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Jones-Optimal Partial Evaluation by Specialization-Safe
Normalization

MATT BROWN, University of California Los Angeles, USA
JENS PALSBERG, University of California Los Angeles, USA

We present partial evaluation by specialization-safe normalization, a novel partial evaluation technique that
is Jones-optimal, that can be self-applied to achieve the Futamura projections and that can be type-checked
to ensure it always generates code with the correct type. Jones-optimality is the gold-standard for nontrivial
partial evaluation and guarantees that a specializer can remove an entire layer of interpretation. We achieve
Jones-optimality by using a novel affine-variable static analysis that directs specialization-safe normalization
to always decrease a program’s runtime.

We demonstrate the robustness of our approach by showing Jones-optimality in a variety of settings. We
have formally proved that our partial evaluator is Jones-optimal for call-by-value reduction, and we have
experimentally shown that it is Jones-optimal for call-by-value, normal-order, and memoized normal-order.
Each of our experiments tests Jones-optimality with three different self-interpreters.

We implemented our partial evaluator in Fµiω , a recent language for typed self-applicablemeta-programming.
It is the first Jones-optimal and self-applicable partial evaluator whose type guarantees that it always gener-
ates type-correct code.
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1 INTRODUCTION
A partial evaluator implements Kleene’s s-m-n theorem. Given a program and specific values for
some of its inputs, a partial evaluator generates a version of the program specialized to those
inputs. When given the remaining inputs, the specialized program computes the same result as
the original when given all the inputs at once. The goal of partial evaluation is to do some of
the computation ahead of time, so that the specialized program runs faster than the original. Re-
searchers have developed partial evaluators for Scheme [Bondorf and Danvy 1991], C [Andersen
1992], and many others. Researchers have also shown how to self-apply partial evaluators and
generate the Futamura projections [Jones et al. 1985], which can be used to compile programs and
generate compilers and compiler-generators. Finally, researchers have developed Jones-optimal
partial evaluators, that is, they can specialize away the overhead of an interpreter.
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What is the type of a partial evaluator? In 1993, Jones, Gomard, and Sestoft [Jones et al. 1993,
Section 16.2] suggested the following polymorphic type:

∀A:∗. ∀B:∗. Exp (A → B) → A → Exp B

Here, Exp (A → B) is the type of a representation of a program with type A → B. This technique
is called typed representation. Implementing a partial evaluator that operates on typed represen-
tations guarantees that it always generates well-typed code of the correct type. Jones, Gomard,
and Sestoft showed that the above type supports self-application and the Futamura projections.
However, the challenge to define a partial evaluator with that type has remained open. Carette,
Kiselyov, and Shan [Carette et al. 2009] implemented a partial evaluator with the closely related
type that provides the same guarantee:

∀A:∗. ∀B:∗. Exp (A → B) → Exp A → Exp B

Their partial evaluator cannot be self-applied and comes with no claim about Jones optimality.
In this paper we present a partial evaluator with the latter type, the first self-applicable partial
evaluator that operates on typed representations, supports the Futamura projections, and is Jones
optimal.
Our starting point is Mogensen’s partial evaluator [Mogensen 1995] for the untyped lambda-

calculus. He used reduction to β-normal form as the basis for his partial evaluator, a technique we
call specialization by normalization. A key to supporting the Futamura projections using special-
ization by normalization is that the partial evaluator itself must have a β-normal form. Mogensen
showed this is possible by using Church-encoding to represent λ-terms.
Our first step is to observe that Mogensen’s partial evaluator is not Jones optimal for reduc-

tion strategies with sharing – where the work of reducing a value bound to a variable is done
at most once, either up front or on demand, regardless of how many times that variable is refer-
enced. Such reduction strategies (e.g. call-by-value, call-by-need/lazy) are more commonly used
in practice than those without sharing (e.g. call-by-name), because sharing provides significantly
better performance. The problem with Mogensen’s partial evaluator is that β-normalization is too
aggressive for strategies with sharing; it duplicates work that could have been shared, resulting
in specialized programs that are slower than the original. Our solution is to define a subset of
β-reduction that is specialization-safe – that doesn’t duplicate work and never causes a slowdown.
Specialization-safe reduction relies on a novel affine-variable analysis that is used to identify the
β-redexes in that safe subset.
Our partial evaluator modifies Mogensen’s specialization by normalization technique to use

specialization-safe reduction. Like Mogensen’s partial evaluator, ours has a β-normal form, so it
supports the Futamura projections. However, ours never causes a slowdown and is Jones optimal.
Jones optimality is defined in terms of a fixed self-interpreter and a fixed reduction strategy.

Given the variety of reduction strategies used in practice, and the many ways to write a self-
interpreter, there are many different instances of Jones optimality to consider. Our partial evalua-
tor is the first to be Jones optimal for three different self-interpreters combined with three different
reduction strategies. Each self-interpreter operates on a different style of representation, and has
a different amount of interpretational overhead. The representation techniques we consider are
tagless-final higher-order abstract syntax (HOAS), Mogensen-Scott HOAS, and a tagless-final rep-
resentation with deBruijn indices.
We apply our techniques to untyped λ-calculus and to a typed λ-calculus Fµiω that supports

self-applicable meta-programming. For untyped λ-calculus, we prove that partial evaluation by
specialization-safe normalization is Jones optimal for each self-interpreter under call-by-value re-
duction. For Fµiω , we experimentally verify Jones optimality for each interpreter and each of call-
by-value, normal-order, and memoized normal-order reduction, as indicated by the Xs in Table 1.
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Reduction Tagless-final HOAS Mogensen-Scott HOAS Tagless-final deBruijn
Call-by-value X

√
X X

Normal order X X X
Memoized normal order X X X
Table 1. Experimental (X) and formal (

√
) verification of Jones optimality of our Fµiω partial evaluator.

The
√

indicates that we have also formally proved Jones optimality for the tagless-final HOAS
interpreter and call-by-value reduction.
An appendix containing proofs of the theorems stated in this paper is available from our web-

site [Brown and Palsberg 2018]. We also provide our software artifact that includes implementa-
tions of Fµiω and its self-interpreters and partial evaluator, as well as instructions for reproducing
our experimental results.

Rest of the paper. In Section 2, we review Mogensen’s partial evaluator for untyped λ-calculus
and demonstrate that it is not Jones optimal. In Section 3, we introduce our key notion of a
specialization-safe reduction relation. In Section 4, we present a specialization-safe reduction that
operates on untyped λ-terms with affine variable annotations. In Section 5, we discuss partial eval-
uation by specialization-safe normalization, and prove it Jones optimal for three self-interpreters.
In Section 6, we present our typed self-applicable partial evaluator for Fµiω and the typed Futamura
projections. In Section 7, we discuss our experimental results, and in Section 8 we discuss related
work.

2 PARTIAL EVALUATION AND JONES OPTIMALITY
A partial evaluator is a meta-program that specializes another program to some of its inputs.When
given the remaining inputs, the specialized program will compute the same result as running the
original program on all the inputs. Kleene’s s-m-n theorem established that such a specialization
process is possible, and since then partial evaluation has been established as a practical technique
for program optimization and automatic program generation.
We will define partial evaluation as the specialization of a two-input function to its first input

(corresponding to the s-1-1 instance of s-m-n).

Definition 2.1 (Partial Evaluation). mix is a partial evaluator if for every program p and input x,
there exists a specialized program px such that:
(1) If mix p x has a β-normal form, that normal form is px
(2) ∀y. px y ≡β p x y

The notation p denotes the representation of p according to some fixed representation scheme.
The first condition indicates that the partial evaluator may not be total: specialization may not ter-
minate.When it does terminate, however, it outputs the representation of a specialized program px.
The second condition is the correctness condition for the specialized program px: it must have the
same behavior as p x on all inputs y. The definition naturally extends to other numbers of inputs.
The inputs to which the program is specialized are often called “static” and the remaining inputs
“dynamic”. The static inputs are given as representations because they may become part of the
output program representation. This is necessary for a λ-calculus without constants [Launchbury
1991].

Futamura projections. A partial evaluator is self-applicable if it can specialize itself. A classical
application of a self-applicable partial evaluator is to generate the Futamura projections, which
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Description Definition Correctness Specification
1. Compile S-program to T mix int s ≡β t ∀x. t x ≡β int s x

2. Generate an S-to-T compiler mix mix int ≡β comp ∀s. comp s ≡β mix int s

3. Generate a compiler-generator mix mix mix ≡β cogen ∀int. cogen int ≡β mix mix int

4. Self-generation of cogen cogen mix ≡β cogen

Fig. 1. The four Futamura projections for λ-calculus.

mix f d ≡β NFβ(f d)

Fig. 2. Mogensen’s Specialization by Normalization

use specialization to compile programs and generates compilers and compiler-generators [Futa-
mura 1999]. The four Futamura projections are shown in Figure 1. For each projection we list a
correctness specification implied by the correctness of mix. The first Futamura projection com-
piles programs from a source language S to a target language T by specializing an S-interpreter
programmed in T . Given any input to the program, the target program gives the same result as
interpreting the source program. The second projection generates a compiler from S-programs to
T -programs by specializing the partial evaluator mix to the interpreter. Given any program, the
compiler gives the same result as the first projection. The third projection generates a compiler-
generator by specializing mix to itself. Given any interpreter, the compiler-generator gives the
same result as the second projection. Futamura only discussed these three Futamura projections.
Subsequently Glück [Glück 2009] showed that there are more. In particular, the fourth projection
demonstates that the compiler-generator cogen can generate itself when applied to mix. This is
sometimes called the “mixpoint”.
The twice-overlined terms in the Futamura projections are representations of representations.

These double-representations arise because mix requires its static input to be represented, as we
mentioned above.

Jones-optimality. Jones-optimality is the gold-standard for showing a partial evaluator can per-
form a significant amount of specialization. The definition of Jones-optimality specializes a self-
interpreter as a benchmark for partial evaluation.

Definition 2.2. A term u is a self-interpreter for a representation scheme · if for any term p, we
have u p ≡β p.

A partial evaluator is Jones-optimal if it can specialize away all the computational overhead
caused by self-interpretation. More precisely, specializing a self-interpreter to a program should
generate a program that is no slower than the original program – on any input.
The canonical definition of Jones optimality is from Jones, Gomard and Sestoft [Jones et al. 1993,

pg. 139]. We restate it for our context of λ-calculus and using our notation:

Definition 2.3 (Jones-optimality). A partial evaluator mix is Jones-optimal with respect to time
and a self-interpreter u if, for any terms p : A → B and d : A, time (p′ d) ≤ time (p d), where
mix u p ≡β p′.

Jones optimality is defined in terms of a particular fixed time function and self-interpreter u.
Since different notions of time may bemost appropriate for different settings, and because there are
different ways of implementing a self-interpreter (and different ways of representing programs) for
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(λx.e)v → e[x:=v]
e1 → e1′

e1 e2 → e1′ e2
e1 → e1′

(λx.e)e1 → (λx.e)e1′

Fig. 3. Call-by-value reduction.

x � x

e � q

λx.e � abs (λx.q)

e1 � q1 e2 � q2
e1 e2 � app q1 q2

e � q

e = λabs. λapp. q

u = λe. e (λx.x) (λx.x)

Fig. 4. Mogensen’s Church-encoded representation and self-interpreter for untyped λ-calculus.

a single language, we can consider multiple notions of Jones optimality. We will always explicitly
state which time function and self-interpreter is under consideration. In this section, we focus on
steps of call-by-value (CBV) reduction to a value as our notion of time . Call-by-value reduction is
defined in Figure 3.

Definition 2.4. timecbv (e) = n if and only if e →n v for some value v.

Mogensen [Mogensen 1995] implemented a self-applicable partial evaluator for untyped λ-calculus
by reducing terms to β-normal form, a technique we call “specialization by normalization”. With
this approach, specializing a program f to an input x returns NFβ(f x), the β-normal form of f x.
One problem with specialization by normalization is that not all terms have a normal form, which
leads to non-termination of the partial evaluator: if f x has no normal form, then specializing f
to x will not terminate. In particular, if the self-interpreter u and the partial evaluator mix are not
strongly normalizing terms, then the Futamura projections will not terminate. Mogensen solved
this problem by using a representation based on Church-encoding, for which a strongly normaliz-
ing self-interpreter and normalizer can be defined. The partial evaluator is self-applicable and the
Futamura projections terminate.
Mogensen’s Church-encoding representation and self-interpreter are shown in Figure 4. A rep-

resentation is built in two steps: first, the pre-quoter � applies designated variables abs and app
throughout the term, at each λ-abstraction and application respectively. We assume abs and app
do not occur in the term, which can be ensured by renaming variables. The quoter · simply ab-
stracts over abs and app in the pre-quoted term. This formulation of Church encoding produces
representations in β-normal form. It is possible to define quotation as a single function (without a
pre-quoter), but the representations produced would not be β-normal.
Mogensen’s self-interpreter u is instantiates both abs and app to identity functions, resulting in

a term that is β-equivalent to e. The self-interpreter u is β-normal. While Mogensen’s normalizer
is significantly more complex than his self-interpreter, it is also strongly normalizing.
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ni = λs.λz.si z
succ = λn.λs.λz.s (n s z)

plus = λn.λm.n succ m
times = λn.λm.n (plus m) n0
square = λn.times n n

f = λx.λy.times x (square y)
g = f n2

Fig. 5. An implementation of д(x ) = 2x2 on Church numerals

To summarize, Mogensen made three key insights: 1) a self-evaluator that evaluates to normal
form can be used as the basis for a partial evaluator (specialization by normalization), 2) special-
ization by normalization supports the Futamura projections if the self-interpreter and partial eval-
uator themselves are strongly normalizing, and 3) a representation based on Church-encoding
supports a strongly normalizing self-interpreter and specialization by normalization partial eval-
uator.
Specialization by normalization is not optimal for timecbv . For example, consider the λ-term g

in Figure 5 that computes the polynomial д(x ) = 2x2 on Church numerals. The specialization of
u to g yields a term ug that is slower than g on some inputs. For example, ug n3 evaluates in 89
steps, while g n3 evaluates in 82 steps. The problem is not limited to compilation; specialization in
general can cause slowdown. The specialization of the λ-term f in Figure 5 to the church numeral
n2 evaluates in more steps than f n2.
The reason for this slowdown is that β-normalization contracts some β-redexes that cause du-

plicated work in the residual code – in particular, redexes of the form (λx.e1)e2 where e2 is
not a value. Reducing such a redex can introduce multiple new copies of e2 into the term, each
of which may need to be evaluated separately. For example, consider the specialization of f to
n2, which reduces in one step to λy. times n2 (square y), and then in a few more steps to λy.
plus (square y) (plus (square y) n0). The specializer will continue reducing, but we can see
the problem already at this point: we now have two copies of square y instead of one. We can’t
compute either copy at specialization-time, because we don’t know the value of y until run-time.
When we run the specialized program with the input n2 for y, will have to evaluate (square n2)
twice.
Returning to our first example, specializing u to g, we see that since u g ≡β g = f n2, the β-

normal form of u g is the same as the β-normal form of f n2. The result is the same as for the
specialization of f to n2, and we get a slowdown for the same reason.

3 SPECIALIZATION SAFETY
In this section, we consider how Mogensen’s specialization-by-normalization approach can be
modified so that it can support the Futamura projections and also be Jones optimal. Jones optimal-
ity has two requirements: first, the partial evaluator must be strong enough to specialize away the
work of a self-interpreter; second, it must not duplicate work or otherwise cause a slowdown.

Our goal is to identify a reduction relation that can be used used as the basis for a Jones-optimal
specialization-by-normalization partial evaluator. Our main requirements are as follows: first, the
reduction relation should be specialization-safe, meaning it never causes a slowdown at run-time;
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and second, it should be strong enough to remove all the work of a self-interpreter. We now for-
mally state these two requirements.

Definition 3.1. A reduction relation ; is specialization-safe for time if e1 ;∗ e2 implies
time (e2 x) ≤ time(e1 x) for all x.

Definition 3.2. For a given self-interpreter u for a representation function ·̂ , a reduction relation; is u-strong if u p̂ ;∗ p for all p.

We also require that the reduction relation be confluent and have unique normal forms, so that
we can implement a specialization-by-normalization partial evaluator for it. Finally, in order to
support the Futamura projections, we need the implementation of the partial evaluator itself to
have a normal form.

Theorem 3.3. If ; is confluent, specialization-safe for time , and u-strong, then for any terms p
and d, time (p′ d) ≤ time (p d), where p′ = NF; (u p̂).

Proof. From that ; is confluent and u-strong, we have p′ = NF;(u p̂) = NF(p), so p ;∗ p′.
From that ; is specialization-safe for time , we have time (p′ d) ≤ time (p d). □

In the remainder of this section, we examine a variety of β-redexes and determine if they can be
included in a specialization-safe reduction relation. In the next section we introduce affine variable
annotations that help identify those specialization-safe β-redexes and define a specialization-safe
subset of β-reduction that operates on annotated terms.
Intuitively, whether a redex (λx.e)a is specialization-safe depends upon two things: the poten-

tial cost of evaluating a at run-time, and the number of times the value of a might be needed.
Consider for example the term λf.(λx.f x x) n2, which contains a single redex (λx.f x x) n2.

Since there are two occurrences of x, the value of n2 will be needed twice. However, n2 is itself
a value, so the cost of evaluating it is 0. Therefore, this redex is specialization-safe – contracting
does not duplicate any work.
Consider instead the term λf.(λx.f x x) (square n2), which contains the redex (λx.f x x)

(square n2). This time, the argument (square n2) is not a value, so contracting this redex would
duplicate work: in the reduct f (square n2) (square n2), we have to evaluate (square n2) twice.
However, (square n2) can be reduced to a value at specialization time, so we can reduce the redex
(λx.f x x) (square n2) to a specialization-safe redex and then contract it.

Next, consider the term λf.(λx.times x x) (f n2) and its redex (λx.times x x) (f n2). This
time, specialization cannot reduce the argument f n2 to a value, because f is unknown. If we
leave the redex uncontracted, then f n2 will be evaluated once at run-time, and the redex will be
contracted afterwards. If we contract the redex, the resulting term times (f n2) (f n2) duplicates
f n2 so it will need to be evaluated twice at run-time, potentially causing a slowdown. Therefore,
this redex is not specialization-safe.
Next, consider λf.(λy.square y) (f n2), which is β-equivalent to the previous example, and

its redex (λy.square y) (f n2). As before, specialization cannot reduce f n2 to a value. But in this
case the value of y is needed only once, so this redex is specialization-safe and can be contracted to
square (f n2)without risking a slowdown. The resulting term λf.square (f n2) = λf.(λx.times
x x) (f n2) recovers the previous example.

Next, consider the term (λy.square y) = λy.(λx.times x x) y and its redex (λx.times x x) y.
Here, the argument y is a variable and so not a value, and neither can specialization reduce it to a
value. However, since call-by-value always reduces arguments to values before β-contracting, we
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(values) v := λx.e | λx◦.e
(terms) e := x | x◦ | e1 e2 | λx.e | λx◦.e

Fig. 6. Untyped λ-calculus with affine-variable annotations

CBV-1
(λx.e)v → e[x:=v]

e1 → e1′CBV-2
e1 e2 → e1′ e2

e1 → e1′CBV-3
(λx.e)e1 → (λx.e)e1′

CBV-4
(λx◦.e)v → e[x◦:=v]

e1 → e1′CBV-5
(λx◦.e)e1 → (λx◦.e)e1′

Fig. 7. Call-by-value reduction on untyped λ-terms with affine variable annotations.

know that at run-time, ywill be substituted with a value. Therefore this redex is also specialization-
safe, and (λy.square y) can be reduced to (λy.times y y) ≡α square. This example shows that
η-contraction is specialization-safe.

Finally, consider λf.λg.g (times (f n2)), and its redex times (f n2) = (λn.λm.n (plus m)
n0) (f n2). Since (f n2) cannot be reduced to a value at specialization time, it will have a nonzero
cost at run-time. However, since n occurs only once in the definition of times, it is tempting to
conclude that this redex is specialization-safe. This conclusion is wrong. Since n occurs under
the λ-abstraction λm. n (plus m) n0, the value of n will be needed every time that abstraction is
applied. Since g is unknown, we cannot predict how many times the λ-abstraction will be applied
and n will be needed. If we contract the redex, then we have to recompute f n2 every time g is
applied. This could cause a lot of duplicated work.

4 AFFINE VARIABLES AND SPECIALIZATION-SAFE REDUCTION
The examples in the previous section demonstrate that full β-reduction is not specialization-safe:
some β-contractions at specialization-time can cause a slowdown at run-time. In this section, we
define specialization-safe reduction, a subset of full β-reduction that is indeed specialization-safe:
Theorem 4.5 states that no sequence of specialization-safe reductions can result in a term that
evaluates in more call-by-value steps than the original.
We achieve specialization safety by only contracting β-redexes that cannot cause a slowdown.

We use affine-variable annotations to indicate which variables are guaranteed to be referenced at
most once at run-time. Affine variables are similar to linear variables, except that linear variables
are guaranteed to be referenced exactly once.
Figure 6 defines the untyped λ-calculus (ULC) with affine variables. Affine variables are anno-

tated like x◦, while unlimited variables are unannotated. The values are λ-abstractions as usual,
and they may abstract over affine or unlimited variables. Throughout this section, all λ-terms can
have annotations.
Figure 7 defines call-by-value reduction on annotated λ-terms. Call-by-value reduction ignores

annotations – the rules CBV-1 and CBV-3 are identical except for the annotations, as are CBV-4
and CBV-5. We overload the arrow→ that denotes call-by-value reduction for unannotated terms.
We will make clear which kind of term is under consideration at all times. We define timecbv for
annotated terms similarly to the definition for unannotated terms.

Definition 4.1. For an annotated term e, timecbv (e) = n if and only if e →n v for some value v.
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(unlimited contexts) Γ = ⟨⟩ | Γ,x
(affine contexts) Σ = ⟨⟩ | x◦

⟨⟩ ⊎ x = x
x ⊎ ⟨⟩ = x
⟨⟩ ⊎ ⟨⟩ = ⟨⟩

x∈ Γ
Γ; Σ ⊢ x

Γ;x◦ ⊢ x◦

Γ; Σ1 ⊢ e1 Γ; Σ2 ⊢ e2 Σ = Σ1 ⊎ Σ2Γ; Σ ⊢ e1 e2
(Γ,x); ⟨⟩ ⊢ e
Γ; Σ ⊢ λx.e
Γ;x◦ ⊢ e

Γ; Σ ⊢ λx◦.e

Fig. 8. Well-formedness rules for affine-variable annotations.

SSR-1
(λx.e)v →s e[x:=v]

e1 →s e1
′

SSR-2
e1 e2 →s e1

′ e2

e1 →s e1
′

SSR-3
e e1 →s e e1′

SSR-4
(λx◦.e)e′ →s e[x

◦:=e′]

SSR-5
(λx.e)y →s e[x:=y]

e →s e
′

SSR-6
(λx.e) →s (λx.e

′)

e →s e
′

SSR-7
(λx◦.e) →s (λx

◦.e′)

Fig. 9. Specialization-Safe Reduction

Figure 8 defines a simple set of rules for checking affine-variable annotations. We track variables
in two contexts: a context Γ that contains unlimited variables, and a context Σ that contains affine
variables. Σ is allowed to contain at most one variable at a time. The rule for unlimited variables
checks for the variable in the unlimited context, and the one for affine variables checks the affine
context. For an application e1 e2, we check e1 and e2 using the same unlimited context, but disjoint
affine contexts. This ensures that only e1 or e2 may reference the current affine variable.We always
check the body of an unlimited λ-abstraction using an empty affine context. We check the body of
an affine λ-abstraction (λx◦.e) using the affine context containing only x◦. This means that affine
variables may never occur under a nested λ abstraction.

Figure 9 defines specialization-safe reduction on annotated terms. The rule SSR-1 is ordinary
call-by-value β-reduction. The rules SSR-2 and SSR-3 allow a step to occur in either sub-term of
an application, like in full β-reduction. Call-by-value reduction would restrict SSR-3 to when e
is a value. The rule SSR-4 is the key rule enabled by the affine-variable annotations. It allows a
β-reduction when the argument is not a value, as long as the λ-abstraction binds an affine variable.
The rule SSR-5 allows a β-reduction when the argument is an unlimited variable, as long as the
λ-abstraction is also unlimited. Note that we do not allow β-reduction when the argument is an
affine variable and the λ-abstraction is unlimited, because that could duplicate the affine variable.
If the λ-abstraction is affine, SSR-4 applies for any argument. The last two rules, SSR-6 and SSR-7,
allow reduction under λ-abstractions.
We now apply specialization-safe reduction to the examples from the previous section. First was

the term λf.(λx.f x x) n2. The variable x cannot be annotated as affine, because it occurs twice.
Neither can f be annotated, because it occurs under the abstraction over x. However, since n2 is a
value, SSR-1 applies, so this is a redex for specialization-safe reduction.
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The next example was λf.(λx.f x x) (square n2). Again, x and f are not affine, but square
n2 can be reduced to a value, after which SSR-1 will apply.
The next example was λf.(λx.times x x) (f n2), which has the β-redex (λx.times x x) (f

n2). Again x is not affine and (f n2) is not a value, so this is not a specialization-safe redex. Also,
since (f n2) is not reducible to a value, the β-redex can’t be reduced to a specialization-safe redex.
The next example was λf.(λy.square y) (f n2), which can be annotated λf◦.(λy◦.square

y◦) (f◦ n2). Now consider the β-redex (λy◦.square y◦) (f◦ n2). The argument (f◦ n2) is not
value and can’t be reduced to one. However, since y◦ is affine, this is still a specialization-safe
redex, reducible using rule SSR-4.
Next consider λy.(λx.times x x) y. The variable y is affine, so we can annotate the term

λy◦.(λx.times x x) y◦. In this case, specialization-safe reduction does not allow the β-redex
(λx.times x x) y◦ to be reduced, because the reduct times y◦ y◦ would not be well-formed. We
could instead leave y unannotated, and the term is still well-formed. Then (λx.times x x) y can
be reduced by rule SSR-5 because y is unlimited, and the reduct (λy.times y y) is well-formed.
This demonstrates two important points: a term can have multiple annotations, and different an-
notations can lead to different specialization-safe reduction behavior. Our partial evaluator always
inserts the maximum number of annotations allowed by the rules, as described in the next section.
The last example was λf.λg.g (times (f n2)), and its redex times (f n2) = (λn.λm.n (plus m)

n0) (f n2). The variable n cannot be annotated as affine because it occurs on the λ-abstraction for
m. Also, the argument (f n2) is not a value, so this is not reducible by specialization-safe reduction.
The following theorem states that well-formedness is preserved by specialization-safe reduc-

tion.

Theorem 4.2. If Γ; Σ ⊢ e and e →s e
′, then Γ; Σ ⊢ e′.

A term e is in specialization-safe normal form (or is specialization-safe-normal) if there is no e′
such that e→s e

′. All β-normal forms are also specialization-safe-normal, but a specialization-safe
normal form may contain β-redexes (specifically, specialization-unsafe redexes). Specialization-
safe reduction is confluent, and so has unique normal forms. Our proof of confluence is based on
Nipkow’s lecture notes on λ-calculus [Nipkow 2012]. We define NFs(e) = e′ if and only if e →∗s
e′ and e′ is specialization-safe-normal.

Theorem 4.3. Specialization-safe reduction is confluent.

Corollary 4.4. Specialization-safe normal forms are unique.

The following theorem states that specialization-safe reduction cannot cause a slowdown: no
sequence of specialization-safe reductions can result in a term that evaluates in more more call-
by-value steps than the original.

Theorem 4.5. If ⟨⟩; ⟨⟩ ⊢ e and e→∗s e′ and e→i v, then there exists an i ′ ≤ i and a value v′ such
that e′ →i′ v′, and v →∗s v′.
Theorem 4.5 is illustrated in Figure 10. The solid arrows correspond to the premises of the

theorem, and the dashed arrows correspond the conclusion. After specialization-safe reduction,
we may end up with a value v′ that is different than what we’d get with call-by-value reduction
alone. This is possible because specialization-safe reduction allows reduction under λ-abstractions.
The two values are equivalent and converge with some additional specialization-safe reduction.

Specialization-safety follows from Theorem 4.5:

Corollary 4.6 (Specialization-safety). If ⟨⟩; ⟨⟩ ⊢ p and e →∗s e′, then for all x,
timecbv (e x) = i implies timecbv (e

′ x) ≤ i .
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e
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Fig. 10. Illustration of Theorem 4.5.
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e2′

annotate erase

s
∗

s

Fig. 11. Specialization-safe reduction for unannotated terms.

Proof. timecbv (e x) = i implies that e x →i v for some v. Since e →∗s e′, we have e x →∗s e′ x.
By Theorem 4.5, there exists an i ′ ≤ i and a value v′ such that e′ x→i′ v′ and v→∗s v′. Therefore,
timecbv (e

′ x) = i ′ ≤ i = timecbv (e x). □

5 PARTIAL EVALUATION BY SPECIALIZATION-SAFE NORMALIZATION
The specification for a partial evaluator based on specialization-safe normalization is as follows:

mix p d ≡β erase(NFs(annotate(p d)))

It operates on unannotated terms, but first annotates them with the maximum number of affine
annotations allowed by the rules. There is a unique maximally annotated term for each unanno-
tated term, and the annotation process is straightforward. A bound variable can be annotated as
affine if 1) the number of occurrences is at most one, and 2) the number of occurrences inside inner
lambda abstractions is zero. After reducing to specialization-safe normal form it erases the anno-
tations. Since annotate, NFs , and erase are all well-defined functions, there is a unique specialized
program for each program and static input.
For unannotated terms e1 and e2, we write e1 =⇒s e2 to mean themaximally annotated version

of e1 reduces in some number of steps to an annotated version of e2. This is depicted in Figure
11.
Since call-by-value reduction on annotated terms ignores affine-variable annotations, an anno-

tated term evaluates in the same amount of time as the corresponding unannotated term:

Lemma 5.1. For any annotated term e, timecbv (e) = timecbv (erase(e)).

Proof. Straightforward. □

The following Lemma combines Corollary 4.6 and Lemma 5.1 to bridge the gap between unan-
notated and annotated λ-terms.

Lemma 5.2. For any self-interpreter u for a representation function ·̂ , and for any term p, if
u p̂⇒s p, then mix is Jones-optimal for u and timecbv .
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x̂ = λvar.λabs.λapp.var x

ê = qEλx.e = λvar.λabs.λapp.abs (λx.q)
ê1 = q1 ê2 = q2Ee1 e2 = λvar.λabs.λapp.app q1 q2

fixf = (λx. f (λy. x x y)) (λx. f (λy. x x y))
fix = λf. fixf

msint = fix (λu. λe. e (λx.x) (λf.λx.u (f ((λy.x)x))) (λf.λx.u f (u x)))

Fig. 12. Mogensen-Scott encoding and self-interpreter.

We prove that a partial evaluator based on specialization-safe normalization is strong enough
to specialize away the work of three different self-interpreters. Therefore it is also Jones-optimal
for each interpreter and timecbv . The first self-interpreter is the one by Mogensen shown in Fig-
ure 4. It operates on the same Church-encoded representation · that mix does. The second uses
Mogensen-Scott encoding, another encoding of λ-terms by Mogensen [Mogensen 1992] that is
based on Scott’s encoding of natural numbers. The third is a tagless-final encoding that uses
deBruijn indices to represent variables, based on Kiselyov’s representation of STLC in Haskell
[Kiselyov 2012]. Whenever mix specializes a self-interpreter other than Mogensen’s, we have two
representations involved: mix itself always operates on representations produced by · .
The following two theorems prove that a partial evaluator based on specialization-safe normal-

ization is Jones-optimal for Mogensen’s Church-encoding self-interpreter (Figure 4) and timecbv .

Lemma 5.3. For any closed term e, u e =⇒s e.

Theorem 5.4. mix is Jones optimal for timecbv and Mogensen’s self-interpreter.

Proof. Follows from Lemma 5.2 and Lemma 5.3. □

Mogensen-Scott encoding. Quotation for a Mogensen-Scott-encoded representation is defined
in Figure 12. It’s a higher-order abstract syntax (HOAS) representation like Mogensen’s Church-
encoded representation. The key difference between the two representations is that while Church-
encoding defines a fold over the syntax of the term, Mogensen-Scott-encoding defines pattern
matching on the term. The two representations are isomorphic, but each encoding technique is
well-suited to particular applications. Church-encoding is good for folds, while Mogensen-Scott
is preferable for operations that aren’t easily programmed as folds. Programming a fold like our
self-interpreter takes a bit more work on a Mogensen-Scott representation. In particular, we have
to use a fixpoint combinator to traverse the term. Still, this extra work can be done using only
specialization-safe reduction, so our partial evaluator is Jones-optimal for the Mogensen-Scott
interpreter as well.

Lemma 5.5. For any term e, msint ê =⇒s e.

Theorem 5.6. mix is Jones-optimal for timecbv and msint.

Proof. Follows from Lemma 5.2 and Lemma 5.5. □
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Γ,x ⊢ x � fst

Γ ⊢ x � e
Γ,y ⊢ x � (λp. e (snd p))

Γ ⊢ x � e
Γ ⊢ x � var e

Γ,x ⊢ e � q

Γ ⊢ (λx.e) � abs q

Γ ⊢ e1 � q1 Γ ⊢ e2 � q2
Γ ⊢ e1 e2 � app q1 q2

⟨⟩ ⊢ e � q

ê = λvar. λabs. λapp. q
dbVar = (λf.λe. f e)
dbAbs = (λb.λe.λx.b (λf. f x e))
dbApp = (λa.λb.λe.a e (b e))
dbint = (λq. q dbVar dbAbs dbApp (λx.x))

Fig. 13. Tagless-final encoding with deBruijn indices.

deBruijn indices. Figure 13 shows a tagless-final representation that uses deBruijn indices to rep-
resent variables, unlike the two previous HOAS representations. It’s based on Kiselyov’s represen-
tation of simply-typed λ-calculus in Haskell [Kiselyov 2012], which uses nested pairs to represent
environments, and composed projection functions to represent deBruijn indices. For example, the
deBruijn index 0 is represented as the fst, index 1 is represented as λp. fst (snd p), and so on.
The quoter uses a function Γ ⊢ x � e to construct the projection function for variables. The self-
interpreter for this representation is quite different than the ones for either the tagless-final or the
Mogensen-Scott HOAS, but our partial evaluator is Jones optimal for it as well.

Lemma 5.7. For any closed term e, dbint ê =⇒s e.

Theorem 5.8. mix is Jones-optimal for timecbv and dbint.

Proof. Follows from Lemma 5.2 and Lemma 5.7. □

Discussion. We now demonstate why each of the three specialization-safe β-reductions — rules
SSR-1, SSR-4, and SSR-5 — are needed to achieve Jones-optimality for our three self-interpreters.
First, consider how the Church-encoding interpreter (Figure 4) operates on the representation

of (λa. a a). We show the affine variable annotations for clarity.

u (λa. a a)

= (λe◦. e◦ (λx◦.x◦) (λx◦.x◦)) (λabs. λapp. abs (λa. app a a))

→s (λabs. λapp. abs (λa. app a a)) (λx◦.x◦) (λx◦.x◦)

→2
s (λx

◦.x◦) (λa. (λx◦.x◦) a a)

→2
s (λa. a a)

The first step is derived by SSR-4, since e is affine. The next two steps are derived by by SSR-1
because abs and app are not affine and their parameters are values. The last two steps are derived
by by SSR-4 because the two xs are affine.
To demonstrate the need for SSR-5, consider how the Mogensen-Scott interpreter (Figure 12)

operates on the representation of (λa. a a):

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 14. Publication date: January 2018.



14:14 Matt Brown and Jens Palsberg

msint G(λa. a a)
→∗s λx. msint ((λa. â a) ((λy◦.x)x))

→s λx. msint ((λa. â a) x)

→s λx. msint (x̂ x)

→∗s λx. x x

The first sequence of steps does not need SSR-5. The term ((λy◦.x)x) ensures that x is unlimited,
and reduces x in the next step, which is derived by SSR-4 because y is affine. The next step is not
reducible by SSR-1 because x is a variable (and variables are not values), and is also not reducible
by SSR-4 because a is not affine. However, it is reducible by SSR-5 because we forced x to be
unlimited. This step allows the interpreter to proceed and eventually return the original term (up
to renaming).

6 TYPED SELF-APPLICABLE PARTIAL EVALUATION FOR Fµiω
We implement a typed version of our partial evaluator for Fµiω , a Turing-complete typed λ-calculus
with support for typed self-representation. The language is defined in Figure 14. It extends System
Fω with iso-recursive types and intensional type functions, which together are useful for typed
meta-programming. It is type-safe and type checking is decidable. For more details, we refer the
interested reader to Brown and Palsberg [Brown and Palsberg 2017].
Our self-representation type Exp is defined in Figure 15. It is a tagless-final style representation

– intuitively, a typed version of Mogensen’s Church-encoded representation. It is also Parametric
Higher-Order Abstract Syntax (PHOAS) [Chlipala 2008; Washburn and Weirich 2003]. In partic-
ular, the type PExp is parametric in V, which determines the type of free variables in a represen-
tation. Intuitively, PExp can be understood as the type of representations that may contain free
variables. The type Exp quantifies over V, which ensures that the representation is closed. The
self-representation of Fµiω presented by Brown and Palsberg was a typed Mogensen-Scott repre-
sentation – intuitively, a Generalized Algebraic Data Type (GADT) encoded using λ-terms. We
instead use the tagless-final style because it supports a normalizing self-interpreter and a normal-
izing self-applicable partial evaluator, allowing us to generate the Futamura projections.
Quotation for our Fµiω representation is defined in Figure 16. The quotation function · is defined

only on closed terms, and depends on a pre-quotation function � from type derivations to terms.
In the judgment Γ ⊢ e : T � q, the input is the type derivation Γ ⊢ e : T, and the output is a
term q. We call q the pre-representation of e. In addition to the cases for variables, λ-abstractions
and applications, we have cases for type abstraction and application and the folding and unfolding
of iso-recursive types. The case of type abstractions and type applications use the IsAll T proof
terms, which prove that the type T is a quantified type. They also use utility functions stripAllK,
underAllX,K,T, and instX,K,T,S, which are useful to meta-programs for operating on type abstrac-
tions and applications. These IsAll proofs and utility functions are part of Brown and Palsberg’s
extensional representation of polymorphism.
We prove two theorems about our representation: first, every closed and well-typed term has

a representation that is closed and well-typed, and the type of a term determines the type of its
representation. Ill-typed terms cannot be represented. Second, representations are β-normal forms.

Theorem 6.1. If ⟨⟩ ⊢ e : T, then ⟨⟩ ⊢ e : Exp T.

Theorem 6.2. If ⟨⟩ ⊢ e : T, then e is β-normal.
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(kinds) K ::= ∗ | K1 → K2
(types) T ::= X | T1 → T2 | ∀X:K.T | λX:K.T | T1 T2 | | Typecase
(terms) e ::= x | λx:T.e | e1 e2 | ΛX:K.e | e T | fold T1 T2 e | unfold T1 T2 e

(environments) Γ ::= ⟨⟩ | Γ,(x:T) | Γ,(X:K)

(normal form terms) v ::= n | (λx:T.v) | (ΛX:K.v) | fold T1 T2 v
(neutral terms) n ::= x | n v | n T | unfold T1 T2 n

Grammar

(X:K) ∈ Γ
Γ ⊢ X : K

Γ ⊢ T1 : ∗ Γ ⊢ T2 : ∗
Γ ⊢ T1 → T2 : ∗

Γ,(X:K) ⊢ T : ∗
Γ ⊢ (∀X:K.T) : ∗

Γ,(X:K1) ⊢ T : K2

Γ ⊢ (λX:K1.T) : K1 → K2

Γ ⊢ T1 : K2 → K Γ ⊢ T2 : K2

Γ ⊢ T1 T2 : K

Γ ⊢ µ : ((∗ → ∗)→ ∗ → ∗)→ ∗ → ∗
Γ ⊢ Typecase : (∗ → ∗ → ∗)→

(∗ → ∗)→ (∗ → ∗)→
(((∗ → ∗)→ ∗ → ∗)→ ∗ → ∗)→
∗
Type Formation

T ≡ T
T1 ≡ T2
T2 ≡ T1

T1 ≡ T2 T2 ≡ T3

T1 ≡ T3

T1 ≡ T1′ T2 ≡ T2′

T1→ T2 ≡ T1′ → T2′
T ≡ T′

(∀X:K.T) ≡ (∀X:K.T′)

T ≡ T′

(λX:K.T) ≡ (λX:K.T′)
T1 ≡ T1′ T2 ≡ T2′

T1 T2 ≡ T1′ T2′

(λX:K.T1) T2 ≡ (T1[X := T2])
(∀X:K.T2) ≡ (∀X′:K.T2[X := X′])
(λX:K.T) ≡ (λX′:K.T[X := X′])

Typecase F1 F2 F3 F4 (T1→ T2) ≡ F1 T1 T2
Typecase F1 F2 F3 F4 (µ T1 T2) ≡ F4 T1 T2

X < FV(F3)
Typecase F1 F2 F3 F4 (∀X:K.T) ≡ F2 (∀X:K. F3 T)

Type Equivalence

(x:T) ∈ Γ
Γ ⊢ x : T

Γ ⊢ T1 : ∗ Γ,(x:T1) ⊢ e : T2

Γ ⊢ (λx:T1.e) : T1 → T2

Γ ⊢ e1 : T2 → T Γ ⊢ e2 : T2

Γ ⊢ e1 e2 : T

Γ,(X:K) ⊢ e : T

Γ ⊢ (ΛX:K.e) : (∀X:K.T)
Γ ⊢ e : (∀X:K.T1) Γ ⊢ T2 : K

Γ ⊢ e : T1[X:=T2]

Γ ⊢ F : (∗ → ∗)→ ∗ → ∗ Γ ⊢ T : ∗
Γ ⊢ e : F (µ F) T

Γ ⊢ fold F T e : F T

Γ ⊢ F : (∗ → ∗)→ ∗ → ∗ Γ ⊢ T : ∗
Γ ⊢ e : µ F T

Γ ⊢ unfold F T e : F (µ F) T

Γ ⊢ e : T1 T1 ≡ T2 Γ ⊢ T2 : ∗
Γ ⊢ e : T2

Term Formation

(λx:T.e) e1 −→ e[x := e1]
(ΛX:K.e) T −→ e[X := T]

unfold F T (fold F′ T′ e) −→ e

e1 −→ e2

e1 e3 −→ e2 e3
e3 e1 −→ e3 e2
e1 T −→ e2 T

(λx:T.e1) −→ (λx:T.e2)
(ΛX:K.e1) −→ (ΛX:K.e2)
fold F T e1 −→ fold F T e2

unfold F T e1 −→ unfold F T e2

Reduction

Fig. 14. Definition of Fµiω

The self-interpreter unquote for the tagless-final HOAS representation is shown in Figure 17.
We prove that our partial evaluator is Jones-optimal for unquote and a time (−) function based on
call-by-value type-erasure semantics.

Definition 6.1 (Type erasure). The type erasure of an Fµiω term e is defined recursively as follows:
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decl PExp : (∗ → ∗) → ∗ → ∗ =

λV : ∗ → ∗. λA:∗.
(∀S:∗. ∀T:∗. (V S → V T) → V (S → T)) →
(∀A:∗. ∀B:∗. V (A → B) → V A → V B) →
(∀A:∗. IsAll A → StripAll A → UnderAll A → All Id V A → V A) →
(∀A:∗. ∀B:∗. IsAll A → Inst A B → V A → V B) →
(∀F : (∗ → ∗) → ∗ → ∗. ∀B : ∗. V (F (µ F) B) → V (µ F B)) →
(∀F : (∗ → ∗) → ∗ → ∗. ∀B : ∗. V (µ F B) → V (F (µ F) B)) →
V A

decl Exp : ∗ → ∗ = λA:∗. ∀V:∗ → ∗. PExp V A

decl Abs V = ∀A1:∗. ∀A2:∗. (V A1 → V A2) → V (A1 → A2)

decl App V = ∀A:∗. ∀B:∗. V (A → B) → V A → V B

decl TAbs V =

∀A:∗. IsAll A → StripAll A → UnderAll A → All Id V A → V A

decl TApp V = ∀A:∗. ∀B:∗. IsAll A → Inst A B → V A → V B

decl Fold V =

∀F : (∗→∗) → ∗ → ∗. ∀B:∗. V (F (µ F) B) → V (µ F B)

decl Unfold V =

∀F : (∗→∗) → ∗ → ∗. ∀B : ∗. V (µ F B) → V (F (µ F) B)

Fig. 15. Definitions of PExp and Exp

1. te(x) = x
2. te(λx:T. e) = λx. te(e)
3. te(e1 e2) = te(e1) te(e2)
4. te(ΛX:K.e) = te(e)
5. te(e T) = te(e)
6. te(fold T1 T2 e) = te(e)
7. te(unfold T1 T2 e) = te(e)

Definition 6.2. time tecbv (e) = n if and only if te(e) →n v.

Lemma 6.3. If ⟨⟩ ⊢ e : T, then te(unquote e) =⇒s te(e).

Theorem 6.4. mix is Jones-optimal for time tecbv and unquote/ · .

6.1 Implementation of mix
Our partial evaluator mix is implemented in two steps: first, we analyze the program and input
for affine variable annotations, then we reduce the annotated term to specialization-safe normal
form. Each of these steps is programmed by folds over the representation. To infer affine variable
annotations, we do a fold that returns for each subterm 1) a tree data structure that indicates the
annotation of each bound variable in the subterm, 2) how many times each free variable occurs,
and 3) which free variables occur under a λ-abstraction. Items 2 and 3 are used to determine the
annotation of each variable at its binding λ-abstraction. A second fold uses the annotation tree to
annotate the term. A third and final fold reduces the annotated term to specialization-safe normal
form. This step is based onmodification of aMogensen’s partial evaluator that reduces to β-normal
form [Mogensen 1995], which was also used as the basis for a partial evaluator by Carette et
al. [Carette et al. 2009]. Our modifications check whether each β-redex is specialization-safe by
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(x : T) ∈ Γ

Γ ⊢ x : T � x

Γ ⊢ T1 : ∗ Γ,(x:T1) ⊢ e : T2 � q

Γ ⊢ (λx:T1.e) : T1 → T2 � abs T1 T2 (λx:V T1. q)

Γ ⊢ e1 : T2 → T � q1 Γ ⊢ e2 : T2 � q2
Γ ⊢ e1 e2 : T � app T2 T q1 q2

Γ,(X:K) ⊢ e : T � q

isAllX,K,T = p
stripAllK = s
underAllX,K,T = u

Γ ⊢ (ΛX:K.e) : (∀X:K.T) � tabs (∀X:K.T) p s u (ΛX:K.q)

Γ ⊢ e : (∀X:K.T) � q
Γ ⊢ A : K

isAllX,K,T = p
instX,K,T,A = i

Γ ⊢ e A : T[X:=A] � tapp (∀X:K.T) (T[X:=A]) p i q

Γ ⊢ F : (∗ → ∗) → ∗ → ∗
Γ ⊢ T : ∗ Γ ⊢ e : F (µ F) T � q

Γ ⊢ fold F T e : µ F T � fld F T q

Γ ⊢ F : (∗ → ∗) → ∗ → ∗
Γ ⊢ T : ∗ Γ ⊢ e : µ F T � q

Γ ⊢ unfold F T e : F (µ F) T � unfld F T q

⟨⟩ ⊢ e : T � q

e = ΛV:∗ → ∗.
λabs : Abs V. λapp : App V.
λtabs : TAbs V. λtapp : TApp V.
λfld : Fold V. λunfld : Unfold V.
q

Fig. 16. Tagless-final quotation and pre-quotation of Fµiω

inspecting the affine variable annotation of the λ-abstraction and the form of the argument. If it’s
a value or an unlimited variable, the β-redex is specialization-safe. If it’s an application or an affine
variable, the β-redex is not specialization-safe and is residualized.

Figure 18 shows some highlights of our Jones-optimal partial evaluator.
At its core is the function ssnorm, which reduces annotated representations of terms to (unanno-

tated) representations of their specialization-safe normal form. The function sem is a fold that con-
verts an Exp A to a semantic object of type Sem V A, and reify extracts a representation of the evalu-
ated term from the semantic object. The semantic object is a pair containing the specialization-safe
normal form of the term and a helper function. sem traverses the term and creates a semantic ob-
ject for each subterm. When a subterm occurs in head position of a specialization-safe redex, its
helper function is used to compute the reduct.
At the bottom of the figure is mix itself. It first builds e, a representation of the program ap-

plied to the input. Then it uses forceExp to check that the input x is available, in which case
forceExp returns e to be annotated and normalized. This check is an important optimization for
self-application, specifically when specializing mix to a single input. It prevents a blow up in the
output code size caused by many copies of the traversal functions from annotate and sem being
residualized thoughout f.
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decl Id : * → * = λA:*. A;

decl unAbs : Abs Id =

ΛA:*. ΛB:*. λf : A → B. f;

decl unApp : App Id =

ΛA:*. ΛB:*. λf : A → B. f;

decl unTAbs : TAbs Id =

ΛA:*. λp:IsAll A. λs:StripAll A. λu:UnderAll A. λe:All Id Id A.

unAll A p Id Id e;

decl unTApp : TApp Id =

ΛA:*. ΛB:*. λp : IsAll A. λi : Inst A B. λx : A.

i Id (sym (All Id Id A) A (unAll A p Id) Id x);

decl unFold : Fold Id =

ΛF: (* → *) → * → *. ΛA:*. λx : F (µ F) A. fold F A x;

decl unUnfold : Unfold Id =

ΛF: (* → *) → * → *. ΛA:*. λx : µ F A. unfold F A x;

decl unquote : ∀(A:*. Exp A → A) =

ΛA:*. λe:Exp A. e Id unAbs unApp unTAbs unTApp unFold unUnfold;

Fig. 17. The Fµiω tagless-final HOAS self-interpreter unquote.

The type Sem of semantic objects is shown in Figure 19. It is an iso-recursive intensional type
function, combining two features of Fµiω : iso-recursive types and intensional type functions. The
type Sem V A is equivalent to (SemF V) A and isomorphic (via (un)folding the recursion) to SemF
(Sem V) A.

There are two variants of semantic object: neutral objects that do not form redexes (specialization-
safe or otherwise) when in head-position, and non-neutral objects that do. Neutral objects contain
a boolean and a representation. The representation is used to reify the semantic object. The
boolean is true if that representation is of a term that type-erases to an unlimited variable. If so,
then any redex in which this term is in argument position is specialization-safe.
Non-neutral objects form redexes when in head-position. Their first two components are similar

to those of neutral objects. The boolean is true if the representation erases to a λ-abstraction. The
third component is used to compute the reduct of redexes with this object in head-position. These
have types of the form SemF1 (Sem V) A. SemF1 is an intensional type function that depends on
the structure of A:

SemF1 (Sem V) (A → B) ≡ Pair Bool (Sem V A → Sem V B)
SemF1 (Sem V) (∀X:K.T) ≡ ∀X:K. Sem V T

SemF1 (Sem V) ( F A) ≡ Sem V (F ( F) A)

A non-neutral semantic object of arrow type is a λ-abstraction. For these, the third component is
a pair of boolean and function from semantic objects to semantic objects. The boolean indicates
whether the λ-abstraction is affine. When this semantic object is in head position of a redex, the
function is applied to the semantic object of the argument to compute the semantic object of the
reduct.
If a non-neutral semantic object has a quantified type, then it is a Λ-abstraction. For these, the

third component is a polymorphic semantic object. If a non-neutral semantic object has a recursive
type, it is for a fold term fold F A e, and the third component is the semantic object of the unfolded
term e.
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annotate : (∀V:* → *. ∀A : *. Exp A → ExpAnn Bool A)

sem : (∀V:* → *. ∀A : *. ExpAnn Bool A → Sem V A)

reify : (∀V:* → *. ∀A : *. Sem V A → PExp V A)

forceExp : (∀T:*. Exp T → (∀A:*. A → A))

decl ssnorm : (∀A : *. ExpAnn Bool A → Exp A) =

ΛA:*. λe : Exp A. ΛV:* → *.

reify V A (sem V A e);

decl mix : (∀A : *. ∀B : *. Exp (A → B) → Exp A → Exp B) =

ΛA:*.ΛB:*. λf:Exp (A → B). λx:Exp A.

let e : Exp B = (ΛV:* → *. app V A B (f V) (x V)) in

ssnorm B (annotate B (forceExp A x (Exp B) e));

Fig. 18. Highlights of our Jones-optimal partial evaluator mix

decl SemF1 : (∗ → ∗) → ∗ → ∗ =

λSem : ∗ → ∗. λA:∗.
Typecase

(λA1:∗. λA2:∗. Pair Bool (Sem A1 → Sem A2))

Id Sem

(λF : (∗ → ∗) → ∗ → ∗. λB : ∗.
Sem (F (µ F) B))

A

;

decl SemF : (∗ → ∗) → (∗ → ∗) → ∗ → ∗ =

λV : ∗ → ∗. λSem : ∗ → ∗. λA : ∗.
Triple Bool (PExp V A) (Maybe (SemF1 Sem A))

;

decl Sem : (∗ → ∗) → ∗ → ∗ = λV : ∗ → ∗. µ (SemF V)

Fig. 19. Internal types of our Jones-optimal partial evaluator.

Figure 20 shows the function semApp, the part of sem that constructs semantic objects for appli-
cations. Given semantic objects for a function f and an argument x, semApp first unpacks f and
binds the names fValueOrUnlimited, rep_f, and msem to its components. fValueOrUnlimited
is not used, rep_f is the representation of the specialization-safe normal form of f, and msem in-
dicates whether f is neutral or non-neutral. If f is neutral, then the application is not a redex
and is residualized. Otherwise, the application is a β-redex. To check if it’s specialization-safe, we
test whether f’s bound variable is affine, or x is either a value or an unlimited variable. If either
case is true, the β-redex is specialization-safe and we reduce. Otherwise, we residualize. Whenever
we residualize, we use semNe to construct a semantic object for the (neutral) residual term. The
argument false to semNe indicates that result is not a value or an unlimited variable.

6.2 Type-checking the Futamura Projections
Figure 21 shows typed versions of the Futamura projections in the concrete syntax of F µiω . Quo-
tations are denoted using square brackets [-] rather than overlines, and so double-quotations
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decl semApp : (∀V:∗→∗.∀B:∗.∀A:∗. Sem V (B → A) → Sem V B → Sem V A) =

ΛV:∗ → ∗. ΛB:∗. ΛA:∗. λf:Sem V (B → A). λx:Sem V B.

unfold (SemF V) (B → A) f

(Sem V A)

(λfValueOrUnlimited : Bool.

λrep_f : PExp V (B → A)).

λmsem : Maybe (Pair Bool (Sem V B → Sem V A)).

msem (Sem V A)

-- neutral

(semNe V A false (app V B A rep_f (reify V B x)))

-- not neutral

(λp : Pair Bool (Sem V B → Sem V A).

let affine : Bool = fst Bool (Sem V B → Sem V A) p in

let sem_f : Sem V B → Sem V A = snd Bool (Sem V B → Sem V A) p in

or affine (isValueOrUnlimited V B x)

(Sem V A)

-- redex is specialization -safe: reduce

(sem_f x)

-- redex is not safe: residualize

(semNe V A false (app V B A rep_f (reify V B x)))))

Fig. 20. A key function from sem.

are denoted using nested square brackets [[-]] rather than stacked overlines · . The first projec-
tion compiles the factorial function fact by specializing the self-interpreter unquote to it. The
second projection generates a compiler by specializing mix to unquote. The third projection gen-
erates a compiler-generator by specializing mix to itself. The fourth projection generates the self-
generating compiler-generator. It is also obtained by specializing mix to itself, but at different
types.
This is the first time the Futamura projections have been type-checked for a partial evaluator

that operates on typed representations. One consequence of this is that we can clearly see what the
types of generated programs are. In particular, the type of each generated program is determined
by the type of its representation.
The compiled factorial function fact_compiled has the expected type Nat → Nat. The gener-

ated compiler compile has the polymorphic type ∀A:*. Exp (Exp A) → Exp A. It compiles pro-
grams by mapping double representations to representations (like the First futamura projection
does). The generated compiler generator cogen has the polymorphic type

∀A:*. ∀B:*. Exp (Exp (A → B)) → Exp (Exp A → Exp B).
If we instantiate A to Exp C and B to C, we can derive the type:

∀C:*. Exp (Exp (Exp C → C)) → Exp (Exp (Exp C) → Exp C).
Then we can apply cogen to the (double) representation of a self-interpreter like unquote and
generate a compiler. The self-generating compiler generator selfgen has the polymorphic type:

∀A:∗. ∀B:∗.
Exp (Exp (Exp (A → B) → Exp A → Exp B)) →
Exp (Exp (Exp (A → B)) → Exp (Exp A → Exp B))

We can apply selfgen to the (double) representation of mix, and generate cogen again.
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decl fact_compiled : Exp (Nat → Nat) =

mix (Exp (Nat → Nat)) (Nat → Nat)

[unquote (Nat → Nat)]

[[fact]]

decl compile : ∀A:∗. Exp (Exp (Exp A) → Exp A) =

ΛA:∗.
mix (Exp (Exp A → A)) (Exp (Exp A) → Exp A)

[mix (Exp A) A]

[[ unquote A]]

decl cogen : (∀A:∗. ∀B:∗. Exp (Exp (Exp (A → B)) →
Exp (Exp A → Exp B))) =

ΛA:∗. ΛB:∗.
mix (Exp (Exp (A → B) → Exp A → Exp B))

(Exp (Exp (A → B)) → Exp (Exp A → Exp B))

[mix (Exp (A → B)) (Exp A → Exp B)]

[[mix A B]]

decl selfgen : (∀A:∗. ∀B:∗.
Exp (Exp (Exp (Exp (A → B) → Exp A → Exp B)) →

Exp (Exp (Exp (A → B)) →
Exp (Exp A → Exp B)))) =

ΛA:∗. ΛB:∗.
mix (Exp (Exp (Exp (A → B) → Exp A → Exp B) →

Exp (Exp (A → B)) →
Exp (Exp A → Exp B)))

(Exp (Exp (Exp (A → B) → Exp A → Exp B)) →
Exp (Exp (Exp (A → B)) → Exp (Exp A → Exp B)))

[mix (Exp (Exp (A → B) → Exp A → Exp B))

(Exp (Exp (A → B)) → Exp (Exp A → Exp B))]

[[mix (Exp (A → B)) (Exp A → Exp B)]]

Fig. 21. The four typed Futamura projections

7 EXPERIMENTAL RESULTS
We implemented Fµiω in Haskell, including a parser, a type checker, a β-equivalence checker, and
three different time measures. We tested that our partial evaluator type checks and the Futamura
projections type check with the types given in Figure 21. We used our β-equivalence checker to
verify that the Futamura projections meet their specification. In addition to formally proving that
our partial evaluator is Jones-optimal for call-by-value reduction, our experiments demonstrate
Jones-optimality for call-by-value, normal-order, and memoized normal-order reduction. We also
demonstrate that specialization by β-normalization is Jones-optimal for normal-order reduction,
but not for call-by-value or memoized normal-order.

Reduction strategies. We measure call-by-value steps to a value, and normal-order and memo-
ized normal-order steps to a β-normal form. Normal-order reduction is related to call-by-name
reduction, but evaluates to a β-normal form instead of a value. Counting call-by-name reduction
steps to a value is not a useful measure, because many of our benchmark programs reduce to a
value in only a few steps of call-by-name reduction, obscuring the effect of specialization on the
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Interpreter Time Slowdown Overhead

Tagless-final PHOAS
Call-by-value 10.0 900%
Normal order 10.9 990%
Memoized normal order 9.9 890%

Mogensen-Scott PHOAS
Call-by-value 105.3 10430%
Normal order 136.5 13550%
Memoized normal order 68.8 6780%

Tagless-final deBruijn
Call-by-value 24.4 2340%
Normal order 118.3 11730%
Memoized normal order 24.8 2380%

Table 2. Average interpretational overhead of our self-interpreters

run time. Memoized normal-order reduction is similarly related to call-by-need (lazy) reduction. It
reduces a β-redex without first reducing its parameter; parameters are only reduced if and when
they need to be. When a parameter is reduced to a value, the value is saved in case it is needed
again later. We do not memoize the β-normal form of parameters, so as we normalize a term, the
work to normalize each parameter’s value could be repeated.

Definition 7.1. time teno (e) = n if te(e) normalizes in n steps of normal-order reduction.

Definition 7.2. time temno (e) = n if te(e) normalizes in n steps of memoized normal-order reduc-
tion.

Self-interpreters. We experiment with three typed self-interpreters for Fµiω – essentially typed
versions of the untyped λ-calculus self-interpreters in Figures 4, 12, and 13. Each of these inter-
preters has a different amount of interpretational overhead, which also depends on which time
function is used. We measured the mean interpretational slowdown and overhead for the cube,
factorial, and Ackermann functions on a range inputs. The tagless-final PHOAS interpreter is the
most efficient, with an interpretational overhead of around 900% – corresponding to a 10X slow-
down – for each evaluation strategy. The Mogensen-Scott PHOAS interpreter is the least efficient,
with an overhead of from 6780% for memoized normal order and 13550% for normal order. The
tagless-final deBruijn interpreter is in between, with an overhead of from 2340% for call-by-value
and 11730% for normal order.

Jones-optimality. Our partial evaluator is Jones-optimal for all 9 combinations of our three self-
interpreters and three evaluation strategies. Table 3 gives a summary of our Jones optimality tests
for our three Fµiω self-interpreters and three evaluation strategies. Each row aggregates the result
of a set of benchmarks comparing the time cost of each subject program with the specialization of
the self-interpreter to that program. Again, we use the cube, factorial, and Ackermann functions
for our subject programs, and we test with a range of inputs for each. A speedup of 1.00 indi-
cates that the subject program runs in exactly the same amount of time as the specialization. This
usually happens when the two programs are exactly the same; when specialization removes all
the interpretational overhead and does nothing else, recovering the original program. A speedup
greater than 1 indicates that the specialized program is faster than the original, and a speedup less
than 1 indicates a slowdown. The table demonstrates that our partial evaluator is Jones-optimal for
each combination: in each case, the minimum speedup is 1. It also shows that we can sometimes
achieve speedups beyond removing interpretational overhead – up to approximately 1.5X for our
benchmarks.
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Interpreter Time Min Speedup Mean Speedup Max Speedup

Tagless-final PHOAS
Call-by-value 1.00 1.06 1.36
Normal order 1.00 1.14 1.41
Memoized normal order 1.00 1.06 1.33

Mogensen-Scott PHOAS
Call-by-value 1.00 1.14 1.50
Normal order 1.00 1.34 1.54
Memoized normal order 1.00 1.12 1.46

Tagless-final deBruijn
Call-by-value 1.00 1.16 1.50
Normal order 1.00 1.35 1.54
Memoized normal order 1.00 1.44 1.46
Table 3. Summary of Jones Optimality Tests

Interpreter Time Min Speedup Mean Speedup Max Speedup

Tagless-final PHOAS
Call-by-value 0.03 0.74 1.89
Normal order 1.00 1.55 1.92
Memoized normal order 0.11 0.80 1.80

Mogensen-Scott PHOAS
Call-by-value 0.03 0.74 1.89
Normal order 1.00 1.55 1.92
Memoized normal order 0.11 0.80 1.80

Tagless-final deBruijn
Call-by-value 0.06 0.83 1.89
Normal order 1.00 1.53 1.92
Memoized normal order 0.17 0.89 1.80

Table 4. Demonstration of Non-Optimality of Specialization by β-Normalization

Interpreter Reduction Min SpeedupMean SpeedupMax Speedup

Tagless-final PHOAS
Call-by-value 1.27 1.29 1.29
Normal order 1.35 1.37 1.39
Memoized normal order 1.26 1.27 1.27

Mogensen-Scott PHOAS
Call-by-value 1.07 1.08 1.09
Normal order 1.29 1.30 1.30
Memoized normal order 1.10 1.12 1.12

Tagless-final deBruijn
Call-by-value 1.32 1.33 1.34
Normal order 1.38 1.39 1.39
Memoized normal order 1.27 1.27 1.28

Table 5. Summary of Second Futamura Projection Tests

As a point of contrast, Table 4 shows the results of the same Jones-optimality tests for a spe-
cialization by normalization partial evaluator for Fµiω . The table demonstrates that specialization
by β-normalization is only Jones optimal for normal order reduction, in which the value of a vari-
able is always recomputed for each reference. Therefore, all β-reductions are specialization-safe
for normal order reduction. Specialization by β-normalization can cause significant slowdowns
for call-by-value or memoized normal order reduction – the 0.03X speedup for call-by-value cor-
responds to a 33X slowdown – the original program runs 33X faster than the specialized one.

Futamura Projections. The Jones optimality benchmarks in Table 3 show the speedups obtained
by the first Futamura projection. We also measure the speedups produced by the second Futamura
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Time Min SpeedupMean SpeedupMax Speedup
Call-by-value 1.16 1.17 1.19
Normal order 1.37 1.37 1.38
Memoized normal order 1.21 1.22 1.22

Table 6. Summary of Third Futamura Projection Benchmarks

Time Speedup
Call-by-value 1.22
Normal order 1.35
Memoized normal order 1.24

Table 7. Fourth Futamura Projection Benchmarks

projection, which are listed in Table 5. For each self-interpreter and each time function, we use
the second Futamura projection to generate a compiler, and compare its running time with that of
the first Futamura projection. We compile each of the cube, factorial, and Ackermann functions.
We measure the speedup obtained by the third Futamura projection by comparing the time

to generate compilers using cogen versus the second Futamura projection. For each evaluation
strategy, we generate compilers using each of our self-interpreters. The results are summarized in
Table 6.

We measure the speedup obtained by the fourth Futamura projection by comparing the time to
generate a compiler generator using selfgen versus the third Futamura projection. The speedups
are shown in Table 7.

8 RELATEDWORK
The following table compares our work with five classical papers in the three main dimensions
that we consider. After the table, we give a discussion of a variety of related work.

Typed Futamura Jones
representation projections optimality

Original mix [Jones et al. 1985]
√

Lambda-mix [Gomard and Jones 1991]
√

Similix [Bondorf and Danvy 1991]
√ √

Schism [Consel 1993]
√

TDPE [Danvy 1996]
√

This paper
√ √ √

Typed representation. Wewere inspired by the considerable body ofwork on typed self-represent-
ation and self-interpretation. The classical approach to meta-programming in a statically-typed
language is to use a single universal type for all program representations. This incurs a tagging
overhead and allows type errors in generated code. On the other hand, typed representation can
eliminate tags and ensure that only well-typed programs can be represented. Further, it can pro-
vide strong correctness properties for meta-programs just by type checking them. For example,
the type of our partial evaluator ensures that it always generates well-typed code of the correct
type. At the core of this line of work is the challenge to define a typed self-representation. In their
seminal paper, Pfenning and Lee [1991] showed how to represent System F in Fω , and how to
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represent Fω in F+ω , but fell short of a self-representation. Rendel et al. [2009] and Jay and Pals-
berg [2011] presented the first typed self-representations, for two calculi with undecidable type
checking. Brown and Palsberg [2015, 2016] defined typed self-representations for two calculi with
decidable type checking, the latter of which is also strongly normalizing.
Most closely related to this work is our previous work [Brown and Palsberg 2017] that defined

typed self-representations and three typed self-evaluators. Each of those self-evaluators imple-
ments a particular evaluation strategy for the calculus itself. The key insight in that paper was
a way to encode type equality proofs for a GADT-style self-representation. In this paper, we use
the same language and some of the representation techniques first presented there, but we use a
tagless-final self-representation instead of the GADT-style encoding, which is important for en-
abling our partial evaluator to generate the Futamura projections.

Futamura Projections. A variety of partial evaluators for untyped languages have enabled the
three classical Futamura projections including the original mix [Jones et al. 1985], Lambda-mix
[Gomard and Jones 1991], Schism [Consel 1993], and Similix [Bondorf and Danvy 1991]. Glück
[1999, 2009] popularized the fourth Futamura projection and showed how to achieve it. Launch-
bury [1991] described a partial evaluator for LML, which operates on a universally typed repre-
sentation and supports the first and second Futamura projections. Danvy [1996] presented type-
directed partial evaluation for a simply-typed language and showed how it enables the first and
second Futamura projections.
Carette et al. [2009] implemented a typed partial evaluator that operated on a typed tagless-

final representation. Their object language was the simply-typed λ-calculus extended with inte-
gers, booleans, and a fixpoint operator, and their meta-languages was MetaOCaml. Their partial
evaluator could not generate the Futamura projections and was not Jones-optimal.
Our partial evaluator is the first that operates on a typed representation and can be self-applied.

Typed representation ensures that the partial evaluator always generates well-typed code of the
correct type. This is a strong correctness properties guaranteed just by type checking.

Jones Optimality. Similix [Bondorf and Danvy 1991] achieved Jones optimality for an untyped
language. Makholm [2000] discussed the challenges for Jones optimality for simply-typed lan-
guages when the partial evaluator relies on a universal type for all program representations. Later,
Taha et al. [2001], and also Danvy and López [2003], achieved Jones optimality for simply-typed
languages. Gluck [2002, 2008] discussed the effect of semantics-preserving program transforma-
tions ahead of partial evaluation. He showed that such transformations can enable a Jones optimal
offline partial evaluator to achieve the effect of an online partial evaluator.
Some papers [Barker et al. 2007; Feigin and Mycroft 2008; Gade and Gluck 2006; Makholm 2000]

work with first-order languages and define Jones optimality via the time-based comparison that
we state in Definition 2.2. Other papers [Danvy and López 2003; Skalberg 1999; Taha et al. 2001]
workwith higher-order functional languages and define Jones Optimality by checking that the spe-
cialization of the self-interpreter to a program produces the program itself (up to α-equivalence).
This rules out the possiblity that specialization could cause a slowdown, but also rules out the
possibility of a speedup.
Our proof of Jones optimality is similar in spirit to previous proofs [Gade and Gluck 2006; Go-

mard and Jones 1991]. In particular, wemake similar assumptions in choosing steps of call-by-value
reduction as a measure of time – that all reductions have an equal cost, and that other factors
such as program size do not affect running time. The key to our proof of Jones optimality is the
specialization-safety of specialization-safe reduction. We prove this by reordering a sequence of
specialization-safe steps followed by call-by-value steps to align with a sequence of only call-by-
value steps. This reordering can only add steps, and the pure call-by-value sequence establishes
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a maximum number of steps. This technique is inspired by a proof by Alex Simpson about linear
λ-calculus [Simpson 2005].

Terminating Partial Evaluation. Asai et al. [2014] proved various correctness properties of a par-
tial evaluator, including termination. The partial evaluator is implemented in a language that is
more expressive that the language being partially evaluated, so self-application is impossible. Our
work differs in that we do achieve self-application while we use experiments to demonstrate ter-
mination for important cases.

Other Related Work. Bondorf and Dussart [1994], Birkedal and Welinder [1994], and Thiemann
[1996] have shown how to write strikingly simple compiler generators by hand for untyped or
simply-typed languages. This is a major alternative to the use of a partial evaluator to produce a
compiler generator via the third Futamura projection. However, the task towrite a polymorphically-
typed compiler generator by hand is significantly harder. It is an open question whether one can
write a polymorphically-typed compiler generator by hand that is simpler than the one we have
generated automatically.
Researchers have developed techniques for proving the semantic correctness of partial evalua-

tion, including the recent paper by Hirota and Asai [2014].
Shali and Cook [2011] described a simply-typed partial evaluator for Java, which enables the first

Futamura projection. Brady and Hammond [2010] described a partial evaluator for a dependently
typed language that enables the first Futamura projection. It is an open question whether those
approaches can be extended to enable the other Futamura projections.
Feigin and Mycroft [2008] showed that a version of Jones optimality coincides with a known cri-

terion for efficient virtualization. Barker, Leuschel, and Varea showed how to build a Jones optimal
partial evaluator for an untyped logic programming language [Barker et al. 2007].

9 CONCLUSION
In this work we presented the first self-applicable partial evaluator that operates on typed repre-
sentations, generates the Futamura projections, and is Jones optimal. Operating on typed represen-
tations avoids tagging overhead and guarantees that it produces type-correct code. We use a novel
approach to a partial-evaluator that focuses on specialization-safe β-reduction that is guaranteed
never to cause a slowdown at runtime. We prove that our partial evaluator is Jones optimal for
one self-interpreter and a measure of running time that counts steps of call-by-value reduction.
Our experiments demonstrate that it is also Jones optimal for two other self-interpreters and time
measures based on normal-order and memoized normal-order reduction.
Our results open new challenges for future work, including extending specialization-safe reduc-

tion to higher-level languages with efficient base types and user-defined types, and going beyond
β-reduction to include more complex specialization-safe transformations. Another direction is to
explore a complex affine variable analysis, whichmight lead to a better partial evaluator. Our affine
analysis is sufficient to achieve Jones optimality and also simple enough to enable the Futamura
projections. In particular, it can be implemented without a fixpoint combinator, which helps make
our partial evaluator strongly-normalizing so the Futamura projections terminate.
One limitation of our partial evaluator is that specialization doesn’t always terminate. Also, that

our partial evaluator is Jones-optimal does not imply that its speedups are maximal. We leave for
future work the challenge to implement a typed self-applicable and Jones-optimal partial evaluator
that terminates on all inputs, and the question of identifying more powerful specialization-safe
reduction relations that can be used to define a typed self-applicable and Jones-optimal partial
evaluator with greater speedups.
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NP-1 e > e

e > e′NP-2
λx∗.e > λx∗.e′

a > a′ b > b′NP-3
a b > a′ b′

e > e′ v > v′NP-4
(λx.e)v > e′[x:=v′]

e > e′NP-5
(λx.e)y > e′[x:=y]

a > a′ b > b′NP-6
(λx◦.a)b > a′[x◦:=b′]

A CONFLUENCE
Following the proof technique in Nipkow’s lecture notes, we define the nested parallel strong
optimization relation a > b.

Lemma A.1. If e1 →s e2, then e1 > e2

Proof. By induction on the derivation of e1 →s e2.
Suppose e1 →s e2 is by SSR-1. Then e1 = (λx.e)v and e2 = e[x:=v], and e1 > e2 is derivable

by NP-4.
Suppose e1→s e2 is by SSR-2. Then e1 = a1 b and e2 = a2 b and a1→s a2. By induction, a1 >

a2. Therefore, e1 > e2 is derivable by NP-3.
Suppose e1→s e2 is by SSR-3. Then e1 = a b1 and e2 = a b2 and b1→s b2. By induction, b1 >

b2. Therefore, e1 > e2 is derivable by NP-3.
Suppose e1 →s e2 is by SSR-4. Then e1 = (λx◦.a)b and e2 = a[x◦:=b]. Therefore, e1 > e2 is

derivable by NP-6.
Suppose e1 →s e2 is by SSR-5. Then e1 = (λx.e)y and e2 = e[x:=y]. Therefore, e1 > e2 is

derivable by NP-5.
Suppose e1→s e2 is by SSR-6. Then e1 = (λx.a1) and e2 = (λx.a2) and a1→s a2. By induction,

a1 > a2. Therefore, e1 > e2 is derivable by NP-2.
Suppose e1 →s e2 is by SSR-7. Then e1 = (λx◦.a1) and e2 = (λx◦.a2) and a1 →s a2. By

induction, a1 > a2. Therefore, e1 > e2 is derivable by NP-2.
□

Lemma A.2. If e1 > e2, then e1 →∗s e2
Proof. By induction on the derivation of e1 > e2.
Suppose e1 > e2 is by NP-1. Then e1 = e2, and e1 →0

s e2.
Suppose e1 > e2 is by NP-2. Then e1 = (λx∗.e) and e2 = (λx∗.e′) and e > e′. By induction, e
→∗s e′. Therefore, e1 →∗s e2 by multiple uses of SSR-6 or SSR-7.
Suppose e1 > e2 is by NP-3. Straightforward induction.
Suppose e1 > e2 is by NP-4. Then e1 = (λx.e)v and e2 = e′[x:=v′] and e > e′ and v > v′. By

induction, e →∗s e′ and v →∗s v′. Therefore, e1 = (λx.e)v →∗s (λx.e′)v′ →s e
′[x:=v′] = e2.

Suppose e1 > e2 is by NP-5. Then e1 = (λx.e)y and e2 = e′[x:=y] and e > e′. By induction e
→∗s e′. Therefore, e1 = (λx.e)y →∗s (λx.e′)y →s e

′[x:=y] = e2.
Suppose e1 > e2 is by NP-6. Then e1 = (λx◦.a)b and e2 = a′[x◦:=b′] and a > a′ and b > b′. By

induction, a →∗s a′ and b →∗s b′. Therefore, e1 = (λx◦.a)b →∗s (λx◦.a′)b′ →s a
′[x◦:=b′] = e2.
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□

Lemma A.3. If (λx∗.a) > b, then there exists a′ such that b = (λx∗.a′) and a > a′

Proof. Straightforward. □

Lemma A.4. If e > e′, then e[x:=y] > e′[x:=y].

Proof. By straightforward induction on e. □

Lemma A.5. If e > e′ and v > v′, then e[x:=v] > e′[x:=v′].

Proof. By induction on e.
Suppose e = x. Then e′ = x. We have that e[x:=v] = v and e′[x:=v′] = v′. Since v > v′, e[x:=v]

> e′[x:=v′].
Suppose e = y∗ , x. Then e[x:=v] = e and e′[x:=v′] = e′. Since e > e′, e[x:=v] > e′[x:=v′].
Suppose e = (λy∗.e1). Without loss of generality, assume y∗ , x and y∗ < FV(v) ∪ FV(v′).

By Lemma A.3, e′ = (λy∗.e1′) and e1 > e1′. By induction, e1[x:=v] > e1′[x:=v′]. Therefore,
λy∗.e1[x:=v] > λy∗.e1′[x:=v′]. Since λy∗.e1[x:=v] = (λy∗.e1)[x:=v] = e[x:=v] and λy∗.e1′[x:=v′]
= (λy∗.e1′)[x:=v′] = e′[x:=v′], we have e[x:=v] > e′[x:=v′] as required.
Suppose e is an application. We proceed by inspecting the rule used to derive e > e′.
Suppose that e > e′ is by NP-3. Then e = e1 e2 and e′ = e1′ e2′ and e1 > e1′ and e2 > e2′. By

induction, e1[x:=v] > e1′[x:=v′] and e2[x:=v] > e2′[x:=v′]. Therefore e1[x:=v] e2[x:=v] >
e1′[x:=v′] e2′[x:=v′]. Since e1[x:=v] e2[x:=v] = (e1 e2)[x:=v] = e[x:=v], and e1′[x:=v′]
e2′[x:=v′] = (e1′ e2′)[x:=v′] = e′[x:=v′], NP-3 derives e[x:=v] > e′[x:=v′] as required.
Suppose that e > e′ is by NP-4. Then e = (λy.e1)v1 and e′ = e1′[y:=v1′] and e1 > e1′ and v1 >

v1′. Without loss of generality, assume y , x and y < FV(v). By induction, e1[x:=v] > e1′[x:=v′]
and v1[x:=v] > v1′[x:=v′]. It must be the case that v1[x:=v] is a value. Therefore, NP-4 derives
(λy.e1[x:=v])(v1[x:=v]) > e1′[x:=v′][y:=v1′[x:=v′]]. Since (λy.e1[x:=v])(v1[x:=v]) =
((λy.e1)v1)[x:=v] = e[x:=v] and e1′[x:=v′][y:=v1′[x:=v′]] = (e1′[y:=v1′])[x:=v′] = e′[x:=v′],
we have that e[x:=v] > e′[x:=v′] as required.

Suppose that e > e′ is by NP-5. Then e = (λy.e1)z and e’ = e1[y:=z] and e1 > e1′. Without
loss of generality, assume y , x and y < FV(v). By induction, e1[x:=v] > e1′[x:=v′].
This step is key!ANP-5 step turns into aNP-4 step. If z = x, then e[x:=v] = ((λy.e1)z)[x:=v]

= (λy.e1[x:=v])v and e′[x:=v′] = (e1′[y:=z])[x:=v′] = (e1′[y:=v′])[x:=v′] = (e1′[x:=v′])[y:=v′].
Since e1[x:=v] > e1′[x:=v′] and v > v′, NP-4 derives (λy.e1[x:=v])v > (e1′[x:=v′])[y:=v′].
Therefore, e[x:=v] > e′[x:=v′] as required.

If z , x, then e[x:=v] = ((λy.e1)z)[x:=v] = (λy.e1[x:=v])z and e′[x:=v′] = (e1′[y:=z])[x:=v′]
= (e1′[x:=v′])[y:=z]. Since e1[x:=v] > e1′[x:=v′], NP-5 derives (λy.e1[x:=v])z > (e1′[x:=v′])[y:=z].
Therefore, e[x:=v] > e′[x:=v′] as required.

Suppose that e > e′ is by NP-6. Then e = (λy◦.a)b and e′ = a′[y◦:=v′] and a > a′ and b > b′.
Without loss of generality, assume y◦ < FV(v). By induction, a[x:=v] > a′[x:=v′] and b[x:=v] >
b′[x:=v′]. Therefore, NP-6 derives (λy◦.a[x:=v])(b[x:=v]) > a′[x:=v′][y◦:=b′[x:=v′]]. Since
(λy◦.a[x:=v])(b[x:=v]) = ((λy◦.a)b)[x:=v] = e[x:=v] and a′[x:=v′][y◦:=b′[x:=v′]] = (a′[y◦:=b′])[x:=v′]
= e′[x:=v′], e[x:=v] > e′[x:=v′] as required. □

Lemma A.6. If a > a′ and b > b′, then a[x◦:=b] > a[x◦:=b′].

Note: the proof is identical to that of Lemma A.5, except that in the case that a > a′ is by NP-5,
the argument z cannot be x◦.
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Proof. By induction on a.
Suppose a = x◦. Then a′ = x◦, and a[x◦:=b] = b and a′[x◦:=b′] = b′. Therefore b > b′ implies

a[x◦:=b] > a′[x◦:=b′].
Suppose a = y∗ , x◦. a[x◦:=b] = a and a′[x◦:=b′] = a′. Therefore a > a′ implies a[x◦:=b] >

a′[x◦:=b′].
Suppose a = (λy∗.a1). Without loss of generality, assume y∗ , x◦ and y∗ < FV(b) ∪ FV(b′).

By Lemma A.3, a′ = (λy∗.a1′) and a1 > a1′. By induction, a1[x◦◦:=b] > a1′[x◦:=b′]. Therefore,
λy∗.a1[x◦:=b] > λy∗.a1′[x◦:=b′]. Since λy∗.a1[x◦:=b] = (λy∗.a1)[x◦:=b] = a[x◦:=b] and
λy∗.a1′[x◦:=b′] = (λy∗.a1′)[x◦:=b′] = a′[x◦:=b′], we have a[x◦:=b] > a′[x◦:=b′] as required.

Suppose a is an application. We proceed by inspecting the rule used to derive a > a′.
Suppose that a > a′ is by NP-3. Then a = a1 a2 and a′ = a1′ a2′ and a1 > a1′ and a2 > a2′. By in-

duction, a1[x◦:=b] > a1′[x◦:=b′] and a2[x◦:=b] > a2′[x◦:=b′]. Therefore a1[x◦:=b] a2[x◦:=b]
> a1′[x◦:=b′] a2′[x◦:=b′]. Since a1[x◦:=b] a2[x◦:=b] = (a1 a2)[x◦:=b] = a[x◦:=b], and a1′[x◦:=b′]
a2′[x◦:=b′] = (a1′ a2′)[x◦:=b′] = a′[x◦:=b′], NP-3 derives a[x◦:=b] > a′[x◦:=b′] as required.
Suppose that a > a′ is by NP-4. Then a = (λy.a1)v and a′ = a1′[y:=v′] and a1 > a1′ and v > v′.

Without loss of generality, assume y , x◦ and y < FV(b). By induction, a1[x◦:=b] > a1′[x◦:=b′]
and v[x◦:=b] > v′[x◦:=b′]. It must be the case that v[x◦:=b] is a value. Therefore, NP-4 derives
(λy.a1[x◦:=b])(v[x◦:=b]) > a1′[x◦:=b′][y:=v′[x◦:=b′]]. Since (λy.a1[x◦:=b])(v[x◦:=b])
= ((λy.a1)v)[x◦:=b] = a[x◦:=b] and a1′[x◦:=b′][y:=v′[x◦:=b′]] = (a1′[y:=v′])[x◦:=b′] =
a′[x◦:=b′], we have that a[x◦:=b] > a′[x◦:=b′] as required.
Suppose that a > a′ is by NP-5. Then a = (λy.a1)z and a’ = a1[y:=z] and a1 > a1′. Without

loss of generality, assume y , x◦ and y < FV(b). By induction, a1[x◦:=b] > a1′[x◦:=b′].
Since z , x◦, we have that a[x◦:=b] = ((λy.a1)z)[x◦:=b] = (λy.a1[x◦:=b])z and a′[x◦:=b′]

= (a1′[y:=z])[x◦:=b′] = (a1′[x◦:=b′])[y:=z]. Since a1[x◦:=b] > a1′[x◦:=b′], NP-5 derives
(λy.a1[x◦:=b])z > (a1′[x◦:=b′])[y:=z]. Therefore, a[x◦:=b] > a′[x◦:=b′] as required.

Suppose that a > a′ is by NP-6. Then a = (λy◦.a)b1 and a′ = a′[y◦:=b′] and a > a′ and b1
> b1′. Without loss of generality, assume y◦ < FV(b). By induction, a[x◦:=b] > a′[x◦:=b′] and
b1[x◦:=b] > b1′[x◦:=b′]. Therefore, NP-6 derives (λy◦.a[x◦:=b])(b1[x◦:=b]) > a′[x◦:=b′][y◦:=b1′[x◦:=b′]].
Since (λy◦.a[x◦:=b])(b1[x◦:=b]) = ((λy◦.a)b1)[x◦:=b] = a[x◦:=b] and a′[x◦:=b′][y◦:=b1′[x◦:=b′]]
= (a′[y◦:=b1′])[x◦:=b′] = a′[x◦:=b′], a[x◦:=b] > a′[x◦:=b′] as required. □

Lemma A.7 (Diamond property for >). If a > b1 and a > b2, then there exists a term c such that
b1 > c and b2 > c.

Proof. By induction on a.
Suppose a = x∗. Then b1 = b2 = x∗. Holds with c = x∗.
Suppose a = (λx∗.a′). By Lemma A.3, b1 = (λx∗.b1′) and b2 = (λx∗.b2′) and a′ > b1′ and

a′ > b2′. By induction, there exists a c′ such that b1′ > c′ and b2′ > c′. Therefore, NP-2 derives
(λx∗.b1′) > (λx∗.c′) and (λx∗.b2′) > (λx∗.c′). Holds with c = (λx∗.c′).

Suppose a is an application. Consider the derivation of a > b1 and a > b2.
Suppose a > b1 is by NP-3 and a > b2 is by NP-3. Then a = d e and b1 = d1 e1 and b2 = d2 e2

and d > d1 and d > d2 and e > e1 and e > e2. By induction, there exist d3 and e3 such that d1 >
d3 and d2 > d3 and e1 > e3 and e2 > e3. Let c = d3 e3. NP-3 derives b1 = d1 e1 > d3 e3 = c and
b2 = d2 e2 > d3 e3 = c.
Suppose a > b1 is by NP-4 and a > b2 is by NP-4. Then a = (λx.e)v and b1 = e1[x:=v1] and

b2 = e2[x:=v2] and e > e1 and e > e2 and v > v1 and v > v2. By induction, there exist terms e3
and v3 such that e1 > e3 and e2 > e3 and v1 > v3 and v2 > v3. Let c = e3[x:=v3]. By Lemma A.5,
b1 = e1[x:=v1] > e3[x:=v3] = c and b2 = e2[x:=v2] > e3[x:=v3] = c.
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WOPT-1
(λx.e)v →w e[x:=v]

e1 →w e1′
WOPT-2

e1 e2 →w e1′ e2

e1 →w e1′
WOPT-3

(λx.e)e1 →w (λx.e)e1′

WOPT-4
(λx◦.e)e′ →w e[x◦:=e′]

e1→w e1′
WOPT-5

(λx◦.e)e1 →w (λx◦.e)e1′

Fig. 22. Weak Optimization

Suppose a > b1 is by NP-5 and a > b2 is by NP-5. Then a = (λx.e)y and b1 = e1[x:=y] and
b2 = e2[x:=y] and e > e1 and e > e2. By induction, there exists a term e3 such that e1 > e3 and
e2 > e3. Let c = e3[x:=y]. By Lemma A.4, b1 = e1[x:=y] > e3[x:=y] = c and b2 = e2[x:=y] >
e3[x:=y] = c.
Suppose a > b1 is by NP-6 and a > b2 is by NP-6. Then a = (λx◦.d)e and b1 = d1[x◦:=e1] and

b2 = d2[x◦:=e2] and d > d1 and d > d2 and e > e1 and e > e2. By induction, there exist terms d3
and e3 such that d1 > d3 and d2 > d3 and e1 > e3 and e2 > e3. Let c = d3[x◦:=e3]. By Lemma
A.5, b1 = d1[x◦:=e1] > d3[x◦:=e3] = c and b2 = d2[x◦:=e2] > d3[x◦:=e3] = c.
Suppose a > b1 is by NP-3 and a > b2 is by NP-4. Then a = (λx.e)v and b1 = (λx.e1)v1 and

e > e1 and v > v1, and b2 = e2[x:=v2] and e > e2 and v > v2. Since v is a value and v > v1, v1
must be a value. By induction, there is term v3 such that v1 > v3 and v2 > v3. Since v1 and v2
are values, v3 is a value. By induction again, there is a term e3 such that e1 > e3 and e2 > e3. Let
c = e3[x:=v3]. By rule NP-4, b1 = (λx.e1)v1 > e3[x:=v3]. By Lemma A.5, b2 = e2[x:=v2] >
e3[x:=v3].
Suppose a > b1 is by NP-3 and a > b2 is by NP-5. Then a = (λx.e)y and b1 = (λx.e1)y and b2

= e2[x:=y] and e > e1 and e > e2. By induction, there exists an e3 such that e1 > e3 and e2 > e3.
Let c = e3[x:=y]. By rule NP-5, b1 = (λx.e1)y > e3[x:=y] = c. By Lemma A.4, b2 = e2[x:=y] >
e3[x:=y] = c.
Suppose a > b1 is by NP-3 and a > b2 is by NP-6. Then a = (λx◦.e)e′ and b1 = (λx◦.e1)e1′

and e > e1 and e > e1′ and b2 = e2[x◦:=e2′] and e > e2 and e > e2′. By induction, there exist e3
and e3′ such that e1 > e3 and e2 > e3, and e1′ > e3′ and e2′ > e3′. Let c = e3[x◦:=e3′]. By rule
NP-6, b1 = (λx◦.e1)e1′ > e3[x◦:=e3′] = c. By Lemma A.6, b2 = e2[x◦:=e2′] > e3[x◦:=e3′] = c.

□

Theorem 4.3. Specialization-safe reduction is confluent.

Proof. By Nipkow’s Lemma A.2.5, and Lemmas A.1, A.2, and A.7 □

Corollary 4.4. Specialization-safe normal forms are unique.

B SPECIALIZATION SAFETY
Figure 7 defines call-by-value reduction on annotated terms. Figure 22 defines weak optimization.
It extends call-by-value reduction with the rule WOPT-4, which reduces β-redexes without evalu-
ating the argument when the λ-abstraction abstracts over a top-level linear variable.
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The following lemma allows us to reason about multiple steps of call-by-value reduction in a
big-step-style.

Lemma B.1. For any n, e1 e2 →n v if and only if there exist integers n1, n2, and n3, and terms
(λx∗.e1′) and v2, such that e1 →n1 (λx∗.e1′), and e2 →n2 v2, and e1′[x∗:=v2] →n3 v, and
n = n1 + n2 + n3 + 1.

We prove each direction separately.

Proof. Suppose e1 e2 →n v. We want to prove there exist integers n1, n2, and n3, and terms
(λx∗.e1′) and v2, such that e1 →n1 (λx∗.e1′), and e2 →n2 v2, and e1′[x∗:=v2] →n3 v, and
n = n1 + n2 + n3 + 1.

We proceed by induction on the derivation of e1 e2 →n v.
Suppose n = 0. Then e1 e2 = v. This is a contradiction, since e1 e2 is not a λ-abstraction.
Suppose n > 0. Then the sequence e1 e2→n v contains at least one step. Consider the first step

in the sequence.
If the first step is by CBV-1 or CBV-4, then we have that e1 = (λx∗.e1′) and e2 = v2 and

e1′[x∗:=v2] →n′ v. The result holds with n1 = 0 and n2 = 0 and n3 = n′.
If the first step is by CBV-2, then e1 → e1′ and e1′ e2 →n′ v. By induction, e1′ →n1′ λx.e and

e2→n2 v2 and e[x:=v2]→n3 v and n′ = n1′+n2+n3+1. Then e1→n1′+1 λx.e. The result holds
with n1 = n1′ + 1.

If the first step is by CBV-3 or CBV-5, then e1 = (λx∗.e1′) and e2 → e2′ and (λx∗.e1′) e2′

→n′ v. Since (λx∗.e1′) is a value, it doesn’t step. Therefore, the induction hypothesis states that
e2′ →n2′ v2 and e1′[x∗:=v2] →n3 v and n′ = n2′ + n3 + 1. Therefore, e2 →n2′+1 v2. The result
holds with n1 = 0 and n2 = n2′ + 1. □

Proof. Suppose e1→n1 (λx∗.e1′), and e2→n2 v2, and e1′[x∗:=v2]→n3 v. We want to prove
e1 e2 →n1+n2+n3+1 v.
We proceed by induction on n1 + n2.
Suppose n1 + n2 = 0. Then n1 = 0 and n2 = 0. Therefore, e1 = (λx∗.e1′) and e2 = v2. We

have e1 e2 → e1′[x∗:=v2] and since e1′[x∗:=v2] →n3 v, e1 e2 →n3+1 v. The conclusion holds
because n3 + 1 = n1 + n2 + n3 + 1.
Suppose n1 + n2 > 0. Then either n1 > 0, or n1 = 0 and n2 > 0.
Suppose n1 > 0. In particular, n1 = n1′ + 1. Then there is a term e such that e1→ e and e→n1′

(λx∗.e1′). By induction, e e2→n1′+n2+n3+1 v. Therefore, e1 e2→1+n1′+n2+n3+1 v. The conclusion
holds since n1 = n1′ + 1.
Suppose n1 = 0 and n2 > 0. In particular, n2 = n2′ + 1. Then e1 = (λx∗.e1′) and there exists

a term e such that e2 → e and e →n2′ v2. By induction, e1 e →n1+n2′+n3+1 v. Therefore, e1 e2
→1+n1+n2′+n3+1 v. The conclusion holds since n2 = n2′ + 1. □

Lemma B.2 (Weakening of unlimited context). If (Γ1, Γ2); Σ ⊢ e, then (Γ1,x, Γ2); Σ ⊢ e.

Proof. By induction on the derivation of (Γ1, Γ2); Σ ⊢ e.
Suppose e is an unlimited variable y , x. Immediate.
Suppose e is an affine variable y◦. Immediate.
Suppose e = e1 e2. Then (Γ1, Γ2); Σ1 ⊢ e1 and (Γ1, Γ2); Σ2 ⊢ e2 and Σ = Σ1 ⊎ Σ2. By induction,

(Γ1,x, Γ2); Σ1 ⊢ e1, and (Γ1,x, Γ2); Σ2 ⊢ e1, so (Γ1,x, Γ2); Σ ⊢ e1 e2 as required.
Suppose e = (λy.e′). Then (Γ1, Γ2,y); ⟨⟩ ⊢e′. By induction, (Γ1,xΓ2,y); ⟨⟩ ⊢e′, so (Γ1,xΓ2); Σ ⊢(λy.e′)

as required. □

Lemma B.3 (Weakening of affine context). If Γ; ⟨⟩ ⊢ e, then Γ; Σ ⊢ e.

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 14. Publication date: January 2018.



Jones-Optimal Partial Evaluation by Specialization-Safe Normalization 14:35

Proof. By induction on the derivation of Γ; ⟨⟩ ⊢ e.
Suppose e is an unlimited variable x. Immediate.
Suppose e is an affine variable x◦. Contradiction.
Suppose e = e1 e2. Then Γ; ⟨⟩ ⊢ e1 and Γ; ⟨⟩ ⊢ e2. By induction, Γ; Σ ⊢ e1, so Γ; Σ ⊢ e1 e2 as

required.
Suppose e = (λx∗.e′). Immediate. □

Lemma B.4. If (Γ1,x, Γ2); Σ ⊢ e1 and (Γ1, Γ2); ⟨⟩ ⊢ e2, then (Γ1, Γ2); Σ ⊢ e1[x:=e2].

Proof. By induction on the derivation of (Γ1,x, Γ2); Σ ⊢ e1.
Suppose e1 = x. Then e1[x:=e2] = e2, and the conclusion holds.
Suppose e1 = y , x. Then e1[x:=e2] = y, and the conclusion holds.
Suppose e1 = y◦. Since x , y◦, e1[x:=e2] = y◦, and the conclusion holds.
Suppose e1 = a b. Then (Γ1,x, Γ2); Σ1 ⊢ a and (Γ1,x, Γ2); Σ2 ⊢ b and Σ = Σ1 ⊎ Σ2. By induction,

(Γ1, Γ2); Σ1 ⊢ a[x:=e2] and (Γ1, Γ2); Σ2 ⊢ b[x:=e2]. Therefore (Γ1, Γ2); Σ2 ⊢ (a[x:=e2]) (b[x:=e2]).
The conclusion holds since e1[x:=e2] = (a b)[x:=e2] = (a[x:=e2]) (b[x:=e2]).

Suppose e1 = (λy.a). Then (Γ1,x, Γ2,y); ⟨⟩ ⊢ a. Without loss of generality, assume x , y and y
does not occur free in e2. By induction, (Γ1, Γ2,y); ⟨⟩ ⊢ a[x:=e2]. Therefore, (Γ1, Γ2); ⟨⟩ ⊢ (λy.a[x:=e2]).
The conclusion holds since e1[x:=e2] = (λy.a)[x:=e2] = (λy.a[x:=e2]).

Suppose e1 = (λy◦.a). This case is similar to the previous case. □

Lemma B.5. If Γ;x◦ ⊢ e1 and Γ; Σ ⊢ e2, then Γ; Σ ⊢ e1[x◦:=e2].
Proof. By induction on the derivation of Γ;x◦ ⊢ e1.
Suppose e1 = y ∈ Γ. Then e1[x◦:=e2] = y, and the conclusion holds.
Suppose e1 = x◦. Then e1[x◦:=e2] = e2, and the conclusion holds.
Suppose e1 = a b. Then Γ; Σ1 ⊢ a and Γ; Σ1 ⊢ b and x◦ = Σ1 ⊎ Σ2. Therefore, either Σ1 = x◦ and

Σ2 = ⟨⟩, or else Σ1 = ⟨⟩ and Σ2 = x◦. The two cases are similar, so we will only consider the first.
Suppose Σ1 = x◦ and Σ2 = ⟨⟩. Then by induction, we have Γ; Σ ⊢ a[x◦:=e2]. Since Γ; ⟨⟩ ⊢ b, x◦ does
not occur free in b, so b[x◦:=e2] = b. Therefore, e1[x◦:=e2] = (a b)[x◦:=e2] = (a[x◦:=e2]) b.
Since Γ; Σ ⊢ a[x◦:=e2] and Γ; ⟨⟩ ⊢ b, we have Γ; Σ ⊢ (a[x◦:=e2]) b as required.
Suppose e1 = (λy.a). Then (Γ,y); ⟨⟩ ⊢ a, so x◦ does not occur free in a. Therefore, x◦ does not

occur free in e1, so e1[x◦]:=e2 = e1. Finally, since (Γ,y); ⟨⟩ ⊢ a, Γ; Σ ⊢ (λy.a) as required.
Suppose e = (λy◦.a). This case is similar to the previous case.

□

Lemma B.6. If Γ; Σ ⊢ v, then Γ; ⟨⟩ ⊢ v.

Proof. We have either v = (λx.e) or v = (λx◦.e). If v = (λx.e), then (Γ,x); ⟨⟩ ⊢ e, so Γ; ⟨⟩ ⊢
(λx.e) as required. If v = (λx◦.e), then Γ;x◦ ⊢ e, so Γ; ⟨⟩ ⊢ (λx◦.e) as required. □

Theorem 4.2. If Γ; Σ ⊢ e and e →s e
′, then Γ; Σ ⊢ e′.

Proof. By induction on the derivation of e →s e
′.

Suppose e →s e′ is by SSR-1. Then e = (λx.a)v and e′ = a[x:=v]. We have that (Γ,x); ⟨⟩ ⊢
a, and Γ; Σ ⊢ v. By Lemma B.6, Γ; Σ ⊢ v. By Lemma B.4, Γ; ⟨⟩ ⊢ a[x:=v]. By Lemma B.3, Γ; Σ ⊢
a[x:=v] as required.
Suppose e →s e′ is by SSR-2. Then e = e1 e2 and e′ = e1′ e2 and e1 →s e1′. We have Γ, Σ1 ⊢

e1 and Γ, Σ2 ⊢ e2 and Σ = Σ1 ⊎ Σ2. By induction, Γ, Σ1 ⊢ e1′, so Γ, Σ ⊢ e1′ e2 as required.
Suppose e →s e

′ is by SSR-3. This case is simliar to the previous case.
Suppose e→s e

′ is by SSR-4. Then e = (λx◦.a)b and e′ = a[x◦:=b]. We have Γ;x◦ ⊢ a and Γ; Σ ⊢
b. By Lemma B.5, Γ; Σ ⊢ a[x◦:=b] as required.
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Suppose e →s e′ is by SSR-5. Then e = (λx.a)y and e′ = e[x:=y]. We have (Γ,x); ⟨⟩ ⊢ a and
Γ; Σ ⊢ y. Since y is unlimited, y < Σ, so Γ; ⟨⟩ ⊢ y. Therefore, by Lemma B.4, Γ; ⟨⟩ ⊢ a[x:=y] as
required.
Suppose e →s e′ is by SSR-6. Then e = (λx.a) and e′ = (λx.a′) and a →s a′. We have that

(Γ,x); ⟨⟩ ⊢ a, so by induction (Γ,x); ⟨⟩ ⊢ a′. Therefore, Γ; Σ ⊢ (λx.a′) as required.
Suppose e →s e

′ is by SSR-7. Then e = (λx◦.a) and e′ = (λx◦.a′) and a →s a
′. We have that

Γ;x◦ ⊢ a, so by induction Γ;x◦ ⊢ a′. Therefore, Γ; Σ ⊢ (λx◦.a′) as required. □

Lemma B.7. Suppose ⟨⟩;x◦ ⊢ e1 and e2 →j v2.Then, if e1[x◦:=v2] →k v then e1[x◦:=e2] →k ′

v for some k ′ ≤ j + k .

Proof. By induction on the derivation of ⟨⟩;x◦ ⊢e1.
Suppose e1 = x◦. Then e1[x◦:=e2] = e2 and e1[x◦:=v2] = v2. Since e2 →j v2, we have that

e1[x◦:=e2] →j v2. Since v2 is a value, v2 →0 v2 so e1[x◦:=v2] →0 v2. The conclusion holds
with v = v2, i = j, k = 0. The inequality i ≤ j + k simplifies to j ≤ j.

Suppose e1 = y∗ where y∗ , x◦. Then we have ⟨⟩;x◦ ⊢ y∗, a contradiction.
Suppose e1 = (λy.e1′). Then we have ⟨⟩;x◦ ⊢(λy.e1′), which implies (⟨⟩,y); ⟨⟩ ⊢e1′. Therefore,

x◦ does occur free in e1.Therefore, e1[x◦:=e2] = e1[x◦:=v2] = (λy.e1′). Let v = (λy.e1′). Then
e1[x◦:=e2] →0 v and e1[x◦:=v2] →0 v, so i = k = 0 and i ≤ j + k .
Suppose e1 = (λy◦.e1′). Then we have ⟨⟩;x◦ ⊢(λy◦.e1′), which implies ⟨⟩;y◦ ⊢e1′. Therefore,

x◦ does occur free in e1.Therefore, e1[x◦:=e2] = e1[x◦:=v2] = (λy◦.e1′). Let v = (λy◦.e1′).
Then e1[x◦:=e2] →0 v and e1[x◦:=v2] →0 v, so i = k = 0 and i ≤ j + k .

Suppose e1 = e3 e4. Then either ⟨⟩;x◦ ⊢ e3 and ⟨⟩; ⟨⟩ ⊢ e4, or ⟨⟩; ⟨⟩ ⊢ e3 and ⟨⟩;x◦ ⊢ e4.
Suppose ⟨⟩;x◦ ⊢ e3 and ⟨⟩; ⟨⟩ ⊢ e4. Then e1[x◦:=e2] = (e3 e4)[x◦:=e2] = e3[x◦:=e2] e4,

and e1[x◦:=v2] = (e3 e4)[x◦:=v2] = e3[x◦:=v2] e4. Since e1[x◦:=v2]→k v Lemma B.1 states
that e3[x◦:=v2]→k1 (λy∗.e3′), and e4→k2 v4, and e3′[y∗:=v4]→k3 v, and (e3 e4)[x◦:=v2]
→k1+k2+k3+1 v, and k = k1+k2+k3+1. By induction, e3[x◦:=e2]→k1′ (λy∗.e3′) for some k1′ ≤
j+k1.We have that e3[x:=e2]→k1′ (λy∗.e3′), and e4→k2 v4, and e3′[y∗:=v4]→k3 v. Therefore,
Lemma B.1 states that e3[x◦:=e2] e4 →k1′+k2+k3+1 v. Since e1[x◦:=e2] = (e3 e4)[x◦:=e2] =
e3[x◦:=e2] e4, we also have that e1[x◦:=e2] →k1′+k2+k3+1 v. Let k ′ = k1′ + k2 + k3 + 1 ≤
j + k1 + k2 + k3 + 1 = j + k . The conclusion holds since k ′ ≤ j + k .
Suppose ⟨⟩; ⟨⟩ ⊢ e3 and ⟨⟩;x ⊢ e4. Then e1[x◦:=e2] = (e3 e4)[x◦:=e2] = e3 (e4[x◦:=e2]),

and e1[x◦:=v2] = (e3 e4)[x◦:=v2] = e3 (e4[x◦:=v2]). Since e1[x◦:=v2] →k v, Lemma B.1
states that e3 →k1 (λy∗.e3′), and e4[x◦:=v2] →k2 v4, and e3′[y∗:=v4] →k3 v, and k = k1 +
k2 + k3 + 1. By induction, e4[x◦:=e2] →k2′ v4 for some k2′ ≤ j + k2. Therefore, we have e3
→k1 (λy∗.e3′), and e4[x◦:=e2] →k2′ v4, and e3′[y∗:=v4] →k3 v, so Lemma B.1 states that e3
(e4[◦:=e2])→k1+k2′+k3+1 v. Since e1[x◦:=e2] = (e3 e4)[x◦:=e2] = e3 (e4[x◦:=e2]), we also
have that e1[x◦:=e2] →k1+k2′+k3+1 v. Let k ′ = k1 + k2′ + k3 + 1 ≤ j + k1 + k2 + k3 + 1 = j + k .
The conclusion holds since k ′ ≤ j + k . □

Lemma B.8. If Γ;x◦ ⊢ e and e[x◦:=v1] →∗ v and e1 →∗ v1, then e[x◦:=e1] →∗ v.

Proof. By induction on e.
Suppose e = x◦. Then e[x◦:=v1] = v1 and v = v1. But then e[x◦:=e1] →∗ v1 = v as required.
Suppose e = y◦ , x◦. Contradiction: Γ;x◦ ⊢ e cannot be derived.
Suppose e = y. Then e[x◦:=v1] = e[x◦:=e1] = e. Trivial.
Suppose e = λy∗.e′. Since Γ;x◦ ⊢ e, x◦ < FV(e′), so e[x◦:=v1] = e[x◦:=e1] = e. Trivial.
Suppose e = a b. Then either Γ;x◦ ⊢ a and Γ;⟨⟩ ⊢ b, or else Γ;⟨⟩ ⊢ a and Γ;x◦ ⊢ b. The two cases are

similar, so we consider on the first. Suppose Γ;x◦ ⊢ a and Γ;⟨⟩ ⊢ b. Then x◦ < FV(b), so e[x◦:=v1]
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= a[x◦:=v1] b. Now consider e[x◦:=v1] →∗ v. By Lemma B.1, a[x◦:=v1] →∗ λy∗.a′ and b →∗
v2 and a′[y∗:=v2] →∗ v. By induction, a[x◦:=e1] →∗ λy∗.a′, so the conclusion holds. □

Lemma B.9. If e1 →s e2, then e1[x∗:=v] →s e2[x
∗:=v].

Proof. By induction on the derivation of e1 →s e2.
If e1→s e2 is by SSR-1, then e1 = (λy.e)v1 and e2 = e[y:=v1]. Without loss of generality, y ,

x∗ and y < FV(v), so e1[x∗:=v] = (λy.e[x∗:=v])(v1[x∗:=v]), and e2[x∗:=v] = e[y:=v1][x∗:=v]
= e[x∗:=v][y:=v1[x∗:=v]]. Since v1 is a value, v1[x:=v] is a value. Therefore, e1[x∗:=v] =
(λy.e[x∗:=v])(v1[x∗:=v]) →s e[x

∗:=v][y:=v1[x∗:=v]] = e2[x∗:=v] by SSR-1.
If e1 → e2 is by SSR-2 or SSR-3, the result follows by straightforward induction.
If e1→s e2 is by SSR-4, then e1 = (λy◦.a)b. Without loss of generality, x∗ , y◦ and y◦ < FV(a),

so e1[x∗:=v] = (λy◦.a[x∗:=v])(b[x∗:=v]). Therefore, e1[x∗:=v] = (λy◦.a[x∗:=v])(b[x∗:=v])
→s a[x:=v][y:=b[x:=v]] = a[y:=b][x:=v] = e2[x:=v] is derivable by SSR-4..
If e1 →s e2 is by SSR-5, then e1 = (λz.e)y and e2 = e[z:=y]. Without loss of generality,

assume z < FV(v). If x∗ = y, then e1[x∗:=v] = (λz.e[x∗:=v])v and e2[x∗:=v] = e[z:=x][x∗:=v]
= e[x∗:=v][z:=v]. Therefore, e1[x∗:=v] →s e2[x∗:=v] is derivable using SSR-1. If x , y, then
e1[x∗:=v] = (λz.e[x∗:=v])y and e2[x∗:=v] = e[z:=y][x∗:=v] = e[x∗:=v][z:=y]. Therefore,
e1[x∗:=v] →s e2[x

∗:=v] is derivable using SSR-5.
If e1→s e2 is by SSR-6, then e1 = (λy.e) and e2 = (λy.e′) and e→s e

′. By induction, e[x∗:=v]
→s e

′[x∗:=v]. Therefore, e1[x∗:=v] = (λy.e[x∗:=v]) →s (λy.e
′[x∗:=v]) = e2[x∗:=v].

The case for when e1 →s e2 is by SSR-7 is similar to that for SSR-6. □

Lemma B.10. If e1 →s e2, then e[x∗:=e1] →∗s e[x∗:=e2].

Proof. By induction on e.
If e = x∗, then e[x∗:=e1] = e1 and e[x∗:=e2] = e2, and e1 →s e2 implies e[x∗:=e1] →∗s

e[x∗:=e2].
If e = y∗ , x∗, then e[x∗:=e1] = y∗ = e[x∗:=e2], and e[x∗:=e1] →∗s e[x∗:=e2] is derivable

by reflexivity.
If e = (λy.e′), then e[x∗:=e1] = (λy.e′[x∗:=e1]) and e[x∗:=e2] = (λy.e′[x∗:=e2]). By

induction, e′[x∗:=e1]→∗s e′[x∗:=e2]. Therefore, (λy.e′[x∗:=e1])→∗s (λy.e′[x∗:=e2]) can be
derived by repeated uses of SSR-6.
If e = (λy◦.e′), then e[x∗:=e1] = (λy◦.e′[x∗:=e1]) and e[x∗:=e2] = (λy◦.e′[x∗:=e2]). By

induction, e′[x∗:=e1] →∗s e′[x∗:=e2]. Therefore, (λy◦.e′[x∗:=e1]) →∗s (λy◦.e′[x∗:=e2]) can
be derived by repeated uses of SSR-7.
If e = a1 a2, then e[x∗:=e1] = (a1[x∗:=e1]) (a2[x∗:=e1]) and e[x∗:=e2] = (a1[x∗:=e2])

(a2[x∗:=e2]). By induction, a1[x∗:=e1]→∗s a1[x∗:=e2] and a2[x∗:=e1]→∗s a2[x∗:=e2]. Then
e[x∗:=e1] →∗s e[x∗:=e2] can be derived by repeated uses of SSR-2 and SSR-3. □

Definition B.1. A step e1 →s e2 is called a weak step if e1 →w e2 is derivable. Otherwise, it is
called a strong step.

Lemma B.11. If e →s v and e is closed, then either e →s v is a weak step, or e is a value.

Proof. By induction on the derivation of e →s v.
If e→s v is by SSR-1, then e→w v is derivable by WSSR-1. If e→s v is by SSR-2 or SSR-3, then

v is an application. Contradiction. If e →s v is by SSR-5, then e is not closed. Contradiction. If e
→s v is by SSR-6, then e = λx.e′, so e is a value. If e →s v is by SSR-7, then e = λx◦.e′, so e is a
value. □
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Lemma B.12. If e →∗s v and e is closed, then either e is a value or e →∗s v contains at least one
weak step.

Proof. By induction on the number n of steps in e →∗s v.
Suppose n = 0. Then e = v.
Suppose n = n′ + 1. Then e →n′

s e′ →s v. Since e is closed, so is e′. By Lemma B.11 on e′ →s v,
either e′ →s v is a weak step, or else e′ is a value. If e′ →s v is a weak step, then e→∗s v contains
at least one weak step. If e′ is a value, then by induction on e →n−1

s e′, either e is a value or e
→n−1

s e′ contains at least one weak step. If e→n−1
s e′ contains at least one weak step, then so does

e →n
s v. □

Lemma B.13. Let e, e1, and e′ be closed terms. If e→s e1→w e′, then there exist closed terms e2
and e3 such that e →w e2 →∗w e3 →∗s e′.

Proof. Suppose e1 →w e′ is by WSSR-1.
Then e1 = (λx.a)v and e′ = a[x:=v]. Now, consider the step e →s e1.
If e →s e1 is by SSR-1, then e →w e1 and we have e →w e1 →w e′ as required.
If e →s e1 is by SSR-2, then e = e1′ v and e1′ →s (λx.a). By Lemma B.11, then either 1) e1′
→w (λx.a), or 2) e1′ is a value. If 1), we have e1′ v →w (λx.a) v →w a[x:=v] as required. If
2), then e1′ = (λx.a′) and it must be that that a′ →s a. By Lemma B.9, a′[x:=v] →s a[x:=v].
Therefore, e = (λx.a′)v →w a′[x:=v] →s a[x:=v] = e′.

If e →s e1 is by SSR-3, then e = (λx.a)b and b →s v. By Lemma B.11, b →w v or else b is a
value v′. In the first case, we have (λx.a)b →w (λx.a)v →w a[x:=v] as required. In the second
case, we have v′ →s v, so by Lemma B.10, a[x:=v′] →∗s a[x:=v]. Therefore, e = (λx.a)v′ →w
a[x:=v′] →∗s a[x:=v] = e′.
If e→s e1 is by SSR-4, then e→w e1 by WSSR-4, so e→w e1→w e′ and the conclusion holds.
If e →s e1 is by SSR-5, then e = (λx.a)y, which is not closed. Contradiction.
If e →s e1 is by SSR-6, then e1 = (λx.e1′), which contradicts that e1 = (λx.a)v.
If e →s e1 is by SSR-7, then e1 = (λx◦.e1′), which contradicts that e1 = (λx.a)v.
Suppose e1 →w e′ is by WSSR-4. This case is similar to the case for WR-1.
Suppose e1→w e′ is byWSSR-2. Then e1 = a1 b and e′ = a2 b and a1→w a2. Now consider

e →s e1.
If e →s e1 is by SSR-1, then e →w e1 →∗w e.
If e→s e1 is by SSR-2, then e = a0 b and a0→s a1. By induction, there exist terms a3,a4 such

that a0 →w a3 →∗w a4 →∗s a2. Therefore, e = a0 b →w a3 b →∗w a4 b →∗s a2 b = e′.
If e →s e1 is by SSR-3, then e = a1 b0 and b0 →s b. Then e = a1 b0 →w a2 b0 →s a2 b = e′.
If e →s e1 is by SSR-4, then e →w e1 by rule WSSR-4, so e →w e1 →w e′ and the conclusion

holds.
If e →s e1 is by SSR-5, then e is not closed. Contradiction.
If e →s e1 is by SSR-6 or SSR-7, then e1 is a λ-abstraction. Contradicts e1 = a1 b.
Suppose e1 →w e′ is by WSSR-3. Then e1 = (λx.a)b1 and e′ = (λx.a)b2 and b1 →w b2.

Now consider e →s e1.
If e →s e1 is by SSR-1, then e →w e1 →∗w e.
If e →s e1 is by SSR-2, then e = a0 b1 and a0 →s (λx.a). By Lemma B.11, either 1) a0 →w

(λx.a), or 2) a0 = (λx.a′). If 1), we have a0 b1 →w (λx.a) b1 →w (λx.a) b2 as required. If 2),
we have a0 = (λx.a′), so a′ →s a. Therefore, e = (λx.a′) b1→w (λx.a′) b2→s (λx.a) b2 = e′.

If e→s e1 is by SSR-3, then e = (λx.a) b0 and b0→s b1. By induction, there exist closed terms
b3,b4 such that b0 →w b3 →∗w b4 →∗s b2. Therefore, e = (λx.a) b0 →w (λx.a) b3 →∗w (λx.a)
b4 →∗s (λx.a) b2 = e′.
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If e →s e1 is by SSR-4, then e →w e1 by rule WSSR-4, so e →w e1 →w e′ and the conclusion
holds.
If e →s e1 is by SSR-5, then e is not closed. Contradiction.
If e →s e1 is by SSR-6 or SSR-7, then e1 is a λ-abstraction. Contradicts e1 = (λx.a)b2.
Suppose e1 →w e′ is by WSSR-5. This case is similar to the case for WR-3.

□

Lemma B.14. Suppose e1 →w e2 is derived without using WSSR-4. Then e1 → e2.

Proof. By induction on the derivation of e1 →w e2.
If e1 →w e2 is by WSSR-1, then e1 → e2 is derivable by CBV-1.
If e1→w e2 is byWSSR-2, then e1 = a1 b and e2 = a2 b and a1→w a2 is derived without using

WSSR-4. By induction, a1 → a2, so e1 = a1 b → a2 b = e2 is derivable by CBV-2.
If e1 →w e2 is by WSSR-3, then e1 = (λx.e) a1 and e2 = (λx.e) a2 and a1 →w a2 is derived

without using WSSR-4. By induction, a1→ a2, so e1 = (λx.e) a1→ (λx.e) a2 = e2 is derivable
by CBV-3.
If e1→w e2 is byWSSR-5, then e1 = (λx◦.e) a1 and e2 = (λx◦.e) a2 and a1→w a2 is derived

without usingWSSR-4. By induction, a1→ a2, so e1 = (λx◦.e) a1→ (λx◦.e) a2 = e2 is derivable
by CBV-5.

□

Lemma B.15. Suppose e1 →i
w e2 contains no uses of WSSR-4. Then e1 →i e2.

Proof. By induction on the length of e1 →i
w e2.

Suppose i = 0. Trivial.
Suppose i = i ′ + 1. Then we have e1 →w e1′ →i′

w e2. By induction e1′ →i′ e2. Since e1 →w
e1′ is derived without using WSSR-4, Lemma B.14 states e1 → e1′. Therefore, e1 →i′+1 e2. □

Lemma B.16. If Γ; Σ ⊢ e and e →i
w e′ and e →j v, then there exists an i ′ such that e′ →i′ v and

i + i ′ ≤ j.

Proof. By induction on the number of WSSR-4 reductions in e →i
w e′.

If e →i
w e′ contains no WSSR-4 reductions, then by Lemma B.15, e →i e′. Since call-by-value

reduction is deterministic, e →i e′ must be a prefix of e →j v.
If e →i

w e′ contains n > 0 WSSR-4 reductions, then there exist e1, e2, i1, and i2 such that e
→i1 e1 →w e2 →i2

w e′, where i = i1 + i2 + 1 and e1 →w e2 is the first WSSR-4 reduction in the
sequence. So e1 = (λx◦.a)b, and e2 = a[x◦:=b].
Since e →i1 (λx◦.a)b, the derivation of e →j v is of the form e →i1 (λx◦.a)b →j−i1 v. By

Lemma B.1, there exists a v1 such that b →j1 v1 and a[x◦:=v1] →j−i1−j1−1 v. By Lemma B.8,
a[x◦:=b] →j2 v for some j2.
We have that a[x◦:=b]→i2

w e′ containsn−1WSSR-4 reductions, and a[x◦:=b]→j2 v. Therefore,
it follows by induction that e′ →i′ v and i2 + i ′ ≤ j2.
Since b→j1 v1, and a[x◦:=v1]→j−i1−j1−1 v, and a[x◦:=b]→j2 v, if follows by Lemma B.7 that

j2 ≤ j1+ j − i1 − j1 − 1 = j−i1−1. Therefore, i2+i ′ ≤ j−i1−1. Therefore, i+i ′ = i1+i2+1+i ′ ≤
i1 + 1 + (j − i1 − 1) = j. □

Corollary B.1. If e →i
w v1 and e →j v2, then i ≤ j and v1 = v2.

Proof. Suppose e →i
w v1 and e →j v2. By Lemma B.16, there exists an i ′ such that v1 →i′ v2

and i + i ′ ≤ j. But i ′ must equal 0, so i ≤ j and v1 = v2. □
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Lemma B.17. Suppose ⟨⟩; ⟨⟩ ⊢a, and a→∗s b is contains i weak steps, and a→n v. Then there exists
a reduction sequence a →j

w a′ →∗s b such that i ≤ j and a′ →∗s b contains no weak steps.

Proof. For a given sequence of steps e1 →∗s e2, let p be the number of weak steps before the
first strong step; and let q be the length of the first subsequence of strong steps. By Lemma B.16,
p ≤ n, so n − p ≥ 0. We proceed by induction on the lexicographic order of (n − p,q).

Suppose n − p = 0, so p = n. Then there is an a′ such that a →n
w a′ →∗s b. Since a →n

w a′ and a
→n v, Lemma B.16 states that there is an n′ such that a′ →n′ v and n+n′ ≤ n. Then n′ = 0, so a′ =
v. We have v →∗s b, which contains no weak steps because v is a value. Therefore i = n. Let j = n,
so j ≤ i . Since a →j

w v →∗s b and j ≤ i and v →∗s b contains no weak steps, the conclusion holds.
Suppose n − p > 0, so p < n. If q = 0, then we have a →p

w b, and the conclusion holds. If q ≥ 1,
we have a →p

w a1 →q
s b. If a1 →q

s b contains only strong steps, then the conclusion holds with
a′ = a1. Otherwise, we have a →p

w a1 →q−1
s a2 →s a3 →w a4 →∗s b, where a3 →w a4 is the first

weak reduction step that follows the first sequence of strong reduction steps.
Since a2 →s a3 →w a4, Lemma B.13 states that there exist terms c1 and c2 such that a2 →w

c1 →∗w c2 →∗s a4.
Replace a2 →s a3 →w a4 with a2 →w c1 →∗w c2 →∗s a4 in the full sequence. If the original

sequence had i weak steps, the new sequence has i ′ ≥ i weak steps.
Suppose now that q = 1. Then we added k ≥ 1 reduction steps to the initial sequence of weak

reduction steps, so the new sequence will have measure (n − (p + k ), l ) for some l ≥ 0. Since
n − (p + k ) < n − p, we have that (n − (p + k ), l ) < (n,q) Therefore, by induction, there exists a
weak reduction sequence a →j

w a′ →∗s b such that j ≥ i ′ ≥ i and a′ →∗s b contains no weak steps.
Suppose instead that q > 1. Then the new sequence will have measure (n − p,q − 1). Since

q − 1 < q, (n − p,q − 1) < (n − p,q). Therefore, by induction, there exists a weak reduction
sequence a →j

w a′ →∗s b such that j ≥ i ′ ≥ i and a′ →∗s b contains no weak steps. □

Lemma B.18 (Preservation of termination behavior). Suppose ⟨⟩; ⟨⟩ ⊢a, and Suppose a →∗ v and
a →∗s a1. Then there exists a value v1 such that a1 →∗ v1.

Proof. By contradiction.
Suppose there is no such value v1. Then for any n, there exists a term a2 such that a1 →n a2.

Now suppose a→∗ v contains i steps. Then a→∗s a1→i+1
s a2 contains at least i + 1 steps of weak

reduction. By Lemma B.17, there exists a reduction sequence a →j
w a3 →∗s a2 such that i + 1 ≤ j.

But by Lemma B.16, a→j
w a3 and a→i v implies a3→k v for some k such that j+k ≤ i . Therefore,

we have j ≤ j + k ≤ i < i + 1 ≤ j. Contradiction.
□

Theorem 4.5. If ⟨⟩; ⟨⟩ ⊢ e and e→∗s e′ and e→i v, then there exists an i ′ ≤ i and a value v′ such
that e′ →i′ v′, and v →∗s v′.

Proof. By Lemma B.18, there exists an i ′ and a value v′ such that e′ →i′ v′.
Therefore, we have that e →∗s e′ →i′ v′, and since each → step is also a →w step, we have e
→∗s e′ →i′

w v′. Suppose e →∗s e′ →i′
w v′ contains i1 steps of weak reduction. It is clear that i ′ ≤ i1.

By Lemma B.17, there exists an a′ such that e →j
w a′ →∗s v′ for some j, and i1 ≤ j, and a′ →∗s v′

contains no weak steps. Since e is closed, a′ is closed, so by Lemma B.12 on a′ →∗s v′, a′ is a value
v′′. By Corollary B.1, j ≤ i and v′′ = v. Therefore, i ′ ≤ i1 ≤ j ≤ i , and v →∗s v′. □

Lemma 5.2. For any self-interpreter u for a representation function ·̂ , and for any term p, if
u p̂⇒s p, then mix is Jones-optimal for u and timecbv .
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Fig. 23. Illustration of Theorem 4.5

x∗ � x∗

e � q

λx∗.e � abs (λx∗.q)

e1 � q1 e2 � q2
e1 e2 � app q1 q2

e � q

e = λabs. λapp. q

u = λe◦. e◦ (λx◦.x◦) (λx◦.x◦)

Fig. 24. Mogensen’s Church-encoded represenation self-interpreter with affine variable annotations.

Proof. Let u be an unannotated self-interpreter, let p be an unannotated term, and suppose
u p⇒s p. We want to show that for any unannotated term d, timecbv (p

′ d) ≤ timecbv (p d), where
mix u p ≡β p′. By the specification of mix, we have that p′ ≡β erase(NFs (annotate (u p))). By the
definition of · , p′ ≡α erase(NFs (annotate (u p))). Let p′′ be the annotated term NFs (annotate (u
p)). Then erase(p′′) = p′. Since u p ⇒s p, we have that annotate (u p) →∗s p′′′ for some annotated
term p′′′ such that erase(p′′′) = p. Since →s is confluent, p′′ = NFs (annotate (u p)) = NFs (p′′′).
Therefore, p′′′ →∗s p′′. By Corollary 4.6, timecbv (p

′′ annotate(d))≤ timecbv (p
′′′ annotate (d)). By

Lemma 5.1, timecbv (erase(p′′ annotate (d))) ≤ timecbv (p
′′′ annotate (d)). Therefore,

timecbv (p
′ d) ≤ timecbv (p d) as required. □

C JONES OPTIMALITY FOR ULC
C.1 Church encoding
Figure 24 shows Mogensen’s Church encoding and self-interpreter u with affine variable anno-
tations. Our theorems do not depend on how the term is annotated before quotation – it can be
unannotated or maximally annotated, and the theorems hold.

Lemma C.1. If ⟨⟩; ⟨⟩ ⊢ e and e � q, then (⟨⟩,abs,app); ⟨⟩ ⊢ q

Note: abs and app may be affine or not, depending on how many abstractions or applications
are in e. Opimality does not depend on whether abs and app are affine or universal. We assume
they are universal.
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Proof. Straightforward induction. □

Lemma C.2. If ⟨⟩; ⟨⟩ ⊢ e, ⟨⟩; ⟨⟩ ⊢ e

Proof. Straightforward by Lemma C.1. □

Lemma C.3. ⟨⟩; ⟨⟩ ⊢ unquote

Proof. Trivial. □

Lemma C.4. If e q, then q[abs := (λx◦.x◦), app := (λx◦.x◦)]→∗s e.

Proof. By induction on e.
Suppose e = x∗. Then q = x∗, so q[abs := (λx◦.x◦), app := (λx◦.x◦)] = e.
Suppose e = (λy∗.e′). Then q = abs (λy∗.q′) and e′ q′. By induction, q′[abs := (λx◦.x◦),

app := (λx◦.x◦)] →∗s e′. Therefore, we can derive:
q[abs := (λx◦.x◦), app := (λx◦.x◦)]

= (abs (λy∗.q′))[abs := (λx◦.x◦), app := (λx◦.x◦)]
= (λx◦.x◦) (λy∗.q′[abs := (λx◦.x◦), app := (λx◦.x◦)])
→∗s (λx◦.x◦) (λy∗.e′)
→s (λy

∗.e′)
= e
Suppose e = e1 e2. Then q = app q1 q2 and e1 q1 and e2 q2. By induction, q1[abs := (λx◦.x◦),

app := (λx◦.x◦)]→∗s e1 and q2[abs := (λx◦.x◦), app := (λx◦.x◦)]→∗s e2. Therefore, we can
derive:

q[abs := (λx◦.x◦), app := (λx◦.x◦)]
= (app q1 q2)[abs := (λx◦.x◦), app := (λx◦.x◦)]
= (λx◦.x◦) (q1[abs := (λx◦.x◦), app := (λx◦.x◦)]) (q2[abs := (λx◦.x◦), app := (λx◦.x◦)])
→∗s (λx◦.x◦) e1 (q2[abs := (λx◦.x◦), app := (λx◦.x◦)])
→∗s (λx◦.x◦) e1 e2
→s e1 e2
= e

□

Lemma 5.3. For any closed term e, u e =⇒s e.

Proof. By definition, e = λabs.λapp.q, where e q. By Lemma C.4, q[abs := (λx◦.x◦), app
:= (λx◦.x◦)] →∗s e. Therefore, we can derive:

unquote e
= (λe◦. e◦ (λx◦.x◦) (λx◦.x◦)) e
→s e (λx◦.x◦) (λx◦.x◦)
= (λabs.λapp.q) (λx◦.x◦) (λx◦.x◦)
→2

s q[abs := (λx◦.x◦), app := (λx◦.x◦)]
→∗s e

□

C.2 Mogensen-Scott encoding
In this section we prove Lemma 5.5, which states that for any term e, msint ê =⇒s e. We proceed
by defining annotated versions of msint and then proving for the annotated version that msint ê
→∗s e.
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Define:
fixf = (λx. f (λy◦. x x y◦)) (λx. f (λy◦. x x y◦))
fix = λf. fixf

u = λu. λe◦. e◦ (λx◦.x◦) (λf.λx.u (f ((λy◦.x)x))) (λf.λx◦.u f (u x◦))
msint = fix u

Lemma C.5. ⟨⟩; ⟨⟩ ⊢ fix

Proof. Straightforward. □

Lemma C.6. msint →s fixu
Proof.
msint

= fix u
→s (λx. u (λy◦. x x y◦)) (λx. u (λy◦. x x y◦))
= fixu

□

Lemma C.7. fixu →s u (λy◦. fixu y◦)
Proof.
fixu

= (λx. u (λy◦. x x y◦)) (λx. u (λy◦. x x y◦))
→s u (λy◦. (λx. u (λy◦. x x y◦)) (λx. u (λy◦. x x y◦)) y◦)
= u (λy◦. fixu y

◦)

□

Lemma C.8. For any e, fixu ê→∗s e.

Proof. By induction on e.
The annotations on ê don’t affect this proof, so we will leave all variables its variables unanno-

tated.
Suppose e = x. Then ê = λvar.λabs.λapp.var x. Therefore, we can derive:
fixu ê

→s u (λy◦. fixu y
◦) ê

→2
s ê (λx

◦.x◦)
(λf.λx.(λy◦. fixu y

◦) (f ((λy◦.x)x)))
(λf.λx◦.(λy◦. fixu y

◦) f ((λy◦. fixu y◦) x◦))
→3

s (λx
◦.x◦) x

→s x
= e
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Suppose e = λx.e′. Then ê = λvar.λabs.λapp.abs (λx.ê′). By induction, fixu ê′→∗s e′. There-
fore, can derive:

fixu ê
→s u (λy◦. fixu y

◦) ê
→2

s ê (λx
◦.x◦)

(λf.λx.(λy◦. fixu y
◦) (f ((λy◦.x)x)))

(λf.λx◦.(λy◦. fixu y
◦) f ((λy◦. fixu y◦) x◦))

→3
s (λf.λx.(λy

◦. fixu y
◦) (f ((λy◦.x)x))) (λx.ê′)

→s λx.(λy
◦. fixu y

◦) ((λx.ê′) ((λy◦.x)x))
→s λx.(λy

◦. fixu y
◦) ((λx.ê′) x)

→s λx.(λy
◦. fixu y

◦) ê′

→s λx.fixu ê′

→∗s λx.e′
= e
Suppose e = e1 e2. Then ê = λvar.λabs.λapp.app ê1 ê2. By induction, fixu ê1 →∗s e1 and

fixu ê2→∗s e2. Therefore, we can derive:
fixu ê

→s u (λy◦. fixu y
◦) ê

→2
s ê (λx

◦.x◦)
(λf.λx.(λy◦. fixu y

◦) (f ((λy◦.x)x)))
(λf.λx◦.(λy◦. fixu y

◦) f ((λy◦. fixu y◦) x◦))
→3

s (λf.λx
◦.(λy◦. fixu y

◦) f ((λy◦. fixu y◦) x◦)) ê1 ê2

→2
s (λy

◦. fixu y
◦) ê1 ((λy◦. fixu y

◦) ê2)
→2

s fixu ê1 (fixu ê2)

→∗s e1 (fixu ê2)
→∗s e1 e2
= e

□

Lemma 5.5. For any term e, msint ê =⇒s e.

Proof. By Lemma C.6, msint ê→s fixu ê, and by Lemma C.8, fixu ê→∗s e. □

C.3 deBruijn Indices
Figure 13 defines our tagless-final representation using deBruijn indices to represent variables.
Here are annotated versions of fst and snd:
fst = (λx◦. x◦ (λy.λz◦.y))
snd = (λx◦. x◦ (λy◦.λz◦.z◦))
Define the mapping · from contexts of unannotated variables to annotated terms as follows:
⟨⟩ = (λy◦.y◦)

Γ,x = λf◦. f◦ x Γ
Note that every unannotated variable x becomes unlimited in the annotated term.

Lemma C.1. If Γ ⊢ x � q, then q Γ →∗s x.

Proof. By induction on the derivation of Γ ⊢ x � q.
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Suppose Γ ⊢ x � q is by the first rule. Then Γ = Γ′,x and q = fst. We have:
q Γ

= fst (λf◦. f◦ xi Γ′)
= (λx◦. x◦ (λy.λz◦.y))

(λf◦. f◦ xi Γ′)

→s (λf
◦. f◦ xi Γ′) (λy.λz◦.y)

→s (λy.λz
◦.y) xi Γ

′

→2
s xi

where the last step relies on that xi is unlimited.
Suppose Γ ⊢ x � q is by the second rule. Then Γ = Γ′,y, and Then Γ′ ⊢ x � q′, and and q = (λp◦.

q′ (snd p◦)). By induction, q′ Γ′ →∗s x. Therefore, we have:
q Γ

= (λp◦. q′ (snd p◦))

(λf◦. f◦ xi Γ′)

→s q
′ (snd (λf◦. f◦ xi Γ′))

→s q
′ ((λf◦. f◦ xi Γ′) (λy◦.λz◦.z◦))

→s q
′ ((λy◦.λz◦.z◦) xi Γ

′)

→2
s q
′ Γ′

→∗s x

□

LemmaC.2. If Γ ⊢ e� q, then there exists a value v such that q[var:=dbVar,abs:=dbAbs,app:=dbApp]
→∗s v and v Γ →∗s e.

Proof. By induction on the derivation of Γ ⊢ e � q.
Suppose e is a variable x. Then Γ ⊢ e � q′, and q = var q′. Let v = q′. We have that:
q[var:=dbVar,abs:=dbAbs,app:=dbApp]

= dbVar q′

= (λf.λe◦.f e) q′

→s q
′

where the last step is because q′ is a value. The conclusion follows from Lemma C.1, which says
q′ Γ →∗s x.
Suppose e = (λx.e′). Then Γ,x ⊢ e′ � q′, and q = abs q′. By induction,

q′[var:=dbVar,abs:=dbAbs,app:=dbApp] →∗s v′, and v′ Γ,x →∗s e′. Therefore, we have:
q[var:=dbVar,abs:=dbAbs,app:=dbApp]

= dbAbs (q′[var:=dbVar,abs:=dbAbs,app:=dbApp])
→∗s dbAbs v′

= (λb.λe.λx.b (λf◦. f◦ x e)) v′

→s (λe.λx.v
′ (λf◦. f◦ x e))

Let v = (λe.λx.v′ (λf◦. f◦ x e)). Then, we have:
v Γ

= (λe.λx.v′ (λf◦. f◦ x e)) Γ

→s (λx.v
′ (λf◦. f◦ x Γ)) (Γ is a value)

= (λx.v′ Γ′) (x is unlimited)
→∗s (λx.e′)
= e
Suppose e = e1 e2. Then Γ ⊢ e1 � q1, and Γ ⊢ e2 � q2, and q = app q1 q2. By induction,

q1[var:=dbVar,abs:=dbAbs,app:=dbApp] →∗s v1 and v1 Γ →∗s e1, and
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q2[var:=dbVar,abs:=dbAbs,app:=dbApp] →∗s v2 and v2 Γ →∗s e2. Therefore, we have:
q[var:=dbVar,abs:=dbAbs,app:=dbApp]

= dbApp (q1[var:=dbVar,abs:=dbAbs,app:=dbApp])
(q2[var:=dbVar,abs:=dbAbs,app:=dbApp])

→∗s dbApp v1 v2
= (λa.λb.λe.a e (b e)) v1 v2
→2

s (λe.v1 e (v2 e))
Let v = (λe.v1 e (v2 e)). Then we have that:

v Γ

= (λe.v1 e (v2 e)) Γ

→2
s v1 Γ (v2 Γ)
→∗s e1 e2

□

Lemma 5.7. For any closed term e, dbint ê =⇒s e.

Proof. We have that ê = (λvar.λabs.λapp.q) and ⟨⟩ ⊢ e � q. By Lemma C.2,
q[var:=dbVar,abs:=dbAbs,app:=dbApp] ⟨⟩ →∗s e. Therefore, we have:

dbint ê
= (λq◦. q dbVar dbAbs dbApp (λx◦.x◦)) ê
→s (̂e dbVar dbAbs dbApp (λx◦.x◦))
→3

s q[var:=dbVar,abs:=dbAbs,app:=dbApp] (λx◦.x◦)

= q[var:=dbVar,abs:=dbAbs,app:=dbApp] ⟨⟩
→∗s e

□

D REPRESENTATION THEOREMS FOR Fµiω
In this section, we prove that every closed and well-typed Fµiω term has a representation in Fµiω , and
that all representations produced by our quoter are β-normal forms.
The following definition relates the environment used to typecheck a termwith the environment

used to typecheck its pre-representation.

Definition D.1 (Environment mapping for pre-representations).

⟨⟩ = ⟨⟩
Γ,X:K = Γ,X:K

Γ,x∗:T = Γ,x∗:V T

Lemma D.1. If Γ ⊢ T : K, then Γ ⊢ T : K

Proof. Straightforward, since · does not affect the presence, order, or kinds of type variables in
the environment. □

Lemma D.2. If Γ ⊢ e : T and e contains no free term variables, then Γ ⊢ e : T

Proof. Straightforward, using Lemma D.1. □

Lemma D.3. If Γ ⊢ (∀X:K.T) : ∗, then
(1) Γ ⊢ tcAllX,K,T : TcAll (∀X:K.T)
(2) Γ ⊢ unAllX,K,T : UnAll (∀X:K.T)
(3) Γ ⊢ isAllX,K,T : IsAll (∀X:K.T)
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Proof. Suppose Γ ⊢ (∀X:K.T) : ∗. Then Γ,X:K ⊢ T : ∗.
1) tcAllX,K,T = ΛArr:∗ → ∗ → ∗. ΛOut:∗ → ∗. ΛIn:∗ → ∗. ΛMu:((∗ → ∗) → ∗ → ∗) → ∗
→ ∗.refl (Out(∀X:K.In T)). It is easily checked that tcAllX,K,T has the type Eq (Out(∀X:K.In
T)) (Out(∀X:K.In T)). But Typecase Arr Out In Mu (∀X:K.T) ≡ Out (∀X:K.In T), and also All
Out In (∀X:K.T) ≡ Out (∀X:K.In T), so we have that tcAllX,K,T has the type TcAll (∀X:K.T)
as required.
2) Follows from reasoning similar to 1.
3) Follows from 1 and 2. □

Lemma D.4. If Γ ⊢ (∀X:K.T) : ∗ and Γ ⊢ S : K, then

(1) Γ ⊢ underAllX,K,T : UnderAll (∀X:K.T)
(2) Γ ⊢ stripAllK : StripAll (∀X:K.T)
(3) Γ ⊢ instX,K,T,S : Inst (∀X:K.T) (T[X:=S])

Proof. First, note that underAllX,K,T, stripAllK, and instX,K,T,S contain no free term vari-
ables. Therefore, by Lemma D.2 it is sufficient to show
(1) Γ ⊢ underAllX,K,T : UnderAll (∀X:K.T)
(2) Γ ⊢ stripAllK : StripAll (∀X:K.T)
(3) Γ ⊢ instX,K,T,S : Inst (∀X:K.T) (T[X:=S])
For 1, it is easily checked that Γ ⊢ underAllX,K,T : (∀F1:∗ → ∗. ∀F2:∗ → ∗. (∀A:∗. F1 A→

F2 A)→ (∀X:K. F1 T)→ (∀X:K. F2 T). The result follows from the type equivalences All Id F1
(∀X:K.T) ≡ (∀X:K. F1 T) and All Id F2 (∀X:K.T) ≡ (∀X:K. F2 T).

The cases for 2 and 3 are similar. □

Lemma D.5. If Γ ⊢ e : T, then there exists a unique q such that Γ ⊢ e : T q and Γ ⊢ q : V T.

Proof. By straightforward induction on the derivation of Γ ⊢ e : T, using the types of the
constructors, Lemma D.3, and Theorem D.4.
Suppose Γ ⊢ e : T is by the rule for variables. Then e = x∗ and (x∗:T) ∈ Γ and Γ ⊢ x∗ : T x∗.

By the definition of ·, (x∗ : V T) ∈ Γ. Therefore, Γ ⊢ x∗ : V T as required.
Suppose Γ ⊢ e : T is by the rule for λ-abstractions. Then e = (λ∗x:T1. e1) and Γ,x∗:T1 ⊢ e1 :

T2 and T = T1 → T2. Also, Γ,x∗:T1 ⊢ e1 : T2 q1 and Γ ⊢ (λx∗:T1.e1) abs V T1 T2 (λx∗:V T1.
q1) By induction, q1 is unique and Γ,x∗:T1 ⊢ q1 : V T2. But Γ,x:T1 = Γ,x:V T1, so Γ ⊢ (λx:V T1.
q1) : V T1 → V T2. Therefore, q = abs V T1 T2 (λx:PExp V T1. q1) is unique and by the type of
abs, it is easily checked that Γ ⊢ abs V T1 T2 (λx:V T1. q1) : V (T1 → T2).
The cases for applications, and fold and unfold expressions are similar.
Suppose Γ ⊢ e : T is by the rule for type abstractions. Then e = (ΛX:K.e1) and Γ,X:K ⊢ e1 :

T1 and T = (∀X:K.T1). Also, Γ,X:K ⊢ e1 : T1 q1 and Γ ⊢ (ΛX:K.e1) tabs V (∀X:K.T1) p s u
(ΛX:K.q1), where p = isAllX,K,T, s = stripAllK = s, and u = underAllX,K,T. By induction, q1
is unique and Γ,X:K ⊢ q1 : V T1. Since Γ,X:K = Γ,X:K, we have that Γ ⊢ (ΛX:K.q1) : (∀X:K.
V T1). It follows from (All Id V (∀X:K.T1)) ≡ (∀X:K. V T1) that Γ ⊢ (ΛX:K.q1) : (All Id
V (∀X:K.T1)). By Theorem D.3, Γ ⊢ p : IsAll (∀X:K.T). But p does not contain any free term
variables, so by Lemma D.2 we have that Γ ⊢ p : IsAll (∀X:K.T). By Theorem D.4, we have that
Γ ⊢ s : StripAll (∀X:K.T) and Γ ⊢ u : UnderAll (∀X:K.T). Therefore, q = tabs V (∀X:K.T1)
p s u (ΛX:K.q1) is unique and by the type of tabs, we have that Γ ⊢ tabs V (∀X:K.T1) p s u
(ΛX:K.q1) : V (∀X:K.T1) as required.

The case for type applications is similar.
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Suppose Γ ⊢ e : T is by the rule for type conversion. The Γ ⊢ e : S and S ≡ T. By the induction
hypothesis, there exists a unique q such that Γ ⊢ e : S q and Γ ⊢ q : PExp V S. Since V S ≡ V T,
we have that Γ ⊢ q : V T as required.

□

Theorem 6.1. If ⟨⟩ ⊢ e : T, then ⟨⟩ ⊢ e : Exp T.

Proof. Follows straightforwardly from Theorem D.5. □

Lemma D.6. For any type T, refl T is β-normal.

Proof. Straightforward. □

Lemma D.7. If Γ ⊢ (∀X:K.T) : ∗, then isAllX,K,T is β-normal.

Proof. Straightforward using Lemma D.6, which states that tcAllX,K,T and unAllX,K,T are β-
normal. □

Lemma D.8. If Γ ⊢ (∀X:K.T) : ∗ and Γ ⊢ S : K, then instX,K,T,S is β-normal.

Proof. Straightforward. □

Lemma D.9. For any kind K, stripAllK is β-normal.

Proof. Straightforward. □

Lemma D.10. If Γ ⊢ (∀X:K.T) : ∗, then underAllX,K,T is β-normal.

Proof. Straightforward. □

Lemma D.11. If Γ ⊢ e : T q, then q is β-normal.

Proof. By straightforward induction on the derivation of Γ ⊢ e : T q, using Lemmas D.7, D.8,
D.9, and D.10. □

Theorem 6.2. If ⟨⟩ ⊢ e : T, then e is β-normal.

Proof. Wehave that e = ΛV:∗ → ∗. q and ⟨⟩ ⊢ e : T q. By LemmaD.11, q is β-normal. Therefore
e is also. □

E JONES OPTIMALITY FOR Fµiω
In this section, we prove that a strong optimization under type-erasure can reduce all interpreta-
tion work for Fµiω . We define the original and type-erased versions of the helper functions used
by the quoter, quotation itself, and the original and type-erased versions of the self-interpreter
unquote. The representation and interpreter are tagless-final-style – essentially a typed version
of the Church encoding for ULC from Section C.1.
Define:

θu(e) = e[abs:=unAbs,app:=unApp,
tabs:=unTAbs,tapp:=unTApp,
fld:=unUnfold,unfld:=unUnfold]

Lemma E.1. If Γ ⊢ e : T q, then te(θu(q)) →∗s te(e).
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decl Eq : ∗ → ∗ =

λA:∗. λB:∗. ∀F:∗ → ∗. F A → F B;

decl refl : (∀A:∗. Eq A A) =

ΛA:∗. ΛF:∗ → ∗. λx◦ : F A. x◦;

decl sym : (∀A:∗. ∀B:∗. Eq A B → Eq B A) =

ΛA:∗. ΛB:∗. λeq◦ : Eq A B.

eq◦ (ΛT:∗. Eq T A) (refl A);

decl trans : (∀A:∗. ∀B:∗. ∀C:∗.
Eq A B → Eq B C → Eq A C) =

ΛA:∗. ΛB:∗. ΛC:∗. λeqAB:Eq A B. λeqBC:Eq B C.

ΛF:∗ → ∗. λx◦:F A. eqBC F (eqAB F x◦);

decl eqApp : (∀A:∗. ∀B:∗. ∀F:∗ → ∗.
Eq A B → Eq (F A) (F B)) =

ΛA:∗. ΛB:∗. ΛF:∗ → ∗. λeq◦ : Eq A B.

eq◦ (λT:∗. Eq (F A) (F T)) (refl (F A);

decl arrL : (∀A1:∗. ∀A2:∗. ∀B1:∗. ∀B2:∗.
Eq (A1 → A2) (B1 → B2) →
Eq A1 B1) =

ΛA1 A2 B1 B2. eqApp (A1→A2) (B1→B2) ArrL;

decl arrR : (∀A1:∗. ∀A2:∗. ∀B1:∗. ∀B2:∗.
Eq (A1 → A2) (B1 → B2) →
Eq A2 B2) =

ΛA1 A2 B1 B2. eqApp (A1→A2) (B1→B2) ArrR;

decl coerce : (∀A:∗. ∀B:∗. Eq A B → A → B) =

ΛA:∗. ΛB:∗. λeq◦:Eq A B. eq◦ Id;

Fig. 25. Implementation of type equality proofs in Fµiω .

decl refl te = λx◦. x◦;
decl sym te = λeq◦. eq◦ refl te;

decl trans te = λeqAB. λeqBC. λx◦. eqBC (eqAB x◦);
decl eqApp te = λeq◦. eq◦ refl te;

decl arrL te = eqApp te;

decl arrR te = eqApp te;

decl coerce te = λeq◦. eq◦;

Fig. 26. The type-erasure of type equality proofs.

Proof. By induction on the derivation of Γ ⊢ e : T q.
Suppose e = x∗. Then te(e) = x∗, and q = te(q) = x∗, and θu(te(q)) = x∗ = te(e).
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decl TcAll : ∗ → ∗ =

λT.∀Arr.∀Out.∀In.∀Mu.
Eq (Typecase Arr Out In Mu T) (All Out In T);

decl UnAll : ∗ → ∗ =

λT.∀Out. Eq (All Out (λA:∗.A) T) (Out T);

decl IsAll : ∗ → ∗ = λT. ∀A. TcAll T → UnAll T → A;

decl tcAll : IsAll T → TcAll T =

λp◦ : IsAll T. p◦ (TcAll T) (λx:TcAll T. λy◦:UnAll T. x);

decl unAll : IsAll T → UnAll T =

λp◦ : IsAll T. p◦ (UnAll T) (λx◦:TcAll T. λy◦:UnAll T. y◦);

tcAllX,K,T = ΛArr.ΛOut.ΛIn.ΛMu.refl (Out(∀X:K.In T))

unAllX,K,T = ΛOut.refl (Out (∀X:K.T))
isAllX,K,T =

ΛA. λf◦:TcAll (∀X:K.T) → UnAll (∀X:K.T) → A.

f◦ tcAllX,K,T unAllX,K,T

Fig. 27. IsAll proofs.

decl tcAll te = λp◦. p◦ (λx. λy◦. x);

decl unAll te = λp◦. p◦ (λx◦. λy◦. y◦);

tcAll teX,K,T = refl te

unAll teX,K,T = refl te

isAll teX,K,T = λf◦. f◦ tcAll teX,K,T unAll teX,K,T

Fig. 28. Type-erasure of IsAll proofs.

decl Id : ∗ → ∗ = λA:∗. A;

decl UnderAll : ∗ → ∗ =

λT:∗. ∀F1:∗ → ∗. ∀F2:∗ → ∗.
(∀A:∗. F1 A → F2 A) →
All Id F1 A → All Id F2 A;

decl StripAll : ∗ → ∗ =

λT:∗. ∀A:∗. All Id (λB:∗. A) T → A;

decl Inst : ∗ → ∗ → ∗ =

λA:∗. λB:∗. ∀F:∗→∗. All Id F A → F B;

underAllX,K,T =

ΛF1. ΛF2. λf : (∀A:∗. F1 A → F2 A).

λe◦ : (∀X:K. F1 T). ΛX:K. f T (e◦ X)

stripAllK = ΛA. λe◦:(∀X:K.A). e◦ TK
instX,K,T,S = ΛF.λf◦:(∀X:K.F T).f◦ S

Fig. 29. underAll, stripAll, and inst functions
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underAll teX,K,T = λf.λe◦. f e◦

stripAll teK = λe◦. e◦

inst teX,K,T,S = λf◦.f◦

Fig. 30. Type-erasure of underAll, stripAll, and inst functions

decl unAbs te = λf◦. f◦;
decl unApp te = λf◦. f◦;
decl unTAbs te = λp. λs. λu. λe◦. unAll te p e◦;
decl unTApp te = λp. λi. λx◦. i (sym te (unAll te p) x◦);
decl unFold te = λx◦. x◦;
decl unUnfold te = λx◦. x◦;

decl unquote te =

λe◦. e◦ unAbs te unApp te unTAbs te unTApp te unFold te unUnfold te

Fig. 31. The type-erasure of unquote.

Suppose e = (λx∗:T1.e1). Then q = abs T1 T2 (λx∗: V T1. q1), and Γ,(x∗:T1) ⊢ e1 : T2 q1.
By induction, te(θu(q1)) →∗s te(e1). Therefore, we can derive:

te(θu(q))
= te(unAbs T1 T2 (λx∗: V T1. θu(q1)))
= unAbste (λx∗. te(θu(q1)))
= (λf◦.f◦) (λx∗. te(θu(q1)))
→s (λx

∗. te(θu(q1)))
→∗s (λx∗. te(e1))
= te(e)
Suppose e = e1 e2. Then q = app T2 T q1 q2 and Γ ⊢ e1 : T2 → T q1 and Γ ⊢ e2 : T2 q2. By

induction, te(θu(q1)) →∗s te(e1) and te(θu(q2)) →∗s te(e2). Therefore, we can derive:
te(θu(q))

= te(unApp T2 T θu(q1) θu(q2))
= unAppte te(θu(q1)) te(θu(q2))
= (λf◦. f◦) te(θu(q1)) te(θu(q2))
→s te(θu(q1)) te(θu(q2))
→∗s te(e1) te(e2)
= te(e1 e2)
= te(e)
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Suppose e = ΛX:K.e1. Then q = tabs (∀X:K.T) isAllX,K,T stripAllK underAllX,K,T (ΛX:K.q1)
and Γ,(X:K) ⊢ e1 : T q1. By induction, te(θu(q1)) →∗s te(e1). Therefore, we can derive:

te(θu(q))
= te(unTAbs (∀X:K.T) isAllX,K,T stripAllK underAllX,K,T (ΛX:K.θu(q1)))
= unTAbste isAllteX,K,T stripAll

te
K underAllteX,K,T te(θu(q1))

= (λp. λs. λu. λe◦. unAllte p e◦)
isAllteX,K,T stripAll

te
K underAllteX,K,T te(θu(q1))

→4
s unAll

te isAllteX,K,T te(θu(q1))
= (λp◦. p◦ (λx◦. λy◦. y◦)) isAllteX,K,T te(θu(q1))
→s isAll

te
X,K,T (λx

◦. λy◦. y◦) te(θu(q1))
= (λf◦. f◦ tcAllteX,K,T unAll

te
X,K,T) (λx◦. λy◦. y◦) te(θu(q1))

→s (λx
◦. λy◦. y◦) tcAllteX,K,T unAll

te
X,K,T te(θu(q1))

→2
s unAll

te
X,K,T te(θu(q1))

= reflte te(θu(q1))
= (λx◦. x◦) te(θu(q1))
→s te(θu(q1))
→∗s te(e1)
= te(ΛX:K.e1)
= te(e)
Suppose e = e1 A. Then q = tapp (∀X:K.T) (T[X:=A]) isAllX,K,T instX,K,T,A q1 and Γ ⊢ e1 :

(∀X:K.T) q1. By induction, te(θu(q1)) →∗s e1. Therefore, we can derive:
te(θu(q))

= te(unTApp (∀X:K.T) (T[X:=A]) isAllX,K,T instX,K,T,A θu(q1))
= unTAppte isAllteX,K,T inst

te
X,K,T,A te(θu(q1))

= (λp. λi. λx◦. i (symte (unAllte p) x◦))
isAllteX,K,T inst

te
X,K,T,A te(θu(q1))

→3
s inst

te
X,K,T,A (sym

te (unAllte isAllteX,K,T) te(θu(q1)))
= (λf◦.f◦) (symte (unAllte isAllteX,K,T) te(θu(q1)))
→s sym

te (unAllte isAllteX,K,T) te(θu(q1))
= (λeq◦. eq◦ reflte) (unAllte isAllteX,K,T) te(θu(q1))
→s unAll

te isAllteX,K,T refl
te te(θu(q1))

= (λp◦. p◦ (λx◦. λy◦. y◦)) isAllteX,K,T refl
te te(θu(q1))

→s isAll
te
X,K,T (λx

◦. λy◦. y◦) reflte te(θu(q1))
= isAllteX,K,T (λx

◦. λy◦. y◦) reflte te(θu(q1))
= (λf◦. f◦ tcAllteX,K,T unAll

te
X,K,T) (λx

◦. λy◦. y◦) reflte te(θu(q1))
→s (λx

◦. λy◦. y◦) tcAllteX,K,T unAll
te
X,K,T refl

te te(θu(q1))
→2

s unAll
te
X,K,T refl

te te(θu(q1))
= reflte reflte te(θu(q1))
= (λx◦. x◦) (λx◦. x◦) te(θu(q1))
→2

s te(θu(q1))
→∗s te(e1)
= te(e1 A)
= te(e)
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Suppose e = fold F T e1. Then q = fld F T q1 and Γ ⊢ e1 : F ( F) T q1. By induction te(θu(q1))
→∗s te(e1). Therefore, we can derive:

te(θu(q))
= te(θu(fld F T q1))
= te(unFold F T θu(q1))
= unFoldte te(θu(q1))
= (λx◦. x◦) te(θu(q1))
→s te(θu(q1))
→∗s te(e1)
= te(fold F T e1)
= te(e)
Suppose e = unfold F T e1. Then q = unfld F T q1 and Γ ⊢ e1 : F T q1. By induction te(θu(q1))
→∗s te(e1). Therefore, we can derive:

te(θu(q))
= te(θu(unfld F T q1))
= te(unUnfold F T θu(q1))
= unUnfoldte te(θu(q1))
= (λx◦. x◦) te(θu(q1))
→s te(θu(q1))
→∗s te(e1)
= te(unfold F T e1)
= te(e)

□

Lemma 6.3. If ⟨⟩ ⊢ e : T, then te(unquote e) =⇒s te(e).

Proof. Suppose ⟨⟩ ⊢ e : T. Then ⟨⟩ ⊢ e : T q and
e = ΛV:∗ → ∗.

λabs : Abs V. λapp : App V.
λtabs : TAbs V. λtapp : TApp V.
λfld : Fold V. λunfld : Unfold V.
q

Therefore, te(e) = λabs.λapp.λtabs.λtapp.λfld.λunfld.te(q).
By induction, te(θu(q)) →∗s te(e).
Therefore, we can derive:
te(unquote e)

= unquotete te(e)
= unquotete (λabs.λapp.λtabs.λtapp.λfld.λunfld.te(q))
= (λe◦. e◦ unAbste unAppte unTAbste unTAppte unFoldte unUnfoldte)

(λabs.λapp.λtabs.λtapp.λfld.λunfld.te(q))
→7

s te(q)[abs:=unAbs
te,app:=unAppte,tabs:=unTAbste,tapp:=unTAppte,fld:=unFoldte,unfld:=unUnfoldte]

= te(θu(q))
→∗s te(e)

□
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