Communicating Memory Transactions

Mohsen Lesani

Jens Palsberg

UCLA Computer Science Department
University of California, Los Angeles, USA

{lesani, palsberg}@cs.ucla.edu

Abstract

Many concurrent programming models enable bothstetional
memory and message passing. For such models, chsemhave
built increasingly efficient implementations and fided
reasonable correctness criteria, while it remam®pen problem
to obtain the best of both worlds. We present agamming
model that is the first to have opaque transactiosafe
asynchronous message passing, and an efficienefingitation.
Our semantics uses tentative message passing apd wack of
dependencies to enable undo of message passing@se &
transaction aborts. We can program communicatiams such
as barrier and rendezvous that do not deadlock wiked in an
atomic block. Our experiments show that our modisalittle
overhead to pure transactions, and that it is fegmtly more
efficient than Transactional Events. We use a ndeéiition of
safe message passing that may be of independergsht
Descriptors D.1

Categories and Subject [Programming

Techniqugs}: D1.3 Concurrent Programming - Parallel
programming

General Terms Languages, Design, Algorithms

Keywords Transactional Memory, Actor

1. Introduction

1.1. Background

Multi-cores are becoming the mainstream of computer

architecture, and they require parallel software nbaximize
performance. Therefore, researchers sense thefaeeffective
concurrent programming models more than ever befive
expect a concurrent programming model to providenmsefor
both isolation and communication: concurrent openat on
shared memory should be executed in isolation tesgwe
consistency of data, while threads also need tonmamicate to
coordinate cooperative tasks. The classical mefpsogramming
isolation and communication is locks and conditianables [16].
Locks protect memory by enforcing that the memageases of
blocks of code are isolated from each other by alugclusion.
Condition variables allow threads to communicatehr@ad can
wait for a condition on shared memory locations #mel thread
that satisfies the condition can notify waitingehds. However,
development and maintenance of concurrent datztstes by
fine-grained locks is notoriously hard and erroos, and lock-

Permission to make digital or hard copies of alpart of this work fc
personal or classroom use is granted without fegiged that copies ¢
not made or distributed for profit or commercialadtage and that cop
bear this notice and the fuditation on the first page. To copy otherw
or republish, to post on servers or to redistrittotdists, requires prir
specific permission and/or a fee.

PPoOPP’1] February 12-16, 2011, San Antonio, Texas, USA.
Copyright © 2011 ACM 978-1-4503-0119-0/11/02...$10.0

based abstractions do not lend themselves wellotoposition.
We need a higher level of abstraction.

A promising isolation mechanism to replace locksnsmory
transactions because they are easy to progranorredmout, and
compose [12]. The idea is to mark blocks of codatasiic and
let the runtime system guarantee that these blackexecuted in
isolation from each other. Researchers have desdlgeveral
implementations [5][13], semantics [1][24][15], amdrrectness
criteria [10][24] for memory transactions. In padiar, we prefer
to work with memory transactions that satisfy aelydrecognized
correctness criterion called opacity [10]. To coempént memory
transactions, which communication mechanism shoefuace
condition variables? We want the addition of a camitation
mechanism to preserve opacity while adding litthpliementation
overhead to pure transactions. Let us review thengths and
weaknesses of several known mechanisms.

1.2.

Luchango and Marathe were the first to consideirtteraction of
memory transactions and they introduced synchroizé\
synchronizer is a shared data structure that caradeessed
simultaneously by every transaction that requestess to it and
hence additional concurrency control mechanismsnaegled to
protect the shared data against race conditiong. [ZBe
transactions that synchronize on a synchronizeeeill commit
or all abort. The work is recently extended to s$aation
communicators [22].

To enable a transaction to wait for a conditionrridaand
Fraser introduced guarded atomic blocks [11], aadkell added
the "retry" keyword [12]. On executing "retry", Hadl aborts and
then retries the transaction. Later, Smaragdakisalet[28]
established the need for transactional communicatibhey
showed that neither of the previous mechanisms ®stpp
programming of a composable barrier abstractioruséd in an
atomic block, the barrier deadlocks. In contrast Haskell's
"retry”, Smaragdakis et al. [28] and also Dudnild éBwift [7]
advocated that the waiting transaction should menaitted rather
than aborted. They observed that if the transadticaborted, all
its writes are discarded, while if it is committéd, writes will be
visible to other transactions, thereby enabling tla@saction to
leave information for other transactions beforgtdtrts waiting.

Dudnik and Swift used their observation as the sdsr
designing transactional condition variables [7&itthmodel allows
no nesting of atomic blocks. Smaragdakis et al] [&&d their
observation as the basis for designing TIC whictabées
programming of a barrier abstraction that won'tdieek even if it
is used in an atomic block. TIC splits (“punctudtesach
transaction into two transactions; this may violaieal invariants
and therefore requires the programmer to providdecdor
reestablishing the local invariants. TIC executes tode at the
point of the split, that is, after wait is calleddabefore the first

Synchronizers, retry, and punctuation

half of the transaction is committed. As explained?28], TIC
breaks isolation and therefore doesn't satisfy ibpac

1.3. Message Passing

A dual approach to providing means for isolationdan
communication is to begin with a message passingeirguch as
Actors [2] and Concurrent ML (CML) [26], and themlda an
isolation mechanism. Examples of such combinatior@ude
Stabilizers [30], Transactional Events (TE) [6]dafransactional
Events for ML (TE for ML) [8].

In Stabilizers, threads can communicate by sendind
receiving synchronous messages on channels. Thgrapnoner
can mark locations of code as stable checkpoitfitea thread
encounters a transient fault, it calls "stabilizehich causes the
run-time system to revert back the current thread, all threads
with which it has transitively communicated, to ithéatest
possible stable checkpoints. In summary, Stabgizeupport
program location recovery but not atomicity andlaton as
explained in [30].

Inspired by CML and Haskell STM, TE provides the
programmer with a sequencing combinator to combireevents
such as synchronous sends and receives into ongocoith event.
The combination is an all-or-nothing transactiorthie sense that
executing the resulting event performs either lwtimone of the
two events. The sequencing combinator enablesgbtfarward
programming of: (1) a modular abstraction of gudrde
(conditional) receive (this is not possible in CM[2) three-way-
rendezvous (a generalization of barrier) (thisas possible with
pure memory transactions [6]), and (3) memory tatiens (by
representing each location as a server thread)supports the
completeness property, namely: if there existsnéerlieaving for
a set of compound events such that their sendsetsives are
matched to each other, the interleaving is guaeahte be found.
While the completeness property can terminate sscheduler-
dependent programs, scheduler-independence is ¢liekmown
property expected from concurrent algorithms. Mianportantly,
finding such an interleaving is NP-hard [6] and che
implemented with an exponential number of run-tisearch
threads [6]. Our experiments show that the perfoaagpenalty
can be excessive.

TE supports all-or-nothing compound events butrévpnts
any shared memory mutation inside compound evémt®llow-
up work on TE, the authors of TE in ML [8] explahat encoding
memory as a ref server is inefficient. They extaifiito support
mutation of shared memory in compound events. TiEMa
logically divides a compound event into sectionBedachunks.
Chunks are delimited by the sends and receiveseo€dmpound
event. The semantics of TE for ML breaks the isofabf shared
memory mutations of a compound event at the erits ahunks.
At these points (i.e. before sends and receivds), shared
memory mutations that are done in the chunk carsden by
chunks of other synchronizing events. Similar te punctuation
in TIC, chunking breaks isolation and thus doesatisfy opacity.

1.4.

The above review shows that previous work has problwith
either nesting of atomic blocks, opacity, or effiicy. Our goal is
to do better. In this paper, we present Commumigakilemory
Transactions (CMT) that integrates memory transastiwith a
style of asynchronous communication known from thetor
model. CMT is the first model to have opaque tratisas, safe
asynchronous message passing, and an efficienefingitation.
We use a novel definition of safety for asynchraenessage

Our Approach

passing that generalizes previous work. Safe coruation
means that every committed transaction has receivessages
only from committed transactions. To satisfy comination
safety, CMT keeps track of dependencies to enablgo uof
message passing in case a transaction aborts. e lsbw to
program three fundamental communication abstragtiorCMT,
namely synchronous queue, barrier, and three-wayemvous. In
particular we show that our barrier and rendez\ahsiractions do
not deadlock when used in an atomic block. To enablefficient
implementation, CMT does not satisfy the completsngroperty
[8] found in TE. Based on the transactional memory
implementations TL2 [5] and DSTM2 [13], we presdnto
efficient implementations of CMT. We will explaieweral subtle
techniques that we use to implement the semant@sr
experiments show that our model adds little oveth&a pure
transactions, and that it is significantly moreicént than
Transactional Events.

In Section 2 we discuss five CMT programs. In Sec we
recall the optimistic semantics of memory transexdi by
Koskinen, Parkinson, and Herlihy [15], and in Sac# we give a
semantics of CMT as an extension of the semami&ettion 3.
In Section 5 we explain our implementation of CMARd in
Section 6 we show our experimental results.

2. Examples

The goal of this section is to give examples of Cpdgrams and
give an informal discussion of the semantics of CMTn
particular, we will illustrate the notions of commication safety,
dependency and collective commit.

We use the following syntax: to delimit parallet8ens of the
program,|| is used ch send e sends the result of expressierto
channelch. x := chreceive receives a message from chanciel
and assigns it to the thread local variabld o provide means of
programming abstractions, macro definitions areovad:
let macroName(params) t. The body termt of the macro is
inlined withparams at the call sites.

Let us start with a simple example: a server thrézat
executes a transaction in response to request gessseom a
client thread.

{// Client {// Server
atomic atomic
ch send unit x = chreceive
HI

The server transaction receives the tentative rgesam the
client transaction and mutates memory accordintpéomessage.
If the client transaction aborts, the message thags sent is
invalid. Therefore, the server transaction showdchmit only if
the client transaction is committed. In other wordbe
communication is safe under the condition that eeixéng
transaction is committed only if the sender tratieac is
committed. We say that the receiving transactigoedds on the
sender transaction. If the sender aborts the recaiould abort
as well. The abortion is propagated to dependimgstictions. If a
receive is executed on a channel that is emptyootains an
invalid message (a message sent by an aborteca¢tary, the
receive suspends until a message becomes available.

Consider the two-way rendezvous abstraction that ss@ap
values between two threads. (Rendezvous is a datian of
barrier that swaps values in addition to time syaotzation.)
let rendezvous(scy,rcy, Sc;,1c;) | let swap(x, sc,rc,v)

atomic sc send v;

X1 =86 recei've; X = rcreceive

X, = SC, receive;

rc, send x,;

©

(B) M)
O

Figure 1. Interactions of 2-way Rendezvous

rc, send x;

Consider the following program that employs the \abo
abstractions. Each abstraction is inlined at it sites and its
parameters are substituted with passed argumerakim@s
represent parallel parts of the program. (To dis¢he interaction
of transactions, the parties callap inside atomic blocks.)

{// Party, {// Rendezvous {// Party,
atomic rendezvous(atomic
// code before chy,ch,, // code before
swap(chs,chy) swap(
x,chy, chy,unit); | }|| X, chs, chy, unit);
// code after // code after
HI

}
Figure 1 shows the steps of execution of the alpwogram.

Solid arrows show messages and dashed arrows show

dependencies. Paitgends a tentative Messade Rendezvous.
Rendezvous receives Messagad becomes dependent on Party
(Figure 1.A). The same happens for Paffyigure 1.B). At this
point, Rendezvous is dependent on both parties.

Assume that Parfyaborts. The abortion is propagated to
Rendezvous by DependencyrRendezvous is also aborted and
retried. On the retry, it receives Messaggain. But as Message
is invalid, the second receive suspends. This metnad
Rendezvous repeats Figure 1.A again. It effectiighores the
aborted transaction of Pastgnd waits for another.

When Party is retried, Figure 1.B is repeated. At this time,
Rendezvous has received request messages fronphdtbs. It
tentatively sends swapped messages back to botty; Rard
Party. The parties are released from suspension aniveetiee
messages. They get dependent on Rendezvous (FigDye At
this time, parties and Rendezvous are interdepéifBigure 1.D).

Assume that Pariy aborts in the code afterswap.
Dependencies propagate abortion to Rendezvous laenl to
Party. In other words, if one of the parties aborts, Remdezvous
and all the other parties are aborted and retrigds is the
expected behavior: as Partis aborted, the value that it has
swapped with Partyis invalid. Therefore, Partyshould be
aborted as well. (This also matches the semantipsoted from
the barrier. As Pargyaborts, it is retried. This means that it will
reach the barrier again. By the semantics of thadsano party
should pass the barrier when there is a partytltaatnot reached
the barrier. Thus, as Pajtyill reach the barrier, Partghould not
have passed it. Therefore, Parthould be aborted as well.)

Finally, the transactions of Rendezvous, Paemd Party
reach the end of the atomic blocks. As they arerd@pendent,
each of them can be committed only if the otheescammitted.

If each of them obliviously waits until its dependeées are
resolved, deadlock happens. As will be explaineth&following

sections, interdependent transactions are recajragea cluster
and transactions of a cluster are collectively catbeah.

In contrast to an implementation using Haskellyretalling
swap inside a nested atomic block does not lead toaalldek. In

Synchronous Barrier 3-way Rendezvous
Queue The abstractions:| The abstractions:
The abstractions: | let barrier(let rendezvous(
let syncSend(bey, pey, S€,TCy,
sc,re,v) bey, pey) SC3,TCy,
sc send v; atomic SC3,7C3)
rc receive bc, receive; atomic
let syncReceive(bc, receive; X, = 5S¢, receive;
X,sc,rc) pcy send unit; X, = SC, receive;

pc, send unit
let await(bc, pc)
bc send unit;

X3 = SC3 receive;
rcy send (x,, x3);
rc, send (xq,X3);

X = Sc receive;
rc send unit

The program: pc receive ez send (xq, X,);
{// Sender let swap(x, sc,rc,v)
syncSend(The program: sc send v;
x, chg, chy) {// Barrier x = rcreceive
Y11 {// Receiver barrier(.
syncReceive(chy, chy, The program:
x,chy, chy) chs, chy) {// Rendezvous
} YN {// Party, rendezvous(
await(ch,, ch,) chy, ch,,
HI{// Party, ch, chy,
await(chs, chy) chs, chg)
HI{// Party,
swap(

X, chy, ch,, unit)
HIL{// Party,
swap(
X, chg, chy, unit
311 {// Party,
swap(
x, chs, chg, unit)

}
Figure 2: CMT Programs

addition, in contrast to TIC and TE for ML, opacityf
transactions is satisfied.

Similar to Two-way Rendezvous, the abstractions for
Synchronous queue, Barrier and Three-way rendezeausbe
programmed in CMT as shown in Figure 2. Please tiateit is
assumed that these basic abstractions are usedoanb. For
example, the basic barrier abstraction is not dicyarrier. For
the three-way rendezvous, we assume ¢heain be pairs of the
form (e, e). Implementations of Barrier with Haskell retry,CT|
and TE for ML and an implementation of CMT can bersin the
technical report [17] section 15.1. Implementatiorsf
Synchronous Queue and Rendezvous can be seentiectimcal
report [17] sections 15.2 and 15.3.

3. Memory Transactions

We now recall the optimistic semantics of memogngactions
by Koskinen, Parkinson, and Herlihy [15]. Theimsatics is the
starting point for our semantics of CMT in SectnTL2 is an
implementation that realizes this semantics.

Note: we have fixed a few typos in the syntax, sera and
definition of moverness after personal communicatwith the
authors of [15].

3.1

A configuration is a triple of the forrv - oy, - £,,). (To simplify
reading of long configurations;™is used to separate elements of
configurations.)T represents the set of threads, denotes the
shared store that contains objedts, is a log of pairgz<™,¢,):
each committed transactiom™ and the operations it has
performeds,. T is a set of elements of the fokms, a,, 7, ¢,). T is

Syntax

0OCMD

— 1 —
{r,c5, Oz, 0—‘[’£‘[>'T *Osn * fsh) o {z,s, [[C]]Jrv (2% fr)vT * Osp * fsh)

(t,abt)

T#L
OBEG
— (ubeg) ,. "
((l, bEg; S, 0z, 0y, []),T * Ogp * [sh) — «freSh(T)'S' Snap(a‘r' Jsh)' O [Stmt ind beg; S]' [])'T *Ogp * [sh>

OAPP

— (r.o.m) — n n

(T, x =0.m;s,0,,0;, L), T + a5 €sp) — (T, 5, a,[o = ([ollo,).m,x = rv(([[o]]a,).m)],a,,{’r = ("o.m"), T - agp - €sp) T#L
ocMT
V(T) €L T™ > T 0,5 0y Ll
T
- (T,cmt)
{r,end; s, 07,07, £2), T + O - €sn) —0 (L, 5,2ap(07), zap(ar), [1), T - merge(ogn, €r) - £sp i3 {fresh(ze™), £.))

OABT

{z,s, 07y F‘n [‘r)'T *Osh* esh)) (L, [[Stmﬂ]?f_p <J_‘L'/Strntv 07., 1 »T - Osh * [sh)

T#+1

o.[o » [olas,] Vo € objects(P)
o.[o » 1] Vo € objects(P)

snap(ar, ggn) =
zap (o)

merge(osn, [1) =
merge(og,, ("o.m") 2 €) =

Osn
merge(ash [0 g ([[0]]0511])- m]' {7.[)

Figure 3: Optimistic Semantics of Memory Transactios

the transaction identifier (ow that denotes that the code is
executing outside transactions). Transaction iflergi are
assumed to be ordered by the time that they arergits is the
statement to be executed by the thread. Statenteauts the
following syntax:

s—=> s | i

i— beg | end | x:==0.m | ¢ | skip

Statement
Instruction

current transaction are right movers with respethé methods of
the transactions that have been committed since ctiveent
transaction has started. Right moverness ensugedstéhtative
execution of a transaction can be committed eveugh other
transactions have committed after it started. Rlaa$er to the
appendix for a detailed definition of right movesee If the
methods of the transaction satisfy the movernesslition, the

beg and end denote the start and end of transactions. We usetransaction is committed. The methods of the ltmglare applied

atomic s as a syntactic sugar foeg; s; end. o.m denotes calling
methodm on shared object. Commands (reading and writing)
that are applied to thread-local state are repteddwyc. o, is the
transaction-local store of objects.is the backup store that stores
states of (thread-local) objects before the traimads started. It
is used to recover state when the transaction @bbine statement
before the transaction is started is also backednug,. The

patterng,; stmt — s denotes a back up store that maps the backed
up statement te. ¢, is the ordered log of operations that has been

performed by the transaction. The initial configima is of the
form Confy =(Ty - ogny - (). Ty IS Ty ={Ty,..,T,} where T; =
(L, P;, 0514, Osng; stmt = L, [). {P;=1.»} are the parallel segments of

the programoay,,, is the store where every object is mapped to its

initial state i.e. oy, = {Vo € objects(P).o ~ init(0)}. M[k ~ v]
denotes assigning valueto key k in mapM. [k]M represents
value of keyk in mapM.

3.2.

The semantics [15] is shown in Figure 3. The seiosiris a
labeled transition system. The syntax supportsedesttomic
blocks. We can transform a program with nestedhat® into an
equivalent program with only top-level atomics bimgly
removing all inner atomics. Hence, it is suffidiethat the
semantics supports only top-level atomics.

We will now explain the five rules in Figure 3. ThéMD rule
applies the statement to the local stde@s, denotes application
of the command to the local store,. The OBEG rule starts a new
transaction. Afresh transaction identifier is generatettesh(r)
generates unique and increasing transaction idenstit. The
current store and also the current statement amedstin the
backup store. A snapshot of the current state @ctbis taken
from the shared store to the local store. TheP rule executes a
method. The method is applied to the local stokiarogged in
the local logrv represents the returned valde defined by [15],
read and write operations on memory locations peeial cases
of method call. TheocMT rule checks that the methods of the

Operational Semantics

to the shared store. The local log is also saveld &fresh id in
the shared log. This is used to check movernesdewhter
transactions are committing. Th@ABT reduction aborts the
transaction. The store and the statement that s@ved in the
backup store when the transaction was startingestered.

3.3.

The semantics satisfies opacity which is a coregncondition
for memory transactions [10]. We say that a sequefclabels
l,...l, is given by —, started from Conf® if there are
configurationgConf, , such that for eache {1..n — 1}: Conf?_,

Properties

li
0
-
o COTlf i=n+1"

THEOREM 1 (Opacity). Every sequence of labelér, beg),
(r,0.m), (r,abt) and (r,cmt) given by —, started fromConfy is
opaque (Proposition 6.2 of [15]).

4. Communicating Memory Transactions

We now present the syntax and semantics of CMT.sEneantics

adds a core message passing mechanism to the smmant

presented in the previous section.

4.1.

The syntax is extended as follows:

s=>is |

i—> beg | end | x:==0.m | c | skip
| chsende | x:= chreceive
chsende sends the result of expressiento channelch.

x == chreceive receives a message from chanrfebnd assigns it

Syntax

Statemer
Instruction

to the thread local variable. We assume that messages are

primitive values.

The configuration of the semantics in section augmented
with the following elements:m, ¢ and D. Therefore a
configuration is a tuple of the forRv oy, - €4, - M -C-D). M

CMD
n
(1,658,000, 00, T - Ogp - L * M - C - DY > (1,5, [clog, 07, £.), T - g, + €sp - M - C - D) T#L
BEG
M' =M U{rwHr}
(r.beg)
((L,beg;s, 0,0, [1),T - 05 - s - M - C - D) e ({fresh(7), s, snap(ay, o5p,), 0, [stmt — "beg; s"], [1), T - ogp, - £gp, - M’ - C - D)
APP
— (T,0.m)
(T, x = 0.m;5,0,,0,€:),T - 05, g - M - C+ D) — el
{(z,s, a,[o - ([o]oy).m,x rv(([[o]]a,).m)],E, 2. ("o.m™), T - ogp - s+ M - C - D)
CMT
Cluster({ti—1 .}, M, D)
Vg V(T 8r) € LT > 1 > £, B Ly YTim1a¥T=ricnt br, & o,
M' =M1, i
[T(‘TH Clizin VTimg T #1
— 1,cmt)..(Ty,cmt)
(i, end; s;, 00,07, 01)iz1.00 T " Ogp £y * M - C - D) ————
L s;, zap(ori), zap(ori), Miz1 T - merge(osh, {{’Ti=1__n}) gy seq((fresh(ricmt),{’Ti)l-zlun) - M'-C-D)
ABT
M'=M[t - a]
(Taby T#L
{1,5,00, 00, €0, T - 05y * €+ M - € - DY — (L, [stmt] 7, o7 /stmt, o7, [1), T - o5, + € - M- C - D)
Send
C' =C[ch » (1,v)]
(t,ch send) T#L
((r,ch send v;s,0,,0,,4.),T - 0g + s+ M - C - D) (1,8,0.,05,4),T 05 + €+ M - C' - D)
Receive
C(ch) = (t',v) D'=DuUf{r~1'}
(r,chreceive) Tl
((r,x = chreceive; s, 0,,0;, L), T+ Ogp, - Lgpp - M - C - D)y ————— ({1, 5,0, [x > v],0,,4.),T - o - sp + M - C-D")
zap(o,) = o,[o~ 1] Vo € objects(P) merge(ag,, ("o.m") :: £,) = merge(ozu[o ~ ([o]og,]).-m], €;)
vr:((r; ~ 1) €D) = merge(dgy, {}) = O
Clusmr({ri:l“"}’ M,D) =Vi€(l..n} ((M(1) =) or) merge(ashr{f‘riﬂ n}) = merge(merge(ash, {f‘ri—1 n—1})’{}rn)
Jje{l.nkt=r1 ; o o
Fel.nkr=1) $5eq(f()i1.n) FQ) 5 f(n)

Figure 4: CMT Semantics

maps each transaction id to the state of the tcéinsa The state
of a transaction can be either(running), c (committed), ora
(aborted). A committed transaction has finishedcsasfully,
while an aborted transaction has stopped execwtiah had its
tentative effects discarded is a partial function that maps
channelsch to pairs of the form(z,v) wheret is the sender

implementation supports an arbitrary number of mgss, as
explained in section 5.

The Receive rule receives a message from a channel. If there
exists a value in the channel, the value is receisad the
dependency of the current transaction to the semdesaction is
added toD. The condition that the sender transaction is not

transaction ana is the current value of the channel. To guarantee aborted can be added as an optimization.

communication safety, we track dependencies
transactionsD is the transaction dependency relation that ista s
of elements of the form ~ 7. Transactionr is dependent on
transactiont’, i.e.t ~ 7', if t receives a message that is sent’by
The dependency 9 is said to be resolved,if is committed. The
initial configuration isConf, = (T, - agp, - [1- @ - @ - 8). T, anda,,
are defined as the prior semantics.

4.2.

The rulescMD, APP are not changed other than the addition of
M -¢-D to both sides of the rules. The two rus: and ABT
have a small change. They set the state of theaction inM to
runningr and aborted, respectively.

The Send rule sends a message on a channel. The mapping
is updated to map the channel to the pair) wherer is the id of
the current transaction amds the sent value. The id of the sender
transaction that is saved here is retrieved lateenithe message
is received to record a dependency from the recéivihe sender.

In CMT, each channel can hold a single value, while

Operational Semantics

between

The semantics in Figure 4 supports transactiontsctra send
and receive. It is straightforward to extend thmantics to allow
code executing outside transactions to send armivieec

The cMT rule encodes the collective commitment of a cluste
A set of transactions are committed if they satisfy following
two conditions.

To respect dependencies, the first condition ist thaly
transactions of clusters are committed where Clustdefined as
follows. A set of transactions that have reached éhd of their
atomic blocks (called terminated) is a clusteraiffy unresolved
dependencies of them are to each other. The trémssithat are
considered in theMT rule have already reached the end of their
atomic blocks. It is checked that their dependeneaie either to
other transactions of the set or to committed &atsns.

It is notable why the following simple commitmergnglition
is not used instead: a transaction that has reattteeénd of its
atomic block is committed only if all its dependezscare already
resolved. It is straightforward that this conditidinectly translates
to communication safety. But it can lead to deaklloEor
example, if two transactions receive messages feaoh other,

they are interdependent. As mentioned for the elawipSection
2, if each transaction in a dependency cycle dhlisfy waits until
its dependencies are resolved, it may wait forelrerclassical
distributed transactions [18][3], all receives happat the
beginning of sub-transactions. Therefore, the dépecies form a
tree and hierarchical commit and two phase commutopol
(2PC) can be employed. In CMT receives can happethé
middle of transactions; thus, the dependenciesrcgeneral form
a cyclic graph. A commitment condition is needeat tjuarantees
communication safety and also allows
transactions with cyclic dependencies. It is alstable that in
contrast to edges in DB read-write dependence gr@®hthat
represent serialization precedence of source to $irek
transaction, edges in the message dependence greyptesent
commit dependence of source to the sink transacliba former
cannot be cyclic but the latter can.

The second condition is the moverness of transactal the
cluster with respect to each other. In the basioroi rule, the
moverness condition was that methods of the conmyitt
transaction are right movers with respect to methodl the
recently committed transactions. In addition td tha we commit
a set of transactions, we need to check that tiseam order of
them where methods of each transaction in the caderright
movers with respect to method of earlier transastio the order.
(Note that this order is not necessarily the caosdér of sends
and receives.) If the conditions are met, the Idogk of the
transactions are applied to the shared store, dbal logs are
stored in the shared log witfresh ids, and the state of the
transactions are set to committeih M.

4.3. Properties
4.3.1. Opacity

The semantics of Figure 4 extends the semanti€sgofre 3 with
communication semantics while preserving the opaaif
transactions. This enables programmers to reasmailyfoabout
the consistency of data in each atomic block.

THEOREM 2 (Opacity). Every sequence of labelgr, beg),
(r,0.m), (t,abt) and (r,cmt) given by — started fromcConf, is
opaque.

High-level proof idea: Please refer to the technieport [17]
section 10.1 for the formalization and the prod (2ages). We
reduce opacity for CMT to opacity for the semantitSection 3.
We show that for every sequenceof labels(z,beg), (t,0.m),
(t,abt) and(z, cmt) that can be obtained from transitions-afthere

is a sequence of transitions-ef that yield a sequence of labels
that is the same dsother than addition of calls to a definite new
object. By HEOREM 1, L’ is opaque. We show that removing all
calls to an object from a sequence of labels pvesebpaqueness
of the sequence. Therefore,[Ass opaquel is opaquem

4.3.2.

Assume that a transactior, receives a message that is
tentatively sent by another transactiqnReceivingm and using
its value is a part of the computationf Therefore, validity of
the computation of, relies on validity ofn. If z, finally aborts,m
becomes invalid and, should be prevented from committing.
This means that the receiving transactiprshould not commit
before the sending transactiaf is committed. The notion is
formalized as the following correctness condition:

Communication Safety

commitment of

DerFINITION 1 (Communication). The communication relation
for an execution is the set of receiver and setrdesaction pairs
in the execution.

Suppose&xec = Conf, kLt Conf; 5. Conf,,. We define
Comm(Exec) ={t, ~1s| 3i,j,ch: 0<i<j<n,
l; = (15, ch send), l; = (t,, ch receive)
Vk: (i <k <j) = (Vu: i # (z,chsend))}
Intuitively, 7, is the last sender arh beforer, receives.

DeriNITION 2 (Unsafe execution) A configuration Conf, can
execute to an unsafe configuration iff there i®recution

1 [P
Exec = Conf, > Conf, - ...— Conf,, where
Conf, =(Ty, Oshy fsh-,, “ M, - Cp - Dy,
A1, 7 M, (r,)=c¢

T, ™~ 1, € Comm(Exec)

M, (t5) # ¢

THEOREM 3: Communication Safety: An initial configuration
Conf, cannot execute to an unsafe configuration.

Please refer to the technical report [17] sectiOr2 for the proof
(16 pages).

High level proof idea: The first step is to prave= Comm(Exec)
and thereby show that all memberscofnm(Exec) stem from the
Receive rule. Next we prove that when receives a message from
5, T, IS running, and we notice that tReceive rule adds, ~ t,
to Comm(Exec). Later in the executior;, may want to commit,
and now ther, ~ 7, in Comm(Exec) forces thecMT rule to ensure
thatz, only commits if either, has already committed, ey and
7, commit together as members of the same clwster.

Our notion of communication safety generalizes membness
criterion in [8]; let us explain why. Both TE andETor ML
support synchronous message passing. A
nondeterministic semantics “defines the set of amirr
transactions”. In the high-level semantics, a sbtstarting
transactions are stepped as follows: if there sequence of sub-
steps that can match all the sends and receivibe dfansactions
to each other, the transactions are committed hegdah single
step. A low-level semantics is also defined thatctes stepping
of the search threads that find the matching. firved that the
low-level semantics complies with the high-leveinsatics. This
essentially means that if a set of transactioncanemitted in the
low-level semantics, each of them has communicatéth
transactions that are also committed at the same.tiOur
approach supports asynchronous messages. Whemsadtian
sends a message, the message is enqueued in theentec
channel. Therefore, when a transaction is committthere may
not be matched receivers for the messages thasitsknt but
definite senders have sent the messages that itrduasved.
Therefore, communication safety defines the coouithat sender
transactions are committed.

5. Implementation

We will now explain how we have implemented thecahls in
Section 4 as the core functionality of a Scala [#&jary called
Transactors. Transactors integrate features of ho#tmory
transactions and actors. A transactor is an alistnathat consists
of a thread and a channel that is called its maildomailbox is
essentially a queue that can hold an arbitrary rurabmessages.
Similar to the actor semantics [2], the messagdsemmailbox are
unordered. The thread of a transactor can perfbemfdllowing
operations both outside and inside transactiorading from and

high-level

Transactor Transactor Transactor Transactor
1 7, Descriptor 7, Descriptor 4 ’l 7, Descriptor
State r State r Tz, Descritor State 0|7
DependedSet || DependedSet | | State T DependedSet | " |
Notifiables | | Notifiables || DependedSet || Notifiables
[Mailbox (of Transacto) Notifiables | — Mailbox (of Transactc,)
Cell 4
Message v
SenderTrar \
I Cell
]] Message v
Figure 7. Sending SenderTrar =

writing to shared memory and also sending messtmegher
transactors and receiving messages from its mailbox

Recall that the starting point for Section 4 wast®e 3 with
its semantics of memory transactions. Similarlg starting point
for our implementation of the semantics in Sectibris TL2,
which implements Section 3's semantics of memagsactions.
We explain how we have extended TL2 with an impletaigon
of the new concepts in Section 4. In particular, wi explain
about data structures that are built when messagesent and
received, the mechanism that notifies waiting taatisns, cluster
search and collective commit. (Our technique carkvior other
implementations of the semantics in Section 3 aB. Wwe the
technical report [17] section 13 we will explainvhave have
extended the implementation of DSTM2 in much theesavay as
we extended TL2. The pseudo codes of these two
implementations can be found in the technical refiaf] sections
12 and 14.)

In TL2, all memory locations are augmented witloeklthat
contains a version number. Transactions start agling a global
version-clock. Every read location is validatediagiathis clock
and added to the read-set. Written location-vakiespare added
to the write-set. At commit, locks of locationsthe write-set are
acquired, the global version-clock is incremented the read-set
is validated. Then the memory locations are updaftid the new
global version-clock value and the locks are reddas

In the implementation of transactors, the read awnie
procedures remain unchanged. As will be explainesubsection
for the implementation of theMT rule, we adapt the commit
procedure to perform collective commitment of astdu.

Each transaction has a descriptor that is a datatste that
stores information regarding that transaction. Tinirmation
includes the state of the transaction and a settilds references
to descriptors of depended transactions. Transectbange state
as shown in Figure 5. Compared to the semanti€eation 4, the
possible states of a transaction also include tetad. A
transaction is terminated if it has reached the ehds atomic
block and is not committed or aborted yet. The daation
descriptor also contains a set of notifiables amdeasage backup
set that will be explained as we proceed.

In terms ofm andD from the semanti¢she descriptor of each
transactionr stores its state\r(z), and a set that holds references
to descriptors of each’ that t ~ 7' € D. The mailboxes of
transactors correspond to channelg ofhe semantics in Section
4 has seven rules. Two of those rule®b and APP, make no
changes to the transaction map, channels, and depeies. In
the following five subsections we will explain hawe implement

Running - Terminate: .

Abortec
Figure 5. State transitions of a transaction

Figure 6. Receiving
the other five rules.

5.1. Starting a Transaction

We begin with theBEG rule. The rule change® to M' = M U
{r~»r}. When a transaction is started, a new transaction
descriptor with the running states created and stored in a thread
local variable. (Later, to get the descriptor ofe tleurrent
transaction, this thread local variable is checkédhe variable
has no value, the execution is outside atomic Isloekd
otherwise, the value is the descriptor of the airteansaction.)
The global version-clock is read and the body efatomic block

is started.

5.2.

Next we consider th&end rule. The rule changes to ¢’ =
Clch » (r,v)]. When a message is being sent, a new cell
containing the message is enqueued to the mailsithe Send
rule defines, besides the message, the sendeadtanms saves a
reference to the descriptor of itself in the neW. ¢ethe recipient
transactor has been suspended inside a transdoticeceive a
message, it is resumed. If the send is being ezdcattside
transactions, a reference to a dummy transactisorig¢or that is
always committed is saved as the sender transautiohe cell
and if the recipient transactor has been suspetmlgdceive a
message (inside or outside a transaction), it isusjgended.
Figure 7 depicts relations of data structures whilmmessage is
being sent.

Next we consider theeceive rule. The rule requires that
C(ch) = (z,,v) and change® to D' = Du {z, ~1,}. When a
receive is being executed, cells of the mailbox iteeated. The
reference to the descriptor of the sender trarmaetiis obtained
from each cell. The state ef is read from its descriptor and the
state of the messageof the cell is determined according to the
state ofr;. We use the terminology that (1) if the sender is
committed, then the message is stable; and (Xefsender is
aborted, then the message is invalid. (3) if threlseis running or
terminated, then the message is tentative. As @mmgaction that
receives an invalid message should finally aboxalid messages
are dropped. This is the optimization that was meed for the
Receive rule. Thus, if the receive is being executed iesal
transaction, a stable or tentative message is nemtjt0 be taken
from the mailbox. As executions that are outsidEngactions
cannot be aborted, tentative messages can novée @i receives
that are executed outside transactions. Theredostgble message
is required for receives that are outside traneasti Cells are
iterated and any invalid message is dropped untiequired
message is found. The thread suspends if a reqme=age is
not found until one becomes available. To trackedelencies, if
the found message is tentative, a reference taléseriptor ofr

Sending and Receiving a Message

is added to the depended set of the descriptohefcurrent
transactionz,. The depended sets of descriptors constitute a
dependency graph. We say thais adjacent ta, if the descriptor

of 7, is in the depended set of the descriptor,of

Figure 6 depicts data structures and their relatiohile a
message is being received. Assume that a transagtias sent a
message that is received by another transactipnAssume that
7, IS running and, is being terminated. As. has an unresolved
dependency, it cannot be committed yet. Thereftve, thread
running z,. goes to the waiting state unt aborts or commits.
Hence, whent, is aborted or committed, it should notity.
Notification is done by notifiables. Wher. is receiving the
tentative message, the reference to the descriptor €f is
obtained from the cell that containsand a reference to the
descriptor oft, is subscribed to it as a notifiable. On abortion o
commitment of a transaction), all its registered notifiables are
notified.

When a transaction aborts, its effects should Hleddack.
The messages that it has received from its maifitmuld be put
back. Therefore, to track messages that are ratdiv@de a
transaction, when a message is being receivedcehehat the
message is obtained from is added to a backup rsehe
transaction descriptor (not shown in the figureBhe set is
iterated when the transaction is being abortedamydcell that is
not invalid is put back to the mailbox.

5.3. Abortion

Next, we consider theBT rule. The rule changesr to M’
M|[r ~ a]. A transactiorr may deterministically abort as the result
of resolution of a shared memory conflict. Wheis aborting, its
state is set to aborted in its descriptor. Any oélits backup set
that is not invalid is put back to the mailbox.dddition, to wake
up waiting transactionsy propagates abortion to dependent
transactions. Assume thiat,_, }is the set of transactions that are
dependent on and{N,_, ,} is the set of notifiables that reference
descriptors ofz,_, _}. = notifies eachv;. The notification makes
an abort event foéri if it is waiting. Finally, after notificationr
restarts its atomic block as a new transactionalurtion of each
7., the same situation recurs, i.e. each of them metifis own
notifiables. Therefore, abortion efis propagated to transactions
that are (transitively) dependent en Note that by an implicit
traversal of notifiable objects, abortion is propgl in the
reverse direction of dependencies. The traversaldavinfinite
loops by terminating at previously aborted trarisactiescriptors.

5.4.

Termination Every transaction that reaches the end of its atomi
block sets the state of its descriptor to termichaf€hen, the
cluster search is started from the descriptor cf thurrent
transaction to check if it is possible to commig tihansaction at
this time. If the cluster search succeeds in figdincluster, the
transactions of the cluster are collectively contditand the
atomic block returns successfully. Cluster seansti eollective
commit are explained in the next subsection. If cthester search
cannot find a cluster at this time, the thread magnthe
transaction goes to the waiting state. There areettuifferent
events that wake up a transaction from the wagtate:

* An Abortion event is raised when the transactionasfied of
abortion of a depended transaction. On this evéme,
transaction starts abortion as explained above.

A Dependency Resolution event: As will be explainedhe
collective commit procedure, a transaction that i
notifies all of the transactions that are dependenit about

Termination and Commitment

the dependency resolution. On this event, as andepey of
the current transaction is known to be resolvethay be able
to commit; therefore, the cluster search is retried

¢« A Commitment event is raised when the transacsamotified
of that it is committed by the cluster search aotlective
commit that is started from another transaction ti@s event,
the notifiables that are registered to the desmripof
transaction are notified of the dependency reswhutiThe
atomic block returns successfully.

Commitment Next, we consider théMT rule. The rule has the
condition that the set of transactions should beclaster
Cluster({t.—; ,},M,D) and also two moverness conditions
VTimg o V(T 00) € Lgpi T > 1y 2 £, B 4y and
VTiz1.nVTj=1.io1: fr, & £ If the rule is applied, it change® to
M' = MJz; P cli=1.n- According to the first condition, to commit a
transaction, the dependency graph should be sehfcha cluster
containing the transaction. If the cluster searattseds in finding
a cluster, the collective commit algorithm is execuon the
found cluster to check moverness conditions.

Cluster Search: A cluster is a set of terminateshdactions
whose dependencies are all to members of that slrster or to
committed transactions. A cluster search inputsemnihated
transactionr, and outputs either the smallest cluster thatainat
7, or reports that no such cluster exists, or repthatt must
abort. We are looking for the smallest cluster beeain a later
phase we will have to order them, which is a timesuming
task. The smallest cluster is necessarily a styormginnected
component (SCC) so we do cluster search with Targgorithm
[29] for identifying SSCs. The idea is to graduabixpand a
candidate set of transactions containingtil the candiate set is a
cluster or the algorithm reports that no such elssexists or that
tau must abort. Specifically, if we have a candidaet and a
dependency, ~ 7, wherer, is a member of the candidate set,
then the cluster search does a case analysis Ibf; is:
¢ Terminated: we add, to the candidate set.

Committed: we do nothing, since the dependencgsslived.
¢ Running: we report that no such cluster exists.

« Aborted: we report that must abort.

If the Tarjan algorithm finds only one SCC, a chrstontaining:
is found. On the other hand, if more than one SE®ind, the
last SCC (that containg is dependent on other SCCs. It is not a
cluster before the other SCCs commit. Thereforereport that
no such cluster exists. (If more than one SCC imdo it is still
possible to commit them. They can be committechendrder that
they are found by Tarjan algorithm. This is becatise first SCC
that is found is a cluster and also any SCC infébed sequence
will be a cluster if the SCCs before it in the seoge are
committed. But for simplicity, the current transant waits for
other SCCs to finalize.)

After the cluster search, we take one of three oasti
depending on the output. (1) if a cluster contajninis found,
then we commit all the transactions in the clugt@y;if the result
is that no such cluster exists, then we cacheittiatmation to
avoid needlessly doing the search again beforgridggh changes:
the thread running goes to the waiting state; and (3) if the result
is thatr must abort, then we abart

Although a transaction may wait after terminatiom ke
notified by other transactions, the implementatisatisfies
finalization, the progress property that we defasefollows. We
define that a transaction is finalized iff it iscated or committed.
We define that a transaction is settled iff itésninated and it is

not transitively dependent on a running transactidrhe
finalization property is that every settled trangatis eventually
finalized.

Collective Commit: To commit a set of transactiohshould
be checked that there exists an order of commitneénthe
transactions where earlier transactions in the rorde not
invalidate later transactions in the order. Thieathcorresponds
to the conditiorwr,— ,V7j=1 i-1: €7, & 2 that requires an order of
transactions where operations of later transaciiotise order are
right movers in respect to operations of earli@ansactions. In
TL2, a write to a location invalidates a read frdhe same
location. Therefore, an order is required whereefach location,
the reading transaction comes before the writinggaction. This
condition is implemented as follows. A graph ofngactions is
made where a transactiep has an edge to transactigp if the
read set of, has an intersection with the write setrgf If there
is a cycle in the graph, a desired order does xist.én this case,
the current transaction starts abortion. Otherwitsis, possible to
commit the transactions of the cluster togetherteNbat a pure
write (writing to a location without reading it) ée not conflict
with another pure write and any order of commitmisntalid for
them. The lock for each location in the write sefsall the
transactions is acquired. The global counter isemented and is
read as the write version. The read set of eacfsadion in the
cluster is validated. This validation corresponadlghe condition
VTimg o V(T L) € £t > 1; 2 £, & £, If one of the locks
cannot be acquired or a read set is not validetesl,acquired
locks are released and the current transaction bisrted.
Otherwise, collective commit can be done. The wsiéés of the
transactions are written to memory with the wrigrsion. The
acquired locks are released. The state of the igemciof each
transaction is set to committed. Each transactiberathant is
notified of commitment. This notification makes ar@mitment
event. Each transaction that is committed sendserdigmcy
resolution notification to all notifiablegv;_, ,} that are registered
to its descriptor. Eachv; references a receiving transactign.
The notification makes a Dependency Resolution efam, ., if
it is waiting. When a transaction is committed, thessages that
it has sent become stable. Therefore, they canebeived by
receives that are executed outside transactionsh Eansaction
that is committed desuspends the transactors thaas sent a
message to and are suspended on receives thategrgesl out of
transactions.

6. Experimental Results
6.1.

We experiment with three benchmarks: A server berack and
two benchmarks from STAMP [23]. We adopt the Server
benchmark that is independently explained by [28] the
Vacation Reservation, by [14] as the Server Loopgm@mming
idiom and by [21] as the Job Handling system. Areethread
handles requests from client threads. Each reqnestld appear
to be handled atomically i.e. the handling codehef server is a
transaction. In addition, the request of the cligmead may be
sent inside a transaction. The transaction of entlinay request
the service multiple times. We experiment with tiwstances of
this benchmark.

The service can simply be provision of unique id4][A
generic function gerverLoop) is offered in [14] to create
servers. Employing Transactors, we provide a genetass
(Server) that can be extended to create servers. The psmde
of Server can be found in the technical report [17] secti&.
We compare the message passing performance of woor t

Benchmarks and Platform

implementations of Transactors with the implemeatetf TE for

ML on a Server instance that generates uniqueTidshe best of
our knowledge, TE for ML is the closest semantidthvgimilar

goals. (We programmed and tried to conduct compasison
other cases such as barrier, but the implementafidrE for ML

took a very long time or deadlocked on these cpses.

As a tangible application of this programming idiozonsider
a web application with two tiers: the applicatiagit tier and the
database tier. The system may be organized suthséparate
threads run the two tiers. The case study in [4w&d that to
speed up handling future requests, the applicdtigit tier may
cache some of the data that it sends to the daatiers The
application tier updates the cached data in tha siatictures and
the database tier updates the data in the databBdkeugh the
updates are performed by different threads, theulshbe done
atomically; either both or none should be seenthgmthreads.

We adopt the method suggested by [4] to unify mgnaord
database transactions. The approach benefits famdlérs that
are registered to be run at different points of trensaction
lifecycle. We extended our library to support régison of
handlers for both of the implementations. We experit with the
authorship database scheme from [4]. We considerting a new
paper info including its authors. Using our libramye define
application logic transactor and database senarséctor. The
application logic transactor starts a transacteemnds an update
request to the database server transactor, perfopaistes to the
data structures and finishes the transaction afeeiving an
acknowledge message from the database server dtansdpon
receipt of a request, the database server tramsamtecutes a
transaction comprised of queries to update datthéndatabase
and sends back an acknowledge message. The twsadteoms
are interdependent and are collectively commit{dthte that if
writing to the database is only to maintain a loglater accesses,
the application logic transactor does not need #it Vior the
acknowledge message. In this case, only the daabassaction
is dependent on the application logic transactiwh therefore, the
application logic transaction can commit before thatabase
transaction is done.) We study the overhead oft@lusearch and
collective commit on this case.

To study the overhead of transactions supported
Transactors over pure transactions, we have adoidtedans
clustering and Genome sequencing benchmarks frerStdnford
transactional benchmark suite [23] and have progradhthem in
Scala using our Transaction and Transactors |gsari

The experiments are done on Intel(R) Core(TM)2 @RU
T7250 @2.00GHz and Linux 2.6.31-21-generic #59-Ubun
Scala version is 2.7.7 final (Java HotSpot(TM) &ervVM, Java
1.6.0_17). TE for ML patch is on OCaml 3.08.1. MyS@ersion
is 14.14 distribution 5.1.41. The database conmestdMySQL
Connector/J v.5.1.13. All the reported numbersadter warmup
and are averages of results from repeated expesmaihthe raw
numbers are available in the technical report Eection 16.

by

6.2.

Message Passing Performance The first experiment compares
the performance of the unique id generator semvefransactors
and in TE for ML over different number of repetii® of the
client transaction. The same thread repeats tkatdiansaction.
(New threads are not launched for each repetition.)this
experiment, the number of requests of the clieatdaction is
constant (equal to 2). Performance ratio represetfits
performance of Transactors divided by the perforraanf TE for
ML. The two lines in Figure 8 show the performamago of the

Measurements

20

—e— Xactors(DSTM2)/TEML

100
2
® 80
e« W
g 60
o
& 4 e
° /—/
S 20 — /.——-/
7] -
a 0 T T T T T T T T T T T T]
o (@) o o o o o o o o o o o o
o o [e)} o~ wn 0 — < ~ o o (Yo} [*)} o
— - i o~ (o] o~ (32} [a2] (a2} o <
Client Iteration Count

—=s— Xactors(TL2)/TEML

Figure 8. Server — Performance over Client Iteratio Count

1200
1000 »
800 /
600
400

200
0 * T T = T |

Performance Ratio

1 2 3 4
Service Request Count Per Client Transaction
—&— Xactors(DSTM2)/TEML —e— Xactors(TL2)/TEML

Figure 9. Server — Performance over Service RequeSbunt

two implementations of Transactors over the impletaton of
TE for ML. The performance ratio increases with thenber of
client iterations.

The second experiment compares the performancehef t
server case over different number of requests ef dhent
transaction. In this experiment, the number of tiépas of the
client transaction is constant (equal to 40). Féglrshows the
performance ratio of each of the implementationg @nsactors
over the implementation of TE for ML. As the numioérequests
increase, the performance ratio grows fast. (The twrves
overlap at this scale.)

Overhead of Cluster Search and Collective Commit In this

experiment, the application logic transactor maigahe set of
papers and the map of each author to her set ddrpap/pon

addition of a new paper, the application logic s@tor updates
the papers set and the author-to-papers map. Thebade
transactor inserts a row to the Paper table, desunique id
assigned to the paper and for each author, ingertsv to the
PaperAuthor table. We measure the time of the egipdin logic

transaction for insertion of a paper with four awth Table 1
shows the percent of time that is spent in thetetusearch and
collective commit procedures.

Overhead over Pure Transactions Atomic blocks of
Transactors provide opacity just like atomic bloadk basic
memory transactions. Therefore, Transactors can ubed
wherever basic transactions are used. But as Totmmsasupport
communication, there is an overhead. We studydhéhead on
Kmeans clustering and Genome sequencing benchntzakh. of

Table 1. Percent of Total Time Spent in Cluster Seeh and
Collective Commit

Cluster Search Collective Comm|t

Xactors (DSTM2

25

8.€

Xactors (TL2)

3.6

19.3

xR

3 15

g 10

<

E ST "

© o . : : : .
5000 10000 15000 20000 25000 30000

Point Count

—— Xactors(DSTM2)/DSTM2 ~ —s— Xactors(TL2)/TL2
Figure 10. Kmeans Clustering — Performance Overhead

- 20

°g 15

o 10

£ — r——, —*

g 5 ——

o o0 T T T T T !
1000 2000 3000 4000 5000 6000

Segment Count

—e— Xactors(DSTM2)/DSTM2 —s— Xactors(TL2)/TL2
Figure 11. Genome Sequencing — Performance Overhead

our implementations of Transactors is based omgteimentation
of memory transactions. We compare the performariceach
implementation of Transactors over the implemeotatdf the
memory transactions that it is based on. The pmdoce
overhead for the Kmeans and Genome cases overediffanput
sizes is shown respectively in Figure 10 and Figute The
experiments show that the overhead is below tecepér

6.3.

Message Passing Performance In the first experiment, the
performance ratio increases with the number ofntliterations.
This is because Transactors use a constant nurfilereads. On
the other hand in TE for ML, to support the comphetss
property, when a thread receives on a channelyewessage that
has been sent to the channel should be tried bgralsthread. As
the messages that are sent to a channel incréesaumber of
search threads for a receive statement increasdsafBacts
performance.

In the second experiment, in the executions withemmequests
in the client transaction, more messages are sethe server
channel. As mentioned for the first experiment,Tia for ML,
increase in the number of messages that are seatctwannel
affects performance of receive statements on thanrah.
Furthermore, for clients that send more requestgrem

Assessment

chooseEvt statements are executed at the server thread. The

number of search threads that reaathaoseEvt statement are
doubled to try each branch. In effect, the expdaenumber of
search threads aggravates the performance of THlLfor

As mentioned before, TE for ML is inherently inefént as its
semantics requires finding the successful matchihigh is NP-
hard. The measurements indicate that Transactoxsder up to a
thousand times faster communication than TE for ML.

Overhead of Cluster Search and Collective Commit The
overhead in the implementation based on DSTM?2 latively
low. The overhead of the collective commit procedim the
implementation based on TL2 is relatively high doethe time
consuming procedure of checking existence of anerorof
commitment that respects moverness. This procedutiee hot
spot to be optimized.

Overhead over Pure Transactions In our implementations,
special care is devoted to optimization of the pditfat are passed
by transactions that do not send or receive messagke

measurements suggest that Transactors add lesdetiharercent
overhead to non-communicating transactions.

7. Conclusion

This paper presents CMT that defines the semantts
transactional communication. The usefulness of G&3hown by
expressing three fundamental communication ididiris. proved
that the semantics satisfies opacity and communicatafety.
The semantics is implemented on top of two implematéons of
memory transactions. The experiments show that
implementations provide considerably efficient commigation
and add low overhead to non-communicating transasti

8. References

[1] Abadi, M., Birrell, A., Harris, T., and Isard, MO@8. Semantics of
transactional memory and automatic mutual exclus®IGPLAN
Not. 43, 1 (Jan. 2008), 63-74.

[2] Agha, Gul A. ACTORS: A Model of Concurrent Compigat in
Distributed Systems. MIT Press, Cambridge, Masssetis; 1986.

[3] Aguilera, M. K., Merchant, A., Shah, M., Veitch, ,Aand
Karamanolis, C. 2007. Sinfonia: a new paradigm wilding
scalable distributed systems. In Proc. of SOSP189-174.

[4] Dias, R. J. and Lourenco, J. M.. 2009. Unifying riveey and
Database Transactions. In Proc. of Euro-Par '09

[5] Dice, D., Shalev O., and Shavit N. Transactionakilog II. In
DISC'06, volume 4167 of Lecture Notes in ComputetieSce.
Springer, 2006.

[6] Donnelly, K. and Fluet, M. 2008. Transactional eged. Functional
Programming. 18, 5-6 (Sep. 2008), 649-706.

[7] Dudnik P. and Swift, M. M. Condition Variables afidcansactional
Memory: Problem or Opportunity? In Proc. of TRANSRQ9.

[8] Effinger-Dean, L., Kehrt, M., and Grossman, D. 200&nsactional
events for ML. In Proc. of ICFP '08. 103-114.

[9] Gray J. Reuter A. 1992. Transaction Processing:c€uts and
Techniques (1st ed.). Morgan Kaufmann Publishers., Iifan
Francisco, CA, USA.

[10] Guerraoui, R. and Kapalka, M. 2008. On the coresgn of
transactional memory. In Proc. of PPoPP '08. 175-18

[11] Harris, T. and Fraser, K. 2003. Language suppartlifintweight
transactions. SIGPLAN Not. 38, 11 (Nov. 2003), 382

[12] Harris, T., Marlow, S., Peyton-Jones, S., and HgrliM. 2005.
Composable memory transactions. In Proc. of PP@®R8-60.

[13] Herlihy, M., Luchangco, V., and Moir, M. 2006. Aeflible
framework for implementing software transactionaémory. In
Proc. of OOPSLA '06. 253-262.

[14] Kehrt, M., Effinger-Dean L., Schmitz M., Grossman. D
Programming Idioms for Transactional Events. PLACEBS9.

[15] Koskinen, E., Parkinson, M., and Herlihy, M. 20T0barse-grained
transactions. In Proc. of POPL '10. 19-30.

[16] Lampson, B. W. and Redell, D. D. 1980. Experiengé wrocesses
and monitors in Mesa. Commun. ACM 23, 2 (Feb. 19805-117.

[17] Lesani, M. and Palsberg J. Communicating Memory3aations.
Technical report, 2010.
http://www.cs.ucla.edu/~lesani/papers/CommMemT gaifs.

[18] Lipton, R. J. 1975. Reduction: a method of provjmgperties of
parallel programs. Commun. ACM 18, 12 (Dec. 197%);-721.

[19] Liskov, B. 1988. Distributed programming in Argu€ommun.
ACM 31, 3 (Mar. 1988), 300-312.

[20] Luchangco, V. and Marathe, V. J. Transaction Syowizers. In
Proc. of SCOOL'05.

[21] Luchangco, V. and Marathe, V. J. You are not aldmeaking
transaction isolation. In Proc. of IWMSE '10. 50-53

[22] Luchangco, V. and Marathe, V. J. Transaction Conicators:
Enabling Cooperation Among Concurrent Transactiéms$?roc. of
PPoPP’11.

[23] Minh, C. C., Chung, J., Kozyrakis, C., Olukotun RBTAMP:
Stanford Transactional Applications for Multi-Preseg. In Proc.
of IISWC '08.

[24] Moore, K. F. and Grossman, D. 2008. High-level $stap
operational semantics for transactions. In Pro®@PL '08. 51-62.

the [25] Odersky, M. The Scala Language Specification. 2@t6gramming

Methods Laboratory. EPFL.

[26] Reppy, J. H. 1999 Concurrent Programming in ML. Gddge
University Press.

[27] Scott, M. L. Sequential specification of transastb memory
semantics. In Proc. of TRANSACT'06.

[28] Smaragdakis, Y., Kay, A., Behrends, R., and Youli, 2007.
Transactions with isolation and cooperation. IncPaf OOPSLA
'07. 191-210.

[29] Tarjan, Robert, 1971. Depth-first search and linear tgrap
algorithms.In Proc. of thel2th Annual Symposium on Switching
and Automata Theorfd3-15 Oct. 1971)114-121.

[30] ziarek, L., Schatz, P., and Jagannathan, S. 20@iligers: a
modular checkpointing abstraction for concurrentnctional
programs. In Proc. of ICFP '06. 136-147.

9. Appendix

The semantics uses a notion of right moverness tHi&] we
define here. Let denote all the possible states of the stgfe
Let R denote the set of registers. For eachR, let M, =
{read, write} denote the set of methodswofForr € R, g,,0, €

andm € M,., leto; s g, denote the state transition framto o,
by callingm onr that returns value. Right moverness is defined
as follows:
Vry,r, € 0,my € M, ,m, € M,
.My & 1,.m, = V0y,0,,03,0, €L
Ve T1my V2 < T2.mz 77{ “«rimg
(01 — o0, and o, — 0, —>a4) = = v{))

According to the above definition, the right mowesa
relations are:

Vry, T, € R,my,m, € Mg: (1, # 1) = (r;.my > 1,.my)
r.read > r.read

r.write &> r.read

r.write © r.write

Note thatr.read = r.write iS not correct.

Now we define right moverness for sequences of atetialls
Let | denote a sequence of method calls on refiste(that is
l=v, «1.my,..,v, «1,.m,). Letl, :: I, denote the concatenation
of the two sequencds andl,. Let([i] denote theth method call
in the sequence Let [[1..i] denote the sequence of the first
method calls in the sequenteLet o, - o, denote multiple step
transitions by. That is ifl = v; « r;.my, ..., v, < 1,.m,, then

L

V€T my VneTnMy . . .
0, > 0, © 6, —— 03 ...0,_; — a,,. Lifted right moverness is
defined as follows: If; = v, « r,.m, ..., v, < r,.m, andl, are two
sequences of methods then
;5 1, =Vi=1..n:V0y,0,,03,04,05 € L
I l[1.i-1] V{eri.mi

Oy — Us) = (v = V{))

11[1.i-1] vierim;
0, —— 0, —— gz and 0,

Note that althoughr.read = r.write is not correct,

r.write,r.read S r.write is correct.

