TR, [ 042

code with around 30 functions. For the purposes of ° o Pat vl tme oo in o ey
this paper we set the buffer size to 5. We have testg%. 8. Output by ATASYN, with false positives.
ATASYN with buffer sizes up to 100 and it scales well.

We have run ATASYN on thesamecomputer, the  ATASYN takes around 4 minutes to generate the graph
same 10,000 combinations of inter-packet arrival timeshown in Figure 7. In contrast, each of the ten runs
and timeout time, and theamepacket sequences forof simhost to generate the graph shown in Figure 2
each of the 10,000 points that we used for the experimeanbk around 85 minutes. So, ATASYN us more than 20
with simhostreported in Section |. Figure 7 presentsimes faster than simhost. ATASYN spent less than one
the results:red means that the attack is successfukecond to produce the timed automaton from the IwlIP
while green means that the attack isot successful. implementation, and most of the 4 minutes on running
(On black-and-white hardcopiegreenis represented by UPPAAL. For packet sequences of length 100, simhost
small triangles, anded by small dots.) We can comparedid not terminate after 8 hours. In contrast, for packet
Figure 2 and Figure 7 directly: ideally the figures wouldequences of length 500, ATASYN generates a graph
be identical or close to identical. Let us first examinéke the one in Figure 7 in around 40 minutes.

Figure 7. In thered area, the attacks are successful. For Let us now compare the accuracy of ATASYN relative
a given packet inter-arrival time, it is better not to choos® simhost. In Figure 8greenmeans that simhost and
a timeout time such that we get a red point. ATASYN agree on green, whileed denotes afalse
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o Fast: ATASYN runs an order of magnitude faster
than doing similar validation by running the actual
server.

« Accurate The suggestions/warnings given by ATA-
SYN are fairly accurate. The graph produced by
ATASYN is highly comparable to that produced by
running the actual server.

o Modular: There is no need to have or modify the
entire OS kernel: the TCP server is analyzed in
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Timeout time (measured in clock frequency)

. isolation.
= s o Scalable: ATASYN can test the server against
) 08[ ‘ " S & i ] large sequences of input packets within reasonable
T 2ev07 | deso7  6esor | Besor 10408 12e408 amount of time.

Inter Packet Arrival time (measured in clock frequency)

Fig. 9. Output by ATASYN, with false negatives. « Graphical: ATASYN produces a graph that shows

whether a server can survive SYN flood attacks.
o Uses off-the-shelf tools:ATASYN uses gcc, UP-

positive A false positive is a case for which simhost ~ PAAL, and gnuplot.

not report a successful attack, but ATASYN does. We ¢ Needs few user annotationsa few, simple-to-give
found 230 false positives in the sample space of 10,000 USer annotations are needed.
points, that is, 2.3%. In other words, if ATASYN reportsVe believe that our approach is promising and may
a successful attack, then there is nearly a 98% charf¥@ useful in the context of other denial-of-service at-
that simhost will agree. Notice that the false positives af@cks. Our technique is fairly independent of the high-
distributed in a seemingly random fashion. One of thgvel language in which the TCP server is implemented
main reasons for the false positives is that when a paci&cause the timing analysis and the abstraction into a
sequence is sent to simhost, the network may deliver th@ed automaton are done on RTL code, which is an
packets to TCP layer of simhost with different intervaliitermediate format close to assembly language. Our
between the packets. In contrast, the packet sequefRghnique is also fairly independent of the choice of the
sent to ATASYN represent the intervals between whd®al-time model checker. Model checkers that could take
packets are made available to the TCP layer. the place of UPPAAL include KRONOS [17] and RED
In Figure 9,greenmeans that simhost and ATASYNI[42]. It remains to be seen whether the use of a different
agree on greered means that simhost and ATASYNModel checker can increase the speed of ATASYN.
agree on red, while bluecircle denotes false negative ~ Our tool ATASYN s available from our website at
A false negative is a case for which ATASYN does not http://compilers.cs.ucla.edu/atasyn.
report a successful attack, but simhost does. We found™cknowledgments.We thank Christopher Telfer for
916 false negatives in the sample space of 10,000 poiri§!P With various networking tools. We thank Kevin
that is, 9.16%. In other words, if ATASYN reports doe&hang and Ben Titzer for helpful comments on a draft on

not report a successful attack, then there is nearlyt paper. We were supported by two National Science
91% chance that simhost will agree. Notice the blugoundation ITR Awards number 0112628 and 0427202.

points along the y-axis; they represent a curious anomaly

that fortunately only occurs when the packet inter-arrival APPENDIX TIMED AUTOMATA

times are close to O. Real-time systems can be modeled by timed automata.
The 2.3% false positives indicate that ATASYN isA timed automaton is a finite state automaton with

particularly effective at determining when a TCP servefteger-valued clocks. The states are representgd by

is vulnerable to SYN flooding. The 9.16% false negativeghere!l is a control node ana is a clock assignment,

serve as a reminder that ATASYN cannot entire|y rep|aéee., the current values of all the clocks. All the clocks of

simhost. ATASYN is most valuable in cases where @ System start at the same instant from 0 and then they

developer or an administrator of a TCP server wants B§oceed at the same rate. Their values can be tested (by

quickly gauge the degree of vulnerability. comparing them to natural numbers), they can be reset,
and they can be assigned a natural number. Guarantees

about timing are enforced by clock constraints (which
are guards on transitions and invariants on nodes). A
The main contributions and features of ATASYN areg|ock constraint in UPPAAL is a constraint consisting
« Static Analysis: ATASYN does static analysis of of zero or more of the following three components: a
TCP-server code written in C. guard that needs to be true for the transition to take

V1. SUMMARY



place, a channel read/writgynchronizationcommand, [20]
and anassignmenstatement that assigns to a timer or a
variable. If the transition has a channel read command,
then for the transition to succeed some process must have
written to the channel and that data is available to he
read. Once the data is read, the next read will fail un{ﬁl]
some process has written again.
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