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Abstract
In 1991, Pfenning and Lee studied whether System F could sup-
port a typed self-interpreter. They concluded that typed self-
representation for System F “seems to be impossible”, but were
able to represent System F in Fω . Further, they found that the rep-
resentation of Fω requires kind polymorphism, which is outside
Fω . In 2009, Rendel, Ostermann and Hofer conjectured that the
representation of kind-polymorphic terms would require another,
higher form of polymorphism. Is this a case of infinite regress?
We show that it is not and present a typed self-representation for
Girard’s System U, the first for a λ-calculus with decidable type
checking. System U extends System Fω with kind polymorphic
terms and types. We show that kind polymorphic types (i.e. types
that depend on kinds) are sufficient to “tie the knot” – they enable
representations of kind polymorphic terms without introducing an-
other form of polymorphism. Our self-representation supports op-
erations that iterate over a term, each of which can be applied to
a representation of itself. We present three typed self-applicable
operations: a self-interpreter that recovers a term from its represen-
tation, a predicate that tests the intensional structure of a term, and
a typed continuation-passing-style (CPS) transformation – the first
typed self-applicable CPS transformation. Our techniques could
have applications from verifiably type-preserving metaprograms,
to growable typed languages, to more efficient self-interpreters.

Categories and Subject Descriptors D.3.4 [Processors]: Inter-
preters; D.2.4 [Program Verification]: Correctness proofs, formal
methods

General Terms Languages; Theory

Keywords Lambda Calculus; Self Representation; Types

1. Introduction
Typed self-representation is the problem of representing a stati-
cally typed language in itself. It can be seen as the intersection
of two lines of research: self-representation, which generally stud-
ies representations of untyped or dynamically typed languages in
themselves, and typed representation, which studies techniques for
defining typed representations of statically typed languages that en-
sure only well-typed programs can be represented.
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In general, the techniques required for building a representation
depend upon both the meta-language (in which the representation
is defined) and the object language (which is represented). Rep-
resentations of expressive object language features tend to require
even more expressive meta-language features. In the case of a self-
interpreter, the meta-language and the object language are the same.
The key challenge of typed self-representation is to identify a sin-
gle typed language that is expressive enough to represent each of
its own features, without additional expressive power.

Language

Representation

In our case, we are interested in typed λ-calculi with decid-
able type checking. It has been an open question since 1991 [26]
whether a typed λ-calculus with decidable type checking can sup-
port a meaningful notion of typed self-representation.

Self Representation. Self-representation and self-interpretation
have many important applications. A self-interpreter can be used
to grow a language from a small core implemented in some other
meta-language. One can use similar techniques to implement self-
optimizers and compilers, as well as debuggers, read-eval-print-
loops, and macro systems. A similar idea is the reflective tower,
which uses an infinite tower of self-interpreters to add reflective
capabilities to a language.

There are many examples of self-interpreters in the literature,
including ones for λ-calculus [4, 7, 8, 18, 22, 23, 28, 31], Haskell
[25], JavaScript [13], Lisp [21], Python [36], Ruby [37], Scheme
[2], Standard ML [29], and many others [19, 32, 38]. In each
of these the representations are untyped, in the sense that (1) it
is possible to build representations of ill-typed terms, and (2) all
representations are either untyped or else have the same type.

Typed Representation. We can contrast this with typed repre-
sentations, which have two essential properties: (1) only well-typed
terms can be represented, and (2) the type of a term is reflected in
the type of its representation, in the sense that the former can be
determined by the latter. This provides important correctness guar-
antees for metaprograms. An immediate consequence of (1) is that
a metaprogram cannot produce ill-typed terms. We can also ensure
that the types of its input and output terms are related in a particu-
lar way. For example, we can ensure that a self-interpreter preserves
the type of its input, or that a continuation-passing-style transfor-
mation modifies the type of the input program in the expected way.

There are many examples in the literature of typed representa-
tions. In most cases the techniques rely on the fact that the meta-
language has a more powerful type system than the object lan-
guage.

Typed Self-Representation. The goal of typed self-represent-
ation is to combine the benefits of self-representation and typed
representation. It promises the best of both worlds: on the one



hand, it brings the expressive power of self-representation to the
world of statically typed languages. On the other hand, it brings the
correctness guarantees of types to self-applicable metaprograms.
A robust typed self-representation would support typed variants of
the kinds of applications enabled by self-representation. It would
also narrow the expressiveness gap between dynamically typed
languages and statically typed languages, allowing more classical
programs from dynamically typed languages to be statically type
checked.

What does it mean for a language to support typed self-
representation? We have adopted two primary requirements: that
our language be a typed λ-calculus with decidable type-checking,
and that a representation support operations that iterate over the
structure of the term. Further, we want to allow operations that pro-
duce results of different types, possibly related to the type of the
input representation.

We target a typed self-recognizer [17], which is a self-interpreter
that recovers a term from its representation. The idea of a self-
recognizer was first studied by Kleene [18] in 1936 for an untyped
λ-calculus. There are several examples of typed recognizers and
self-recognizers [26, 27] that are implemented by iteration. Iter-
ation is desirable because it can be supported by languages that
don’t include recursion. An operation that iterates or folds over the
term is defined by cases – one case for each syntactic form.

In the case of a pure λ-calculus (that contains only abstractions,
applications, and variables), we have identified a core challenge
that is related to typed self-representation. The Polymorphic Ap-
plication (polyapp) problem is to define a polymorphic application
function for each form of application in the language. For example,
System F terms can be applied to terms and to types. The polyapp
problem for System F is to define a polymorphic application func-
tion that can apply terms to terms, and a polymorphic application
function that can apply terms to types. In Section 3.2 we present a
general technique for implementing polyapp functions by decom-
posing types. In subsequent sections we leverage this technique to
represent terms and types.

History. Typed self-representation of λ-calculi has been stud-
ied since at least 1991, when Pfenning and Lee [26] considered
whether System F could support a typed self-recognizer. Pfenning
and Lee concluded that the problem “seems to be impossible”, but
were able to implement a typed recognizer for System F represen-
tations in Fω . Furthermore, they were able to implement Fω in F+

ω ,
which extends Fω with kind polymorphic terms. They did not study
representation of F+

ω .
In 2009 Rendel, Ostermann and Hofer [27] studied the repre-

sentation of kind polymorphism, and conjectured that it would re-
quire “another, higher form of polymorphism”. Their solution was
to combine the categories of types and kinds, so that kind polymor-
phism is represented in the same way as type polymorphism. They
demonstrated the first typed self-representation and first typed self-
recognizer for a λ-calculus, though their calculus does not support
decidable type checking.

In 2011 Jay and Palsberg [17] implemented a typed self-
interpreter for a combinator calculus with System F types. They
implemented a self-recognizer and the first typed self-enactor, a
self-interpreter that implements multi-step reduction on typed rep-
resentations. Like [27], type checking is undecidable in their calcu-
lus. Their representation technique was designed for combinators,
and does not appear to be easily translated to a λ-calculus.

Tying the Knot. A challenge of representing a typed λ-calculus
is to find techniques for representing each form of abstraction and
application in the language without adding any new ones. Pfenning
and Lee represented System F type abstraction and application us-
ing the higher order types of Fω . In particular, they used higher or-
der types to represent System F type abstractions and applications.

F Fω F+
ω U

Figure 1. Four typed λ-calculi:→ denotes “represented in.”

We can demonstrate their technique using a polymorphic type ap-
plication function.

A type application function for System F type applications
should map a polymorphic term and a type to the application of
the term to the type. For example, given a term of type ∀α. α→ α
and a type τ , the type application function should return a term of
type τ → τ . We can define the type application function for this
case as λx : (∀α. α→ α). Λβ. x β.

A polymorphic type application function for System F should
be able to apply any polymorphic term. In other words, it should be
polymorphic in the type of the term, and the type of the term must
itself be polymorphic. What is needed is a way to abstract over ex-
actly the polymorphic types of System F, excluding monomorphic
types like α→ β. This is beyond the capabilities of System F type
abstraction.

Pfenning and Lee solved this problem by encoding quantified
types as second-order types in System Fω . For example, the type
∀α. α→ α can be encoded as the second-order type λα : ∗. α→
α. The types of Fω are classified by a family of kinds. First-order
types like τ1 → τ2 have kind ∗, and second-order types like
λα : ∗. α → α have kind ∗ → ∗. Type abstractions in Fω
range over a particular kind that is specified by an annotation. We
can abstract over encodings of System F quantified types using
a type abstraction annotated with kind ∗ → ∗. This enables a
polymorphic type application function for System F quantified
types to be implemented as:

Λσ : ∗ → ∗. λx : (∀α : ∗. σ α). Λβ : ∗. x β

In Fω , the type of this term is ∀σ : ∗ → ∗. (∀α : ∗. σ α)→ (∀β :
∗. σ β). The type ∀α : ∗. σ α represents an arbitrary quantified
type. Substituting σ with an encoded quantified type recovers the
quantified type. For example, substituting σ with λα : ∗. α → α
yields ∀α : ∗. (λα : ∗. α → α) α, which is equivalent to
∀α : ∗. α → α. Note that ∀α : ∗. α → α is the Fω version
of ∀α. α → α. Since every System F quantified type can be
encoded as an Fω type of kind ∗ → ∗, this type application
function can apply any polymorphic System F term. It can only
apply polymorphic terms, because no substitution for σ can make
(∀α : ∗. σ α) into a monomorphic type.

Pfenning and Lee used this technique to represent System F
in Fω . They were unable to represent System Fω in itself, but did
achieve a representation of Fω in F+

ω , which extends Fω with kind
abstraction and application in terms. It is easy to imagine that this
is a case of infinite regress; that representing kind-abstractions will
require another extension, which will also need to be represented if
we hope to achieve self-representation.

The System F type application function discussed above already
hints at the question of infinite regress. It can apply any polymor-
phic term typeable in System F, but is not itself typeable in System
F. On the other hand, it is typeable in System Fω , but can only apply
some of the polymorphic terms in Fω . In particular, it cannot apply
itself. This begs the following question, which we name the Poly-
morphic Application problem: is it possible to define a set of poly-
morphic application functions in a particular language, one for each
form of application in the terms of that language (e.g., for applica-
tions of terms to terms, terms to types, terms to kinds, etc.)? We
conjecture that a language that supports typed self-representation
can also support polymorphic application.



In Section 3.2 we formalize the Polymorphic Application prob-
lem and present a solution for Girard’s System U. In later sections
we use our solution to define our typed self-representation for Sys-
tem U. Our result is summarized in Figure 1. Pfenning and Lee
were able to represent System F in Fω , and Fω in F+

ω . We show
that F+

ω can be represented in System U, and that System U can
represent itself.

System U. System U was first introduced by Jean-Yves Girard
in his PhD thesis [16], in which he also introduced System F.
Girard used System U to formalize a version of the Burali-Forti
paradox. Girard’s paradox showed that System U is not strongly
normalizing, and that every type is inhabited. Thus, as a logic,
System U is inconsistent.

System U is a Pure Type System that lies outside the λ-cube
[5], and that does not include dependent types. It is an extension of
F+
ω , and every legal F+

ω term is a legal System U term. The terms
of System U consist of variables and abstractions and applications
of each of terms, types, and kinds. The types of System U consist
of variables and abstractions and applications of each of types and
kinds. Intuitively, the types of System U are the terms of System F.
In Section 3.2 we show that System U can support a polymorphic
application function for each form of application. A key property
that makes tying the knot possible is that System U does not have
higher-order kinds. As a result, there is no “type system” for kinds:
all kinds are classified by a single sort 2. This is analogous to the
types of System F: System F does not have higher-order types, and
all types are classified by a single sort ∗. Since System U has only
one classifier of kinds, a representation of System U does not need
to abstract over classifiers of kinds.

Representation and Operations. We represent both terms and
the types of terms. We call our term representation procedure “quo-
tation”. In section 5, we define a meta-level process of quotation,
which formalizes what it means for one term to represent another.
In the diagram above, our quotation function quote maps a typed
term to its representation. Unlike the other operations in the figure,
quote is defined outside the language itself.

e

quote

q

unquote

b

isAbs cps

e1

We support operations that iterate or fold over the representation.
In section 6 we present three example operations defined as folds:
a self-recognizer unquote that recovers a term from its representa-
tion, a predicate isAbs that tests the intensional structure of a rep-
resentation, and a typed continuation-passing style (CPS) transfor-
mation. CPS transformation is often used in compilers of functional
programming languages.

Our Results. We identify System U as the first known typed
λ-calculus with decidable type checking that supports typed self-
representation. We represent both terms and the types of terms,
which enables operations that transform the type of their input.
Type representations are essential to our implementation of the first
typed self-applicable CPS transformation. The result type of the
CPS transformation is a function of the intensional structure of the
input type.

Our type representations are types of a particular kind U. Type
representations are used to type check term representations. For ex-
ample, suppose that e is a term of type τ , that q is the representa-

tion of e, and that σ is the representation of τ . Then the type of
q is Exp σ. Our self-recognizer unquote recovers a term from its
representation, so that unquote σ q ≡β e. The type of unquote is
Πα : U. Exp α→ UId α. In Pure Type Systems, Π is analogous to
the ∀ quantifier of System F and Fω . The type UId is an operation
on type representations that recovers a type from its representation.
For example UId σ ≡β τ .

Rest of the Paper. Section 2 gives an overview of Pure Type
Systems, Section 3 describes System U, Section 4 defines our rep-
resentation of types, Section 5 defines our representation of terms,
Section 6 presents our example operations, Section 7 discusses our
implementation and experimental results, Section 8 contains a com-
parison with related work, Section 9 discusses future work, and
Section 10 concludes. Proofs of theorems stated throughout the pa-
per are provided in the appendix of the full paper, which is available
from our website [1].

2. Pure type systems
We use Barendregt’s [5] formalization of System U as a Pure Type
System (PTS). This section gives an overview of some important
aspects of PTSs for the unfamiliar reader, but does not include a
detailed tutorial. Pure Type Systems have a uniform syntax, which
helps to clarify both the presentation of our self-representation
techniques, and a comparison between System U and other PTS
instances like System F and Fω . The comparison serves to ex-
plain what parts of System U are important for achieving a self-
representation.

A Pure Type System is defined by a set of expressions T and a
specification. The expressions are defined by the grammar:

T = V | C | λV : T . T | T T | ΠV : T . T
Here V ranges over a countable set of variables andC ranges over a
set of constants. We use x, y to range over variables, c to range over
constants, and a, b, A, andB to range over expressions. Functionals
are introduced by the λ form and eliminated by application. The
form ΠV : T . T introduces a product, which is used to classify
functionals.

The notation A→β B denotes that A reduces to B in one step of
β-reduction. Similarly, A→η B denotes that A reduces to B in one
step of η-reduction, and A →βη B denotes that either A →β B or
A →η B. The relation�β denotes the reflexive transitive closure
of→β , and ≡β denotes the least congruence relation generated by
→β . The relations�η , ≡η ,�βη , and ≡βη are defined similarly.

A specification of a PTS consists of a triple (S,A,R). The first
component S is a subset of C called sorts. We will use s to range
over sorts. In the systems we consider, all constants are sorts. The
second component A is a set of axioms of the form c : s, where
c is a constant and s a sort. The third component R is a set of
rules of the form (s1, s2, s3), for some sorts s1, s2, and s3. We use
the shorthand (s1, s2) to denote (s1, s2, s2). The specification and
a set of derivation rules determine the derivable typing judgments
Γ ` A : B.

In a judgment of the form Γ ` A : B, we call A the subject and
B the classifier of A. If Γ ` A : B can be derived using the rules
in Figure 2 with the specification of a particular PTS, then A is
legal in that system. Some authors call the set of legal expressions
the terms, though we will use term to refer to a subset of the legal
expressions defined below.

We call a product derived with the rule (s1, s2, s3) as its
side-condition an “(s1, s2, s3) product”. The rule ensures that a
(s1, s2, s3) product will be classified by s3. A product Πx : A. B
is called a dependent product if x occurs free in B. It is standard to
abbreviate products Πx : A. B as A → B when x does not occur
free in B. It is sometimes possible to determine that an arbitrary
(s1, s2, s3) product can be written in this abbreviated form. For



axioms (c:s) ∈ A
` c : s

Γ ` A : sstart
Γ, x : A ` x : A

Γ ` a : A Γ ` B : sweakening
Γ, x : B ` a : A

Γ ` A : s1 Γ, x : A ` B : s2product (s1, s2, s3) ∈ R
Γ ` (Πx : A.B) : s3

Γ, x : A ` b : B Γ ` (Πx : A.B) : s
abstraction

Γ ` (λx : A.b) : (Πx : A.B)

Γ ` F : (Πx : A.B) Γ ` a : A
application

Γ ` F a : B[x := a]

Γ ` A : B Γ ` B′ : s B ≡β B′
conversion

Γ ` A : B′

Figure 2. The rules for a PTS λ(S,A,R)

example, in System F, a (∗, ∗) product has the form Πx : A. B,
where x ranges over terms and A and B are types. Since System
F does not include dependent types, x cannot occur free in B, so
Πx : A. B can be written A→ B.

To demonstrate the uniformity of PTS syntax, consider the
System F term Λα. λx : α. x which has the System F type
∀α.α → α. The symbol Λ denotes a type abstraction. The type
variable α is not classified, since System F does not classify types.
The symbol λ denotes a term abstraction, and the term variable
x is classified. The universal quantifier ∀ forms the types of Λ
abstractions, and → forms the types of λ abstractions. In PTS
syntax, the term is written λα : ∗. λx : α. x, and the type is
written Πα : ∗. Πx : α. α. Here the same symbol λ is used for the
both abstractions, and the type of each λ abstraction is a product.
Since x does not occur free in α, we can also write the type as
Πα : ∗. α→ α.

Theorem 2.1 (Subject Reduction for→βη [15]). If Γ ` A : B and
A�βη A′, then Γ ` A′ : B

Theorem 2.2 (Church-Rosser for →β [15]). If Γ ` A : B and
A�β A1 and A�β A2, then there exists A′ such that A1 �β A′

and A2 �β A′.

While the focus of this paper is primarily on System U, we
also discuss Systems F, Fω and F+

ω . The PTS specification of
each system is listed in Figure 3. The sorts of each is a subset
of {∗,2,∆}. We divide the legal expressions of each PTS based
on these sorts: the sort ∗ corresponds to the terms, the sort 2
corresponds to the types, and the sort ∆ corresponds to the kinds.
More precisely, suppose a legal expressionA is derived by Γ ` A :
B. If Γ ` B : ∗, then A is a term. If Γ ` B : 2, then A is a type.
If Γ ` B : ∆, then A is a kind.

The axioms A of a PTS instance defines how the different sorts
are related to each other. The axioms of each PTS instance listed
in Figure 3 are a subset of {∗ : 2,2 : ∆}. The axiom (∗ : 2)
means that2 is the classifier of ∗ and that types classify terms. The
axiom (2 : ∆) means that ∆ is the classifier of 2 and that the
kinds classify types. We call the classifier of a term its type, and the
classifier of a type its kind.

The rules R determine which products are legal in a PTS in-
stance. The rules R of each PTS instance listed in Figure 3 are a

System F
S ∗,2
A ∗ : 2
R (∗, ∗), (2, ∗)

System Fω
S ∗,2,∆
A ∗ : 2,2 : ∆
R (∗, ∗), (2, ∗), (2,2)

System F+
ω

S ∗,2,∆
A ∗ : 2,2 : ∆
R (∗, ∗), (2, ∗), (2,2), (∆, ∗)

System U
S ∗,2,∆
A ∗ : 2,2 : ∆
R (∗, ∗), (2, ∗), (2,2), (∆, ∗), (∆,2)

Figure 3. PTS specifications of key calculi

subset of {(∗, ∗), (2, ∗), (2,2), (∆, ∗), (∆,2)}. The rule (∗, ∗)
derives terms that abstract over other terms, the types of which
are (∗, ∗) products. The rule (2, ∗) derives terms that abstract over
types, the types of which are (2, ∗) products. The rule (2,2) de-
rives types that abstract over other types, the kinds of which are
(2,2) products. The rule (∆, ∗) derives terms that abstract over
kinds, the types of which are (∆, ∗) products. The rule (∆,2) de-
rives types that abstract over kinds, the kinds of which are (∆,2)
products.

In each PTS of Figure 3, legal products are either types or kinds.
A product type is a legal product that is a type. It is necessarily a
(s, ∗) product. A product kind is a legal product that is a kind. It is
necessarily a (s,2) product.

We adopt a naming convention to help distinguish between
terms, types, and kinds. Names starting with lower-case letters such
as e refer to terms. Names starting with upper-case letters and the
greek letters α, β, τ, and σ refer to types. Greek letters κ and χ
refer to kinds.

Systems F and Fω are part of the λ-cube [5], while F+
ω and U are

not because of the rules (∆, ∗) and (∆,2). All except System U
are strongly normalizing. Girard’s thesis [16] proved that System
U is not strongly normalizing. In particular, there exists a legal
term in System U with the type Πα : ∗.α that does not have
a normal form. However, the types and kinds of System U are
strongly normalizing.

Type checking is decidable for each of System F, Fω , F+
ω , and U

[6]. This relies on that each system is injective [14], a technical
property of Pure Type Systems. An injective PTS also has the
property that types are unique [5].

None of the PTS instances shown in Figure 3 have dependent
types (e.g., types that abstract over terms), which require the rule
(∗,2). A consequence of this is that any (∗, ∗) product Πx : τ1. τ2
can be written τ1 → τ2. Types cannot depend on terms, so x cannot
occur free in τ2.

3. System U
In this section we define a decomposition of System U product
types and use it to solve the Polymorphic Application problem for
System U. The ideas in this section recur throughout the paper: in
the definition of type representations in Section 4; in the decompo-
sition of type representations in Section 4; and in the definition of
term representations in Section 5.

3.1 Decomposing Product Types
In a pure type system, products are always classified by a sort. The
sort of types is ∗, so product types are products classified by ∗.



The product types of System U are formed by (∗, ∗), (2, ∗), and
(∆, ∗). In general, if a product Πx : A. τ is formed by (s, ∗),
then τ is classified by ∗ (i.e. τ is a type) and A is classified by
s. System U products formed by (∗, ∗) and by (∆, ∗) are special
cases. A (∗, ∗) product of the form Πx : τ1.τ2 is special because the
bound variable x cannot occur free in τ2 (i.e. types cannot depend
on terms). Products formed by (∆, ∗) are special because the only
subject classified by ∆ is 2.

Theorem 3.1. In System U, if Γ ` A : ∆, then A = 2.

Proof. By induction on the height of the derivation. Assume Γ `
A : ∆. We proceed by considering the last rule in the derivation. If
the last rule is axioms, then (A : ∆) ∈ A. The only possibility
is (2,∆), so A = 2 as required. If the last rule is start, then
(∆ : s) ∈ A. Contradiction. If the last rule is weakening, then
Γ = Γ1, x : C and Γ1 ` A : ∆. By induction, A = 2 as required.
If the last rule is product, then there exist sorts s1, s2 such that
(s1, s2,∆) ∈ R. Contradiction. If the last rule is abstraction, then
∆ = Πx : A.B. Contradiction. If the last rule is application, then
B[x := a] = ∆. There are two cases: either B = ∆, or a = ∆.
If B = ∆, then (Πx : A.∆) must be legal. This in turn requires
a sort s and an axiom ∆ : s. Contradiction. If a = ∆, then there
must exist a term A such that Γ ` ∆ : A. Contradiction. If derived
by conversion, then there must exist a sort s such that Γ ` ∆ : s,
which in turn requires an axiom ∆ : s. Contradiction.

In words, Theorem 3.1 states that System U does not include
a “type system” for kinds. The situation is similar for the types of
System F, as it does not include a kind system (which is a “type
system” for types). In the PTS formulation of System F, the only
subject classified by 2 is ∗. As we will see, Theorem 3.1 is a key
property of System U that enables self-representation.

Theorem 3.2. If Γ ` τ : ∗, and τ is a normal form, then τ is of
one of the following forms:

α A1 . . . An where α is a type variable.
τ1 → τ2 where Γ ` τ1 : ∗
Πα : κ. τ1 where Γ ` κ : 2
Πχ : 2. τ1

Since we are only interested in decomposing product types (and
not applications of the form α τ1 . . . τn), we only consider the
last three cases. We begin by defining a constructor for each case
of product, corresponding to the rule (s, ∗) that forms the product.

Definition 3.1 (Constructors for product types). We define the
following constructors for product types:

π∗ = λα : ∗. λβ : ∗. α→ β
π2 = λχ : 2. λα : χ→ ∗.Πβ : χ. α β
π∆ = λα : 2→ ∗.Πχ : 2. α χ

It is straightforward to check that the product type constructors
have the types given by the following judgments:

〈〉 ` π∗ : ∗ → ∗ → ∗
〈〉 ` π2 : Πχ : 2. (χ→ ∗)→ ∗
〈〉 ` π∆ : (2→ ∗)→ ∗

Every product type formed by (s, ∗) can be equivalently expressed
as an application of the constructor πs. This is akin to a higher order
abstract syntax encoding of product types [30].

Theorem 3.3 (Decomposition of product types). For any legal
(∗, ∗) product τ1 → τ2, any legal (2, ∗) product Πα : κ. τ , and
any legal (∆, ∗) product Πχ : 2. τ , we have:

τ1 → τ2 ≡β π∗ τ1 τ2
Πα : κ. τ ≡β π2 κ (λα : κ. τ)
Πχ : 2. τ ≡β π∆ (λχ : 2. τ)

Below we define the components of a product to be the argu-
ments of the constructor that yield an equivalent type.

Definition 3.2 (Components of products).
• The components of a (∗, ∗) product type τ1 → τ2 are τ1 and
τ2.
• The components of a (2, ∗) product type Πα : κ. τ are κ and
λα : κ. τ .
• The component of a (∆, ∗) product type Πχ : 2. τ is λχ : 2. τ .

The following theorem states that the components of a product
are always legal in the same environment as the product itself.

Theorem 3.4 (Types of product components).

1. If Γ ` (Πx : τ1. τ2) : ∗ and Γ ` τ1 : ∗, then Γ ` τ2 : ∗.
2. If Γ ` (Πα : κ. τ) : ∗ and Γ ` κ : 2, then

Γ ` (λα : κ. τ) : κ→ ∗.
3. If Γ ` (Πχ : 2. τ) : ∗, then Γ ` (λχ : 2. τ) : 2→ ∗.

As stated earlier, the key properties of System U that enable our
self-representation technique are that product types can be decom-
posed, and that terms and types can abstract over the components.
The components of a (∗, ∗) product are two types, and can be ab-
stracted in terms and types by the rules (2, ∗) and (2,2), respec-
tively. The components of a (2, ∗) product are a kind and a type,
and can be abstracted in terms by the rules (∆, ∗) and (2, ∗), and
in types by (∆,2) and (2,2). The single component of a (∆, ∗)
component is a type, and can be abstracted over in terms and types
by (2, ∗) and (2,2). These properties will play key roles in our
solution of the Polymorphic Application problem (Section 3.2), and
in the representation of types (Section 4) and terms (Section 5).

3.2 Polymorphic Application
We can now formalize the requirements of a polymorphic applica-
tion functions and state the Polymorphic Application problem for a
class of Pure Type Systems.

Definition 3.3 (Standard PTS). A PTS λ(S,A,R) is standard if:

• The designated sort ∗ ∈ S classifies the types of terms.
• For each sort s ∈ S, (s : ∗) 6∈ A.
• If (s1, s2, ∗) ∈ R, then s2 = ∗.

The first condition of a Standard PTS establishes ∗ as the sort
corresponding to terms. The second condition states that terms do
not classify anything. The third condition states that if a term is
an abstraction, then its body is also a term. The systems listed in
Figure 3 and those in the λ-cube are all standard.

Definition 3.4 (Polymorphic Application Function). Let λ(S,A,R)
be a Standard PTS, let (s, ∗) ∈ R, and let p be a legal closed term.
We say that p is a polymorphic application function for the (s, ∗)
products of λ(S,A,R) if it satisfies the following two conditions:

• p is of the form

λx1 : A1. . . . λxn : An. λx : (Πb1 : B.τ). λb2 : B. x b2

for some x1, . . . xn, A1, . . . An, b1, b2, B, τ such that

x1 : A1, . . . , xn : An ` B : s.

• For every closed (s, ∗) product σ of λ(S,A,R), there exist
legal expressions a1, . . . , an such that

〈〉 ` p a1 . . . an : σ → σ

The first condition defines the form of a polymorphic applica-
tion function for (s, ∗) products. The n outermost abstractions are
what make it polymorphic: they abstract over the component(s)
of such products. The term under the n outermost abstractions,



λx : (Πb1 : B. τ). λb2 : B. x b2, should be an application function
for an arbitrary (s, ∗) product. The second condition states that we
can obtain an application function for particular closed (s, ∗) prod-
uct by n applications.

Definition 3.5 (Polymorphic Application Problem). For a Stan-
dard PTS λ(S,A,R), we say that λ(S,A,R) supports polymor-
phic application if there exists a legal polymorphic application
function polyapps for every rule (s, ∗) ∈ R.

For example, a solution of the Polymorphic Application prob-
lem for System F requires two polyapp functions that are legal Sys-
tem F terms: a polyapp∗ function to apply terms to terms, and a
polyapp2 function to apply terms to types. We conjecture that no
legal polyapp2 function exists for System F, and therefore that the
Polymorphic Application problem for System F is impossible.

We now show how to solve the Polymorphic Application prob-
lem for System U. The solution consists of three application func-
tions: polyapp∗, polyapp2, and polyapp∆. Later we will use the
techniques from this section to define our representations of types
and terms.

Term applications. Our first polymorphic application function
polyapp∗ applies terms to terms. Terms that can be applied to
other terms have (∗, ∗) product types of the form τ1 → τ2, where
〈〉 ` τ1 : ∗. An application function for terms of type τ1 → τ2 will
have the type (τ1 → τ2)→ τ1 → τ2, and can be implemented as:

λf : τ1 → τ2. λa : τ1. f a

By Theorem 3.4, we have that 〈〉 ` τ2 : ∗. Therefore, we can
make this polymorphic by abstracting out τ1 and τ2. The resulting
function, polyapp∗, implements application of (∗, ∗) functions:

polyapp∗ = λτ1 : ∗. λτ2 : ∗. λf : τ1 → τ2. λa : τ1. f a

The abstractions of τ1 and τ2 are type abstractions formed by
(2, ∗). The type of polyapp∗ is:

Πτ1 : ∗. Πτ2 : ∗. (τ1 → τ2)→ τ1 → τ2

Lemma 3.1. polyapp∗ is a polymorphic application function for
(∗, ∗) products in System U.

Proof. We have already seen that polyapp∗ is legal. It is easily
checked that it has the required form, and that τ1 : ∗, τ2 : ∗ `
τ1 : ∗. Let σ1 → σ2 be closed a (∗, ∗) product in System U. By
Theorem 3.4, the components σ1 and σ2 are both closed types of
kind ∗. Therefore polyapp∗ σ1 σ2 : (σ1 → σ2) → σ1 → σ2 as
required.

Type applications. Our second polymorphic application func-
tion polyapp2 applies terms to types. Terms that can be applied to
types have (2, ∗) product types of the form Πα : κ. τ , where α
ranges over types of kind κ and τ is a type. Based on the type rules
in Figure 2, an application function for terms of a particular (2, ∗)
product type Πα : κ. τ should have the type:

(Πα : κ.τ)→ Πβ : κ. (τ [α := β]) (†)
Here τ [α := β] denotes the type obtained by substituting β for α
in τ . The syntax τ [α := β] is not part of our language of types, but
can be expressed as (λα : κ. τ) β. Letting τ ′ denote λα : κ. τ , we
can write (†) as:

(Πα : κ. τ ′ α)→ Πβ : κ. τ ′ β

We can implement a polymorphic application function polyapp2
for (2, ∗) products by abstracting over κ and τ ′, which are the
components of Πα : κ. τ . Theorem 3.4 states that κ has sort 2 and
τ ′ has kind 2→ ∗.
polyapp2 = λκ : 2.λτ ′ : κ→ ∗.λf : (Πα : κ. τ ′α).λβ : κ. f β

The first two abstractions of polyapp2 bind the components of an
arbitrary (2, ∗) product type. The third abstraction binds a term of
the corresponding product type. The final abstraction binds the type
argument. The type of polyapp2 is:

Πκ : 2. Πτ ′ : κ→ ∗. (Πα : κ. τ ′ α)→ Πβ : κ. τ ′ β

Lemma 3.2. polyapp2 is a polymorphic application function for
(2, ∗) products in System U.
Proof. We have already seen that polyapp2 is legal and has the
required form. It is easily checked that κ : 2, τ ′ : κ→ ∗ ` κ : 2.
Let (Πα : κ1.σ) be a closed, legal (2, ∗) product in System U.
Then κ1 is closed and classified by 2. By Theorem 3.4, we have
that (λα : κ1. σ) is closed and has kind κ1 → ∗. It is easily
checked that we can derive 〈〉 ` polyapp2 κ1 (λα : κ1. σ) : (Πα :
κ1. σ)→ (Πα : κ1. σ), as required.

Kind applications. Our last polymorphic application function
polyapp∆ applies terms to kinds. Terms that can be applied to types
have (∆, ∗) product types of the form Πχ : 2. τ , where χ ranges
over kinds and τ is a type. An application function for terms of a
particular (∆, ∗) product type Πχ : 2. τ should have the type:

(Πχ1 : 2.τ)→ Πχ2 : 2.τ [χ1 := χ2] (‡)
This type is similar to (†), with one important difference: whereas
the type variables α and β are classified by an arbitrary kind κ, the
kind variables χ1 and χ2 can only be classified by 2 (by Theorem
3.1). We express the substitution as (λχ1 : 2. τ) χ2. Letting τ ′

denote λχ1 : 2. τ , we can write (‡) as:

(Πχ1 : 2. τ ′ χ1)→ Πχ2 : 2. τ ′ χ2

Theorem 3.4 states that τ ′ has kind 2 → ∗. Therefore, we can
implement a polymorphic application function for (∆, ∗) as:

polyapp∆ = λτ ′ : 2→ ∗. λx : (Πχ1 : 2. τ ′ χ1). λχ2 : 2. x χ2

The first abstraction of polyapp∆ is a type abstraction that binds the
sole component of an arbitrary (∆, ∗) product type. The second
abstraction binds a term of the corresponding product type. The
final abstraction binds the kind argument. The type of polyapp∆ is:

polyapp∆ : Πτ ′ : 2→ ∗. (Πχ1 : 2. τ ′ χ1)→ Πχ2 : 2. τ ′ χ2

Lemma 3.3. polyapp∆ is a polymorphic application function for
(∆, ∗) products in System U.
Proof. We have already seen that polyapp∆ is legal and has the
required form. It is an axiom of System U that 2 is classified by
∆. Let (Πχ : A.σ) be a closed, legal (∆, ∗) product in System U.
Then A is closed and classified by ∆. By Theorem 3.1, A = 2.
By Theorem 3.4, we have that (λχ : 2. σ) is closed and has kind
2→ ∗. It is easily checked that we can derive 〈〉 ` polyapp∆ (λχ :
2. σ) : (Πχ : 2. σ)→ (Πχ : 2. σ), as required.

It is notable that the definition of polyapp∆ uses every rule of
System U. The abstractions over x, τ ′, and χ2 are formed by (∗, ∗),
(2, ∗), and (∆, ∗), respectively. The type constructor π∆ is type-
level function formed by (2,2), and the kind 2 → ∗ of τ ′ is
formed by (∆,2).

Theorem 3.5. System U solves the Polymorphic Application Prob-
lem.
Proof. Lemmas 3.1, 3.2, and 3.3 show that there exist legal poly-
morphic application functions in System U for each of its (s, ∗)
rules: (∗, ∗), (2, ∗), and (∆, ∗).

Our polyapp functions we rely on two properties of System U:
that we can decompose product types (Theorem 3.3), and that 2 is
the only subject classified by ∆ (Theorem 3.1). System U appears
to be a local minimum (excluding the trivial PTS with R = ∅):
each of the rules (∗, ∗), (2, ∗), (2,2), (∆, ∗), (∆,2) is important
for our solution.



(∗, ∗) (2, ∗) (∆, ∗)
System F X ×
System Fω X ×
System F+

ω X X ×
System U X X X

Table 1. Polymorphic application functions in our PTSs.

3.3 Polymorphic application in other systems
That 2 is the only subject classified by ∆ is a key to solving the
Polymorphic Application problem for System U: it avoids the need
to abstract over 2, which is impossible in System U. However,
there is more to the story – in System F, ∗ is the only subject clas-
sified by 2, and yet it appears that Polymorphic Application is im-
possible in System F. The question of whether a PTS supports Poly-
morphic Application seems to require whole-system consideration.
We do not know of a simple test that can answer this question for
an arbitrary PTS, and leave the formulation of such a test for future
work.

We conjecture that Polymorphic Application is not possible
for System F, Fω , or F+

ω . Table 1 summarizes the polymorphic
application functions that can be implemented in each system using
the techniques of Section 3.2. Cells marked with X indicate that a
polyapps function for (s, ∗) products can be defined in the system.
Cells marked with × indicate that the definition of polyapps in
that system seems to be impossible. Empty cells indicate that (s, ∗)
products are outside the system.

The first column shows that polymorphic application functions
for (∗, ∗) products can be implemented in all four languages. This
is because a (∗, ∗) product can be decomposed into two types of
kind ∗, and each language includes terms that abstract over types
of kind ∗ via the (2, ∗) rule.

System F does not support a polyapp2 function for applying
terms to types. In System F, decomposing (2, ∗) products (i.e.
quantified types) requires higher-order types, which in turn require
the rule (2,2).

System Fω can implement a polymorphic application function
for System F (2, ∗) products, but not for its own (2, ∗) products.
Since all System F types have kind ∗, all (2, ∗) products in System
F have the form Πα : ∗. τ . These can be decomposed into a single
component λα : ∗. τ , which has kind ∗ → ∗ in Fω . Since Fω
includes higher kinds, a polyapp2 function for Fω should abstract
over the kind, as we did in the polyapp2 for System U. Since Fω
does not include the rule (∆, ∗) needed for kind abstraction in
terms, it cannot implement polyapp2.

System F+
ω can implement polyapp2 because it includes the

rule (∆, ∗). However, it can’t implement polyapp∆ because (∆, ∗)
product types can’t be decomposed in F+

ω . Decomposing (∆, ∗)
products requires kind-polymorphic types, which in turn require
the rule (∆,2).

The techniques used to implement these polymorphic applica-
tion functions can also be used to build typed representations. Thus,
we can interpret the results of Table 1 to mean: System F can be
represented in Fω , Fω can be represented in F+

ω , F+
ω can be repre-

sented in U, and U can be represented in itself. In sections 4 and 5
we will use the techniques from this section to build representations
of types and terms.

4. Representing Types
In this section, we define a process for representing types of kind ∗.
Type representations are themselves types. We are primarily inter-
ested in term representations, and the purpose of type representa-
tions is to enable more typed operations on term representations –

in particular, operations like CPS transformation that transform the
type of a program in a non-trivial way.

Since the purpose of type representations is to support typed
operations on term representations, we only represent types of kind
∗, which are the types of terms. We do not represent higher-order
types like λα : ∗. α, which has the kind ∗ → ∗. We only represent
types in normal form – products, variables, and applications of
variables to one or more types. While the terms of System U are not
strongly normalizing, the types are. This ensures that any type of
kind ∗ can be normalized and represented. While we only represent
closed terms, it is important that we can represent open types. This
is because we will represent not only the type of the top-level term
being represented, but also the type of each of its subterms. Type
representations should support type functions that depend on the
intensional structure of their inputs. These play an important role
in the implementation of our typed CPS transformation in Section
6.3. We summarize the requirements for our representation of types
below.

Definition 4.1. The requirements for our type representation pro-
cedure are:

• Only legal types can be represented.
• Every legal normal-form type of kind ∗ can be represented.
• Type representations support operations that fold over the

structure of the type.

Constructors for Type Representations. We represent types
using higher order abstract syntax (HOAS), inspired by [27] and
[30]. Type representations are types of kind U, which is defined
inductively from four constructors. Theorem 3.2 states that a type
of kind ∗ is either an application of a type variable to zero or more
arguments, or a product derived from one of the rules (∗, ∗), (2, ∗),
or (∆, ∗). Our type representation includes a constructor for each
case.

Definition 4.2 (Constructors of Type Representations). The kind U
is defined inductively by the constructors:

〈〉 ` Var : ∗ → U
〈〉 ` Prod∗ : U→ U→ U
〈〉 ` Prod2 : (Πχ : 2. (χ→ U)→ U)
〈〉 ` Prod∆ : (2→ U)→ U

The constructor Var builds representations of type variables
applied to zero or more types. The constructors of Prod∗, Prod2 and
Prod∆ build representations of (∗, ∗), (2, ∗) and (∆, ∗) products,
respectively. Their types are similar to those of the constructors π∗,
π2, and π∆ defined in Section 3.1, except that they construct types
of kind U instead of types kind ∗. The body of this paper will keep
the definitions of U and its constructors abstract. The appendix of
the full paper gives concrete definitions of U and its constructors as
System U terms.

Building Type Representations. The procedure � for build-
ing type representations is defined in Figure 4. It takes as input the
derivation of a normal form type of kind ∗ and outputs a represen-
tation of the type. The representation of a product type depends on
whether it is a (∗, ∗) product, a (2, ∗) product, or a (∆, ∗) product.

An application of a variable to zero or more types is represented
by applying the constructor Var to it. A product formed by (∗, ∗)
has the form τ1 → τ2, where τ1 and τ2 are each of kind ∗. It is rep-
resented by applying the constructor Prod∗ to the representations
of τ1 and τ2. A product formed by (2, ∗) has the form Πα : κ. τ ,
where τ has kind ∗ and α may occur free in τ . We build the rep-
resentation of τ in the environment Γ, α : κ, and abstract over α
in the representation σ. The result has kind κ → U in the envi-
ronment Γ. We then apply the constructor Prod2 to the kind κ and
the resulting abstraction. A product formed by (∆, ∗) has the form



Γ ` α A1 . . . An : ∗� Var (α A1 . . . An)

Γ ` τ1 : ∗� σ1 Γ ` τ2 : ∗� σ2

Γ ` τ1 → τ2 : ∗� Prod∗ σ1 σ2

Γ ` κ : 2 Γ, α : κ ` τ : ∗� σ
Γ ` (Πα : κ.τ) : ∗� Prod2 κ (λα : κ.σ)

Γ, χ : 2 ` τ : ∗� σ
Γ ` (Πχ : 2.τ) : ∗� Prod∆ (λχ : 2.σ)

Figure 4. Type Representation Procedure

Πχ : 2. τ , where τ has kind ∗ and χ may occur free in τ . We
build the representation of τ in the environment Γ, χ : 2, and ab-
stract over χ in the representation σ. The result has kind 2 → U
in the environment Γ. We then apply the constructor Prod∆ to the
resulting abstraction.

Theorem 4.1 (Kinds of type representations). If Γ ` τ : ∗ and
Γ ` τ : ∗� σ, then Γ ` σ : U.

Example 4.1. The type of the polymorphic identity function, Πα :
∗.α→ α, is represented as Prod2 ∗ (λα : ∗. Prod∗ (Varα) (Varα)).

When context Γ of the derivation Γ ` τ : ∗ is clear, we write τ
to denote the type σ such that Γ ` τ : ∗� σ.

Folds over type representations. Our type representation en-
ables operations that fold over the structure of the type. A fold is
defined by supplying case functions for each case of the structure
of types of kind ∗: variables (or type applications with a variable
in function position), (∗, ∗) products, (2, ∗) products, and (∆, ∗)
products.

Case functions for type variables have kind ∗ → ∗. Variables
are the base case for our inductive type representation. The fold
function maps an input variable to some type of kind ∗. Since we
only represent types of kind ∗, the input type variable must have
kind ∗. Case functions for (∗, ∗) products of the form τ1 → τ2
have kind ∗ → ∗ → ∗. Its two arguments of kind ∗ correspond
the results of folding over τ1 and τ2. Case functions for (2, ∗)
products of the form Πα : κ. τ have kind Πχ : 2. (χ → ∗) → ∗.
An argument type of kind (χ → ∗) will be the result of folding
over a type in which a type variable of kind χ can occur free. Case
functions for (∆, ∗) products of the form Πχ : 2. τ have kind
(2 → ∗) → ∗. An argument type of kind (2 → ∗) will be the
result of folding over a type in which a kind variable can occur
free.

Definition 4.3. Suppose var, prod∗, prod2, and prod∆ satisfy:

〈〉 ` var : ∗ → ∗
〈〉 ` prod∗ : ∗ → ∗ → ∗
〈〉 ` prod2 : Πχ : 2. (χ→ ∗)→ ∗
〈〉 ` prod∆ : (2→ ∗)→ ∗

Then Fold[var, prod∗, prod2, prod∆] denotes the type F such that
〈〉 ` F : U→ ∗, and:

F τ ≡β var τ if τ is of the form α A1 . . . An
F τ ≡β prod∗ (F τ1) (F τ2) if τ = τ1 → τ2, Γ ` τ1 : ∗
F τ ≡β prod2 κ (λα : κ. F τ1) if τ = Πα : κ.τ1, Γ ` κ : 2
F τ ≡β prod∆ (λχ : 2. F τ1) if τ = Πχ : 2. τ1

Our first example of an operation on type representations is
listed in Figure 5. UId recovers a type from its representation. The

UId = Fold[(λα : ∗. α), π∗, π2, π∆]

Figure 5. A function that recovers a type from its representation

case function for variables is the identity. The case function for each
product type is the corresponding constructor.

Theorem 4.2. If Γ ` τ : ∗, then UId τ ≡β τ .

We define the components of type representations similarly to
the components of types:

Definition 4.4 (Components of product representations).
• The components of the representation of a (∗, ∗) product type
τ1 → τ2 are τ1 and τ2.
• The components of the representation of a (2, ∗) product type

Πα : κ. τ are κ and λα : κ. τ .
• The component of a (∆, ∗) product type Πχ : 2. τ is λχ : 2. τ .

5. Representing Terms
In this section we define a process quote(·) that builds representa-
tions of terms. We begin by establishing the requirements for our
representation. First and foremost,we should be able to represent
every legal term in the language, and representations should them-
selves be legal terms. All representations should be strongly nor-
malizing, even if they represent a non-normalizing term. In order
to be considered useful, we require our representations to support
operations that fold over the structure of the term. We summarize
our requirements typed representation of terms below.

Definition 5.1 (Requirements for term representation).
• Only legal terms can be represented.
• Every closed legal term can be represented.
• All representations are strongly normalizing.
• Representations support folds.

Given these requirements, what is required to type check repre-
sentations? Since a representation has different semantics than the
term it represents, we expect its type to also be different. On the
other hand, we expect the types of a term and its representation
to be related. This allows typed operations with result types that
depend on the type of the input term.

5.1 Representation using PHOAS
We represent terms using typed Parametric Higher Order Abstract
Syntax (PHOAS) [12, 35]. The use of PHOAS allows our repre-
sentation to support multiple operations with different result types.
Recall that our type representation, which uses a simpler non-
parametric HOAS, only supports operations that produce results of
kind ∗. In each case we choose the simplest representation for our
needs.

Our representations have types of the form Exp τ , where τ is
a type representation. The type Exp is defined in Figure 6. It is
parametric in a type R of kind U → ∗, which is supplied by
each operation and determines the result type of the operation.
Instantiating a representation of type Exp τ with a result type R
yields the type PExp R τ , which can be read “Exp τ specialized to
parameter R”.

The specialized representation type PExp is inductively defined
by the constructors listed in Figure 6. There is a constructor for each
form of the terms of System U. System U terms are either variables,
λ abstractions, or applications. The abstractions and applications
can be formed by the rules (∗, ∗), (2, ∗), or (∆, ∗).

Our quotation procedure quote(·) is defined in Figure 7. It relies
on a pre-quotation procedure � defined in Figure 8. Given a term



mkVar : ΠR : U→ ∗. Πα : U. R α→ PExp R α

mkAbs∗ : ΠR : U→ ∗. Πα : U. Πβ : U.
(R α→ PExp R β)→ PExp R (Prod∗ α β)

mkApp∗ : ΠR : U→ ∗. Πα : U. Πβ : U.
PExp R (Prod∗ α β)→ PExp R α→ PExp R β

mkAbs2 : ΠR : U→ ∗. Πκ : 2. Πα : (κ→ U).
(Πβ : κ. PExp R (α β))→ PExp R (Prod2 κ α)

mkApp2 : ΠR : U→ ∗. Πκ : 2. Πα : (κ→ U).
PExp R (Prod2 κ α)→ Πβ : κ. PExp R (α β)

mkAbs∆ : ΠR : U→ ∗. Πα : 2→ U.
(Πχ : 2. PExp R (α χ))→ PExp R (Prod∆ α)

mkApp∆ : ΠR : U→ ∗. Πα : 2→ U.
PExp R (Prod∆ α)→ Πχ : 2. PExp R (α χ)

Exp = λα : U. ΠR : U→ ∗. PExp R α

Figure 6. Representation Constructors

〈〉 ` e : τ � q

quote(e) = λ R : U→ ∗. q

Figure 7. Quotation

of type τ , the pre-quoter produces a term of type PExp R τ . Then
quote(·) simply abstracts over R in the result.

The pre-quoter embeds type representations within term rep-
resentations. This is a key to supporting operations like CPS that
transform the type of their input. As is common in HOAS repre-
sentations, we use abstractions to bind the free variables of a rep-
resentation. For example, if α : κ ` e � q, then α may occur free
in q. We close q by abstracting over α. If q has type PExp R τ ,
then λα : κ.q has type Πα : κ. PExp R τ . This reflects that the
representation has a free variable, and enables substituting for α by
application.

The first rule of pre-quotation handles variables. Representa-
tions of variables are constructed using mkVar. Variables are rep-
resented metacircularly [28], that is, using other variables. In par-
ticular, a variable of type τ is represented using a variable of type
R τ .

Abstractions formed by (∗, ∗) bind term variables in terms, and
have types of the form τ1 → τ2. Their representations are con-
structed using mkAbs∗. The types τ1 and τ2 are the components of
τ1 → τ2. The premise Γ, x : τ1 ` e : τ2�q builds a representation
of the body in the extended environment Γ, x : τ1. The abstraction
λx : R τ1. q binds the free variable x in the representation of e.

Applications formed by (∗, ∗) apply terms to terms. An appli-
cation e1 e2, where e1 has the type τ2 → τ , is represented by ap-
plying the constructor mkApp∗ to the components of τ2 → τ , and
the representations of e1 and e2.

Abstractions formed by (2, ∗) bind type variables in terms,
and have types of the form Πα : κ. τ . Their representations are
constructed using mkAbs2. The kind κ and type λα : κ. τ are
the components of Πα : κ. τ . The premise Γ, α : κ ` e : τ � q
builds a representation of the body in the extended environment

Γ ` τ : ∗
Γ ` x : τ �mkVar R τ x

Γ ` τ1 : ∗ Γ, x : τ1 ` e : τ2 � q
Γ ` (λx : τ1.e) : τ1 → τ2 �mkAbs∗ R τ1 τ2 (λx : R τ1.q)

Γ ` τ2 : ∗ Γ ` e1 : τ2 → τ � q1 Γ ` e2 : τ2 � q2
Γ ` e1 e2 : τ �mkApp∗ R τ2 τ q1 q2

Γ ` κ : 2 Γ, α : κ ` e : τ � q
Γ ` (λα : κ.e) : (Πα : κ.τ)�mkAbs2 R κ (λα : κ.τ) (λα : κ.q)

Γ ` κ : 2 Γ ` e : (Πα : κ.τ)� q
(τ [α := τ1]) ; (τ [α := τ1]) = c

Γ ` e τ1 : (τ [α := τ1])� c (mkApp2 R κ (λα : κ.τ) q τ1)

Γ, χ : 2 ` e : τ � q
Γ ` (λχ : 2.e) : (Πχ : 2.τ)�mkAbs∆ R (λχ : 2.τ) (λχ : 2.q)

Γ ` e : (Πχ : 2.τ)� q

Γ ` e κ : (τ [χ := κ])�mkApp∆ R (λχ : 2.τ) q κ

Figure 8. Pre-quotation

Γ, α : κ. The abstraction λα : κ. q binds the free variable α in the
representation of e.

Applications formed by (2, ∗) apply terms to types. Only the
term is represented; the type argument is not represented, even if it
is of kind ∗. The constructor mkApp2 is applied to the components
of the Πα : κ. τ , the representation q of the term e, and the type
argument τ1. The result is a term of type PExp R τ [α := τ1]. A
coercion c of type PExp R (τ [α := τ1]) → PExp R (τ [α := τ1])
is generated by the binary operation ;. Coercions are discussed
further below, and full detail is given in the appendix to the full
paper.

Abstractions formed by (∆, ∗) bind kind variables in terms,
and have types of the form Πχ : 2. τ . Their representations are
constructed using mkAbs∆. The type λχ : 2. τ is the component
of Πχ : 2. τ . The premise Γ, χ : 2 ` e : τ � q builds a
representation of the body in the extended environment Γ, χ :
2. The abstraction λχ : 2. q binds the free variable χ in the
representation of e.

Applications of products formed by (∆, ∗) apply terms to kinds.
Again, only the term is represented. The constructor mkApp∆ is
applied to the component of Πχ : 2. τ , the representation of the
term, and the kind argument.

Example 5.1. Let id = λα : ∗.λx : α.x.

quote(id) =λR : U→ ∗.
mkAbs2 R ∗ (λα : ∗. α→ α)

(λα : ∗. mkAbs∗ R α α
(λx : R α. mkVar R α x))

In bottom-up order, the mkVar term corresponds to the output
of the pre-quoter � on the derivation α : ∗, x : α ` x : α, the
mkAbs∗ term to the output on α : ∗ ` (λx : α. x) : α → α, and
the mkAbs2 term to the output on 〈〉 ` id : (Πα : ∗.α → α). At
the top-level, quote(id) abstracts over R in the pre-quotation of id.

For convenience, we define a notation e as we did for type
representations, though its definition is slightly different. When e



is a term, e denotes its pre-quotation, which allows us to use e even
when e is not closed.

Γ ` e : τ � q 〈〉 ` F : U→ ∗
e = q[R := F]

We allow the environment Γ and the result type function F to be
implied by the context.

Since variables are represented by variables with different types,
we define a representation environment Γ in which pre-quotations
are legal. We define Γ inductively by the following rules. We allow
the result type function F to be implied by context.

Definition 5.2 (Representation Environment).

〈〉 = 〈〉
Γ, x : τ = Γ, x : F τ if Γ ` τ : ∗
Γ, α : κ = Γ, α : κ if Γ ` κ : 2
Γ, χ : 2 = Γ, χ : 2

We now formalize the types of pre-quotations and quotations:

Theorem 5.1. If Γ ` e : τ and 〈〉 ` F : U → ∗, then
Γ ` e : PExp F τ .

Theorem 5.2 (Types of quotations). If 〈〉 ` e : τ : ∗, and
quote(e) = q, then 〈〉 ` q : Exp τ .

Theorem 5.3. If quote(e) = q, then q is strongly normalizing.

Authors traditionally define a representation in λ-calculus to
be a normal form [22, 23, 27]. We follow Pfenning and Lee [26]
and define constructors for our representation, which allow us to
abstract away the details of our encoding. Representations built
from our constructors are not normal forms, but reduce to normal
forms in a few predictable steps. We provide an example in the
appendix to the full paper [1]. It is also possible to define a quoter
that produces closed normal forms.

5.2 Tying the knot
Theorem 5.2 states that our quotation procedure is complete: ev-
ery legal System U term can be represented. We achieve self-
representation using the techniques developed for our solution to
the Polymorphic Application problem in Section 3.2. The type of
each polyapps function is related to the types of the corresponding
representation constructors mkAbss and mkApps.

Each polymorphic application function polyapps abstracts over
the components of (s, ∗) product types. We can use UId to define
a version of polyapps that abstracts over the components of (s, ∗)
type representations. For example, polyapp∆ could be defined as:

λα : 2→ U. λx : UId (Prod∆ α). λχ : 2. x χ

The application of x to χ is legal because UId (Prod∆ α) is
equivalent to Πχ1 : 2. UId (α χ1). This version of polyapp∆ can
have either of the following equivalent types:

• Πα : 2→ U. (Πχ : 2. UId (α χ))→ UId (Prod∆ α)

• Πα : 2→ U. UId (Prod∆ α)→ Πχ : 2. UId (α χ)

If we replace UId with PExp R in the first type and abstract over
R, we get the type of mkAbs∆. The same operation on the second
type yields the type of mkApp∆.

We summarize the results of Section 3.2, Section 4, and Section
5 as follows: Every form of product type in System U can be
decomposed, and we can implement a polymorphic application
function by abstracting over the components. Further, every form of
product type in System U can be represented. Type representations
can also be decomposed and the components can be also used to
define a polymorphic application function. Finally, we can combine
our polymorphic application functions with standard representation
techniques to achieve self-representation.

Abs∗ = λR : U→ ∗. Πα : U. Πβ : U.
(R α→ R β)→ R (Prod∗ α β)

App∗ = λR : U→ ∗. Πα : U. Πβ : U.
R (Prod∗ α β)→ R α→ R β

Abs2 = λR : U→ ∗. Πκ : 2. Πα : (κ→ U).
(Πβ : κ. R (α β))→ R (Prod2 κ α)

App2 = λR : U→ ∗. Πκ : 2. Πα : (κ→ U).
R (Prod2 κ α)→ Πβ : κ. R (α β)

Abs∆ = λR : U→ ∗. Πα : 2→ U.
(Πχ : 2. R (α χ))→ R (Prod∆ α)

App∆ = λR : U→ ∗. Πα : 2→ U.
R (Prod∆ α)→ Πχ : 2. R (α χ)

Figure 9. Types of Case Functions

5.3 Folds over term representations
Our representation of terms is designed to support operations that
fold over the structure of the term. A fold is defined by six case
functions, one each for abstractions and applications formed by
(∗, ∗), (2, ∗), and (∆, ∗). The result of a fold is defined by induc-
tion on the structure of the term. For each term, the corresponding
case function is applied to the the results of folding over its sub-
terms. This is made formal below.

The types of the case functions of a fold are defined in 9.
The types App∗, App2, and App∆ and are similar to the types
of our Polymorphic Application functions polyapp∗, polyapp2 and
polyapp∆ from Section 3.2. Each Apps types and the type of
each polyapps function relies on the idea of decomposition. The
difference is that the Apps types deal with components of type
representations, while the types of the polyapps functions deal with
components of product types.

The specification of an operation on term representations con-
sists of a result type R, a witness of type Witness R, and six case
functions. The witness ensures that for all types τ and τ1 such that
Γ, α : κ ` τ : ∗ and Γ ` τ1 : κ, the quoter can synthesize a coer-
cion of type: PExp R (τ [α := τ1])→ PExp R (τ [α := τ1]). These
coercions are necessary in order to represent type applications. The
semantics of a coercion thus depends on the witness, which gives
us the flexibility needed to support multiple operations on a single
generic representation. We will say more about the coercions for
each of our operations in the following section. Witnesses and co-
ercions are described in greater detail in the appendix to the full
paper.

Definition 5.3. Suppose F, w, abs∗, app∗, abs2, app2, abs∆, and
app∆ satisfy:

〈〉 ` F : U→ ∗
〈〉 ` w : Witness F
〈〉 ` abs∗ : Abs∗ F 〈〉 ` app∗ : App∗ F
〈〉 ` abs2 : Abs2 F 〈〉 ` app2 : App2 F
〈〉 ` abs∆ : Abs∆ F 〈〉 ` app∆ : App∆ F

Then fold[F,w, abs∗, app∗, abs2, app2, abs∆, app∆] denotes a term
f such that 〈〉 ` f : Πα : U.PExp F α → F α, and for any context
Γ, term e, and type τ such that Γ ` e : τ , we have that:



w : Witness UId
id∗ = λα : U. λβ : U. λx : UId α→ UId β. x
id2 = λκ : 2. λα : κ→ U. λx : (Πβ : κ. UId (α β)). x
id∆ = λα : 2→ U. λx : (Πχ : 2. UId (α χ)). x
unquote = fold[UId,w, id∗, id∗, id2, id2, id∆, id∆]

Figure 10. Definition of unquote

If e is a variable, then f τ e ≡β e.
If τ = τ1 → τ2, Γ ` τ1 : ∗, and e = λx : τ1. e1, then

f τ e ≡β abs∗ τ1 τ2 (λx : F τ1. f τ2 e1).
If e = e1 e2, Γ ` e2 : τ1 : ∗, then

f τ e ≡β app∗ τ1 τ (f τ1 → τ e1) (f τ1 e2).
If τ = Πα : κ. τ1, Γ ` κ : 2, and e = λα : κ. e1, then

f τ e ≡β abs2 κ (λα : κ. τ1) (λα : κ. f τ1 e1).
If e = e1 τ2, Γ ` κ : 2, and Γ ` e1 : Πα : κ. τ1, then

f τ e ≡β c (app2 κ (λα : κ. τ1) (f Πα : κ. τ1 e1) τ2)
for some coercion c.

If τ = Πχ : 2. τ1, and e = λχ : 2. e1, then
f τ e ≡β abs∆ (λχ : 2.τ1) (λχ : 2. f τ1 e1).

If e = e1 κ, Γ ` κ : 2, and Γ ` e1 : Πχ : 2. τ1, then
f τ e ≡β app∆ (λχ : 2. τ1) (f Πχ : 2.τ1 e1) κ.

Definition 5.3 states that the operation specified by fold[F, w,
abs∗, app∗, abs2, app2, abs∆, app∆] has the semantics expected
of a fold. The seven cases are mutually exclusive and exhaustive:
a term in System U is either a variable, an abstraction, or an
application. Abstractions and applications can be formed by one
of three rules: (∗, ∗), (2, ∗), (∆, ∗).

6. Operations
In this section we show how to program three benchmark oper-
ations on our representation. The first, called unquote, is a typed
self-recognizer – a self-interpreter that recovers an term from its
representation. The second, called isAbs, is a simple example of
an intensional predicate. It tests whether its input represents an ab-
straction or an application. The third, and most complex, is a typed
self-applicable continuation-passing-style (CPS) transformation.

6.1 Unquote
Our self-recognizer unquote is defined in Figure 10. It produces
results with types determined by UId. Each case function in the
definition of unquote is an identity function. If a term e has type τ ,
then unquoting a representation of e produces a term of type UId τ .
Theorem 4.2 states that UId τ is equivalent to τ .

Theorem 6.1 (Type of unquote).
〈〉 ` unquote : (Πα : U. Exp α→ UId α)

Unquote folds identity functions over the term. The result is
equivalent to the original term.

Theorem 6.2 (Correctness of unquote).
If 〈〉 ` e : τ and quote(e) = q, then unquote τ q ≡β e.

The coercions produced by the witness for unquote are al-
ways identity functions. Consider the type UId (τ [α := τ1]) →
UId τ [α := τ1], which is the type of an arbitrary coercion for un-
quote. This type is equivalent to τ [α := τ1]→ τ [α := τ1].

6.2 isAbs
Our second benchmark operation isAbs is shown in Figure 11.
isAbs tests if its input is a representation of an abstraction. This
demonstrates that we can define operations on a representation that

Bool = Πα : ∗. α→ α→ α
true = λα : ∗. λt : α. λf : α. t
false = λα : ∗. λt : α. λf : α. f

UBool = λα : U. Bool

w : Witness UBool
abs∗ = λT1 : ∗. λT2 : ∗. λf : Bool→ Bool.true
app∗ = λT1 : ∗. λT2 : ∗. λf : Bool. λe1 : Bool. false
abs2 = λ χ : 2. λF : χ→ ∗. λe1 : χ→ Bool. true
app2 = λ χ : 2. λF : χ→ ∗. λe1 : Bool. λx : χ. false
abs∆ = λT1 : 2→ ∗. λe1 : 2→ Bool. true
app∆ = λT1 : 2→ ∗. λe1 : Bool. λ χ : 2.false
isAbs = fold[UBool,w, abs∗, app∗, abs2, app2, abs∆, app∆]

Figure 11. Specification of isAbs

cannot be defined directly on the represented term. The result type
UBool of isAbs is the constant Bool function. Each case function in
the definition of isAbs is a constant function. It discards the result
of folding over its subterm(s), since we are only interested in the
outermost constructor of the representation. The case functions for
abstractions are constant true functions and the case functions for
applications are constant false functions.
Theorem 6.3 (Type of isAbs).

〈〉 ` isAbs : (Πα : U. Exp α→ Bool)

The application of isAbs to the representation of a term of type τ
produces a term of type UBool τ , which is equivalent to Bool. Like
those for UId, coercions for UBool types are identity functions.
Consider the type UBool (τ [α := τ1]) → UBool τ [α := τ1],
which is the type of an arbitrary coercion for isAbs. Since UBool
is a constant function, this type is equivalent to Bool→ Bool.

Theorem 6.4 (Correctness of isAbs).
If 〈〉 ` e : τ : ∗ and quote(e) = q then:
• If e = λx : A.e1, then isAbs τ q ≡β true.
• If e = e1 A, then isAbs τ q ≡β false.

6.3 Continuation-Passing Style
In this section, we implement a type call-by-name continuation-
passing style (CPS) transformation on our representation. CPS
transformation is commonly used in compilers for functional lan-
guages. It makes the evaluation order (call-by-name in our case)
explicit, and eliminates the need for a control-stack. There are ex-
amples of typed CPS transformations in the literature, though ours
is the first that is self-applicable. We extend the typed CPS trans-
formation of [27], which operates on typed representations of sim-
ply typed λ calculus. To transform abstractions and applications of
types and kinds, we extend the technique used by Morrisett et al
[24] to transform System F type abstractions and applications.

The result of applying the CPS transformation to the represen-
tation of a term of type τ is a term of type CPS τ . The type CPS
is shown in Figure 12. CPS is defined via a fold CPS1 and a helper
function Ct. The CPS-transformation itself is defined in Figure 13.

Theorem 6.5 (Type of cps).

〈〉 ` cps : (Πα : U. Exp α→ CPS α)

Coercions for CPS types are not identity functions, unlike those
for UId and UBool types. As a simple example, note that for type
variables α and β, CPS (α[α := β → β]) is not equivalent to
CPS (α[α := β → β]). The former simplifies to CPS (Var (β →



Ct = λT : ∗. Π V : ∗. (T→ V)→ V

var = λα : ∗. α
prod∗ = λα : ∗. λβ : ∗. Ct α→ Ct β
prod2 = λχ : 2. λα : χ→ ∗. Πβ : χ. Ct (α β)
prod∆ = λT1 : 2→ ∗. Πχ : 2. Ct (T1 χ)
CPS1 = Fold[var, prod∗, prod2, prod∆]

CPS = λT : U. Ct (CPS1 T)

Figure 12. The result type of CPS transformation

w : Witness CPS
abs∗ = λα : U. λβ : U. λf : CPS α→ CPS β.

λV : ∗. λk : (CPS α→ CPS β)→ V. k f

app∗ = λα : U. λβ : U. λf : CPS (Prod∗ α β). λx : CPS α.
λV : ∗. λk : (CPS1 β)→ V.
f V (λg : CPS α→ CPS β. g x V k)

abs2 = λχ : 2. λα : χ→ U. λe : (Πβ : χ. CPS (α β)).
λV : ∗. λk : (CPS1 (Prod2 χ α))→ V. k e

app2 = λχ : 2. λα : (χ→ U). λe : CPS (Prod2 χ α). λβ : χ.
λV : ∗. λk : (CPS1 (α β))→ V.
e V (λe1 : (Πβ1 : χ. CPS (α β1)).e1 β V k)

abs∆ = λα : 2→ U. λe : Πχ : 2. CPS (α χ).
λV : ∗. λk : CPS1 (Prod∆ α)→ V. k e

app∆ = λα : 2→ U. λe : CPS (Prod∆ α). λχ : 2.
e V (λe1 : (Πχ1 : 2. CPS (α χ1)).e1 χ V k)

cps = fold[CPS,w, abs∗, app∗, abs2, app2, abs∆, app∆]

Figure 13. Specification of cps

β)), and the latter to CPS (Prod∗ (Var β) (Var β)). Coercions for
CPS types add and remove continuations as necessary.

We don’t attempt to formally verify the correctness of cps,
though we validate it by testing it on the polyapp functions from
Section 3.2.

7. Experiments
We conduct experiments using an implementation of System U,
which is available from our website [1]. We implement a parser
in Ohm, a domain specific language for writing parsers and the
successor to OMeta [34]. The parser generates abstract syntax for
our Haskell implementation of System U, which includes type and
term quoters, a validity checker, an evaluator, and an incomplete
β, η-equivalence checker. We have used the implementation to me-
chanically check that all System U terms, types and kinds presented
in the paper are legal, and to verify the equivalence theorems. We
have verified that self-applications of unquote, isAbs, and cps are
legal and have normal forms. Furthermore, self-application of un-
quote is equivalent to unquote itself, and self-application of isAbs
evaluates to the Church boolean true:

quote(unquote) = q

unquote (Πα : U. Exp α→ UId α) q ≡β,η unquote

F∗ω
S ∗,2
A ∗ : 2,2 : 2
R (∗, ∗), (2, ∗), (2,2)

Figure 14. PTS specification of F∗ω

quote(isAbs) = q

isAbs (Πα : U. Exp α→ UBool α) q ≡β,η true

We have validated cps by applying it to each of our polyapp
functions from Section 3.2.

8. Related Work
The problem of typed self-representation has been studied since
1991, when Pfenning and Lee considered whether System F (λ2)
could represent itself [26]. They found that “metacircularity seems
to be impossible” for System F. However, they developed several
typed representations of one language in another – System F in
System Fω , and Fω in F+

ω . Their representation technique inspired
our own. They use higher order abstract syntax similar to ours,
with two important differences. They don’t represent types, and
their quoter does not change the types of variables. Each of these is
important for our typed cps transformation.

The key idea of decomposition of product types is already
present in Pfenning and Lee [26]. The idea recurs throughout the
literature on typed HOAS representations. In the setting of pure
type systems, the pattern becomes more clear. We identify decom-
position of product types and abstraction of the resulting compo-
nents as key requirements for typed representation of a pure type
system.

Rendel, Ostermann, and Hofer [27] defined the first typed self-
representation and self-recognizer (which they called eval). They
study a language F∗ω defined in Figure 14. Like Fω , System F∗ω
contains the rule (2,2) which allows formation of higher-order
types. Unlike Fω , which classifies types using a family of kinds
induced by the sort ∆ and axiom 2 : ∆, System F∗ω adds an axiom
2 : 2, which forms types that classify other types. Types that
classify other types play the role of “kind” in System F∗ω . This is
sufficient to tie the knot: abstractions formed by (2, ∗) can abstract
over both types and “kinds” in terms. Similarly, (2,2) can abstract
over both types and “kinds” in types.

Our type representation is partly inspired by that of [27], which
represents the types of simply typed λ-calculus in F∗ω . They use
type representations in a representation of simply-typed λ-calculus
in F∗ω , which supports a typed CPS transformation. Our self-
representation of System U and CPS transformation are also in-
spired by their representation and CPS transformation of simply-
typed λ-calculus.

Like System U, System F∗ω is not normalizing. Unlike System
U, type checking of F∗ω is undecidable due to the (2,2) rule. We
conjecture that System U can be embedded into F∗ω , but that System
F∗ω cannot be embedded into System U.

Our representation of types is also inspired by Saha et al. [30].
They study intensional type analysis for λωi which, like System U,
includes type and kind polymorphism. They encode base types of
kind Ω (analogous to ∗ in System U) using HOAS. The kinds of
their HOAS type constructors parallel the kinds of the constructors
of our type representations.

λωi Kind System U Kind
→ Ω→ Ω→ Ω Prod∗ U→ U→ U
∀ ∀χ.(χ→ Ω)→ Ω Prod2 Πχ : 2.(χ→ U)→ U
∀+ (∀χ.Ω)→ Ω Prod∆ (2→ U)→ U



Despite notational differences, there is a direct correspondence
between the kinds of the constructors for λωi types and our type
representations. The binders ∀ and Π play the same role in each
calculus. Furthermore, in System U 2 → U is shorthand for
Πχ : 2.U (since χ does not occur free in U). A subtle difference
is that there is no classifier for the kinds of λωi (they use a well-
formedness condition), while in our PTS formulation of System U
all kinds are classified by 2. Saha et al. include a type operator
Typerec for intensional type analysis of base types based on folds.
They support fold operations that produce higher-kinded results.
The Typerec operator is primitive, which avoids the need for type
representations. They did not study self-representation of System
λωi , and it is an open question whether it would be possible. We
conjecture that System U can be embedded into λωi , but λωi cannot
be embedded into System U.

Typed representation has been extensively studied, and is still
an active area of research. Chen and Xi [10, 11] studied typed rep-
resentation and typed meta-programming. Carette, Kiselyov and
Shan [9] use typed representation to build tagless interpretations.
McBride [20] achieved a metacircular representation of depen-
dently typed languages in Agda. Axelsson [3] developed a tech-
nique for building generic, composable typed representations as a
solution to the expression problem [33]. Each of these is important
related work, and we have learned from and been inspired by them,
even though they did not study self-representation.

9. Future Work
Size. Our representations do not support operations that measure the
size of a term. This is a limitation of our higher order abstract syn-
tax representation. Abstractions in the representation, particularly
type abstractions, can block access to the size of subterms. Assum-
ing the size operation should produce results of some closed type
Nat, we would need a way to convert a term of type Πα : κ. Nat
to Nat. The quantification α is redundant, since α does not occur
free in Nat. In order to recover the Nat, we would have to apply the
term of type Πα : κ.Nat to a type of kind κ. This is not always pos-
sible, since not all System U kinds are inhabited. In [27] this was
addressed by adding a type constant ⊥ : Πα : 2.α, which could
be used to apply these abstractions.

Beyond kind *. Our representation of types is limited to types of
kind *. Full representation of types is desirable, as it may eliminate
the need for coercions and the witnesses that enable coercions.
Full representation may also enable more operations. It is an open
question whether full type representation is possible in System U.

Without type representation. At the other end of the type rep-
resentation spectrum, we can consider representation of terms that
don’t require representation of types. We represent types in order to
support our typed CPS transformation. In particular, type represen-
tations allow us to give cps the polymorphic type Πα : U.Exp α→
CPS α. The input and output types Exp α and CPS α are both de-
fined in terms of the quantified variable α. Our other operations,
unquote and isAbs, do not require any representation of types. It
is possible to define a simpler representation type Exp1 of kind
∗ → ∗, and a quotation procedure that represents terms of type
τ with terms of types Exp1 τ . The representation type and quoter
would be similar to those from Rendel, Ostermann, Hofer [27]. In
particular, we would no longer require coercions.

Strong normalization. Of the two λ-calculi System F∗ω and
System U known to support typed self-representations, neither is
strongly normalizing. It is an open question whether a language
with decidable type checking and strong normalization can support
typed self-representation.

Representing open terms. Our quoter changes the types of vari-
ables, which is important for our cps transformation, but also lim-
its our representations to closed terms. Pfenning and Lee did not

change the type of variables, which enabled them to represent free
variables (i.e. those bound outside the representation) in the same
way as bound variables. It is possible to extend our representation
type with a new constructor for representing free variables, with the
type:

ΠR : U→ ∗.Πα : ∗.α→ PExp R (Var α)

To represent a free variable of type τ , the quoter would first apply
this constructor, producing a term of type PExp R (Var τ). Then it
would synthesize a coercion to change the type to PExp R τ . Note
that Var τ ≡ α[α := τ ] and that τ ≡ α[α := τ ].

Dependent Types. We can extend System U with dependent
types by adding to R the rule (∗,2) that forms types that ab-
stract over terms. The resulting system still supports polymor-
phic application, which indicates that it might also support self-
representation. Compared to the polyapp functions for System U,
the only change required is to polyapp∗, since (∗, ∗) products can
now be dependent. For example, in a product type Πx : τ1. τ2
formed by (∗, ∗), the bound variable x can now occur free in τ2.
The polyapp∗ function for the extended system could be defined
as:

λτ1 : ∗. λτ2 : τ1 → ∗. (Πx : τ1.τ2 x)→ Πy : τ1. τ2 y

Note that the kind τ1 → ∗ is formed by (∗,2). We still have the
property that 2 is the only element of ∆, which is key to tying the
knot. However, the addition of dependent types would raise two
challenges for type representation. The first is due to the introduc-
tion of non-normalizing types (e.g. because types can contain non-
normalizing terms). Our type representation in this paper only ap-
plies to types in normal form. Second, the type representation must
consider how to represent types that depend on terms.

10. Conclusion
The question of whether a meaningful notion of typed self-represen-
tation is possible for a language with decidable type checking has
been open since 1991 [26]. We answer in the affirmative by pre-
senting the first typed self-representation for a λ-calculus with
decidable type checking. Our calculus is System U, which was in-
troduced in Girard’s PhD thesis [16]. We embed representations of
types into representations of terms, which enable operations like
CPS transformation that change the type of a term. Our representa-
tion supports operations that iterate over the term, and we provide
three example self-applicable operations: a typed self-recognizer
that recovers a term from its representation, a predicate that tests
the intensional structure of a term, and a typed CPS transforma-
tion. Ours is the first typed self-applicable CPS transformation.
We have validated our results by conducting experiments using an
implementation of System U in Haskell.
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U = (∗ → ∗)→
(∗ → ∗ → ∗)→
(Πχ : 2.(χ→ ∗)→ ∗)→
((2→ ∗)→ ∗)→
∗

Figure 15. Kind of type representations

A. Encoding
A.1 Type Representations
In this section we provide concrete definitions of the kind U of type
representations, the constructors of type representations, and the
Fold[. . . ] context. Our representations of types use a Church-style
encoding. Figure 15 shows the kind U of type representations.

Theorem A.1. 〈〉 ` U : 2

Proof. Straightforward.

The file lib/reptypes.pts defines the constructors for our
type representations.

Theorem A.2 (Kinds of Type Representation Constructors).

〈〉 ` Var : ∗ → U
〈〉 ` Prod∗ : U→ U→ U
〈〉 ` Prod2 : (Πχ : 2. (χ→ U)→ U)
〈〉 ` Prod∆ : (2→ U)→ U

Proof. Machine-checked.

Definition A.1. Suppose var, prod∗, prod2, and prod∆ satisfy:

〈〉 ` var : ∗ → ∗
〈〉 ` prod∗ : ∗ → ∗ → ∗
〈〉 ` prod2 : (Πχ : 2. (χ→ ∗)→ ∗)
〈〉 ` prod∆ : (2→ ∗)→ ∗

Then Fold[var, prod∗, prod2, prod∆] denotes the type:

λα : U. α var prod∗ prod2 prod∆

Theorem A.3. Let F = Fold[var, prod∗, prod2, prod∆]. Then
〈〉 ` F : U→ ∗

Proof. Straightforward.

Theorem A.3 states that all folds on type representations have
kind U → ∗. The proof is straightforward, since Fold[. . . ] is only
defined when the case functions have the expected kind.

Theorem A.4. Suppose Γ ` τ : ∗, and let F = Fold[F1, F2, F3,
F4]. Then:

F τ ≡β F1 τ If τ is of the form α τ1 . . . τn
F τ ≡β F2 (F τ1) (F τ2) If τ = τ1 → τ2, Γ ` τ1 : ∗
F τ ≡β F3 κ (λα : κ. F τ1) If τ = Πα : κ.τ1, Γ ` κ : 2
F τ ≡β F4 (λχ : 2. F τ1) If τ = Πχ : 2. τ1

Proof. By straightforward case analysis. In each case, we expand
the definitions of τ , F, Fold[. . . ], and the constructors Var, Prod∗,
Prod2, and Prod∆ on both sides of the equivalence. Then a few
simple β-reductions establish the equivalence. In the fifth case
(when e is a type application of the form e1 τ2, we also rely on
Lemma A.11.

PExp = λR : U→ ∗. λα : U.
Witness R→
Abs∗ R → App∗ R →
Abs2 R → App2 R →
Abs∆ R → App∆ R →
R α

Figure 16. Type of pre-quotations

Theorem A.4 states that an operation on type representations
folds over the structure of its input. For example, a case function
F2 for (∗, ∗) products of the form τ1 → τ2 maps the results of the
operation on τ1 and τ2 to a result for τ1 → τ2. The other cases are
similar.

A.2 Term Representations
In this section we provide concrete definitions of the type PExp
of pre-quotations, the constructors of term representations, and the
fold[. . . ] context. Our representations of types use a Church-style
encoding. Figure 16 shows the type PExp of pre-quotations.

Theorem A.5. 〈〉 ` PExp : (U→ ∗)→ U→ ∗

Proof. Straightforward.

The file lib/replib.pts defines the constructors for our term
representations.

Theorem A.6 (Types of Term Representation Constructors).
〈〉 ` mkVar : (ΠR : U→ ∗. Πα : U. R α→ PExp R α)

〈〉 ` mkAbs∗ : (ΠR : U→ ∗. Πα : U. Πβ : U.
(R α→ PExp R β)→ PExp R (Prod∗ α β))

〈〉 ` mkApp∗ : (ΠR : U→ ∗. Πα : U. Πβ : U.
PExp R (Prod∗ α β)→ PExp R α→ PExp R β)

〈〉 ` mkAbs2 : (ΠR : U→ ∗. Πκ : 2. Πα : (κ→ U).
(Πβ : κ. PExp R (α β))→ PExp R (Prod2 κ α))

〈〉 ` mkApp2 : (ΠR : U→ ∗. Πκ : 2. Πα : (κ→ U).
PExp R (Prod2 κ α)→ Πβ : κ. PExp R (α β))

〈〉 ` mkAbs∆ : (ΠR : U→ ∗. Πα : 2→ U.
(Πχ : 2. PExp R (α χ))→ PExp R (Prod∆ α))

〈〉 ` mkApp∆ : (ΠR : U→ ∗. Πα : 2→ U.
PExp R (Prod∆ α)→ Πχ : 2. PExp R (α χ))

Proof. Machine-checked.

Definition A.2. Suppose F, w, abs∗, app∗, abs2, app2, abs∆, and
app∆ satisfy:

〈〉 ` F : U→ ∗
〈〉 ` w : Witness F
〈〉 ` abs∗ : Abs∗ F 〈〉 ` app∗ : App∗ F
〈〉 ` abs2 : Abs2 F 〈〉 ` app2 : App2 F
〈〉 ` abs∆ : Abs∆ F 〈〉 ` app∆ : App∆ F

Then fold[F,w, abs∗, app∗, abs2, app2, abs∆, app∆] denotes the
term:

λα : U. λe : PExp F α. e w abs∗ app∗ abs2 app2 abs∆ app∆

Theorem A.7. Suppose F, w, abs∗, app∗, abs2, app2, abs∆, and
app∆ are as in Definition A.2. If f = fold[F, w, abs∗, app∗, abs2,
app2, abs∆, app∆], then Γ ` f : (Πα : U. PExp F α→ F α).



Proof. Straightforward.

Pre-quotations are functions of seven arguments – a witness,
and six fold functions. To reason about the behavior of a pre-
quotation, we must consider applications of it to seven arguments.
As a convenience, we define a one-hole context ψ〈·〉 to form such
applications.

Definition A.3. For any terms e, w, f1, . . . , f6 (where w, f1, . . . , f6
are to be inferred by context), ψ〈e〉 denotes the term e w f1 . . . f6.

Lemma A.1 (Semantics of representation constructors). For any
w, f1, . . . , f6:

1) ψ〈mkVar R τ x〉 ≡β x
2) ψ〈mkAbs∗ R τ1 τ2 q〉 ≡β f1 τ1 τ2 (λx : R τ1. ψ〈q x〉)
3) ψ〈mkApp∗ R τ1 τ2 q1 q2〉 ≡β f2 τ1 τ2 ψ〈q1〉 ψ〈q2〉
4) ψ〈mkAbs2 R κ τ q〉 ≡β f3 κ τ (λα : κ. ψ〈q〉)
5) ψ〈mkApp2 R κ τ q τ1〉 ≡β f4 κ τ ψ〈q〉 τ1
6) ψ〈mkAbs∆ R τ q〉 ≡β f5 τ (λχ : 2. ψ〈q〉)
7) ψ〈mkApp∆ R τ q κ〉 ≡β f6 τ ψ〈q〉 κ

Proof. Straightforward β-reduction. See the definitions in
lib/replib.pts.

While folds are only defined on prequotations, which have types
of the form PExp F, we can apply a fold to a quotations by applying
the quotation to the result type F.

Theorem A.8. Suppose F, w, abs∗, app∗, abs2, app2, abs∆, and
app∆ are as in Definition A.2. If f = fold[F, w, abs∗, app∗, abs2,
app2, abs∆, app∆], then:

〈〉 ` (λα : U. λx : Exp α. f α (x F)) : (Πα : U. Exp α→ F α)

Proof. We have that Exp α ≡β (ΠR : U → ∗. PExp R α),
so α : U, x : Exp α ` x F : PExp F α. By Theorem A.7
α : U, x : Exp α ` f : (Πα : U. PExp F α → Fα). Therefore,
α : U. x : Exp α ` f α (x F) : F α. Therefore, we can derive the
result by two uses of the abstraction rule.

A.3 Coercions
The need for coercions arises from the fact that not every type of
kind U is a type representation. Consider a type τ = α→ β of kind
∗. We can construct multiple types of kind U from the components
of τ :

Var (α→ β)
Prod∗ (Var α) (Var β)

It happens that the second type is τ , the representation of τ . We
might call the first a pseudo-representation of τ : it is a type of kind
U, the kind of type representations, but is not the representation of
τ .

A similar situation arises with term representations. Suppose a
term e has type Πα : κ.τ , and a type τ1 has kind κ. Then e τ1
has type τ [α := τ1]. Now, suppose e has type PExp R τ . Then
mkApp2 κ (λα : κ. τ) e τ1 has the type PExp R (τ [α := τ1]). This
is in general not equivalent to PExp R (τ [α := τ1]), so we insert a
coercion to convert a term of type PExp R (τ [α := τ1]) to one
of type PExp R (τ [α := τ1]). These coercions are automatically
constructed by the quoter. To enable this, we require operations
with a result type function R to satisfy the property:

Property A.1 (Coercibility of operations). For all types τ and τ1,
there exists a coercion c of type: R (τ [α := τ1])→ R (τ [α := τ1]).

The property is witnessed by a tuple of functions that the quoter
uses to construct coercions. There are three coercion functions for
each of the rules (∗, ∗), (2, ∗), and (∆, ∗). They are:

dists Adds one level of type representation.
factors Removes one level of type representation.

coerces Applies coercion(s) to the components of a
representation.

When we say that dists adds a level of type representation,
we mean that it encodes only the top-level form of a type. For
example, dist∗ maps terms with types of the form R (Var (α→ β))
to R (Prod∗ (Var α) (Var β)). The name dist∗ reflects that we
distribute Var over the arrow.

The factors witness functions go the opposite direction as the
dists ones. For example, factor∗ maps terms with types of the form
R (Prod∗ (Var α) (Var β)) to R (Var (α→ β)).

The coerces witness functions is a constructor for coercions on
(s, ∗) products.

We use the witness functions to define nine coercion functions
with types listed in Figure 18. Coercions of type Reify∗ R map
R (Var (τ1 → τ2)) terms to R τ1 → τ2 terms. They take as input
a reflect coercion for τ1 and a reify coercion for τ2. Coercions of
type Reflect∗ R map R τ1 → τ2 terms to R (Var (τ1 → τ2)) terms.
They take as input a reify coercion for τ1 and a reflect coercion
for τ2. Coercions of type Coerce∗ R map R (Prod∗ τ1 τ2) terms to
R (Prod∗ σ1 σ2) terms, taking as input coercions from R σ1 to R τ1
and from R τ2 to R σ2.

Each operation is required to supply a witness of property A.1,
which is a tuple of nine functions. The types of these functions are
listed in Figure 17.

A.4 Coercion Constructors
We use witnesses to define coercion constructors, whose types
are listed in Figure 18. The quoter uses the constructors to build
coercions with types of the form

PExp R (τ [α := τ1])→ PExp R (τ [α := τ1])

The file lib/coercelib.pts defines the functions reifys,
reflects, and coerces for each s ∈ {∗,2,∆}.
Lemma A.2. The functions reifys, reflects, and coerces for each
s ∈ {∗,2,∆} have the types listed in Figure 18.

Proof. Machine checked.

Figure 19 defines the coercion construction process used by the
quoter. The notation τ1 ; τ2 denotes the coercion from PExp R τ1
terms to PExp R τ2 terms. They are constructed inductively by the
structure of τ1 and τ2.

Lemma A.3 (Reification and Reflection). If τ is a normal form
and Γ ` τ : ∗, then there exist terms c1 and c2 such that:

Var τ ; τ = c1
τ ; Var τ = c2

Proof. Straightforward, by induction on the height of the derivation
of Γ ` τ : ∗.

Theorem A.9 (Completeness of Coercion Construction). If Γ, α :
κ ` τ : ∗ and Γ ` τ1 : ∗, then there exists terms c1 and c2 such
that:

τ [α := τ1] ; τ [α := τ1] = c1
τ [α := τ1] ; τ [α := τ1] = c2

Proof. Straightforward by induction on the height of Γ, α : κ ` τ :
∗.



D i s t ∗ : (U → ∗ ) → ∗ =
λR : U → ∗ . Πα :U . Πβ :U .
R ( Var ( UId α → UId β ) ) →
R ( Prod∗ ( Var ( UId α ) ) ( Var ( UId β ) ) )

F a c t o r ∗ : (U → ∗ ) → ∗ =
λR : U → ∗ . Πα :U . Πβ :U .
R ( Prod∗ ( Var ( UId α ) ) ( Var ( UId β ) ) ) →
R ( Var ( UId α → UId β ) )

Coerce∗ : (U → ∗ ) → ∗ =
λR : U → ∗ . Πα :U . Πβ :U . Πα1 :U . Πβ1 :U .
(R α1 → R α ) → (R β → R β1 ) →
R ( Prod∗ α β ) → R ( Prod∗ α1 β1 )

D i s t 2 : (U → ∗ ) → ∗ =
λR : U → ∗ . Πχ : 2 . Πα :χ → U.
R ( Var (Πβ :χ . UId (α β ) ) ) →
R ( Prod2 χ (λβ :χ . Var ( UId (α β ) ) ) )

F a c t o r 2 : (U → ∗ ) → ∗ =
λR : U → ∗ . Πχ : 2 . Πα :χ → U.
R ( Prod2 χ (λβ :χ . Var ( UId (α β ) ) ) ) →
R ( Var (Πβ :χ . UId (α β ) ) )

Coerce2 : (U → ∗ ) → ∗ =
λR : U → ∗ . Πχ : 2 . Πα1 : χ → U. Πα2 : χ → U.
(Πβ :χ . R (α1 β ) → R (α2 β ) ) →
R ( Prod2 χ α1 ) → R ( Prod2 χ α2 )

D i s t ∆ : (U → ∗ ) → ∗ =
λR : U → ∗ . Πα : 2 → U.
R ( Var (Πχ : 2 . UId (α χ ) ) ) →
R ( Prod∆ (λχ : 2 . Var ( UId (α χ ) ) ) )

F a c t o r ∆ : (U → ∗ ) → ∗ =
λR : U → ∗ . Πα : 2 → U.
R ( Prod∆ (λχ : 2 . Var ( UId (α χ ) ) ) ) →
R ( Var (Πχ : 2 . UId (α χ ) ) )

Coerce∆ : (U → ∗ ) → ∗ =
λR : U → ∗ . Πα1 : 2 → U. Πα2 : 2 → U.
(Πχ : 2 . R (α1 χ ) → R (α2 χ ) ) →
R ( Prod∆ α1 ) → R ( Prod∆ α2 )

Wi tnes s : (U → ∗ ) → ∗ =
λR : U → ∗ . Πα : ∗ .
( D i s t ∗ R → D i s t 2 R → D i s t ∆ R →

F a c t o r ∗ R → F a c t o r 2 R → F a c t o r ∆ R →
Coerce∗ R → Coerce2 R → Coerce∆ R →
α ) →

α

Figure 17. Types of Witness Functions

Reify∗ : λR : U→ ∗. Πα : U. Πβ : U.
(R α→ R (Var (UId α)))→
(R (Var (UId β))→ R β)→
R (Var (UId α→ UId β))→ R (Prod∗α β)

Reflect∗ : λR : U→ ∗. Πα : U. Πβ : U.
(R (Var (UId α))→ R α)→
(R β → R (Var (UId β)))→
R (Prod∗α β)→ R (Var (UId α→ UId β))

Reify2 : λR : U→ ∗. Πχ : 2. Πτ : χ→ U.
(Πα : χ. R (Var (UId (τ α)))→ R (τ α))→
R (Var (Πα : χ. UId (τ α)))→ R (Prod2 κ τ)

Reflect2 : λR : U→ ∗. Πχ : 2. Πτ : χ→ U.
(Πα : χ. R (τ α)→ R (Var (UId (τ α))))→
R (Prod2 κ τ)→ R (Var (Πα : χ. UId (τ α)))

Reify∆ : λR : U→ ∗. Πτ : 2→ U.
(Πχ : 2. R (Var (UId (τ χ)))→ R (τ χ))→
R (Var (Πχ : 2. UId (τ χ)))→ R (Prod∆ τ)

Reflect∆ : λR : U→ ∗. Πτ : 2→ U.
(Πχ : 2. R (τ χ)→ R (Var (UId (τ χ))))→
R (Prod∆ τ)→ R (Var (Πχ : 2. UId (τ χ)))

reify∗ : Reify∗ (PExp R)
reflect∗ : Reflect∗ (PExp R)
coerce∗ : Coerce∗ (PExp R)

reify2 : Reify2 (PExp R)
reflect2 : Reflect2 (PExp R)
coerce2 : Coerce2 (PExp R)

reify∆ : Reify∆ (PExp R)
reflect∆ : Reflect∆ (PExp R)
coerce∆ : Coerce∆ (PExp R)

Figure 18. Types of Coercion Functions

Theorem A.10 (Types of Coercions). If Γ ` τ1 : U and Γ ` τ2 :
U, and τ1 ; τ2 = c, then

R : U→ ∗,Γ ` c : PExp R τ1 → PExp R τ2

Proof. Straightforward by induction on the height of τ1 ; τ2 = c,
and by Lemma A.2 and Theorem 4.2.

Now we turn to the semantics of coercions. Coercions are built
from witnesses, which Church tuples of 9 components. We begin
by defining a set of witness projection functions.

Definition A.4 (Witness Projection Functions). Let R be a type
of kind U → ∗, which is to be inferred from context. For i ∈
{1, . . . , 9}, wi denotes the witness projection function:

λx1 : Dist∗ R. λx2 : Factor∗ R. λx3 : Coerce∗ R.
λx4 : Dist2 R. λx5 : Factor2 R. λx6 : Coerce2 R.
λx7 : Dist∆ R. λx8 : Factor∆ R. λx9 : Coerce∆ R. xi

Lemma A.4 (Witness Projections are Normal Forms). For i ∈
{1, . . . , 9}, wi is a normal form.

Proof. Trivial.

Now we turn to the semantics of coercions. Coercions rely on a
function lift that maps terms of type R α to terms of type PExp R α.
The definition of lift is in lib/replib.pts.

Lemma A.5 (Type of lift). 〈〉 ` lift : (ΠR : U → ∗. Πα :
U. R α→ PExp R α)



(Var τ ; Var τ) = λx : PExp R (Var τ).x

(τ1 ; Var τ1) = reflectτ1 (Var τ2 ; τ2) = reifyτ2
(Var (τ1 → τ2) ; τ1 → τ2) = reify∗ R τ1 τ2 reflectτ1 reifyτ2

(Var τ1 ; τ1) = reifyτ1 (τ2 ; Var τ2) = reflectτ2
(τ1 → τ2 ; Var (τ1 → τ2)) = reflect∗ R τ1 τ2 reifyτ1 reflectτ2

(σ1 ; τ1) = c1 (τ2 ; σ2) = c2

(Prod∗ τ1 τ2 ; Prod∗ σ1 σ2) = coerce∗ R τ1 τ2 σ1 σ2 c1 c2

(Var τ) ; τ = c

Var (Πα : κ.τ) ; Πα : κ.τ = reify2 R κ (λα : κ.τ) (λα : κ. c)

τ ; (Var τ) = c

Πα : κ.τ ; Var (Πα : κ.τ) = reflect2 R κ (λα : κ.τ) (λα : κ. c)

τ ; σ = c
(Prod2 κ (λα : κ. τ)) ; (Prod2 κ (λα : κ. σ))

= coerce2 R κ (λα : κ.τ) (λα : κ.σ) (λα : κ. c)

(Var τ) ; τ = c

Var (Πχ : 2.τ) ; Πχ : 2.τ = reify∆ R (λχ : 2.τ) (λχ : 2. c)

τ ; (Var τ) = c

Πχ : 2.τ ; Var (Πχ : 2.τ) = reflect∆ R (λχ : 2.τ) (λχ : 2. c)

τ ; σ = c
(Prod∆ (λχ : 2. τ)) ; (Prod∆ (λχ : 2. σ))

= coerce∆ R (λχ : 2.τ) (λχ : 2.σ) (λχ : 2. c)

Figure 19. Coercion Construction

Proof. Machine-checked.

Lemma A.6 (Semantics of lift). For all R, α, e, ψ〈lift R α e〉 ≡β e

Proof. Straightforward β-reduction. See the definition of lift in
lib/replib.pts.

Lemma A.7 (Semantics of primitive coercion constructors). For
any w, f1, . . . , f6:

1) ψ〈dist∗ R τ1 τ2 e〉
≡β w (Dist∗ R) w1 τ1 τ2 ψ〈e〉

2) ψ〈factor∗ R τ1 τ2 e〉
≡β w (Factor∗ R) w2 τ1 τ2 ψ〈e〉

3) ψ〈coerce∗ R τ1 τ2 σ1 σ2 c1 c2 e〉
≡β w (Coerce∗ R) w3 τ1 τ2 σ1 σ2

(λx : R σ1. ψ〈c1 (lift R σ1 x)〉)
(λx : R τ2. ψ〈c2 (lift R τ2 x)〉)
ψ〈e〉

4) ψ〈dist2 R κ τ e〉
≡β w (Dist2 R) w4 κ τ ψ〈e〉

5) ψ〈factor2 R κ τ e〉
≡β w (Factor2 R) w5 κ τ ψ〈e〉

6) ψ〈coerce2 R κ τ σ c e〉
≡β w (Coerce2 R) w6 κ τ σ

(λα : κ. λx : R (τ α). ψ〈c α (lift R (τ α) x)〉)
ψ〈e〉

7) ψ〈dist∆ R τ e〉
≡β w (Dist∆ R) w7 κ τ ψ〈e〉

8) ψ〈factor∆ R τ e〉
≡β w (Factor∆ R) w8 τ ψ〈e〉

9) ψ〈coerce∆ R τ σ c e〉
≡β w (Coerce∆ R) w9 τ σ

(λχ : 2. λx : R (τ χ). ψ〈c χ (lift R (τ χ) x)〉)
ψ〈e〉

Proof. Straightforward β-reduction. See the definitions in
lib/coercelib.pts.

Lemma A.8 (Semantics of derived coercion constructors). For any
w, f1, . . . , f6:

1) ψ〈reify∗ R τ1 τ2 c1 c2 e〉
≡β ψ〈coerce∗ R (Var (UId τ1)) (Var (UId τ2)) τ1 τ2

c1 c2 (dist∗ R τ1 τ2 e)〉

2) ψ〈reflect∗ R τ1 τ2 c1 c2 e〉
≡β ψ〈factor∗ R τ1 τ2

(coerce∗ R τ1 τ2 (Var (UId τ1)) (Var (UId τ2)) c1 c2 e)〉

3) ψ〈reify2 R κ τ c e〉
≡β ψ〈coerce2 R κ (λα : κ. Var (UId (τ α))) τ c

(dist2 R κ τ e)〉

4) ψ〈reflect2 R κ τ c e〉
≡β ψ〈factor2 R κ τ

(coerce2 R κ τ (λα : κ. Var (UId (τ α))) c e)〉

5) ψ〈reify∆ R τ c e〉
≡β ψ〈coerce∆ R (λχ : 2. Var (UId (τ χ))) τ c

(dist∆ R τ e)〉

6) ψ〈reflect∆ R τ c e〉
≡β ψ〈factor∆ R τ

(coerce∆ R τ (λχ : 2. Var (UId (τ χ))) c e)〉

Proof. Straightforward β-reduction. See the definitions in
lib/coercelib.pts.

Lemmas A.9, A.10, and A.11 show that operating on a coerced
pre-quotation is equivalent to operating on the prequotation, then
coercing the result.



Lemma A.9.
1) ψ〈dist∗ R τ1 τ2 e〉 ≡β c ψ〈e〉, for some c
2) ψ〈factor∗ R τ1 τ2 e〉 ≡β c ψ〈e〉, for some c
3) ψ〈coerce∗ R τ1 τ2 σ1 σ2 c1 c2 e〉 ≡β c ψ〈e〉, for some c
4) ψ〈dist2 R κ τ e〉 ≡β c ψ〈e〉, for some c
5) ψ〈factor2 R κ τ e〉 ≡β c ψ〈e〉, for some c
6) ψ〈coerce2 R κ τ σ c1 e〉 ≡β c ψ〈e〉, for some c
7) ψ〈dist∆ R κ τ e〉 ≡β c ψ〈e〉, for some c
8) ψ〈factor∆ R κ τ e〉 ≡β c ψ〈e〉, for some c
9) ψ〈coerce∆ R κ τ σ c1 e〉 ≡β c ψ〈e〉, for some c

Proof. Straightforward by Lemma A.7.

Lemma A.10.
1) ψ〈reify∗ R τ1 τ2 c1 c2 e〉 ≡β c ψ〈e〉, for some c
2) ψ〈reflect∗ R τ1 τ2 c1 c2 e〉 ≡β c ψ〈e〉, for some c
3) ψ〈reify2 R κ τ c1 e〉 ≡β c ψ〈e〉, for some c
4) ψ〈reflect2 R κ τ c1 e〉 ≡β c ψ〈e〉, for some c
5) ψ〈reify∆ R τ c1 e〉 ≡β c ψ〈e〉, for some c
6) ψ〈reflect∆ R τ c1 e〉 ≡β c ψ〈e〉, for some c

Proof. Straightforward by Lemma A.8 and Lemma A.9. Each case
is similar, and (1) is representative.

Case (1): By Lemma A.8 and then Lemma A.9 (1) and (3), we
have that:

ψ〈reify∗ R τ1 τ2 c1 c2 e〉
≡β ψ〈coerce∗ R (Var (UId τ1)) (Var (UId τ2)) τ1 τ2

c1 c2 (dist∗ R τ1 τ2 e)〉
≡β c′ (c′′ ψ〈e〉)

The result holds with c = λx : R (Var (UId τ1 → UId τ2)). c′ (c′′ x).

Lemma A.11. If τ1 ; τ2 = c, then there exists a c′ such that
φ〈c e〉 ≡β c′ φ〈e〉 for all e.

Proof. Straightforward, by Lemmas A.9 and A.10.

The following theorem states that our encoding meets the spec-
ification of Definition 5.3.

Theorem A.11. Suppose F, w, abs∗, app∗, abs2, app2, abs∆, and
app∆ are as in Definition A.2, and suppose f = fold[F, w, abs∗,
app∗, abs2, app2, abs∆, app∆]. Then for any context Γ, term e,
and type τ such that Γ ` e : τ , we have that:

If e is a variable, then f τ e ≡β e.
If τ = τ1 → τ2, Γ ` τ1 : ∗, and e = λx : τ1. e1, then

f τ e ≡β abs∗ τ1 τ2 (λx : F τ1. f τ2 e1).
If e = e1 e2, Γ ` e2 : τ1 : ∗, then

f τ e ≡β app∗ τ1 τ (f τ1 → τ e1) (f τ1 e2).
If τ = Πα : κ. τ1, Γ ` κ : 2, and e = λα : κ. e1, then

f τ e ≡β abs2 κ (λα : κ. τ1) (λα : κ. f τ1 e1).
If e = e1 τ2, Γ ` κ : 2, and Γ ` e1 : Πα : κ. τ1, then

f τ e ≡β c (app2 κ (λα : κ. τ1) (f Πα : κ. τ1 e1) τ2)
for some coercion c

If τ = Πχ : 2. τ1, and e = λχ : 2. e1, then
f τ e ≡β abs∆ (λχ : 2.τ1) (λχ : 2. f τ1 e1).

If e = e1 κ, Γ ` κ : 2, and Γ ` e1 : Πχ : 2. τ1, then
f τ e ≡β app∆ (λχ : 2. τ1) (f Πχ : 2.τ1 e1) κ.

Proof. By straightforward case analysis. For each case, we expand
the definitions of τ , e, f, fold[. . . ] on both sides of the equivalence,
and apply Lemma A.1. For the fifth case (type application), we use
Lemma A.11

B. Normalization of Representations
We now prove strong normalization for our representations. For
convenience, we define a new one-hole context θ〈·〉, which is
similar toψ〈·〉 except that we require that w, f1, . . . , f6 be variables.

Definition B.1. For any term e, θ〈e〉 denotes the term e w f1 . . . f6,
where w, f1, . . . , f6 are variables.

Definition B.2. Suppose that θ〈e〉 is strongly normalizing (SN).
Then we say that e is θ-SN.

Definition B.3. Suppose that c is a term such that whenever e is
θ-SN, c e is θ-SN. Then we say that c is θ2-SN.

Lemma B.1. If e is θ-SN, then e is SN.

Proof. Suppose e is θ-SN. By definition, θ〈e〉 ≡β e w f1 . . . f6 is
SN. Therefore, e is SN.

Lemma B.2. For any R, τ, e, if e is SN, then lift R τ e is θ-SN.

Proof. Suppose e is SN. We must show that θ〈lift R τ e〉 is SN. We
have that θ〈·〉 is a particular case of a ψ〈·〉, so by Lemma A.6 we
have that θ〈lift R τ e〉 ≡β e. By assumption, e is SN, so θ〈lift R τ e〉
is SN as required.

Lemma B.3.
1. ∀R, τ1, τ2: dist∗ R τ1 τ2 is θ2-SN.
2. ∀R, τ1, τ2: factor∗ R τ1 τ2 is θ2-SN.
3. ∀R, τ1, τ2, σ1, σ2, c1, c2: If c1 and c2 are θ2-SN,

then coerce∗ R τ1 τ2 σ1 σ2 c1 c2 is θ2-SN.
4. ∀R, κ, τ : dist2 R κ τ is θ2-SN.
5. ∀R, κ, τ : factor2 R κ τ is θ2-SN.
6. ∀R, κ, τ, σ, c: If c α is θ2-SN for all α,

then coerce2 R κ τ σ c is θ2-SN.
7. ∀R, τ : dist∆ R κ τ is θ2-SN.
8. ∀R, τ : factor∆ R κ τ is θ2-SN.
9. ∀R, τ, σ, c: If c χ is θ2-SN for all χ,

then coerce∆ R τ σ c is θ2-SN.

Proof. Each case is similar. (9) is representative.
Suppose c χ is θ2-SN for all χ, and suppose e is θ-SN. We must

show that θ〈coerce∆ R τ σ c e〉 is SN. By Lemma A.7, we have
that:

θ〈coerce∆ R τ σ c e〉
≡β w (Coerce∆ R) w9 τ σ

(λχ : 2. λx : R (τ χ). θ〈c χ (lift R (τ χ) x)〉) θ〈e〉
Note that w is a variable. By Lemma A.4, we have that w9 is a

normal form. Since (Coerce∆ R), τ , and σ are types, they are all
SN. Since x is a variable, it is SN, so (lift R (τ χ) x) is θ-SN by
Lemma B.2. Since c χ is θ2-SN, θ〈c χ (lift R (τ χ) x)〉 is SN.
Therefore the term (λχ : 2. . . . ) is SN. Since e is θ-SN, θ〈e〉 is
SN. Therefore the entire term is SN.

Lemma B.4.
1. ∀R, τ1, τ2, c1, c2, if c1 and c2 are θ2-SN, then

reify∗ R τ1 τ2 c1 c2 is θ2-SN.
2. ∀R, τ1, τ2, c1, c2, if c1 and c2 are θ2-SN, then

reflect∗ R τ1 τ2 c1 c2 is θ2-SN.
3. ∀R, κ, τ, c, if c α is θ2-SN for all α, then

reify2 R τ c is θ2-SN.
4. ∀R, κ, τ, c, if c α is θ2-SN for all α, then

reflect2 R τ c is θ2-SN.
5. ∀R, τ, c, if c χ is θ2-SN for all χ, then

reify∆ R τ c is θ2-SN.



6. ∀R, τ, c, if c χ is θ2-SN for all χ, then
reflect∆ R τ c is θ2-SN.

Proof. Each case is similar. (3) is representative.
Let c be such that c α is θ2-SN for all α, and let e be θ-SN. We

must show that θ〈reify2 R κ c e〉 is SN. By Lemma A.8, we have
that

θ〈reify2 R κ τ c e〉
≡β θ〈coerce2 R κ (λα : κ. Var (UId (τ α))) τ c

(dist2 R κ τ e)〉
By Lemma B.3, coerce2 R κ (λα : κ. Var (UId (τ α))) τ c

is θ2-SN. Also by Lemma B.3, dist2 R κ τ is θ2-SN. Therefore,
(dist2 R κ τ te) is θ-SN, which in turn gives that the entire term
θ〈coerce2 . . . 〉 is SN. Therefore, reify2 R κ τ c is θ2-SN.

Lemma B.5. If τ1 ; τ2 = c, then c is θ2-SN.

Proof. Straightforward by induction on the height of the derivation
of τ1 ; τ2 = c, and by Lemmas B.4 and B.3.

Lemma B.6.
1. ∀R, τ, x : If x is a variable, then mkVar R τ x is θ-SN.
2. ∀R, τ1, τ2, q : If q x is θ-SN for any variable x, then

mkAbs∗ R τ1 τ2 q is θ-SN.
3. ∀R, τ1, τ2, q1, q2 : If q1 and q2 are θ-SN, then

mkApp∗ R τ1 τ2 q1 q2 is θ-SN.
4. ∀R, κ, τ, q : If q α is θ-SN for any variable α, then

mkAbs2 R κ τ q is θ-SN.
5. ∀R, κ, τ, q, τ1 : If q is θ-SN, then mkApp2 R κ τ q τ1 is θ-SN.
6. ∀R, τ, q : If q χ is θ-SN for any variable χ, then mkAbs∆ R τ q

is θ-SN.
7. ∀R, τ, q, κ : If q is θ-SN, then mkApp∆ R κ τ q κ is θ-SN.

Proof. Each case is similar. (3) is representative.
Suppose q1 and q2 are θ-SN. By Lemma A.1, θ〈mkApp∗ R

τ1 τ2 q1 q2〉 ≡β f2 τ1 τ2 θ〈q1〉 θ〈q2〉. Since f2 is a variable, τ1 and
τ2 are types, and θ〈q1〉 and θ〈q2〉 are SN, the entire term is SN as
required.

Lemma B.7. If Γ ` e : τ � q, then q is θ-SN.

Proof. Straightforward by induction on the height of the derivation
Γ ` e : τ � q, and by Lemma B.6 and Lemma B.5.

Lemma B.8. If Γ ` e : τ � q, then q is SN.

Proof. Follows from Lemma B.7 and Lemma B.1.

C. Proofs
Definition C.1. A PTS is called functional (or singly-sorted) if

1. (c : s1), (c : s2) ∈ A ⇒ s1 = s2

2. (s1, s2, s3), (s1, s2, s
′
3) ∈ R ⇒ s3 = s′3

Theorem C.1 (Uniqueness of types in a functional PTS [5]). Let
λS be a singly-sorted PTS. Then

Γ ` A : B1 & Γ ` A : B2 ⇒ B1 ≡β B2

Definition C.2. A PTS is called injective if

1. It is functional
2. (s1 : s2), (s′1 : s2) ∈ A ⇒ s1 = s′1
3. (s1, s2, s3), (s1, s

′
2, s3) ∈ R ⇒ s2 = s′2

Theorem C.2. Typechecking of an injective PTS is decidable [6].

Lemma C.1. System U is functional.

Proof.

1. Each constant c is in the left-hand position of at most one
axiom.

2. Suppose (s1, s2, s3), (s1, s2, s
′
3) ∈ R. Then s2 = s3 and

s2 = s′3. Therefore, s3 = s′3.

Lemma C.2. System U is injective.

Proof.

1. By Lemma C.1.
2. Each sort s is in the right-hand position of at most one axiom.
3. Suppose (s1, s2, s3), (s1, s

′
2, s3) ∈ R. Then s2 = s3 and

s′2 = s3. Therefore, s2 = s′2.

Theorem C.3. Type checking is decidable for λU.

Proof. Follows from Lemma C.2 and Theorem C.2.

Lemma C.3. If Γ ` τ : κ : 2, then τ has a normal form.

Proof. The proof is by an embedding the types of System λU into
the terms of System F, and the kinds of System λU into the types
of System F.

Theorem 3.2. If Γ ` τ : ∗, and τ is a normal form, then τ is of
one of the following forms:

α A1 . . . An where α is a type variable.
τ1 → τ2 where Γ ` τ1 : ∗
Πα : κ. τ1 where Γ ` κ : 2
Πχ : 2. τ1

Proof. Straightfoward by Lemma C.3 and then by induction on the
height of Γ ` τ : ∗.

Theorem 3.3 (Decomposition of product types). For any legal
(∗, ∗) product τ1 → τ2, any legal (2, ∗) product Πα : κ. τ , and
any legal (∆, ∗) product Πχ : 2. τ , we have:

τ1 → τ2 ≡β π∗ τ1 τ2
Πα : κ. τ ≡β π2 κ (λα : κ. τ)
Πχ : 2. τ ≡β π∆ (λχ : 2. τ)

Proof. Straightforward by the definitions of π∗, π2, and π∆.

π∗ τ1 τ2
= (λα : ∗. λβ : ∗. α→ β) τ1 τ2
≡β τ1 → τ2

π2 κ (λα : κ. τ)
= (λχ : 2. λα : χ→ ∗.Πβ : χ. α β) κ (λα : κ. τ)
≡β (λα : κ→ ∗.Πβ : κ. α β) (λα : κ. τ)
≡β Πβ : κ. (λα : κ. τ) β
≡α Πα : κ. (λα : κ. τ) α
≡β Πα : κ. τ

π∆ (λχ : 2. τ)
= (λα : 2→ ∗.Πχ : 2. α χ) (λχ : 2. τ)
≡β Πχ : 2. (λχ : 2. τ) χ
≡β Πχ : 2. τ



Theorem 4.1 (Kinds of type representations). If Γ ` τ : ∗ and
Γ ` τ : ∗� σ, then Γ ` σ : U.

Proof. Straightforward by induction on the height of the derivation
Γ ` τ : ∗ � σ, and by the types of the constructors in Definition
4.2.

Theorem 4.2. If Γ ` τ : ∗, then UId τ ≡β τ .

Proof. By induction the size of the type τ .
Suppose τ is of the form α τ1 . . . τn. By Theorem A.4,

UId τ ≡β (λα : ∗. α) τ ≡β τ .
Suppose τ is of the form τ1 → τ2 and Γ ` τ1 : ∗. By

the induction hypothesis, UId τ1 ≡β τ1 and UId τ2 ≡β τ2.
By Theorem 3.3, π∗ τ1 τ2 ≡β τ . Therefore, by Theorem A.4,
UId τ ≡β π∗ (UId τ1) (UId τ2) ≡β π∗ τ1 τ2 ≡β τ .

Suppose τ is of the form Πα : κ. τ1 and Γ ` κ : 2. By the
induction hypothesis, UId τ1 ≡β τ1. By Theorem 3.3, π2 κ τ1 ≡β
τ . Therefore, by Theorem A.4, UId τ ≡β π2 κ (UId τ1) ≡β
π2 κ τ1 ≡β τ .

Suppose τ is of the form Πχ : 2. τ1 and Γ ` κ : 2. By the
induction hypothesis, UId τ1 ≡β τ1. By Theorem 3.3, π∆ τ1 ≡β τ .
Therefore, by Theorem A.4, UId τ ≡β π∆ (UId τ1) ≡β π∆ τ1 ≡β
τ .

Lemma C.4 (Semantics of U Constructors). Let F = Fold[F1, F2,
F3, F4]. Then,

F (Prod∗ τ1 τ2) ≡β F2 (F τ1)(F τ2)
F (Prod2 κ τ) ≡β F3 κ (λβ : κ. F (τ β))
F (Prod∆ τ) ≡β F4 (λχ : 2. F(τ χ))

Proof. By the definition of Fold, we have that

F = λα : U. α F1 F2 F3 F4

F (Prod∗ τ1 τ2)
≡β (Prod∗ τ1 τ2) F1 F2 F3 F4

≡β F2 (τ1 F1 F2 F3 F4) (τ2 F1 F2 F3 F4)
≡β F2 (F τ1) (F τ2)

F (Prod2 κ τ)
≡β (Prod2 κ τ) F1 F2 F3 F4

≡β F3 κ (λβ : κ. τ α F1 F2 F3 F4)
≡β F3 κ (λβ : κ. F (τ β))

F (Prod∆ τ)
≡β (Prod∆ τ) F1 F2 F3 F4

≡β F4 (λχ : 2. τ χ F1 F2 F3 F4)
≡β F4 (λχ : 2. F (τ χ))

Lemma C.5 (Kind of type representations in representation envi-
ronment). If Γ ` τ : ∗, then Γ ` τ : U.

Proof. Sketch: By theorem 4.1, we have that Γ ` τ : U. Since
Γ and Γ are equivalent with respect to type and kind bindings,
Γ ` τ : U.

Lemma C.6. If τ is a normal form and Γ, χ : 2 ` τ : ∗ and
Γ ` κ : 2, then τ [χ := κ] ≡ τ [χ := κ].

Proof. Straightforward by Lemma 3.2, and by induction on the
height of Γ, χ : 2 ` τ : ∗.

Lemma C.7. If Γ ` e : τ � q, then R : U→ ∗,Γ ` q : PExp R τ .

Witnes s [R , d∗ , f∗ , c∗ , d2 , f 2 , c2 , d∆ , f ∆ , c∆ ] =
λα : ∗ .
λ f :

( D i s t ∗ R → D i s t 2 R → D i s t ∆ R →
F a c t o r ∗ R → F a c t o r 2 R → F a c t o r ∆ R →
Coerce∗ R → Coerce2 R → Coerce∆ R →
α ) .

f d∗ f∗ c∗ d2 f 2 c2 d∆ f ∆ c∆

Figure 20. Witness Context

Proof. Straightforward by induction on the height of the derivation
of Γ ` e : τ � q, and Lemmas C.5 and C.6 and Theorems A.9 and
A.10.

Theorem 5.2 (Types of quotations). If 〈〉 ` e : τ : ∗, and
quote(e) = q, then 〈〉 ` q : Exp τ .

Proof. By definition of quote(·), we have that and q = λR : U →
∗.q1 and 〈〉 ` e : τ � q1. By Lemma C.7, R : U → ∗, 〈〉 `
q1 : PExp R τ . Therefore, 〈〉 ` q : (ΠR : U → ∗. PExp R τ).
But 〈〉 = 〈〉, and (ΠR : U → ∗. PExp R τ) ≡β Exp τ , so
〈〉 ` q : Exp τ as required.

Theorem 5.3. If quote(e) = q, then q is strongly normalizing.

Proof. Suppose quote(e) = q. Then q = λR : U → ∗. q1 and
〈〉 ` e : τ � q1, for some τ and q1. By Lemma B.8, q1 is strongly
normalizing. Therefore, q is strongly normalizing.

Definition C.3 (Witness Context). For R,d∗,f∗,c∗, d2, f2, c2, d∆,
f∆,c∆ such that:

• 〈〉 ` R : U→ ∗
• 〈〉 ` d∗ : Dist∗
• 〈〉 ` f∗ : Factor∗
• 〈〉 ` c∗ : Coerce∗
• 〈〉 ` d2 : Dist2
• 〈〉 ` f2 : Factor2
• 〈〉 ` c2 : Coerce2
• 〈〉 ` d∆ : Dist∆
• 〈〉 ` f∆ : Factor∆
• 〈〉 ` c∆ : Coerce∆

We define the term Witness[R,d∗,f∗,c∗, d2, f2, c2, d∆, f∆,c∆]
as in Figure 20.

Theorem C.4 (Type of witnesses). Let R, d∗,f∗,c∗, d2, f2, c2, d∆,
f∆,c∆ be as in Definition C.3. Then,
〈〉 ` Witness[R, d∗, f∗, c∗, d2, f2, c2, d∆, f∆, c∆] : Witness R

Definition C.4 (Identity Witness Function). Let f be a term and
R : U → ∗ be a type. Then f is an identity witness function if one
of the following is true:

• 〈〉 ` f : Dist∗ R and for all τ1, τ2, and e, we have that
f τ1 τ2e ≡β e.
• 〈〉 ` f : Factor∗ R and for all τ1, τ2, and e, we have that

f τ1 τ2e ≡β e.
• 〈〉 ` f : Coerce∗ R and for all τ1, τ2, τ3, τ4, c1, c2, and e such

that c1 e1 ≡β e1 and c2 e2 ≡β e2 for all e1, e2, we have that
f τ1 τ2 τ3 τ4 c1 c2 e ≡β e.
• 〈〉 ` f : Dist2 R and for all κ, τ , and e we have that f κ τ e ≡β

e.



• 〈〉 ` f : Factor2 R and for all κ, τ , and e we have that
f κ τ e ≡β e.
• 〈〉 ` f : Coerce2 R and for all κ, τ1, τ2, c1 and e such that

c1 τ3 e1 ≡β e1 for all τ3 and e1, we have that f κ τ1 τ2 c1 e ≡β
e.
• 〈〉 ` f : Dist∆ R and for all τ , and e we have that f τ e ≡β e.
• 〈〉 ` f : Factor∆ R and for all τ , and e we have that f τ e ≡β e.
• 〈〉 ` f : Coerce∆ R and for all τ1, τ2, c1 and e such that

c1 κ e1 ≡β e1 for all κ and e1, we have that f τ1 τ2 c1 e ≡β e.

Definition C.5 (Identity Witness). Let R, d∗,f∗,c∗, d2, f2, c2, d∆,
f∆,c∆ be as in Definition C.3. Then Witness[R,d∗,f∗,c∗, d2, f2, c2,
d∆, f∆,c∆] is an identity witness if d∗,f∗,c∗, d2, f2, c2, d∆, f∆, and
c∆ are all identity witness functions.

Lemma C.8 (Semantics of Identity Witnesses). Let w be an iden-
tity witness. Then:

1) w (Dist∗ R) w1 τ1 τ2 e ≡β e
2) w (Factor∗ R) w2 τ1 τ2 e ≡β e
3) If c1 e1 ≡β e1for all e1,

and c2 e2 ≡β e2for all e2, then
w (Coerce∗ R) w3 τ1 τ2 σ1 σ2 e ≡β e

4) w (Dist2 R) w4 κ τ e ≡β e
5) w (Factor2 R) w5 κ τ e ≡β e
6) If c e1 ≡β e1 for all e1, then

w (Coerce2 R) w6 κ τ σ c e ≡β e
7) w (Dist∆ R) w7 κ τ e ≡β e
8) w (Factor∆ R) w8 τ e ≡β e
9) If c e1 ≡β e1 for all e1, then

w (Coerce∆ R) w9 τ σ c e ≡β e

Proof. Straightforward, by definitions A.4, C.4 and C.5, and a few
steps of β-reduction.

Definition C.6. For any identity witness w, and any terms f1, . . . , f6
(where w, f1, . . . , f6 may be inferred by context), φ〈e〉 denotes the
term e w f1 . . . f6.

Definition C.7. Let f be a term. If φ〈f a〉 ≡β φ〈a〉 for any term a,
we say that f is a φ-identity function, or that f is φ-id.

Lemma C.9. 1. For all R, τ1, τ2: dist∗ R τ1 τ2 is φ-id.
2. For all R, τ1, τ2: factor∗ R τ1 τ2 is φ-id.
3. For all R, τ1, τ2, σ1, σ2, c1, c2: If c1 and c2 are φ-id, then

coerce∗ R τ1 τ2 σ1 σ2 c1 c2 is φ-id.
4. For all R, κ, τ : dist2 R κ τ is φ-id.
5. For all R, κ, τ : factor2 R κ τ is φ-id.
6. For all R, κ, τ, σ, c: If c is φ-id, then coerce2 R κ τ σ c is
φ-id.

7. For all R, τ : dist∆ R τ is φ-id.
8. For all R, τ : factor∆ R τ is φ-id.
9. For all R, τ, σ, c: If c is φ-id, then coerce∆ R τ σ c is φ-id.

Proof. Straightforward, by Lemmas A.7 and C.8.

Lemma C.10. 1. For all R, τ1, τ2, c1, c2: If c1 and c2 are φ-id,
then reify∗ R τ1 τ2 c1 c2 is φ-id.

2. For all R, τ1, τ2, c1, c2: If c1 and c2 are φ-id, then reflect∗ R τ1 τ2 c1 c2

is φ-id.
3. For all R, κ, τ, c: If c α is φ-id for any α, then reify2 R κ τ c

is φ-id.
4. For all R, κ, τ, c: If c α is φ-id for any α, then reflect2 R κ τ c

is φ-id.
5. For all R, τ, c: If c χ is φ-id for any χ, then reify∆ R τ c is
φ-id.

6. For all R, τ, c: If c χ is φ-id for any χ, then reflect∆ R τ c is
φ-id.

Proof. Straightforward by Lemma A.8 and Lemma C.9.

Lemma C.11 (Coercions based on identity witnesses). If τ1 ;
τ2 = c, then c is φ-id.

Proof. Straightforward by induction on the height of τ1 ; τ2 = c,
and by Lemma C.9 and Lemma C.10.

Lemma C.12. Suppose F, w, abs∗, app∗, abs2, app2, abs∆, and
app∆ are as in Definition A.2, and that w is an identity witness.
Suppose f = fold[F, w, abs∗, app∗, abs2, app2, abs∆, app∆].
Then for any context Γ, term e, and types τ and τ1 such that
Γ ` e : Πα : κ. τ and Γ ` τ1 : κ, we have that:

f τ [α := τ1] e τ1 ≡β app2 κ (λα : κ. τ) (f Πα : κ. τ e) τ1

Proof. Be the definition of fold[. . . ] and e, we have that:

f τ [α := τ1] e τ1
≡β (c (mkApp2 R κ (λα : κ. τ) e τ1))

w abs∗ app∗ abs2 app2 abs∆ app∆

where τ [α := τ1] ; τ [α := τ1] = c. By Lemma C.11, we have
that:

(c (mkApp2 R κ (λα : κ. τ) e τ1))
w abs∗ app∗ abs2 app2 abs∆ app∆

≡β (mkApp2 R κ (λα : κ. τ) e τ1)
w abs∗ app∗ abs2 app2 abs∆ app∆

The result follows from a few steps of straightforward β-reduction.

Theorem 5.1. If Γ ` e : τ and 〈〉 ` F : U → ∗, then
Γ ` e : PExp F τ .

Proof. We have that e = q[R := F] and Γ ` e : τ � q. By Lemma
C.7, we have that R : U → ∗,Γ ` q : PExp R τ . By weakening,
Γ ` F : U→ ∗. Therefore, Γ ` e : PExp F τ as required.

C.1 unquote
Our self-recognizer unquote is defined in lib/unquotelib.pts.
unquote= λα : U. λe : Exp α. fold[UId, witnessUId, id∗, id∗, id2,
id2, id∆, id∆] α (e UId).

Lemma C.13 (Types of unquote case functions).
〈〉 ` id∗ : (Πα : U. Πβ : U. (UId α→ UId β)→ UId (Prod∗ α β))
〈〉 ` id∗ : (Πα : U. Πβ : U. UId (Prod∗ α β)→ UId α→ UId β)
〈〉 ` id2 : (Πχ : 2. Πα : χ→ U.

(Πβ : χ. UId (α β))→ UId (Prod2 χ α))
〈〉 ` id2 : (Πχ : 2. Πα : χ→ U.

UId (Prod2 χ α)→ (Πβ : χ. UId (α β)))
〈〉 ` id∆ : (Πα : 2→ U. (Πχ : 2. UId α χ)→ UId (Prod∆ α))
〈〉 ` id∆ : (Πα : 2→ U. UId (Prod∆ α)→ (Πχ : 2. UId α χ))

Proof. Machine checked.

Theorem 6.1 (Type of unquote).
〈〉 ` unquote : (Πα : U. Exp α→ UId α)

Proof. Follows directly from Theorem A.8.

Lemma C.14. witnessUId is an identity witness.

Proof. Straightforward. Each witness function is an identity wit-
ness function.



Lemma C.15. Let f = fold[UId, witnessUId, id∗, id∗, id2, id2,
id∆, id∆]. If Γ ` e : τ � q, then f τ q ≡β e.

Proof. Straightforward by induction on the height of Γ ` e : τ �q,
and by Lemmas C.14 and C.12 and Theorem A.11. Note that each
fold function is an identity function.

Theorem 6.2 (Correctness of unquote).
If 〈〉 ` e : τ and quote(e) = q, then unquote τ q ≡β e.

Proof. Let f = fold[UId, witnessUId, id∗, id∗, id2, id2, id∆, id∆].
Then unquote τ q ≡β f τ e. Result follows from Lemma C.15.

C.2 isAbs
isAbs is defined in lib/isAbslib.pts. isAbs = λα : U. λe :
Expα. fold[UBool, witnessUBool, isAbsAbs∗, isAbsApp∗, isAbsAbs2,
isAbsApp2, isAbsAbs∆, isAbsApp∆] α (e UBool).
Theorem 6.3 (Type of isAbs).

〈〉 ` isAbs : (Πα : U. Exp α→ Bool)

Proof. From Theorem A.8, we have that isAbs : Πα : U.Exp α→
UBool α. The result follows from the conversion rule based on
UBool α ≡ Bool.

Lemma C.16. witnessUBool is an identity witness.

Proof. Straightforward. Each witness function is an identity wit-
ness function.

Lemma C.17. Let f = fold[UBool,witnessUBool, abs∗, app∗, abs2,
app2, abs∆, app∆], and suppose Γ ` e : τ .

• If e = λx : A.e1, then f τ e ≡β true.
• If e = e1 A, then f τ e ≡β false.

Proof. Suppose e = λx : A.e1. There are three cases: either
〈〉 ` A : ∗, or 〈〉 ` A : 2, or A = 2.

Suppose 〈〉 ` A : ∗. Then by Theorem A.11, f τ e ≡β
(λT1 : ∗. λT2 : ∗. λf : Bool → Bool.true) σ1 σ2 (λx :
UBool A. f σ2 e1) ≡β true, as required.

The cases of 〈〉 ` A : 2 and A = 2 are similar to the case of
〈〉 ` A : ∗.

Suppose now e = e1 A. Again there are three cases: either
〈〉 ` A : τ1 : ∗, or 〈〉 ` A : κ : 2, or 〈〉 ` A : 2.

Suppose 〈〉 ` A : τ1 : ∗. Then Γ ` e1 : τ1 → τ2, and by
Theorem A.11, f τ e ≡β app∗ τ1 τ2 (f τ1 → τ2 e1) (f τ1 A) ≡β
false, as required.

Suppose 〈〉 ` A : κ : 2. Then 〈〉 ` e1 : (Πα : κ. τ1).
By Lemma C.16 and Lemma C.12, f τ e ≡β app2 κ (λα :

κ. Bool) (f (Πα : κ. τ1) e1) A ≡β false.
Suppose 〈〉 ` A : 2. Then Γ ` e1 : (Πχ : 2. τ1), and by The-

orem A.11, f τ e ≡β app∆ (λχ : 2. τ1) (f Πχ : 2. τ1 e1) A ≡β
false.

Theorem 6.4 (Correctness of isAbs).
If 〈〉 ` e : τ : ∗ and quote(e) = q then:
• If e = λx : A.e1, then isAbs τ q ≡β true.
• If e = e1 A, then isAbs τ q ≡β false.

Proof. Let f = fold[UBool,witnessUBool, abs∗, app∗, abs2, app2,
abs∆, app∆]. Suppose 〈〉 ` e : τ and quote(e) = q. Then
isAbs τ q ≡β f τ e. The result follows from Lemma C.17.

C.3 cps
cps is defined in lib/cpslib.pts. cps = λα : U. λe : Exp α.
fold[CPS, witnessCPS, cpsAbs∗, cpsApp∗, cpsAbs2, cpsApp2,
cpsAbs∆, cpsApp∆] α (e CPS).

Lemma C.18 (Types of CPS functions).
〈〉 ` CPS : U→ ∗
〈〉 ` witnessCPS : Witness CPS
〈〉 ` cpsAbs∗ : (Πα : U. Πβ : U. (CPS α→ CPS β)→ CPS (Prod∗ α β))
〈〉 ` cpsApp∗ : (Πα : U. Πβ : U. CPS (Prod∗ α β)→ CPS α→ CPS β)
〈〉 ` cpsAbs2 : (Πχ : 2. Πα : χ→ U.

(Πβ : χ. CPS (α β))→ CPS (Prod2 χ α))
〈〉 ` cpsApp2 : (Πχ : 2. Πα : χ→ U.

CPS (Prod2 χ α)→ Πβ : χ. CPS (α β))
〈〉 ` cpsAbs∆ : (Πα : 2→ U. (Πχ : 2. CPS α χ)→ CPS (Prod∆ α))
〈〉 ` cpsApp∆ : (Πα : 2→ U. CPS (Prod∆ α)→ Πχ : 2. CPS (α χ))

Proof. Machined checked.

Theorem 6.5 (Type of cps).

〈〉 ` cps : (Πα : U. Exp α→ CPS α)

Proof. Follows from Lemma C.18 and Theorem A.8.


