
Type-Based Analysis and Applications

Jens Palsberg

Purdue University
Dept. of Computer Science
West Lafayette, IN 47907
palsberg@cs.purdue.edu

ABSTRACT
Type-based analysis is an approach to static analysis of pro-
grams that has been studied for more than a decade. A type-
based analysis assumes that the program type checks, and
the analysis takes advantage of that. This paper examines
the state of the art of type-based analysis, and it surveys
some of the many software tools that use type-based analy-
sis. Most of the surveyed tools use types as discriminators,
while most of the theoretical studies use type and effect sys-
tems. We conclude that type-based analysis is a promising
approach to achieving both provable correctness and good
performance with a reasonable effort.

1. INTRODUCTION
This paper is a survey of the theory and practice of type-

based analysis. It tries to answer the following questions:

• What is a type-based analysis?

• What are the advantages of type-based analysis?

• Is type-based analysis competitive with other approaches
to static analysis?

• Which tools use type-based analysis?

• What is the current spectrum of type-based analyses?

As background for examining these questions, let us begin
with a brief overview of some of the past successes and future
challenges of the broader field of static analysis.

Traditionally, optimizing compilers were the main con-
sumers of static analyses. Classical examples of static anal-
yses are liveness analysis (for doing, e.g., register allocation)
and data-flow analysis (for doing, e.g., common-subexpression
elimination). Many textbooks on compiler design, including
[2, 4, 44], contain substantial coverage of how to define, im-
plement, and use static analyses in compilers. There are
books devoted entirely to static analysis, including [48], and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASTE’01, June 18–19, 2001, Snowbird, Utah, USA..
Copyright 2001 ACM 1–58113–413–4/01/0006 ...$5.00.

there are annual international conferences, such as the Static
Analysis Symposium, for presentation and discussion of ad-
vances in the area.

Nowadays, static analysis is also used by tools for various
software engineering tasks such as program understanding
[74, 28], debugging [14], testing [57], and reverse engineer-
ing [22]. Among the international conferences that cover the
application of static analysis to the area of software engineer-
ing is the International Symposium on Software Testing and
Analysis.

In the coming years, there are new challenges for static
analysis. For example, there is an increasing need for ver-
ifying key properties of software, including real-time prop-
erties, security-related behavior, and power consumption.
The emerging paradigm [12] of combining model extraction
(based on static analysis) and model checking is promising
for this purpose. Moreover, the notion of dynamic class
loading that has been popularized by Java has led to in-
creased interest in run-time compilation and therefore also
in highly efficient static analyses. Finally, work on scalable
static analysis is needed to enable the application of static
analysis to larger and larger programs.

Does the field of static analysis have a realistic hope of
being able to help address the software problems of today
and tomorrow? The properties that need to be analyzed are
increasingly complex, and the programs being analyzed are
ever larger. When push comes to shove, will static analysis
measure up? I believe the answer to both questions is Yes.

One of the key reasons for optimism comes from the field
of programming language design and the growing popular-
ity of static type checking [10]. In the 1990s, most new
software was written in languages such as C [33], C++ [17],
and Java [23] which all feature varying degrees of static type
checking. In particular, the type system of Java has received
considerable attention, and for substantial subsets of Java,
there are automatically-checked proofs of type soundness,
e.g., [50]. The trend of typeful programming seems to con-
tinue, and types are now also being used in the intermediate
languages of compilers, including the Java VML, and even in
assembly languages [41, 40]. Traditionally, compilers would
apply static analyses to untyped intermediate representa-
tions of programs, and so these analyses worked for all pro-
grams, whether typable or not. Now, an increasing number
of static analyses are defined on statically-typed represen-
tations of programs, such as Java bytecodes. Of course,
a static analysis can simply ignore the types, and some of
them do. However, the presence of types has led researchers

to ask:

Question: Can a static analysis take advantage
of that the program type checks?

In particular, can the types help with defining more compli-
cated analyses, can they help with reasoning about the cor-
rectness of an analysis, and can they help with making the
static analyses more efficient? These questions have been
asked since, at least, the 1980s, and after the work of many
researchers, it can be concluded that the answer to each of
the questions is Yes. As a result, there is an emerging field
of type-based analysis:

Terminology: A type-based analysis assumes
that the program type checks, and the analysis
takes advantage of that.

This paper examines the state of the art of type-based anal-
ysis. We start with an example that illustrates what type-
based analysis is and isn’t, and we then discuss the advan-
tages of type-based analysis, survey some of the many soft-
ware tools that use type-based analysis, and map out the
landscape of type-based analysis.

2. EXAMPLE
Let us consider a classical static-analysis problem: flow

analysis for the λ-calculus. We will present four well-known
static analyses for solving this problem: one that does not
rely on types, and three type-based analyses. The goal is to
illustrate various advantages of type-based analysis.

We use x to range over program variables, we use l to
range over labels, and we use the following grammar to de-
fine a language of λ-terms:

e ::= x | λ
l
x.e | e1e2.

The goal of a flow analysis of a program E is to approximate,
for each subexpression e of E, the set of labels (called flow
set) of the abstractions λlx.e′ that are the possible values of
e. The flow analysis must be conservative, that is, if λlx.e′

is a possible value of e, then l must be in the flow set for e.
As a running example, we will use the λ-term

F = ((λ1
f.λ

2
x.fx)(λ3

a.a))(λ4
b.b).

If we do β-reduction of F , then we get:

F →β (λ2
x.((λ3

a.a) x)) (λ4
b.b)

→β (λ3
a.a) (λ4

b.b)

→β λ
4
b.b.

Hence, λ4b.b is a possible value of F , so any sound flow
analysis of F must produce a flow set for F that contains
the label 4.

2.1 0-CFA
One can define a flow analysis for a λ-term E by using a

flow graph in which the nodes are the expressions occurring
in E. The edges in the flow graph are generated from the
following four rules (taken from [27]):

λ
l
x.e → λ

l
x.e (1)

e1 → λlx.e

x → e2

(e1e2 occurs in E) (2)

e1 → λlx.e

e1e2 → e
(e1e2 occurs in E) (3)

e1 → e2 e2 → e3

e1 → e3

(4)

This analysis is conservative and works for all λ-terms. The
idea is that if we analyze an expression E, then, for any
subexpression e of E, the flow set for e is the set of abstrac-
tions λlx.e′ such that there is an edge e → λlx.e′ in the flow
graph. For the running example F , we can use Rules (1)–(4)
to generate the edges:

f → λ
3
a.a

(λ1
f.λ

2
x.fx)(λ3

a.a) → λ
2
x.fx

F → fx → a → x → λ
4
b.b,

so by transitivity (Rule (4)), we have F → λ4b.b.
The above analysis uses a style that is widely known as

0-CFA [59]. It can be executed in O(n3) time, where n is
the size of the program [55], and can be proved correct with
respect to arbitrary β-reduction [52].

2.2 A Simple Type System
Below we present three type-based analyses that all as-

sume that the program being analyzed is simply typed, that
is, it obeys the following type discipline. We use α to range
over type variables, and we use the following grammar to
define types:

t ::= α | t → t.

A type environment is a partial function from program vari-
ables to types, and we use the notation A[x : t] to denote a
type environment which maps x to t, and otherwise maps y
to A(y) when x 6= y. The type rules are:

A ` x : t (A(x) = t) (5)

A[x : s] ` e : t

A ` λlx.e : s → t
(6)

A ` e1 : s → t A ` e2 : s

A ` e1e2 : t
(7)

For the running example F , we can use Rules (5)–(7) to
construct a type derivation which contains the judgments:

∅ ` λ
1
f.λ

2
x.fx : ((α → α) → (α → α)) →

((α → α) → (α → α))

∅[f : (α → α) → (α → α)] ` λ
2
x.fx :

(α → α) → (α → α)

∅ ` λ
3
a.a : (α → α) → (α → α)

∅ ` λ
4
b.b : α → α

∅ ` F : α → α.

2.3 A Type and Effect System
The first type-based analysis is a so-called type and effect

system. It uses the types and the type rules in a rather
direct way (much like in [26]). The idea is to annotate the
function types with a flow set ϕ. Thus, annotated types are
defined by the grammar:

t ::= α | t
ϕ
−→ t.

The revised type rules are:

A ` x : t (A(x) = t) (8)

A[x : s] ` e : t

A ` λlx.e : s
ϕ
−→ t

(l ∈ ϕ) (9)

A ` e1 : s
ϕ
−→ t A ` e2 : s

A ` e1e2 : t
(10)

Notice that Rule (9) enforces that the function type s
ϕ
−→ t

“remembers” the label l by having the side condition l ∈ ϕ.

The idea is that if we have the judgment A ` e : s
ϕ
−→ t,

then the flow set for e is ϕ. For the running example F , we
can use Rules (8)–(10) to construct a type derivation which
contains the judgments:

∅ ` λ
1
f.λ

2
x.fx : ((α

{4}
−−→ α)

{3}
−−→ (α

{4}
−−→ α))

{1}
−−→

((α
{4}
−−→ α)

{2}
−−→ (α

{4}
−−→ α))

∅[f : (α
{4}
−−→ α)

{3}
−−→ (α

{4}
−−→ α)] ` λ

2
x.fx :

(α
{4}
−−→ α)

{2}
−−→ (α

{4}
−−→ α)

∅ ` λ
3
a.a : (α

{4}
−−→ α)

{3}
−−→ (α

{4}
−−→ α)

∅ ` λ
4
b.b : α

{4}
−−→ α

∅ ` F : α
{4}
−−→ α,

so the flow set for F is {4}.

2.4 A Sparse-Flow-Graph Approach
The second type-based analysis for a λ-term E uses a

sparse flow graph and avoids transitive closure [27]. All po-
tential nodes in the flow graph are defined by the grammar:

n ::= e | dom(n) | ran(n),

where e occurs in the program being analyzed. The edges
in the flow graph are generated from the rules (taken from
[27]):

x → dom(λl
x.e) (λl

x.e occurs in E) (11)

ran(λl
x.e) → e (λl

x.e occurs in E) (12)

e1e2 → ran(e1) (e1e2 occurs in E) (13)

dom(e1) → e2 (e1e2 occurs in E) (14)

n1 → n2 n → ran(n1)

ran(n1) → ran(n2)
(15)

n1 → n2 n → dom(n2)

dom(n2) → dom(n1)
(16)

The idea is that if we analyze an expression E, then, for
any subexpression e of E, the flow set for e is the set of
abstractions λlx.e′ such that there is a path e →∗ λlx.e′

in the flow graph. For the running example F , we can use

Rules (11)–(16) to generate the edges:

f → dom(λ1
f.λ

2
x.fx) → λ

3
a.a

(λ1
f.λ

2
x.fx)(λ3

a.a) → ran(λ1
f.λ

2
x.fx) → λ

2
x.fx

F → ran((λ1
f.λ

2
x.fx)(λ3

a.a)) → ran(ran(λ1
f.λ

2
x.fx))

→ ran(λ2
x.fx) → fx → ran(f)

→ ran(dom(λ1
f.λ

2
x.fx)) → ran(λ3

a.a) → a

→ dom(λ3
a.a) → dom(dom(λ1

f.λ
2
x.fx)) → dom(f)

→ x → dom(λ2
x.fx) → dom(ran(λ1

f.λ
2
x.fx))

→ dom((λ1
f.λ

2
x.fx)(λ3

a.a))

→ λ
4
b.b,

so the flow set for F is {4}.
The building of the flow graph may diverge for some λ-

terms. In can be shown that if a λ-term is simply typed,
then the flow graph will be finite, sparse, and built in finite
time, and the produced flow information will be the same as
that produced by 0-CFA. Moreover, if the sizes of the types
are independent of the size of the program, as is often the
case in practice, then the flow information can be computed
in O(n2) time, which is an improvement over the O(n3) time
spent by 0-CFA.

2.5 A Types-as-Discriminators Approach
The third type-based analysis uses the types as discrim-

inators. To compute a flow set for an expression e in a
program E, the analysis concentrates on the type of e, and
asks which abstractions in E have the same type as e. The
set of labels of those abstractions is the flow set for e.

For the running example F , the type of F itself is α → α.
There is exactly one abstraction in F which has type α → α,
namely λ4b.b, so the flow set for F is {4}.

3. ADVANTAGES OF
TYPE-BASED ANALYSIS

The example above illustrates the main advantages of
type-based analysis, all revolving around the issues of sim-
plicity, efficiency, and correctness. We discuss these advan-
tages in more detail here and we consider whether type-
based analysis is competitive with other approaches to static
analysis.

3.1 Simplicity
Types provide an infrastructure on top of which analy-

ses can be built. For example, the type and effect system
in Section 2 illustrates the idea of annotated types, that is,
the decoration of types with static information. Conceptu-
ally, the starting point for a type-based analysis is a type
derivation for a program, not just a syntax tree. Such a type
derivation is a convenient basis for designing static analyses.
If the goal is to design a type and effect system, then each
type rule provides a localized setting for thinking about the
analysis of a single language construct. If the goal is to de-
sign an analysis using types as discriminators, then the type
derivation contains the needed types.

3.2 Efficiency
Many researchers have observed that executing a static

analysis on a typical statically-typed program tends to be
faster and give qualitatively better results than executing
the same style of analysis on a typical dynamically-typed

program. The reason seems to be that statically-typed pro-
grams are inherently more structured and therefore easier
to analyze. The field of type-based analysis goes further
by trying to get additional benefits from the types. The
sparse-flow-graph approach above is an example of how the
mere existence of types can help with computing static in-
formation faster. The types-as-discriminators approach is
particularly efficient for a language with declared types be-
cause the needed type information is readily available in the
program text.

3.3 Correctness
The correctness of a type system with respect to a se-

mantics is usually phrased as a type soundness theorem:
well-typed programs cannot go wrong [38]. The correct-
ness of a type and effect system can similarly be phrased as
a type soundness theorem; the correctness of the analysis
is subsumed by the correctness of the annotated-type sys-
tem. There is a well-understood method for proving type
soundness [46, 77] based on proving type preservation and
progress, and this method usually carries over to type and
effect systems.

3.4 Competitiveness
Among the main approaches to static analysis are data

flow analysis, constraint-based analysis, and abstract inter-
pretation [48]. Many researchers, including Nielson, Nielson,
and Hankin [48], have observed that there are important
similarities between these approaches. Many type inference
problems that are specified using type rules can be turned
into equivalent constraint problems that are suitable for al-
gorithmic considerations. Similarly, one can view a type and
effect system as a specification of an analysis, which in turn
can be transformed into a constraint problem. The type and
effect system may be easier to formulate and reason about,
and the constraint problem may be more appropriate when
designing an algorithm to carry out the analysis.

One inherent advantage of type-based analysis is that it
enables the definition of abstract domains in terms of types.
The types-as-discriminators approach can be viewed as do-
ing that by dividing the abstractions into equivalence classes
based on the types.

The types can be of help when comparing two type-based
analyses for the same language. The types are a lingua
franca that is “spoken” by both analyses, and this may be
of help when trying to identify similarities and differences.

4. TOOLS THAT USE
TYPE-BASED ANALYSIS

We now survey some of the tools that successfully use
type-based analysis. The tools work on programs written in
C++ [17], Java [23], Modula 3 [11, 45], and Standard ML
[39].

4.1 Method Inlining
In an object-oriented program we may have a virtual call

site e.m(. . .). If a static analysis can determine a conser-
vative approximation of the set of methods that can be in-
voked, then a compiler may be able to inline the call. One of
the fundamental type-based analyses of object-oriented pro-
grams for doing that is the Class Hierarchy Analysis (CHA)
of Dean, Grove, and Chambers [13]. In the terminology

of Section 2, CHA uses types as discriminators to achieve
good precision. We will use the notation StaticType(e) to
denote the static type of the expression e, SubTypes(t) to
denote the set of declared subtypes of type t, and the no-
tation StaticLookup(C, m) to denote the definition (if any)
of a method with name m that one finds when starting a
static method lookup in the class C. For the virtual call
site e.m(. . .), and each class C ∈ SubTypes(StaticType(e))
where StaticLookup(C,m) = M ′, CHA determines that M ′

is a method that can be invoked. Notice how the static type
of e is used to restrict attention to only some of the classes
in the program.

We can extend CHA to take class-instantiation informa-
tion into account. The result is known as rapid type analysis
(RTA), and was first described by Bacon and Sweeney [5,
6]. The idea is to first collect the set S of all classes C for
which there is an occurrence of “new C()” in the program.
Then, for the virtual call site e.m(. . .), and each class C ∈
SubTypes(StaticType(e)) where StaticLookup(C, m) = M ′

and C ∈ S, RTA determines that M ′ is a method that can
be invoked. Notice that a class is only taken into account if
at least one object of that class may exist at run time.

One can go further and associate a single distinct set (like
S) with each class, method, and/or field in an application
[71]. If one associates a set with each expression, then the
result is 0-CFA [54].

Sundaresan et al. [64] use a combination of a type-based
analysis (either CHA or RTA) and a more traditional 0-CFA-
like analysis in the following way. First they perform, say,
RTA to determine a call graph approximation, and then they
use a 0-CFA-like technique to propagate class information
along the edges of that call graph. This turns out to be fast
and give good results.

A weakness of RTA and other whole-program analyses is
that they have problems with library-based applications for
which the code of the library is not available at the time
of the analysis. To overcome that, the application extrac-
tor Jax features a specification language that allows users
to specify, at a high level, how to extract a library-based
application [65]. The idea is that a specification tells Jax
what to expect from the library.

The Swift compiler by Ghemawat, Randall, and Scales
[21] has a front end which compiles Java to an typed inter-
mediate representation that uses annotated Java types. The
annotations can express such things as: the value is known
to be an object of exactly a particular class (and not a sub-
class), the value is an array with a particular constant size,
and the value is known to be non-null. The backend of the
compiler uses the annotations for method inlining and other
optimizations.

4.2 Application Extraction
For the purpose of extraction applications, the goal is to

compute a conservative approximation of the set of methods
that are reachable from the main method. It is straightfor-
ward to extend the basic formulations of CHA and RTA with
a form of reachability analysis. The following set-constraint
formulation of a version of CHA, borrowed from [71], uses a
single set variable R (for “reachable methods”) that ranges
of sets of methods. The constraints are derived from the
program text in the following way:

1. main ∈ R (main denotes the main method)

2. For each method M , each virtual call site
e.m(. . .) occurring in M , and each class C ∈
SubTypes(StaticType(e)) where StaticLookup(C, m) =
M ′:

(M ∈ R) ⇒ (M ′ ∈ R).

Intuitively, the first constraint reads “the main method is
reachable,” and the second constraint reads: “if a method
is reachable, and a virtual method call e.m(. . .) occurs in
the body of that method, then every method with name m

that is inherited by a subtype of the static type of e is also
reachable.” It is straightforward to show that there is a least
set R that satisfies the constraints, and a solution procedure
that computes that set. The reason for computing the least
R that satisfies the constraints is that this maximizes the
complement of R, i.e., the set of unreachable methods that
can be removed safely.

RTA extended with reachability analysis uses both a set
variable R ranging over sets of methods, and a set variable
S which ranges over sets of class names. The variable S
approximates the set of classes for which objects are created
during a run of the program. The constraints:

1. main ∈ R (main denotes the main method)

2. For each method M , each virtual call site
e.m(. . .) occurring in M , and each class C ∈
SubTypes(StaticType(e)) where StaticLookup(C, m) =
M ′:

(M ∈ R) ∧ (C ∈ S) ⇒ (M ′ ∈ R).

3. For each method M , and for each “new C()” occurring
in M :

(M ∈ R) ⇒ (C ∈ S).

Intuitively, the second constraint refines the corresponding
constraint of CHA by insisting that C ∈ S, and the third
constraint reads: “S contains the classes that are instanti-
ated in a reachable method.”

RTA is easy to implement, scales well, and has been shown
to compute call graphs that are significantly more precise
than those computed by CHA [5]. There are several whole-
program analysis systems that rely on RTA to compute call
graphs (e.g., the Jax application extractor of [70].)

It turns out that for detecting unreachable methods, the
inexpensive RTA does almost as well as when using a distinct
set with each class, method, and/or field in an application
[71].

4.3 Redundant-Load Elimination
Redundant-load elimination is a compile-time optimiza-

tion that combines loop-invariant code motion and common-
subexpression elimination. Since it is trying to reorder state-
ments that may do pointer accesses, redundant-load elimi-
nation can benefit from alias information. Two access paths
are said to be possibles aliases if they may refer to the same
variable. Diwan, McKinley, and Moss [16] have presented
three type-based alias analyses, all based on the idea of
using types as discriminators. The most basic one, called
TypeDecl, observes that two expressions e1 and e2 cannot
be aliases if

SubTypes(StaticType(e1)) ∩ SubTypes(StaticType(e2)) = ∅.

Their second analysis, called FieldTypeDecl, further distin-
guishes expressions based on observations such as: two ex-
pressions e1.f and e2.g cannot be aliases if f 6= g.

Their third analysis, called Selectively Merge Type Refer-
ences (SMTypeRefs), goes further by including a type-based
flow analysis. The idea is that two expressions e1 and e2 can-
not be aliases if the program never assigns an object of type
StaticType(e1) to a reference of type StaticType(e2), or vice
versa. Thus, the type-based flow analysis records the types
involved in all assignments, parameter passings, and return
of results, and computes an approximation of the possible
flow between references of different types.

Experiments [16] show that both FieldTypeDecl and SM-
TypeRefs are good bases for doing redundant-load elimina-
tion, while TypeDecl seems to be too imprecise to get good
results.

Fink, Knobe, and Sarkar [18] used a flow-sensitive version
of FieldTypeDecl in their implementation of redundant-load
and dead-store elimination.

Hosking, Nystrom, Whitlock, Cutts, and Diwan [29] have
presented an approach to partial-redundancy elimination
which uses the FieldTypeDecl approach to type-based alias
analysis. Their experience with the approach is mixed, al-
though they conclude that the main problem is not the alias
analysis but the isolation between their optimizer and the
underlying execution environment.

4.4 Encapsulation Checking
In a Java package, there may classes with the property

that no object of those classes will escape the package. In
other words, the objects of those classes are encapsulated
in the package. Bokowski and Vitek [9] called such classes
confined, and they presented an extension of Java in which
one can specify that a class is confined. Grothoff, Palsberg,
and Vitek [24] presented a type-based analysis for identi-
fying confined classes in Java bytecode. Their analysis is
defined using constraints, which, in turn, rely on a flow anal-
ysis to determine a call-graph approximation. They use a
type-based flow analysis akin to the SMTypeRefs mentioned
above. In effect, the combined analysis does a low-cost es-
cape analysis which turns out to identify a high number of
confined classes in a large benchmark suite.

4.5 Race Detection
In a multi-threaded program, a race condition occurs when

two threads manipulate a shared data structure simultane-
ously, without synchronization. This can result in unex-
pected program behavior. To avoid it, one can use a pro-
gramming discipline where each data structure is protected
with a lock that can be held by at most one thread at a
time. Flanagan and Freund [20] have presented a type-based
analysis that detects race conditions in Java programs. The
analysis is presented as a type and effect system. The cur-
rent implementation requires adding some type annotations
to the Java code. It remains open whether the type anno-
tations can be computed by an analysis.

4.6 Memory Management
Tofte and Talpin [72] suggested that call-by-value func-

tional languages can be implemented using regions for mem-
ory management. The idea is that, at run time, the store
consists of a stack of regions. Region inference is a type-
based analysis, presented as a type and effect system, which
determines where regions can be allocated and deallocated.
Birkedal, Tofte, and Vejlstrup [8] presented an implemen-
tation for Standard ML. which demonstrates that region

inference can result in significant space savings, in compar-
ison with more traditional memory management based on
garbage collection. Moreover, the region-based system can
compete on speed with a garbage-collection-based system.

5. OTHER TYPE-BASED ANALYSES
There is a large number of published type and effect sys-

tems for such tasks as side-effect analysis [37, 32, 66, 76],
binding-time analysis [49], strictness analysis [35, 36, 78, 3,
31], totality analysis, [62, 63, 61], callability analysis [67,
68], flow analysis [43, 42, 7, 30, 75, 73, 15, 56, 53], trust
analysis [51], secure information flow analysis [60], closure
conversion [25], resource allocation in compilers [69], con-
tinuation allocation [58], dependency analysis [1], commu-
nication analysis [48], and elimination of useless variables
[34, 19]. Many of them have been proved correct, most have
not yet been implemented for a full-fledged programming
language, although some have been implemented for a toy
language, and some still need an algorithm for performing
the analysis. Nielson and Nielson [47] present the overall
methodology behind type and effect systems, and they dis-
cuss the major design decisions, including whether or not
to incorporate subtyping, subeffecting, polymorphism, and
polymorphic recursion.

6. CONCLUSION
Most of the surveyed tools use types as discriminators,

while most of the theoretical studies use type and effect
systems. To enable a better comparison of the different
approaches, future research may attempt a further formal-
ization of the techniques used in current tools, and larger-
scale implementations and experiments with published type
and effect systems. Ideally, a static analysis should come
with both a proof of correctness and convincing experimen-
tal results. Type-based analysis is a promising approach to
achieving both with a reasonable effort.

Further information about type-based analysis and links
to many of the cited papers are available from:

http://www.cs.purdue.edu/homes/palsberg/tba/

Acknowledgments
Thanks to Tony Hosking for helpful discussions, and to John
Field and the other PASTE 2001 organizers for encourage-
ment. Palsberg was supported by a National Science Foun-
dation Faculty Early Career Development Award, CCR–
9734265, by CERIAS (Center for Education and Research
in Information Assurance and Security), and by IBM.

REFERENCES
[1] Mart́ın Abadi, Anindya Banerjee, Nevin Heintze, and

Jon Riecke. A core calculus of dependency. In Pro-
ceedings of POPL’99, 26th Annual SIGPLAN–SIGACT
Symposium on Principles of Programming Languages,
pages 147–160, 1999.

[2] Alfred V. Aho, Ravi I. Sethi, and Jeffrey D. Ull-
man. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Reading, MA, second edition, 1986.

[3] Torben Amtoft. Minimal thunkification. In Proceed-
ings of WSA’93, 3rd International Workshop on Static
Analysis, pages 218–229. Springer-Verlag (LNCS 724),
1993.

[4] Andrew W. Appel. Modern Compiler Implementation
in Java. Cambridge University Press, 1998.

[5] David F. Bacon and Peter F. Sweeney. Fast static
analysis of C++ virtual function calls. In Proceedings
of the Eleventh Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA’96), pages 324–341, San Jose, CA, 1996.
SIGPLAN Notices 31(10).

[6] David Francis Bacon. Fast and Effective Optimiza-
tion of Statically Typed Object-Oriented Languages.
PhD thesis, Computer Science Division, University
of California, Berkeley, December 1997. Report No.
UCB/CSD-98-1017.

[7] Anindya Banerjee. A modular, polyvariant and type-
based closure analysis. In Proceedings of ICFP’97,
ACM International Conference on Functional Program-
ming, pages 1–10, 1997.

[8] Lars Birkedal, Mads Tofte, and Magnus Vejlstrup.
From region inference to von Neumann machines
via region representation inference. In Proceedings of
POPL’96, 23nd Annual SIGPLAN–SIGACT Sympo-
sium on Principles of Programming Languages, pages
171–183, 1996.

[9] Boris Bokowski and Jan Vitek. Confined types. In
Proceedings of the Fourteenth Annual Conference on
Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA’99), pages 82–96, Denver, CO,
1999.

[10] Luca Cardelli. Type systems. In CRC Handbook of
Computer Science and Engineering, chapter 103, pages
2208–2236. CRC Press, 1997.

[11] Luca Cardelli, Jim Donahue, Mick Jordan, Bill Kalsow,
and Greg Nelson. The Modula-3 type system. In Six-
teenth Symposium on Principles of Programming Lan-
guages, pages 202–212, 1989.

[12] James C. Corbett, Matthew B. Dwyer, John Hatcliff,
Shawn Laubach, Corina S. Pasareanu, Robby, and
Hongjun Zheng. Bandera : Extracting finite-state mod-
els from Java source code. In Proceedings of ICSE’00,
22nd International Conference on Software Engineer-
ing, pages 439–448, 2000.

[13] J. Dean, D. Grove, and C. Chambers. Optimization
of object-oriented programs using static class hierarchy
analysis. In W. Olthoff, editor, Proceedings of the Ninth
European Conference on Object-Oriented Programming
(ECOOP’95), pages 77–101, Aarhus, Denmark, August
1995. Springer-Verlag.

[14] David Detlefs, K. Rustan Leino, Greg Nelson, and
James Saxe. Extended static checking. Technical Re-
port 159, Compaq Systems Research Center, 1998.

[15] Allyn Dimock, Robert Muller, Franklyn Turbak, and
J. B. Wells. Strongly typed flow-directed representa-
tion transformations. In Proceedings ICFP ’97, Inter-
national Conference on Functional Programming, ACM
SIGPLAN Notices 32(8), pages 11–24, 1997.

[16] Amer Diwan, Kathryn McKinley, and Eliot Moss.
Type-based alias analysis. In Proceedings of PLDI’98,
ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 106–117, 1998.

[17] Margaret A. Ellis and Bjarne Stroustrup. The Anno-
tated C++ Reference Manual. Addison-Wesley, 1990.

[18] Stephen Fink, Kathleen Knobe, and Vivek Sarkar. Uni-
fied analysis of array and object references in strongly
typed languages. In Proceedings of SAS’00, 7th Inter-
national Static Analysis Symposium, pages 155–174.
Springer-Verlag (LNCS 1824), 2000.

[19] Adam Fischbach and John Hannan. Type systems and
algorithms for useless-variable elimination. In Proceed-
ings of PADO’01, Symposium on Programs as Data Ob-
jects, 2001. To appear.

[20] Cormac Flanagan and Stephen Freund. Type-based
race detection for Java. In Proceedings of PLDI’00,
ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 219–232, 2000.

[21] Sanjay Ghemawat, Keith Randall, and Daniel Scales.
Field analysis: Getting useful and low-cost interpro-
cedural information. In Proceedings of PLDI’00, ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation, pages 334–344, 2000.

[22] Rajeev Gopal and Stephan R. Schach. Using automatic
program decomposition techniques in software mainte-
nance tools. In Proceedings of ICSM’89, International
Conference on Software Maintenance, pages 132–141,
1989.

[23] James Gosling, Bill Joy, and Guy Steele. The Java Lan-
guage Specification. Addison-Wesley, 1996.

[24] Christian Grothoff, Jens Palsberg, and Jan Vitek. En-
capsulating objects with confined types. In Proceed-
ings of OOPSLA’01, ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages and
Applications, October 2001. To appear.

[25] John Hannan. Type systems for closure conversions. In
Proceedings of Workshop on Types for Program Analy-
sis, pages 48–62, 1995.

[26] Nevin Heintze. Control-flow analysis and type systems.
In Proceedings of SAS’95, International Static Analy-
sis Symposium, pages 189–206. Springer-Verlag (LNCS
983), Glasgow, Scotland, September 1995.

[27] Nevin Heintze and David McAllester. Linear-time sub-
transitive control flow analysis. In Proceedings of ACM
SIGPLAN 1997 Conference on Programming Language
Design and Implementation, pages 261–272, 1997.

[28] Susan Horwitz, Thomas Reps, and David Binkley. In-
terprocedural slicing using dependence graphs. ACM
Transactions on Programming Languages and Systems,
12(1):26–60, 1990.

[29] Antony L. Hosking, Nathaniel Nystrom, David Whit-
lock, Quintin Cutts, and Amer Diwan. Partial redun-
dancy elimination for access path expressions. Software
– Practice & Experience, 31(6):577–600, 2001.

[30] Suresh Jagannathan, Andrew Wright, and Stephen
Weeks. Type-directed flow analysis for typed intermedi-
ate languages. In Proceedings of SAS’97, International
Static Analysis Symposium. Springer-Verlag, 1997.

[31] Thomas Jensen. Inference of polymorphic and condi-
tional strictness properties. In Proceedings of POPL’98,
25th Annual SIGPLAN–SIGACT Symposium on Prin-
ciples of Programming Languages, pages 209–221, San
Diego, California, January 1998.

[32] Pierre Jouvelot and David Gifford. Algebraic re-
construction of types and effects. In Proceedings of
POPL’91, SIGPLAN–SIGACT Symposium on Princi-
ples of Programming Languages, pages 303–310, 1991.

[33] Brian W. Kernighan and Dennis M. Ritchie. The C Pro-
gramming Language. Prentice-Hall, 1978.

[34] Naoki Kobayashi. Type-based useless variable elimina-
tion. In Proceedings of PEPM’00, ACM Symposium on
Partial Evaluation and Semantics-Based Program Ma-
nipulation, pages 84–93, 2000.

[35] Tsung-Min Kuo and Prateek Mishra. On strictness and
its analysis. In Proceedings of POPL’87, SIGPLAN–
SIGACT Symposium on Principles of Programming
Languages, pages 144–155, 1987.

[36] Tsung-Min Kuo and Prateek Mishra. Strictness anal-
ysis: A new perspective based on type inference. In
Proceedings of Conference on Functional Programming
Languages and Computer Architecture, pages 260–272,
1989.

[37] John Lucassen and David Gifford. Polymorphic ef-
fect systems. In Proceedings of POPL’88, SIGPLAN–
SIGACT Symposium on Principles of Programming
Languages, pages 47–57, 1988.

[38] Robin Milner. A theory of type polymorphism in pro-
gramming. Journal of Computer and System Sciences,
17:348–375, 1978.

[39] Robin Milner, Mads Tofte, and Robert Harper. The
Definition of Standard ML. MIT Press, 1990.

[40] Greg Morrisett, Karl Crary, Neal Glew, Dan Gross-
man, Richard Samuels, Frederick Smith, David Walker,
Stephanie Weirich, and Steve Zdancewic. Talx86: A
realistic typed assembly language. ACM Workshop on
Compiler Support for System Software, May 1999.

[41] Greg Morrisett, David Walker, Karl Crary, and Neal
Glew. From system F to typed assembly language.
In Proceedings of POPL’98, 25th Annual SIGPLAN–
SIGACT Symposium on Principles of Programming
Languages, pages 85–97, 1998.

[42] Christian Mossin. Exact flow analysis. In Proceedings
of SAS’97, International Static Analysis Symposium,
pages 250–264. Springer-Verlag (LNCS), 1997.

[43] Christian Mossin. Flow Analysis of Typed Higher-Order
Languages. PhD thesis, DIKU, University of Copen-
hagen, 1997.

[44] Steven Muchnick. Advanced Compiler Design and Im-
plementation. Morgan Kaufmann, 1997.

[45] Greg Nelson. Systems Programming with Modula-3.
Prentice Hall, 1991.

[46] Flemming Nielson. The typed lambda-calculus with
first-class processes. In Proceedings of PARLE, pages
357–373, April 1989.

[47] Flemming Nielson and Hanne Riis Nielson. Type and
effect systems. In Correct System Design, pages 114–
136, 1999.

[48] Flemming Nielson, Hanne Riis Nielson, and Chris Han-
kin. Principles of Program Analysis. Springer-Verlag,
1999.

[49] Hanne R. Nielson and Flemming Nielson. Automatic
binding time analysis for a typed λ-calculus. Science of
Computer Programming, 10:139–176, 1988.

[50] Tobias Nipkow and David von Oheimb. Javalight is type-
safe – definitely. In Proceedings of POPL’98, 25th An-
nual SIGPLAN–SIGACT Symposium on Principles of
Programming Languages, pages 161–170, San Diego,
California, January 1998.

[51] Peter Ørbæk and Jens Palsberg. Trust in the λ-
calculus. Journal of Functional Programming, 7(6):557–
591, November 1997. Preliminary version in Proceed-
ings of SAS’95, International Static Analysis Sym-
posium, Springer-Verlag (LNCS 983), pages 314–330,
Glasgow, Scotland, September 1995.

[52] Jens Palsberg. Closure analysis in constraint form.
ACM Transactions on Programming Languages and
Systems, 17(1):47–62, January 1995. Preliminary ver-
sion in Proceedings of CAAP’94, Colloquium on Trees
in Algebra and Programming, Springer-Verlag (LNCS
787), pages 276–290, Edinburgh, Scotland, April 1994.

[53] Jens Palsberg and Christina Pavlopoulou. From poly-
variant flow information to intersection and union
types. Journal of Functional Programming, to appear.
Preliminary version in Proceedings of POPL’98, 25th
Annual SIGPLAN–SIGACT Symposium on Principles
of Programming Languages, pages 197–208, San Diego,
California, January 1998.

[54] Jens Palsberg and Michael I. Schwartzbach. Object-
oriented type inference. In Proceedings of OOPSLA’91,
ACM SIGPLAN Sixth Annual Conference on Object-
Oriented Programming Systems, Languages and Ap-
plications, pages 146–161, Phoenix, Arizona, October
1991.

[55] Jens Palsberg and Michael I. Schwartzbach. Object-
Oriented Type Systems. John Wiley & Sons, 1994.

[56] Jakob Rehof and Manuel Fähndrich. Type-based
flow analysis: From polymorphic subtyping to cfl-
reachability. In Proceedings of POPL’01, 28th Annual
SIGPLAN–SIGACT Symposium on Principles of Pro-
gramming Languages, pages 54–66, 2001.

[57] Debra J. Richardson. TAOS: Testing with analysis and
oracle support. In International Symposium on Soft-
ware Testing and Analysis, pages 138–153, 1994.

[58] Zhong Shao and Valery Trifonov. Type-directed contin-
uation allocation. In ACM Workshop on Types in Com-
pilation, pages 116–136, Kyoto, Japan, March 1998.

[59] Olin Shivers. Control-Flow Analysis of Higher-Order
Languages. PhD thesis, CMU, May 1991. CMU–CS–
91–145.

[60] Geoffrey Smith and Dennis Volpano. Secure infor-
mation flow in multi-threaded imperative language.
In Proceedings of POPL’98, 25th Annual SIGPLAN–
SIGACT Symposium on Principles of Programming
Languages, pages 355–364, 1998.

[61] Kirsten Solberg. Annotated Type Systems for Program
Analysis. PhD thesis, University of Aarhus, 1995.

[62] Kirsten Solberg, Hanne Riis Nielson, and Flemming
Nielson. Strictness and totality analysis. In Proceedings
of SAS’94, International Static Analysis Symposium,
pages 408–422. Springer-Verlag (LNCS 864), 1994.

[63] Kirsten Solberg, Hanne Riis Nielson, and Flemming
Nielson. Strictness and totality analysis with conjunc-
tion. In Proceedings of TAPSOFT’95, Theory and Prac-
tice of Software Development, pages 501–515. Springer-
Verlag (LNCS 915), Aarhus, Denmark, May 1995.

[64] Vijay Sundaresan, Laurie Hendren, Chrislain Razafima-
hefa, Raja Vallée-Rai, Patrick Lam, Etienne Gagnon,
and Charles Godin. Practical virtual method call
resolution for Java. In Proceedings of the Fifteenth
Annual Conference on Object-Oriented Programming

Systems, Languages, and Applications (OOPSLA’00),
pages 264–280, Minneapolis, Minnesota), 2000.

[65] Peter F. Sweeney and Frank Tip. Extracting library-
based object-oriented applications. In Proceedings of
the Eighth International Symposium on the Founda-
tions of Software Engineering (FSE-8), pages 98–107,
November 2000.

[66] Jean-Pierre Talpin and Pierre Jouvelot. The type
and effect discipline. Information and Computation,
111:245–296, 1994. A preliminary version was presented
at LICS’92.

[67] Yan Mei Tang and Pierre Jouvelot. Separate abstract
interpretation for control-flow analysis. In Proceedings
of TACS’94, Theoretical Aspects of Computing Soft-
ware, pages 224–243. Springer-Verlag (LNCS 789),
1994.

[68] Yan Mei Tang and Pierre Jouvelot. Effect systems with
subtyping. In Proceedings of PEPM’95, ACM Sympo-
sium on Partial Evaluation and Sematics-Based Pro-
gram Manipulation, pages 45–53. ACM Press, 1995.

[69] Peter Thiemann. Formalizing resource allocation in a
compiler. In ACM Workshop on Types in Compilation,
pages 178–194, Kyoto, Japan, March 1998.

[70] Frank Tip, Chris Laffra, Peter F. Sweeney, and David
Streeter. Practical experience with an application ex-
tractor for Java. In Proceedings of the Fourteenth
Annual Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA’99),
pages 292–305, Denver, CO), 1999. SIGPLAN Notices
34(10).

[71] Frank Tip and Jens Palsberg. Scalable propagation-
based call graph construction algorithms. In Proceed-
ings of OOPSLA’00, ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages and
Applications, pages 281–293, Minneapolis, Minnesota,
October 2000.

[72] Mads Tofte and Jean-Pierre Talpin. Region-based
memory management. Information and Computation,
132(2):109–176, 1997.

[73] Franklyn Turbak, Allyn Dimock, Robert Muller,
and J. B. Wells. Compiling with polymorphic
and polyvariant flow types. In ACM SIGPLAN
Workshop on Types in Compilation, June 1997.
http://www.cs.bc.edu/~muller/postscript/tic97.ps.Z.

[74] Mark Weiser. Program slicing. IEEE Transactions on
Software Engineering, 10(4):352–357, July 1984.

[75] J. B. Wells, Allyn Dimock, Robert Muller, and
Franklyn Turbak. A calculus with polymorphic and
polyvariant flow types. Journal of Functional Program-
ming. To appear.

[76] Andrew Wright. Typing references by effect inference.
In Proceedings of ESOP’92, European Symposium on
Programming, pages 473–491. Springer-Verlag (LNCS
582), 1992.

[77] Andrew Wright and Matthias Felleisen. A syntactic ap-
proach to type soundness. Information and Computa-
tion, 115(1):38–94, 1994.

[78] David A. Wright. A new technique for strictness anal-
ysis. In Proceedings of TAPSOFT’91, pages 235–258.
Springer-Verlag (LNCS 494), 1991.

